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Acoustic phonons in nanowire superlattices: Azimuthally symmetric torsional modes
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We study theoretically vibrational modes in a nanowire superlattice consisting of an alternate stacking of two
cylindrical layers. We focus on azimuthally symmetric torsional modes and calculate the phonon dispersion
relations analytically. We also derive simple expressions for the frequency gaps generated in the nanowire
superlattice. Moreover, we calculate the transmittance of phonons propagating through a nanowire superlattice
with the finite number of periods. Based on our calculated results, effects of the superlattice longitudinal
confinement and the radial confinement are examined.
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I. INTRODUCTION

Recently, realization of one-dimensional compositionally
modulated heterostructures is generating a great deal of in-
terest for potential nanoelectronics and photonics. For ex-
ample, growth of GaAs/GaP,1 Si/SiGe,2 InAs/InP,3 and ZnSe/
CdSesRef. 4d nanowire superlatticesNWSLd structures have
been reported. A theory of electrons in NWSLs has been
presented and these structures are shown to be radically dif-
ferent from plain nanowires and quantum well structures in
their electronic, optical, and transport properties.5

Furthermore, we can expect that this structure yields in-
teresting physical effects on the phonon properties. It is also
practically important to understand the transmission proper-
ties of phonons in NWSLs. For example, phonons play im-
portant roles in micro/nano electromechanical systems
sMEMS/NEMSd, which have attracted much attention in re-
cent years.6 The characteristics of such nano electromechani-
cal devises are determined by the thermal effects. By utiliz-
ing the superlattice structure embedded in the nanowire, it is
possible to control the behavior of phonons in the nano elec-
tromechanical devises. In the periodic superlattice structure,
Bragg reflections occur for long wavelength phonons. In
other words, the periodic superlattice structure acts as an
opaque barrier for phonons within the frequency gaps in-
duced by the periodicity much longer than the lattice spac-
ing. This suggests the potential for designing various phonon
optics devices for coherent phonon generation and control,
such as phonon filters, mirrors, and resonators.7

The aim of the present paper is to study the acoustic
phonons in NWSLs theoretically. In particular, we focus on
azimuthally symmetric torsional modes. These modes can be
excited with the use of a resonator generating torsional vi-
brations of a suspended wires, which was developed by Cle-
land et al.6 As for a “plain” cylindrical isotropic wire with
stress-free boundaries, vibrational properties have been al-
ready studied.8,9 For the azimuthally symmetric torsional
modes in the plain wire, it has been shown that displacement
and stress fields and also phonon dispersion relation can be
analytically obtained. In the present paper, we study analyti-
cally these vibrational modes generated in the NWSLs, and
examine effects of both the superlattice longitudinal confine-
ment and the radial confinement.

The outline of this paper is as follows: In Sec. II A, we
briefly summarize the vibrational modes in a plain wire. In

Sec. II B, we develop the mathematical analysis of the pho-
non dispersion relations of NWSLs and the transmittance of
NWSLs with the finite number of periods. Approximate ex-
pressions for the gap frequencies are also derived. In Sec. III,
the numerical examples based on our formula are presented,
and the vibrational properties are discussed. In Sec. IV, a
summary and conclusions are given.

II. FORMULATION

A. Free isotropic cylinder

For the later use, we summarize in this section results for
vibrational modes in a cylindrical isotropic wire with stress-
free boundaries. For isotropic materials, it is convenient to
apply the potential theory method.9,10 The displacement
fields u can be expressed in terms of potential functions:

u = ¹ f1 + ¹ 3 sf2ẑd + ¹ 3 ¹ 3 sf3ẑd, s1d

where ẑ is the unit vector in thez direction. Each potential
functionfi si =1, 2, 3d satisfies the following wave equation:

