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Acoustic phonons in nanowire superlattices: Azimuthally symmetric torsional modes

Seiji Mizuno
Department of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
(Received 7 June 2004; revised manuscript received 4 October 2004; published 4 February 2005

We study theoretically vibrational modes in a nanowire superlattice consisting of an alternate stacking of two
cylindrical layers. We focus on azimuthally symmetric torsional modes and calculate the phonon dispersion
relations analytically. We also derive simple expressions for the frequency gaps generated in the nanowire
superlattice. Moreover, we calculate the transmittance of phonons propagating through a nanowire superlattice
with the finite number of periods. Based on our calculated results, effects of the superlattice longitudinal
confinement and the radial confinement are examined.
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I. INTRODUCTION Sec. Il B, we develop the mathematical analysis of the pho-
Recently, realization of one-dimensional compositionallyon dispersion relations of NWSLs and the transmittance of

modulated heterostructures is generating a great deal of ifWNWSLs with the finite number of periods. Approximate ex-
terest for potential nanoelectronics and photonics. For exPressions for the gap frequencies are also derived. In Sec. Ill,
ample, growth of GaAs/GaFSi/SiGe? InAs/InP3 and ZnSe/  the numerical examples based on our formula are presented,
CdSe(Ref. 4 nanowire superlatticeNWSL) structures have and the vibrational properties are discussed. In Sec. IV, a
been reported. A theory of electrons in NWSLs has beesummary and conclusions are given.
presented and these structures are shown to be radically dif-
ferent from plain nanowires and quantum well structures in
their electronic, optical, and transport properfies. [l. FORMULATION

Furthermore, we can expect that this structure yields in-
teresting physical effects on the phonon properties. It is also
practically important to understand the transmission proper- For the later use, we summarize in this section results for
ties of phonons in NWSLs. For example, phonons play im-vibrational modes in a cylindrical isotropic wire with stress-
portant roles in micro/nano electromechanical systemgree boundaries. For isotropic materials, it is convenient to
(MEMS/NEMS), which have attracted much attention in re- apply the potential theory methdd® The displacement
cent year$.The characteristics of such nano electromechanifields u can be expressed in terms of potential functions:
cal devises are determined by the thermal effects. By ultiliz-
ing the superlattice structure embedded in the nanowire, it is Uu=Vg+V X(2)+V XV X(¢32), (1
possible to control the behavior of phonons in the nano elec- . . . L .
tromechanical devises. In the periodic superlattice structur ’her_ez IS the unit vector in the d|rect|qn. Each poten'qal.
Bragg reflections occur for long wavelength phonons. InUnctiond (i=1,2, 3 satisfies the following wave equation:
other words, the periodic superlattice structure acts as an w2
opaque barrier for phonons within the frequency gaps in- <V2+ —2>¢i =0, (2
duced by the periodicity much longer than the lattice spac- Ui
ing. This suggests the potential for designing various phonog/herev1=v|, v,=vs=v, are the sound velocities for the lon-

Opt'ﬁs devrllces fofr_l coherent phonog genera{mon and controg;ir dinal and transverse modes, respectively. The appropriate
such as phonon filters, mirrors, and resonators. solutions of Eq(2) are well known, that i,

The aim of the present paper is to study the acousti
phonons in NWSLs theoretically. In particular, we focus on & = Cin(kir)ei<p"+qZ), (3)
azimuthally symmetric torsional modes. These modes canbe ) ) )
excited with the use of a resonator generating torsional viln ¢ylindrical coordinate. Her€; is a constant)y(kr) is the
brations of a suspended wires, which was developed by c|essel functlon of the first klncp is an integer representing
land et al® As for a “plain” cylindrical isotropic wire with ~the p-fold rotational symmetryy is the wave number in the

stress-free boundaries, vibrational properties have been &-direction, and

A. Free isotropic cylinder

ready studied® For the azimuthally symmetric torsional 5

modes in the plain wire, it has been shown that displacement ky = w_2 - = Ke, (4)
and stress fields and also phonon dispersion relation can be Vg

analytically obtained. In the present paper, we study analyti-

cally these vibrational modes generated in the NWSLs, and o,

examine effects of both the superlattice longitudinal confine- ky=ks= _tz - =k (5)

