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1 Introduction

In this thesis we will treat with differential systems and exterior differential systems as-
sociated with second order partial differential equations. A differential system D on a
manifold M is a subbundle of the tangent bundle T M of M and an exterior differential
system I on a manifold Σ is a differential ideal of the algebra of all differential forms on
Σ. These topics are roughly divided into two parts: partial differential equations of one
and more unknown functions.

In the former part we will study Monge-Ampère equations

Azxx + 2Bzxy + Czyy + D + E(zxx zyy − z2xy) = 0,(1.0.1)

where the capital letters denote functions of variables x, y, z, zx , zy. Monge-Ampère
equations are described from viewpoints of differential system and exterior differential
system. These equations (generally, single second order partial differential equations
F (x, y, z, zx , zy, zxx , zxy, zyy) = 0 of one unknown function with two independent vari-
ables) are expressed as differential systems (R,D); (R,D) is defined as the restriction
of the canonical system E of the Lagrange-Grassmann bundle L(J) over a 5-dimensional
contact manifold J, which is a geometric 2-jet bundle introduced by K. Yamaguchi ([Yam82]),
to the hypersurface R of L(J) defined by the given equation. On the other hand, these
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equations are expressed as certain exterior differential systems I on a 5-dimensional con-
tact manifold J, which is called Monge-Ampère systems. One of the specialty of Monge-
Ampère equations is that they can be considered on manifolds of less dimension than
the original. Indeed we can integrate solutions of Monge-Ampère equations in 5 variable
space (for example, see [For06], [Mon07]). Both Monge-Ampère systems and differen-
tial systems derived from Monge-Ampère equations have Monge characteristic systems
M, which are differential systems of rank 2. These characteristic systems are utilized for
the above integral method, called Darboux’s method (see also [IL03]). We will study the
properties and relations of Monge characteristic systems of Monge-Ampère systems and
differential systems, and determine the condition for that a partial differential equation is
a Monge-Ampère equation by using these characteristic systems in Section 3.2. Note that
the characterization of Monge-Ampère equation was studied by R. Gardner and N. Kam-
ran in terms of differential invariants ([GK93]). Moreover, a generalization of hyperbolic
Monge-Ampère systems is considered, which is called a hyperbolic exterior differential
system ([BGH95a]) and a hyperbolic differential system is also defined. Their Monge
characteristic systems is defined as a generalization of those of Monge-Ampère equa-
tions. We will generalize the results on Monge-Ampère equations and obtain a reduction
theorem in Section 4. Namely, it is known that the prolongation of hyperbolic exterior dif-
ferential systems and differential systems are hyperbolic differential systems ([BGH95a]).
Conversely, given a hyperbolic differential system, we will construct a hyperbolic differ-
ential system or exterior differential system on a manifold of smaller dimension whose
prolongation coincides with the given system under some conditions.

In the latter part we will study partial differential equations of m (≥ 2) unknown func-
tions. According to Realization Lemma, which is established by N. Tanaka ([Yam82]),
any differential system corresponds to a system of differential equations of first order (Sec-
tion 2.2). Therefore partial differential equations of second order would be characterized
as a structure of differential systems with some conditions.
K. Yamaguchi characterized second and higher order partial differential equations of
one unknown functions in terms of differential systems, where this geometric structure
is called a PD-manifold ([Yam82]). In contrast, we will characterize second order partial
differential equations of m (≥ 2) unknown functions in Section 5. We will give an ex-
ample of PD-manifolds of finite type and show that it is of irreducible type (l,S), which
is introduced by Y. Se-ashi ([Sa88]). Finally, from the viewpoint of parabolic geometry
([YY07]), we will seek PD-manifolds associated with a simple graded Lie algebra of type
(Xl ,∆1), but see that there do not exist such PD-manifolds.