S¹2 +
v2

vi
2Dfi = 0, s2d

wherev1=vl, v2=v3=vt are the sound velocities for the lon-
gitudinal and transverse modes, respectively. The appropriate
solutions of Eq.s2d are well known, that is,

fi = CiJpskirdeispu+qzd, s3d

in cylindrical coordinate. HereCi is a constant,Jpskird is the
Bessel function of the first kind,p is an integer representing
the p-fold rotational symmetry,q is the wave number in the
z direction, and

k1 =Îv2

v,
2 − q2 ; k,, s4d

k2 = k3 =Îv2

vt
2 − q2 ; kt s5d

mean the wave numbers of the longitudinal and transverse
modes in the radial direction, respectively. Substitution of

PHYSICAL REVIEW B 71, 085303s2005d

1098-0121/2005/71s8d/085303s8d/$23.00 ©2005 The American Physical Society085303-1



Eq. s3d into Eq. s1d gives the phonon displacement field
u=sur ,uu ,uzd in the cylindrical coordinate:

ur = SC1
]Jpsk,rd

]r
+ C2

ip

r
Jpsktrd + C3iq

]Jpsktrd
]r

D 3 eispu+qzd,

s6d

uu = SC1
ip

r
Jpsk,rd − C2

]Jpsktrd
]r

− C3
pq

r
JpsktrdD 3 eispu+qzd,

s7d

uz = sC1iqJpsk,rd + C3kt
2Jpsktrdd 3 eispu+qzd. s8d

For p=0 si.e., azimuthally symmetric modesd, C2 is decou-
pled fromC1 andC3, and the lattice displacement fielduu is
expressed as

uu = − C2
]J0sktrd

]r
eiqz = C2ktJ1sktrdeiqz. s9d

The corresponding stress fieldsru is

sru = − C2mkt
2J2sktrdeiqz, s10d

wherem=rvt
2 andr is the mass density. In the present study,

we consider these modes, namely, azimuthally symmetric
torsionalmodes. There are mainly two reasons for consider-
ing these modes. First, we can with proceed the analytical
calculation also for the NWSLs. Second, a resonator gener-
ating the torsional vibrations of a suspended wire was actu-
ally developed.6

For a wire with free boundaries, the components of the
stress should vanish at the surface of the cylinderr =R. This
boundary condition leads to

kt =
f2,s

R
, s11d

where f2,s is thesth root of the equationJ2=0, e.g.,f2,0=0,
f2,1=5.136,f2,2=8.418, etc. From Eqs.s5d ands11d, the dis-
persion relation is analytically obtained as

v = vtÎq2 + S f2,s

R
D2

. s12d

For s=0, Eq.s12d becomes

v = vtq s13d

but the correspondinguu vanish. However, it is known that
the solution

uu = C2re
iqz s14d

corresponds tos=09. This can be directly confirmed with the
substitution of Eq.s14d into the wave equation. From Eq.
s12d, it is found that the lowest frequency for thesth mode is
given by

vmin = vt
f2,s

R
, s15d

because the wave numberq should be a real number for the
wire with the infinity length.

B. Nanowire superlattice

1. Dispersion relation

In this section, we consider the azimuthally symmetric
torsional modes in a cylindrical NWSL. The NWSL is mod-
eled as an ideal cylinder with sharp modulation in the longi-
tudinal directionfFig. 1sadg. In this case, the lattice displace-
ment uu,j and stresssuz,j defined in the j th layer of the
NWSL are expressed in terms of linear combinations of the
transmitted and reflected waves propagating along thez axis:

uu,j = Fsrdsaje
iqjz + bje

−iqjzd, s16d

suz,j = im jqjFsrdsaje
iqjz − bje

−iqjzd, s17d

where

Fsrd = 5 f2,s

R
J1S f2,s

R
rD for sÞ 0

r for s= 0

. s18d

Here, aj and bj are the amplitudes of the transmitted and
reflected waves, respectively. For given frequencies the wave
numberqj in the j th layer is determined by the dispersion
relation s12d:

qj =ÎSv

v j
D2

− S f2,s

R
D2

, s19d

wherev j is the sound velocity for the transverse mode. In the
present system,qj is allowed to be an imaginary number
because thej th layer has boundaries in thez direction.