ment and the radial confinement.
The outline of this paper is as follows: In Sec. Il A, we mean the wave numbers of the longitudinal and transverse
briefly summarize the vibrational modes in a plain wire. Inmodes in the radial direction, respectively. Substitution of
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Eg. (3) into Eq. (1) gives the phonon displacement field (a) 4
u=(u,,Uy,U,) in the cylindrical coordinate: —
R
[?J kr i (9\] kl’ . mes i- i i ase
U = (Cl—p;r—f) +C2%Jp(ktr) + C3iq—‘;(r—t)) X gPoraz, O’l ) ! ) ’H) )
©6) #1 g
+ + t >
[ dJ,(ker . zJ-l zj Zi+1 z
UQZ (Cl_p\]p(k(r) - CZ_M - C3p_qu(ktr)> X el(pmqZ):
r ar r ®
7) —2
U, = (C1iqdp(ker) + Cak (k) X €PPa?, (8) s ) A) B) A) B) . ) B) D
For p=0 (i.e., azimuthally symmetric modgsC, is decou-
pled fromC,; andC;, and the lattice displacement fielg is =0 o=l =2 o=
expressed as FIG. 1. Nanowire superlattice.
— dJo(kr) iz — iqz
Up=-Cz ar = CokJa (lar)e™. ) B. Nanowire superlattice
The corresponding stress fied, is 1. Dispersion relation
0r9=—C2,uktsz(ktr)eiqz (10) In this section, we consider the azimuthally symmetric

torsional modes in a cylindrical NWSL. The NWSL is mod-
where,u:pvt2 andp is the mass density. In the present study,eled as an ideal cylinder with sharp modulation in the longi-
we consider these modes, namely, azimuthally symmetrigudinal directionFig. 1(a)]. In this case, the lattice displace-
torsionalmodes. There are mainly two reasons for considerment u,; and stressoy,; defined in thejth layer of the
ing these modes. First, we can with proceed the analyticalWSL are expressed in terms of linear combinations of the
calculation also for the NWSLs. Second, a resonator genetransmitted and reflected waves propagating along tods:
ating the torsional vibrations of a suspended wire was actu-

ally developed. Uy, = F(r)(a;e%? + bje™), (16)
For a wire with free boundaries, the components of the . , )
stress should vanish at the surface of the cylindeR. This Tgrj = ipQiF(r) (€97 — be 9%, (17
boundary condition leads to where
fas
_l2s f f
k R’ (11) 28 1(L’Sr) for s#0
Fir)=y R R . (18
wheref, is thesth root of the equatiod,=0, e.g.,f =0, r for s=0
f,1=5.136,f, ,=8.418, etc. From Eqsg5) and(11), the dis-
persion relation is analytically obtained as Here, a; and b; are the amplitudes of the transmitted and
5 reflected waves, respectively. For given frequencies the wave
©=v /q2+ (fis) (12) numberg; in the jth layer is determined by the dispersion
! R/ relation (12):
For s=0, Eg.(12) becomes 2 [f,.\2
q.(12 q= (2) _(ﬁ) , (19)
w=vq (13 vj R
but the corresponding, vanish. However, it is known that Wherev; is the sound velocity for the transverse mode. In the
the solution present systemg; is allowed to be an imaginary number
B iqz because th¢th layer has boundaries in thredirection.
Uy=Core (14) The lattice displacement,; and stressry,; should be

corresponds te=0°. This can be directly confirmed with the continuous at the interfaces of adjacent layers. This boundary
substitution of Eq.(14) into the wave equation. From Eq. condition can be explicitly expressed as

(12), it is found that the lowest frequency for teéh mode is Uj(z) = MU;1(z-0), (20)
given by
¢ where
Omin = Ut%S, (15 U (2)
U= " @ (21
because the wave numbgishould be a real number for the Tozj\2
wire with the infinity length. and
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1 My + My, 12 .
cogq;d; — sin(q;d; cosKD=——=coda+ B) — 5e“sinasin B,
Mj _ S(QI ]) 140 n(qj j) 22) 2 a+p) 2€ a B
- mjq; sin(gyd;))  cogq;d;) (33
is the transfer matrix of thgth layer. where
Using the transfer matrix, we can derive the phonon dis-
persion relation of a NWSL consisting of an alternate stack- e= | #e%B _ /MAqA. (34)
ing of two cylindrical layers. If the interfaces between unit M“a0a Me0B

periods are labeled with as shown in Fig. (b), the relation

betweenU, andU,, , can be written as Equation(33) can be satisfied for a re#l if and only if the