Now let us describe the contents of each sections. In Section 2 we recall definitions
of differential systems and various systems, and the jet space (J (M,n),C) of first order.
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2 PRELIMINARIES

Differential systems play an important role with Realization Lemma in whole of this the-
sis, which is stated in Section 2.2. We describe a Monge-Ampère equation in terms of
differential systems in Section 3.1.1 and exterior differential systems in Section 3.1.2, and
define their Monge characteristic systems. We divide into the hyperbolic (Section 3.2.1)
and parabolic cases (Section 3.2.2), and calculate derived systems of Monge characteristic
systems and illustrate relations of their Monge characteristic systems (Theorem 3.3 and
Corollary 3.4 in hyperbolic case and Theorem 3.11 in parabolic case). In Section 3.3, uti-
lizing results in the previous section, we state the condition for that a given single second
order partial differential equation is Monge-Ampère equation in terms of Monge charac-
teristic systems (Theorem 3.12 and Theorem 3.17). Furthermore we consider hyperbolic
differential systems and exterior differential systems in Section 4. Section 4.2 describes
relations of Monge characteristic systems (Theorem 4.3 and 4.4) as in Section 3.2. In Sec-
tion 4.3 we state reduction theorems for hyperbolic differential systems, which is converse
to the prolongation theorem in [BGH95a]. Precisely, given a hyperbolic differential sys-
tem, we will determine the condition for that there exists a hyperbolic exterior differential
system or differential system whose prolongation coincides with the given system (The-
orem 4.5 and 4.6). In Section 5.1 we recall definitions and notions of jet space J2(M,n)
of second order, symbol algebras of differential systems and graded simple Lie algebras.
In Section 5.2 we characterize second order partial differential equations of m (≥ 2) un-
known functions in terms of differential systems (Theorem 5.3), called PD-manifolds of
second order. We show an example of a PD-manifold of finite type in Section 5.3. In
Section 5.4 we seek PD-manifolds of type (Xl ,∆1) and determine a model equation for
classical type.

Throughout this thesis we always assume the differentiability of class C∞.

2 Preliminaries

In this section we recall the definitions of various differential systems and Realization
Lemma, which are used in the whole of this thesis.

2.1 Differential systems and various systems

A differential system D or (M,D) is a subbundle of the tangent bundle T M of a manifold
M . A differential system D is locally defined by linearly independent 1-formsϖ1, . . . , ϖr

as follows:

D =
{
ϖ1 = · · · = ϖr = 0

}
,
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2.1 Differential systems and various systems

where r is the codimension of D. v is an integral element of the differential system D at a
point x ∈ M if v is a subspace of Tx M such thatϖa |v = 0 and dϖa |v = 0 for all 1 ≤ a ≤ r .
An integral manifold of the differential system D is a submanifold ι : N −→ M such that
ι∗ϖa = 0 for all 1 ≤ a ≤ r . A function f on M is a first integral of D if df ≡ 0

(mod D⊥), where D⊥ is the annihilater subbundle of T∗M defined by

D⊥(x) =
{
ω ∈ T∗x M | ω(X ) = 0 for X ∈ Tx M

}
for x ∈ M.

The k-th derived system ∂k D is defined inductively as follows: If ∂k−1D is a differen-
tial system, then

∂kD = ∂k−1D + [∂k−1D, ∂k−1D]

where ∂kD is the space of sections of ∂k D and [ , ] is Lie bracket for vector fields, and we
put ∂0D = D for convention. Precisely, ∂k D is defined in terms of sheaves (see [Yam82]).
When ∂D coincides with D, D is said to be completely integrable.

The k-th weak derived system ∂ (k) (D) of D is defined inductively by

∂ (k)D = ∂ (k−1)D + [D, ∂ (k−1)D],

where ∂ (0) D = D and ∂ (k)D is the space of sections of ∂ (k) D. Let D−(k+1) = ∂ (k) D for
k ≥ 0. Note that D−2 = ∂ (1) D = ∂1D. A differential system (M,D) is regular if D−k

is a differential system on M for all k ≥ 2. For a regular differential system (M,D), it is
known that ([Tan70, Proposition 1.1], [Yam09, Section 2.4])

1 . There exists a unique integer µ > 0 such that

D = D−1 ⊊ D−2 ⊊ · · · ⊊ D−µ+1 ⊊ D−µ = · · · = Dk

for all k ≥ µ,

2 . [D−p, D−q] ⊂ D−(p+q) for all p, q > 0,

where D−p is the space of sections of D−p. Note that D−µ is the smallest completely
integrable differential system that contains D.