The lattice displacementuu,j and stresssuz,j should be
continuous at the interfaces of adjacent layers. This boundary
condition can be explicitly expressed as

U jszjd = MjU j−1szj−1d, s20d

where

U jszd = Suu,jszd
suz,jszd

D s21d

and

FIG. 1. Nanowire superlattice.
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Mj = 1 cossqjdjd
1

m jqj
sinsqjdjd

− m jqj sinsqjdjd cossqjdjd
2 s22d

is the transfer matrix of thej th layer.
Using the transfer matrix, we can derive the phonon dis-

persion relation of a NWSL consisting of an alternate stack-
ing of two cylindrical layers. If the interfaces between unit
periods are labeled withn as shown in Fig. 1sbd, the relation
betweenUn andUn−1 can be written as

UnsnDd = MBAUn−1fsn − 1dDg. s23d

Here, Ds=dA+dBd denotes the thickness of the unit period,
wheredA and dB are the thicknesses of layersA and B, re-
spectively, andMBA is the transfer matrix for the unit period
of the NWSL,

MBA ; MBMA = 1 m11
1

mAqA
m12

mAqAm21 m22
2 , s24d

where

m11 = cosa cosb −
mAqA

mBqB
sina sinb, s25d

m12 = sina cosb +
mAqA

mBqB
cosa sinb, s26d

m21 = − sina cosb −
mBqB

mAqA
cosa sinb, s27d

m22 = cosa cosb −
mBqB

mAqA
sina sinb, s28d

and

a = dAÎS v

vA
D2

− S f2,s

R
D2

, s29d

b = dBÎS v

vB
D2

− S f2,s

R
D2

. s30d

In the present system with discrete translational symme-
try, the lattice displacementuu,n and stresssuz,n have to sat-
isfy Bloch’s theorem,

Un = eiKDUn−1, s31d

whereK is the Bloch wave number due to the superlattice
modulation, which is determined by the periodic boundary
condition,Un+N=Un. On the other hand, the relation between
Un andUn−1 was already given in Eq.s23d. Combining Eqs.
s23d and s31d, we have

detsMBA − eiKDd = 0. s32d

Solving this equation, we get the phonon dispersion relation,

cosKD =
m11 + m22

2
= cossa + bd − 1

2«2 sina sinb,

s33d

where

« =ÎmBqB

mAqA
−ÎmAqA

mBqB
. s34d

Equations33d can be satisfied for a realK if and only if the
right-hand side is less than unity in magnitude. Thus, there
will be allowed and forbidden regions of frequencies, i.e.,
frequency bands and gaps, respectively. In other words, the
frequency gaps are defined as the range of frequencies satis-
fying

Um11 + m22

2
U . 1. s35d

Whens=0, « can be written as

« =ÎZA

ZB
−ÎZB

ZA
; «0 s36d

with the acoustic impedanceZA=rAvA and ZB=rBvB. In
other words,« means the acoustic mismatch between the
constituent layers of the NWSL.

2. Approximate expression for the gap frequency

Here, we derive approximate expressions for the gap fre-
quencies. These are useful in understanding the coupling of
the longitudinal confinement to radial confinement.