right-hand side is less than unity in magnitude. Thus, there
Un(ND) = MgaU,-q[(n-1)D]. (23)  Wwill be allowed and forbidden regions of frequencies, i.e.,
frequency bands and gaps, respectively. In other words, the
Here, D(=da+dg) denotes the thickness of the unit period, frequency gaps are defined as the range of frequencies satis-
whered, anddg are the thicknesses of layefsandB, re-  fying

spectively, andg, is the transfer matrix for the unit period
my;+m
of the NWSL, ‘ —112 22| > 1. (35
m 1 m
11 12 Whens=0, ¢ can be written as
Mga= MgMp = ada \ (24) ¢
m Z Z
HAdaMp1 My R /_BESO (36)
where Zg Za
with the acoustic impedanc@,=pyva and Zg=pgvg. In
My, = COSa COSB — MDA sina sin B, (25) other words,e means the acoustic mismatch between the
M“B0B constituent layers of the NWSL.
My, = Sina cosB+ Mma0a cosa sin B, (26) 2. Approximate expression for the gap frequency
MB0B Here, we derive approximate expressions for the gap fre-
qguencies. These are useful in understanding the coupling of
“s0s the longitudinal confinement to radial confinement.

My, = = sina cosB - cosasin g, (27) Fors=0, Eq.(33) becomes the same form as the expres-
sion for the dispersion relation of the phonons normally

propagating through the one-dimensional ‘$[The second

MaQa

My, = COSa COSB — M98 i o sin B, (28)  term on the right-hand side of E(83) can be regarded as a
Mada small perturbation because the acoustic mismatch is small
for most of the SLs, that is,
and
® 2 f2 > €p <1. (37)
S
a=dy (v_) - (E) , (29) Thus, the frequency at the center of thth frequency gap is
A given by
2 2 d da \ 71
B=dg (3) —(fi) . (30) wm=mw1:mw(—’*+—5) : (38)
Ug R Ua Us
In the present system with discrete translational symmeThis frequency is known as the Bragg frequency.
try, the lattice disp|acemem[6’n and StreSSng,n have to sat- Even if s# 0, the second term on the rlght—hand side of
isfy Bloch’s theorem, Eq. (33) is still expected to be a small perturbation though
' depends on the frequency. The frequency at the center of the
U,=eXPu,_,, (31  mth frequency gap is approximately determined by
whereK is the Bloch wave number due to the superlattice a+ B=mim. (39

modulation, which is determined by the periodic boundary., . : .
condition,U,,y=U,. On the other hand, the relation betweenWIth the use of Eqs(29) and (30), this equation becomes

U, andU,_; was already given in Eq23). Combining Egs. daw fooal? dgw fop)2
(23) and(31), we have — 1—<L> + — 1—<L> =mmr.
Ua Rw Ug Rw
def(Mgn—€¥P) = 0. (32 (40)

Solving this equation, we get the phonon dispersion relationEquation(40) can be approximated as
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2

f My —
- 28 (vada +vgdg) = M (41) M1, = n—mZZS(N) +C(N), (50)
0, 2R 2
if My,=mS(N), (51)
fov <Rw (42
My = N), 52
is satisfied(lv=vp~wvg). Solving Eq.(41) within the present 21=MerSIN) 52
approximation, we obtain the expression for the Bragg fre- My, — My
quency of the NWSL, Mg, =— 11TZS(N) + C(N), (53
2
Om= o+ 525 (0ada + ve0l). (43)  where )
. . . sinNP My + My,
It is found that the second term in E@3) gives the correc- snp ' 5 =
tion due to the radial confinement of phonons. The condition n
idi i sinhNP my;+m
(42) for the validity of Eq.(43) can be rewritten as sy =4 , 1t Mo 4 (54)
f,D\2 sinhP 2
,S .
(ﬁ) <1, (44) Cp sinhNP My + My
. . . . sinhP '’ 2 ’
because typical frequencies we are interested in are around \
the Bragg frequency, that is, and p
® ~ Wm~ My ~ Mav/D. (45) cosNP, [my + Myl <
In other words, the analytical expressi@tB) is valid when 2
the effect of the radial confinement is regarded as a small C(N)={ coshNP, M1+ Mpa 1 . (55
perturbation. 2
Next, let us estimate the width of theth frequency gap.
: = . . N My + Myp
Expanding Eq(33) aroundw,, and neglecting small contri- (=1)" coshNP, — 5 <-1
bution terms, we have \
Mys+ My o 14 8_(2) iPondyfos) l(w_;;,m)ﬂ—z Here, P is defined by
- m-A 2| My +m My, + M.
2 2 2 Wy coP = 11—22, M <1
(46) 2 2 (56
+ +
The derivation of Eq(46) is given in the Appendix. From costP = H m22|, [y + Mg >1.
this equation, it is shown that E@35) is satisfied for the 2 2
frequency window, The frequencies satisfying the conditiofmy;+m,,|/2