The Cauchy characteristic system Ch(D) of D is defined by

Ch(D)(x) =
{

X ∈ D(x) | X⌟ dϖa ≡ 0 (mod ϖ1
x , . . . , ϖ

r
x) for 1 ≤ a ≤ r

}
at each point x ∈ R. If Ch(D) is a differential system, it is the largest completely inte-
grable system contained by D. Let p : R −→ M be a differentiable map between smooth
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2 PRELIMINARIES

manifolds R and M and assume p is of constant rank. Let C be a differential system on
M . Differential systems p−1∗ (C) and Ker (p∗) are defined as follows:

p−1∗ (C)(x) = { X ∈ Tx R | p∗(X ) ∈ C(p(x)) } ,
Ker (p∗)(x) = { X ∈ Tx R | p∗(X ) = 0 } ,

for x ∈ R. Note that Ker (p∗) is completely integrable. Let ρ : P −→ Q be a submersion
between smooth manifolds P and Q. We say that a differential system D on P drops down
to Q if there exists a differential system C′ on Q such that ρ−1∗ (C′) = D.

2.2 Jet space (J (M,n),C) of first order and Realization Lemma

Let M be a manifold of dimension m + n. Let denote J (M,n) be the Grassmann bundle
over M . Namely each fiber J (M,n)x over x ∈ M is the Grassmannian Gr (Tx M,n) of
n-dimensional subspace of Tx M:

J (M,n) =
∪
x∈M

J (M,n)x
Π−−−−−−→ M

where Π is the canonical projection of J (M,n) onto M . The canonical system C on
J (M,n), which is a differential system of codimension n, is defined by

C(u) = Π−1∗ (u) for u ∈ J (M,n)

where the right hand side means the inverse image of the n-dimensional subspace u of
TΠ(u) M under the differential of Π at u.

Next we will give a canonical coordinate system (or inhomogeneous Grassmann coor-
dinate) (x1, . . . , xn, z1, . . . , zm,p11, . . . , p

m
n ) of J (M,n). Let us fix a point uo of J (M,n). Let

(x1, . . . , xn, z1, . . . , zm) be a coordinate system on a neighborhood U of Π(uo) such that
dx1, . . . ,dxn are linearly independent on uo. Let Û be the set of all elements u ∈ Π−1(U)
such that dx1 ∧ · · · ∧ dxn |u , 0, which is a neighborhood of uo. We take functions pa

i for
1 ≤ a ≤ m and 1 ≤ i ≤ n on Û so that dzb |u−

∑
i pb

i (u) dxi |u = 0 for u ∈ Û and 1 ≤ b ≤ m.
Thus we have achieved the coordinate system (x1, . . . , xn, z1, . . . , zm,p11, . . . , p

m
n ) on Û . It

follows that the canonical system C restricted on Û is defined by the 1-forms

ϖa = dza −
n∑

i=1

pa
i dxi for 1 ≤ a ≤ m(2.2.1)

and the Cauchy characteristic system of C is trivial, i.e. Ch(C) = {0}.
Through this thesis we utilize Realization Lemma ([Yam82]):
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Realization Lemma. Let R and M be manifolds and a map p : R −→ M. Let D be a
differential system on R. Assume that p is of constant rank and F = Ker p∗ is a subbundle
of D of codimension n. Then there exists a unique map ψ : R −→ J (M,n) satisfying
p = Π ◦ ψ and D = ψ−1∗ (C). Indeed ψ is defined by

ψ(x) = p∗((D(x))) for x ∈ R(2.2.2)

and satisfies

Ker (ψ∗)x = F (x) ∩ Ch(D)(x).

Here, the right hand side of (2.2.2) means the image of the differential p∗ of the subspace
D(x) of Tx R, which is considered as a point of J (M,n).

This Lemma also says “any differential system is considered as a system of differential
equations of first order.” In fact, for a given differential system (M,D), let us choose p
as the identity map id : M −→ M . Then ψ : M −→ J (M,n) is defined as (2.2.2), where
n = rank D, and we have Ker (ψ∗) = {0}. Therefore M is immersed into J (M,n) and
ψ−1∗ (C) = D.

3 Monge-Ampère equations

3.1 Preliminaries

In this section we will recall definitions and notations of Lagrange-Grassmann bundle
L(J), differential systems associated with single second order partial differential equa-
tions, exterior differential systems and Monge-Ampère systems.