For s=0, Eq.s33d becomes the same form as the expres-
sion for the dispersion relation of the phonons normally
propagating through the one-dimensional SL.11 The second
term on the right-hand side of Eq.s33d can be regarded as a
small perturbation because the acoustic mismatch is small
for most of the SLs, that is,

«0 ! 1. s37d

Thus, the frequency at the center of themth frequency gap is
given by

vm = mv1 = mpSdA

vA
+

dB

vB
D−1

. s38d

This frequency is known as the Bragg frequency.
Even if sÞ0, the second term on the right-hand side of

Eq. s33d is still expected to be a small perturbation though«
depends on the frequency. The frequency at the center of the
mth frequency gap is approximately determined by

a + b = mp. s39d

With the use of Eqs.s29d and s30d, this equation becomes

dAv

vA
Î1 −S f2,svA

Rv
D2

+
dBv

vB
Î1 −S f2,svB

Rv
D2

= mp.

s40d

Equations40d can be approximated as
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p
v

v1
−

f2,s
2

2R2v
svAdA + vBdBd = mp s41d

if

f2,sv ! Rv s42d

is satisfiedsv=vA,vBd. Solving Eq.s41d within the present
approximation, we obtain the expression for the Bragg fre-
quency of the NWSL,

ṽm = vm +
f2,s
2

2mpR2svAdA + vBdBd. s43d

It is found that the second term in Eq.s43d gives the correc-
tion due to the radial confinement of phonons. The condition
s42d for the validity of Eq.s43d can be rewritten as

S f2,sD

mR
D2

! 1, s44d

because typical frequencies we are interested in are around
the Bragg frequency, that is,

v , ṽm , mv1 , mpv/D. s45d

In other words, the analytical expressions43d is valid when
the effect of the radial confinement is regarded as a small
perturbation.

Next, let us estimate the width of themth frequency gap.
Expanding Eq.s33d aroundṽm and neglecting small contri-
bution terms, we have

m11 + m22

2
= s− 1dmF1 +

«0
2

2
sin2svmdA/vAd −

1

2
sv − ṽmd2p2

v1
2G .

s46d

The derivation of Eq.s46d is given in the Appendix. From
this equation, it is shown that Eq.s35d is satisfied for the
frequency window,

ṽm − Dm ø v ø ṽm + Dm, s47d

where

Dm =
v1

p
u«0 sinsvmdA/vAdu. s48d

That is, the frequency window defined by Eq.s47d gives the
mth frequency gap, or Eq.s48d represents half of the width of
the gap.

3. Transmittance and reflectance

Next, we consider the case of a periodic NWSL sand-
wiched betweenS andD fsee Fig. 1sbdg, that is, the NWSL
has a finite number of period. For this system, the phonon
properties are determined in terms of the transfer matrix for
the NWSL withN period,

MSL; sMBAdN = 1 M11
1

mAqA
M12

mAqAM21 M22
2 . s49d

The matrix elements ofMSL can be calculated analytically as

M11 =
m11 − m22

2
SsNd + CsNd, s50d

M12 = m12SsNd, s51d

M21 = m21SsNd, s52d

M22 = −
m11 − m22

2
SsNd + CsNd, s53d

where

SsNd =5
sinNP

sin P
,

um11 + m22u
2

ø 1

sinhNP

sinhP
,

m11 + m22

2
. 1

s− 1dN+1 sinhNP

sinhP
,

m11 + m22

2
, − 1,

s54d

and

CsNd =5
cosNP,

um11 + m22u
2

ø 1

coshNP,
m11 + m22

2
. 1

s− 1dN coshNP,
m11 + m22

2
, − 1

. s55d

Here,P is defined by

cosP ;
m11 + m22

2
,

um11 + m22u
2

ø 1

coshP ;
um11 + m22u

2
,

um11 + m22u
2

. 1.

s56d

The frequencies satisfying the conditionum11+m22u /2
.1sum11+m22u /2ø1d are inside the frequency gapssbandsd,
as shown in Eq.s35d. Within the frequency bands,P/D is
equivalent to the Bloch wave numberK fsee Eq.s33dg.
Within the frequency gaps, on the other hand,P/D repre-
sents the decay factor, or the imaginary part of the wave
number.