47) > 1(]my;+my | /2<1) are inside the frequency gafisands,
as shown in Eq(35). Within the frequency band®/D is

On—An< 0 < o,+ A,

where equivalent to the Bloch wave numbét [see Eq.(33)].
o Within the frequency gaps, on the other ha®RdD repre-
An= —1|8o sin(wyndalva)l.- (48)  sents the decay factor, or the imaginary part of the wave
™ number.
That is, the frequency window defined by E47) gives the With the use of the transfer me}trix, the relation betvx{een
mth frequency gap, or E¢48) represents half of the width of Us(0) in the substrate antip(ND) in the detector layer is
the gap. expressed as
3. Transmittance and reflectance Up(ND) = Mg U40). (57)

Next, we consider the case of a periodic NWSL sand-Here,UsandUp are expressed in terms of the transmission
wiched betweers andD [see Fig. 1b)], that is, the NWSL amplitudet(w) and reflection amplitude(w), respectively,

has a finite number of period. For this system, the phonon &I 4 1(()e 10
properties are determined in terms of the transfer matrix for Ug2) = ( _ y )F(r), (58)
the NWSL withN period, ingqs(€9% - r(w)e™s)
1 i0pz
= t(w)€
M M -
MsL = (Mga)" = B 2. (49) Un(2) = (i,u,Dth(w)eiQDZ>F(r)' 59

#aGaM21 - Mz Combining Eqs(57)<(59), we can obtain the expressions for
The matrix elements dflg, can be calculated analytically as t(w) andr(w) as
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2je koL (@) s=0 (b) s=1 () s=2
t((l)) = ’ H
(MDQDMlz_ MAQAM21> +i<M22+MDqDM11> \ \ \
Hala Msls M<As i i I
(60) 0.6 4 o06F 4 o6} .
MD_qDMlz‘* MMH) + i<M22‘ MDqDMM)
) = Hada MsOs Msls _
oo, ,  Mada . oo = : )
<MAQAM12 MSQSM21)+I<M22+ :U'SQSMH) g, 0413 g W 1 %41 ]
>
(61) §
The energy transmittancEw) [reflectanceR(w)] is defined g
as the ratio of the energy fluxes of incident and transmitted .
(reflected phonons: li
0.2
T(w) = 2222, (62
MOs
R(w) =r(w)|. (63)
For simplicity, we consider the case in whi§¥D=A. In 0.0
this case, Eq(62) can be expressed in a simpler form 0 KD T
T(w) = T 1 . (64) FIG. 2. The phonon dispersion relations of {160 GaAs/AlAs
1 +5e%sin? aS*(N) NWSL with R=5D. The unit period consists ¢f3aAs;5(AIAS)s.

. - The parameters used are as follows: the thickness of one monolayer
Th(.a effect of the multllayt_arlstructure is included 8iN). is 2.53 A in the(100) direction for both GaAs and AlAs; the mass
Inside the frequency gap, it is found that densities and longitudinal sound velocities are 5.36 ¢/anu 4.71
T(w) xe P <1 (65) km/_s for_ GaAs,_and 3.76 g/dhmand 5.65 km/s for AlAs. Solid
vertical lines indicate frequency gaps determined by &R, (47),
because&S(N) « eNP [see Eq(54)]. Inside the frequency band, and(48).
on the other handJ(w)=1 is realized. In particularT(w)

becomes exactly unity for the frequencies satisfying(ll)v the wave vector in the radial directiok, is quantized
sinNP)=0, i.e., due to the radial confinement. We show the results for the