With the use of the transfer matrix, the relation between
USs0d in the substrate andUDsNDd in the detector layer is
expressed as

UDsNDd = MSLUSs0d. s57d

Here,US andUD are expressed in terms of the transmission
amplitudetsvd and reflection amplitudersvd, respectively,

USszd = S eiqSz + rsvde−iqSz

imSqSseiqSz − rsvde−iqSzd
DFsrd, s58d

UDszd = S tsvdeiqDz

imDqDtsvdeiqDzDFsrd. s59d

Combining Eqs.s57d–s59d, we can obtain the expressions for
tsvd and rsvd as
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tsvd =
2ie−ikDL

SmDqD

mAqA
M12 −

mAqA

mSqS
M21D + iSM22 +

mDqD

mSqS
M11D ,

s60d

rsvd =
SmDqD

mAqA
M12 +

mAqA

mSqS
M21D + iSM22 −

mDqD

mSqS
M11D

SmDqD

mAqA
M12 −

mAqA

mSqS
M21D + iSM22 +

mDqD

mSqS
M11D .

s61d

The energy transmittanceTsvd freflectanceRsvdg is defined
as the ratio of the energy fluxes of incident and transmitted
sreflectedd phonons:

Tsvd ;
mDqD

mSqS
utsvdu2, s62d

Rsvd ; ursvdu2. s63d

For simplicity, we consider the case in whichS=D=A. In
this case, Eq.s62d can be expressed in a simpler form

Tsvd =
1

1 + 1
4«2 sin2 aS2sNd

. s64d

The effect of the multilayer structure is included inSsNd.
Inside the frequency gap, it is found that

Tsvd ~ e−2NP ! 1 s65d

becauseSsNd~eNP fsee Eq.s54dg. Inside the frequency band,
on the other hand,Tsvd=1 is realized. In particular,Tsvd
becomes exactly unity for the frequencies satisfying
sinsNPd=0, i.e.,

P =
j

N
p s j = 0,1,2,…d. s66d

III. NUMERICAL EXAMPLES AND DISCUSSION

With the use of nanocluster catalysts, semiconductor
NWSLs from group III-V and group IV materials have been
synthesized.1–4 The radius of the NWSL is determined by the
diameter of the nanocluster catalyst. On the other hand, the
superlattice periodicity can be controlled by growth time.
Typical dimensions have been nanowire radii of 10–50 nm
and layer widths of 1–100 nm.

As a numerical example, we present in Fig. 2 the phonon
dispersion relations calculated for a NWSL consisting of the
alternate stacking of GaAs and AlAs, which have been well
studied in planar structures.11 In plain wires, there is no fun-
damental length scale within the continuum model. That is,
the solution of the problem at one length scalesradius Rd
determines the solution at all other length scales. In NWSLs,
on the other hand, the ratio between the radiusR and the
periodicity D becomes important. As the first example, we
assumed thatR=5D=42.5 nm in Fig. 2. As shown in Eq.

s11d, the wave vector in the radial direction,kt, is quantized
due to the radial confinement. We show the results for the
first three modesss=0, 1, 2d. The overall structure of each
phonon dispersion relation can be roughly understood by the
folding of the dispersion curves for a homogeneous cylinder
into a mini-Brillouin zonesBZd determined by the periodic-
ity D of the NWSL. In this folded dispersion relation, the
frequency gaps are generated at the center and edges of the
mini-BZ due to Bragg reflections. As a result, the miniband
structures are generated.

The frequency at the center of themth frequency gap and
the width of the frequency gap are given in Eqs.s43d and
s48d, respectively. Equations43d shows that the Bragg fre-
quency due to the superlattice longitudinal confinement is
determined by the radiusR of the NWSL. The frequency
gaps determined by these approximate formulas are also
shown in Fig. 2ssolid vertical linesd. In the present example,
the frequency gaps are well reproduced with the approximate
formulas. These approximate formulas are valid when the
condition s44d is satisfied, i.e., the effect of the radial con-
finement is regarded as a small perturbation. In the example
illustrated in Fig. 2, this condition is satisfied. In a given
structure of the NWSLswith fixed R andDd, the approxima-
tion becomes accurate for smallers and largerm si.e., higher
frequency gapd. For the NWSL with smallerR, the discrep-
ancy becomes larger. As such an example, we show the dis-