first three mode$s=0, 1, 2. The overall structure of each
phonon dispersion relation can be roughly understood by the
folding of the dispersion curves for a homogeneous cylinder
into a mini-Brillouin zone(BZ) determined by the periodic-
ity D of the NWSL. In this folded dispersion relation, the
1. NUMERICAL EXAMPLES AND DISCUSSION freq_uency gaps are generatgd at the center and edggs of the
mini-BZ due to Bragg reflections. As a result, the miniband
With the use of nanocluster catalysts, semiconductostructures are generated.
NWSLs from group ll-V and group IV materials have been  The frequency at the center of thath frequency gap and
synthesized* The radius of the NWSL is determined by the the width of the frequency gap are given in E¢$3) and
diameter of the nanocluster catalyst. On the other hand, th@8), respectively. Equatioi43) shows that the Bragg fre-
superlattice periodicity can be controlled by growth time.quency due to the superlattice longitudinal confinement is
Typical dimensions have been nanowire radii of 10-50 nmdetermined by the radiuR of the NWSL. The frequency
and layer widths of 1-100 nm. gaps determined by these approximate formulas are also
As a numerical example, we present in Fig. 2 the phonorshown in Fig. 2(solid vertical lines. In the present example,
dispersion relations calculated for a NWSL consisting of thethe frequency gaps are well reproduced with the approximate
alternate stacking of GaAs and AlAs, which have been welformulas. These approximate formulas are valid when the
studied in planar structurd$ln plain wires, there is no fun- condition (44) is satisfied, i.e., the effect of the radial con-
damental length scale within the continuum model. That isfinement is regarded as a small perturbation. In the example
the solution of the problem at one length scéladius R) illustrated in Fig. 2, this condition is satisfied. In a given
determines the solution at all other length scales. In NWSLsstructure of the NWSI(with fixed R andD), the approxima-
on the other hand, the ratio between the radtuand the tion becomes accurate for smalkand largem (i.e., higher
periodicity D becomes important. As the first example, wefrequency gap For the NWSL with smalleR, the discrep-
assumed thaR=5D=42.5 nm in Fig. 2. As shown in Eq. ancy becomes larger. As such an example, we show the dis-

I
P_qu (j=0,1,2,..). (66)
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persion relations calculated for a NWSL wi=D. For s
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Whenw=uv,f,/R=w, q is a real number and the depen-

=1, the lowest frequency of each band is high comparedience of the displacement @nhas an oscillatory nature in
with Fig. 2, because the wave length in the radial direction ighe layerl [see Eq(19)]. Whenw < w,, on the other hand,

smaller. The gap width depends anstrongly in NWSLs

becomes an imaginary number and the displacement decays

with smallerR. This2 s dependence is due to the higher orderexponentially in the layer. Thus, the displacement pattern is
terms of(f, D/mR)“. Within the approximation we used, the qualitatively different with the frequency range. The expres-

gap width is independent & as shown in Eq(48).
As mentioned before, the wave vectpr(l =A, B) defined

within the layerl is allowed to be an imaginary number.

p

sion for the phonon dispersion relati@88) can be explicitly
rewritten as

1

cosha coshp + —(% + M)sinha sinhB  for < w,
2\ paldal  pglogl

_ 1( pelgsl  maldal ) . :
coskD =4 cosa coshB—-=| —— ——— |sinasinhgB for wpa<ow<wg (67)
2\ paldal  wglogl
1
COSaCOSB——<%+M>SinaSinB for wg <o,
L 2\ palda|  wglogl

where a=|qa|da, 8=|0g|dg. In EQ. (67), va<vg is assumed
(i.e., A=AlAs and B=GaAs in the present exampleThe
lines w=w, and w=wg are indicated in Fig. 3and also Fig.
2).

For s=0, there is no region determined by <w<wp
becausd; ,=0. Thus, the wave vectay; defined within each
layer is always a real number. Fsx 1, the linew=wg inter-

(@) s=0 (b) s=1 (€) s=2
x oy
0.6 - 06 -4 0.6 —
—/—
________ (!)A
=
£ 04r 4 o4} 4 o4} -
":>" _/
7 L N N
o
v
w
0.2 0.2 - 02F -
R=D
0.0 0ok d 00
0 T 0 n 0 n
KD KD KD

FIG. 3. The phonon dispersion relations of tAi60 GaAs/AlAs
NWSL. The radius is assumed to Be=D.

sects the lowest frequency band. That is, in the lowest fre-
quency band, the displacement pattern is different depending
on whether the frequency is higher thag or not. Below

wg, the wave vectogg becomes an imaginary number in this
band. Fors=2, the lowest frequency band is entirely located
below wg. Therefore, the wave vector in a layer with the
lower sound velocity becomes an imaginary number in this
band.

As we saw, there is a case where the wave vector defined
in a layer becomes an imaginary number. However, the
Bloch wave numbeK defined by Eq(33) is a real number
in the frequency band. In the frequency gap, on the other
hand, the Bloch wave number becomes an imaginary num-
ber. Such a vibrational mode is not allowed for the system
with the infinite period. However, this mode may exist in
NWSLs with the finite period. In Fig. 4, we show the trans-
mittance calculated for a NWSL witN=8. We can see the
large dips corresponding to the frequency gap. Transmittance
has a nonvanishing value even in the frequency gap. This is
due to the finite length in the longitudinal direction. The
transmittance within the frequency gap is given by 5.

In Eq. (65), P means the decay factor of phonon displace-
ment, which is defined by Eq56). In general, this decay
factor has larger value in the wider frequency gap. Thus, the
value of the transmittance becomes considerably small
within the wide frequency gaps, such as the lowest gaps
shown in Figs. &) and 4c).

IV. CONCLUDING REMARKS

In the present paper, we studied the vibrational modes in a
NWSL. The NWSL is modeled as an ideal cylinder with
sharp modulation in the longitudinal direction. The eigenfre-
quencies of the vibrational modes in the NWSL are labeled
with five quantum numbers, s, m, K, and ¢, wherep rep-
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(@ s =0 (b) s =1 (€) s=2 APPENDIX: DERIVATION OF EQ. (46)
' ' § The second term on the right-hand side of E8) has
only a small contribution. Thus, E¢33) can be expanded
06k 06k 1 osh i aroundwo,, as
—
Myt My o 1 - 2dzl(w)
T e plemee Ty
2
e . .
g 04F < 04 4 o4} § - Esmasmﬁ o (A1)
E‘ m
g where
g
. l(w)=coda+B). (A2)
021 1 02f 1 o2f 7 From the definition ofo,, [i.e., Eq.(39)], it is easily shown
that
(@) = (=1, (A3)
R=D
and
0.0 L 0.0 ! 0.0 L
00 05 10 00 05 10 00 05 10 . o amel o
Transmittance Transmittance Transmittance sinasing |wm =(=1 sir’ Fmy (A4)
FIG. 4. The transmittance of phonons propagating through thavhere
(100 GaAs/AlAs NWSL. The unit period consists of _ _
(GaAs5(AlAs);s. The number of period is assumed to be 8. am= (@) = ga(@r)da. (A5)
resents theo-fold rotational symmetry around the longitudi- At ®=wp, ga andgg can be approximated as
nal axis,s orders the roots of the Bessel functions and is due )
to the radial confinementn labels the minibands and is ~ \ _ Moy fos (vs _YAlg A6
. . qA(wm) - + B ( )
the Bloch wave number due to the superlattice modulation, va  2mmR\v,  vg
and remainingd we labeled here represents the polarization
(i.e., torsional or dilatational modesFor the azimuthally m 2
symmetric torsional modes, we calculated the phonon disper- Ga(@) = —2 + A(U—A - @)d/\. (A7)
sion relations analytically. We also calculated the transmit- vg  2mmR\vg v

tance of these phonons propagating through a NWSL with a . . . .
finite number of periods. In addition, we derived the Simlolerespectlvely. By carrying out the straightforward calculation

expression for the frequency gap. Our formulas are helpful ifVith the use of Eqs(A6) and (A7), it is shown that
understanding the effects of the superlattice longitudinal con-

2 2

finement and the radial confinement. These formulas are aiso 9() = (- 1)m+lﬂ_2[l + #(vAdAJ, UBdB):| ,
relevant for design of optimized phonon optics devices for do® @ wf P rR%w;
coherent phonon generation or control, such as mirrors, fil- (A8)
ters, and also resonators. These are applicable to the micro/
nano electromechanical systems. if Eq. (44) is satisfied. Similarly, we have

The results calculated analytically in the present paper are
limited to the azimuthally symmetric torsional modes whose 1, 1(Zs Zg\ 1(Zn Zg), ,
displacements are perpendicular to theaxis. For these o8| :1‘5 Z_+Z_ AV A (vg
modes, it was possible to proceed the analytical calculation. m B A BT
The analysis of other modes can provide complementary in- 5 fgs
formation for fundamental understanding of the vibration _UA)zmszwi- (A9)

generated in the NWSLs, though the analytical formulas can-

not be obtained. The results calculated numerically for Othefnserting Eqs(A3), (Ad), (A8), and(A9) into Eq. (A1) and
modes will be given elsewhere. neglecting small contribution terms, we have
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