FIG. 2. The phonon dispersion relations of thes100d GaAs/AlAs
NWSL with R=5D. The unit period consists ofsGaAsd15sAlAsd15.
The parameters used are as follows: the thickness of one monolayer
is 2.83 Å in thes100d direction for both GaAs and AlAs; the mass
densities and longitudinal sound velocities are 5.36 g/cm3 and 4.71
km/s for GaAs, and 3.76 g/cm3 and 5.65 km/s for AlAs. Solid
vertical lines indicate frequency gaps determined by Eqs.s43d, s47d,
and s48d.
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persion relations calculated for a NWSL withR=D. For s
ù1, the lowest frequency of each band is high compared
with Fig. 2, because the wave length in the radial direction is
smaller. The gap width depends ons strongly in NWSLs
with smallerR. This s dependence is due to the higher order
terms ofsf2,sD /mRd2. Within the approximation we used, the
gap width is independent ofs, as shown in Eq.s48d.

As mentioned before, the wave vectorqI sI =A,Bd defined
within the layer I is allowed to be an imaginary number.

When vùvI f2,s/R;vI, qI is a real number and the depen-
dence of the displacement onz has an oscillatory nature in
the layerI fsee Eq.s19dg. Whenv,vI, on the other hand,qI

becomes an imaginary number and the displacement decays
exponentially in the layerI. Thus, the displacement pattern is
qualitatively different with the frequency range. The expres-
sion for the phonon dispersion relations33d can be explicitly
rewritten as

cosKD =5
cosha coshb +

1

2
SmBuqBu

mAuqAu
+

mAuqAu
mBuqBuDsinha sinhb for v ø vA

cosa coshb −
1

2
SmBuqBu

mAuqAu
−

mAuqAu
mBuqBuDsina sinhb for vA ø v ø vB

cosa cosb −
1

2
SmBuqBu

mAuqAu
+

mAuqAu
mBuqBuDsina sinb for vB ø v,

s67d

wherea= uqAudA, b= uqBudB. In Eq. s67d, vA,vB is assumed
si.e., A=AlAs and B=GaAs in the present exampled. The
lines v=vA andv=vB are indicated in Fig. 3sand also Fig.
2d.

For s=0, there is no region determined byvAøvøvB
becausef2,0=0. Thus, the wave vectorqI defined within each
layer is always a real number. Fors=1, the linev=vB inter-

sects the lowest frequency band. That is, in the lowest fre-
quency band, the displacement pattern is different depending
on whether the frequency is higher thanvB or not. Below
vB, the wave vectorqB becomes an imaginary number in this
band. Fors=2, the lowest frequency band is entirely located
below vB. Therefore, the wave vector in a layer with the
lower sound velocity becomes an imaginary number in this
band.

As we saw, there is a case where the wave vector defined
in a layer becomes an imaginary number. However, the
Bloch wave numberK defined by Eq.s33d is a real number
in the frequency band. In the frequency gap, on the other
hand, the Bloch wave number becomes an imaginary num-
ber. Such a vibrational mode is not allowed for the system
with the infinite period. However, this mode may exist in
NWSLs with the finite period. In Fig. 4, we show the trans-
mittance calculated for a NWSL withN=8. We can see the
large dips corresponding to the frequency gap. Transmittance
has a nonvanishing value even in the frequency gap. This is
due to the finite length in the longitudinal direction. The
transmittance within the frequency gap is given by Eq.s65d.
In Eq. s65d, P means the decay factor of phonon displace-
ment, which is defined by Eq.s56d. In general, this decay
factor has larger value in the wider frequency gap. Thus, the
value of the transmittance becomes considerably small
within the wide frequency gaps, such as the lowest gaps
shown in Figs. 4sbd and 4scd.

IV. CONCLUDING REMARKS

In the present paper, we studied the vibrational modes in a
NWSL. The NWSL is modeled as an ideal cylinder with
sharp modulation in the longitudinal direction. The eigenfre-
quencies of the vibrational modes in the NWSL are labeled
with five quantum numbers:p, s, m, K, and,, wherep rep-

FIG. 3. The phonon dispersion relations of thes100d GaAs/AlAs
NWSL. The radius is assumed to beR=D.
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resents thep-fold rotational symmetry around the longitudi-
nal axis,s orders the roots of the Bessel functions and is due
to the radial confinement,m labels the minibands andK is
the Bloch wave number due to the superlattice modulation,
and remaining, we labeled here represents the polarization
si.e., torsional or dilatational modesd. For the azimuthally
symmetric torsional modes, we calculated the phonon disper-
sion relations analytically. We also calculated the transmit-
tance of these phonons propagating through a NWSL with a
finite number of periods. In addition, we derived the simple
expression for the frequency gap. Our formulas are helpful in
understanding the effects of the superlattice longitudinal con-
finement and the radial confinement. These formulas are also
relevant for design of optimized phonon optics devices for
coherent phonon generation or control, such as mirrors, fil-
ters, and also resonators. These are applicable to the micro/
nano electromechanical systems.

The results calculated analytically in the present paper are
limited to the azimuthally symmetric torsional modes whose
displacements are perpendicular to thez axis. For these
modes, it was possible to proceed the analytical calculation.
The analysis of other modes can provide complementary in-
formation for fundamental understanding of the vibration
generated in the NWSLs, though the analytical formulas can-
not be obtained. The results calculated numerically for other
modes will be given elsewhere.
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APPENDIX: DERIVATION OF EQ. (46)

The second term on the right-hand side of Eq.s33d has
only a small contribution. Thus, Eq.s33d can be expanded
aroundṽm as

m11 + m22

2
> Isṽmd + U1

2
sv − ṽmd2d2Isvd

dv2 U
ṽm

− U«2

2
sina sinbU

ṽm

, sA1d

where

Isvd = cossa + bd. sA2d

From the definition ofṽm fi.e., Eq.s39dg, it is easily shown
that

Isṽmd = s− 1dm, sA3d

and

usina sinbuṽm
= s− 1dm+1 sin2 am, sA4d

where

am = asṽmd = qAsṽmddA. sA5d

At v=ṽm, qA andqB can be approximated as

qAsṽmd =
mv1

vA
+

f2,s
2

2pmR2SvB

vA
−

vA

vB
DdB, sA6d

qBsṽmd =
mv1

vB
+

f2,s
2

2pmR2SvA

vB
−

vB

vA
DdA, sA7d

respectively. By carrying out the straightforward calculation
with the use of Eqs.sA6d and sA7d, it is shown that

Ud2Isvd
dv2 U

ṽm

> s− 1dm+1p2

v1
2F1 +

f2,s
2

m2pR2v1
svAdA + vBdBdG ,

sA8d

if Eq. s44d is satisfied. Similarly, we have

U −
1

2
«2U

ṽm

= 1 −
1

2
SZA

ZB
+

ZB

ZA
D −

1

2
SZA

ZB
−

ZB

ZA
DsvB

2

− vA
2d

f2,s
2

2m2R2v1
2 . sA9d

Inserting Eqs.sA3d, sA4d, sA8d, andsA9d into Eq. sA1d and
neglecting small contribution terms, we have

m11 + m22

2
= s− 1dmF1 +

«0
2

2
sin2svmdA/vAd −

1

2
sv − ṽmd2p2

v1
2G .

sA10d

FIG. 4. The transmittance of phonons propagating through the
s100d GaAs/AlAs NWSL. The unit period consists of
sGaAsd15sAlAsd15. The number of period is assumed to be 8.
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