3.1.1 Lagrange-Grassmann bundle over contact manifolds and single second order
partial differential equations

We will recall the definition of Lagrange-Grassmann bundle (L(J),E) over a contact
manifold (J,C) in order to treat with second order partial differential equations of one
unknown function geometrically ([Yam82]).

Let (J,C) be a differential system of codimension 1, which implies that, for a point
u ∈ J, there exists a 1-form θ around u such that C = {θ = 0} locally. Then (J,C) is
called a contact manifold if θ ∧ (dθ)n is a volume form on J.
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3 MONGE-AMPÈRE EQUATIONS

Let (J,C) be a (2n + 1)-dimensional contact manifold. We now construct Lagrange-
Grassmann bundle L(J) over J and the canonical system E on L(J) as follows: let L(J)
be the space consisting of all n-dimensional integral elements of C, namely

L(J) =
∪
x∈J

L(J)x
Π−−−−−−→ J

where L(J)x is the Grassmannian of all Lagrangian (or Legendrian) subspaces of the
symplectic vector space (C(x),dθx) and Π is the canonical projection. The canonical
system E on L(J) is defined by

E(u) = Π−1∗ (u) ⊂ Tu(L(J)) for u ∈ L(J).

We now take a coordinate system of L(J) as follows: let us fix a point uo ∈ L(J). By
Darboux’s Theorem, there exists a canonical coordinate system (x1, . . . , xn, z,p1, . . . , pn)
on a neighborhood U of Π(uo) ∈ J such that θ = dz − ∑n

i=1 pidxi and dx1 ∧ · · · ∧
dxn |uo , 0. Let Û be a neighborhood of uo that consists of all points u ∈ Π−1(U)
such that dx1 ∧ · · · ∧ dxn |u , 0. Let pi j for 1 ≤ i, j ≤ n be functions on Û such that
dpi |u −

∑
k pik (u) dxk |u = 0 for all u ∈ Û and 1 ≤ i ≤ n. Since dθ |u = 0, we have

pi j = p ji. Thus we have obtained the coordinate system (xi, z,pi,pi j (1 ≤ i ≤ j ≤ n)) on
Û , is called the canonical coordinate system of L(J). Then E is locally defined by

E = {ϖ0 = ϖ1 = · · · = ϖn = 0 }

where ϖ0 = dz −∑n
i=k pk dxk and ϖi = dpi −

∑n
k=1 pik dxk for 1 ≤ i ≤ n.

Let us consider a single second order partial differential equation of one unknown
function with two independent variables

F (x, y, z, zx , zy, zxx , zxy, zyy) = 0.(3.1.1)

Assume that the partial derivatives ∂F
∂zxx

, ∂F
∂zxy

, ∂F
∂zyy

of the function F with respect to
zxx , zxy, zyy are never simultaneously zero at each point. If we regard Equation (3.1.1) as
a submanifold

R = { F (x, y, z,p,q,r, s, t) = 0 }

of L(J) over 5-dimensional standard contact manifold J = R5 with coordinates (x, y, z,
p,q,r, s, t), the equation provides the differential system (R, D) that is the restriction D
of the canonical system E of L(J) to R. The assumption on F then implies that the
restriction of the projection Π : L(J) −→ J to R is submersion. Generally, let J be a
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3.1 Preliminaries

contact manifold of dimension 5 and (R,D) a differential system on a hypersurface R of
L(J) defined by the restriction of the canonical system E of L(J) to R. Let ρ : R −→ J
denotes the restriction of Π : L(J) −→ J and assume that ρ is submersion. If we write R
as

R = { F (x, y, z,p,q,r, s, t) = 0 }

with the canonical coordinate system (x, y, z,p,q,r, s, t) of L(J), a 2-dimensional integral
manifold of D transverse to fibers of ρ is the graph of a solution of a single second order
partial differential equation F (x, y, z, ∂z

∂x ,
∂z
∂y ,

∂2z
∂x∂x ,

∂2z
∂x∂y ,

∂2z
∂y∂y ) = 0. We will also call such

(R,D) a single second order partial differential equation in what follows.
Let (R,D) be a single second order partial differential equation and assume ρ : R −→

J is submersion.
It is well-known that the structure equation of D is expressed as follows: let us fix a

point vo ∈ R. If the equation R is hyperbolic around vo, the structure equation is


dϖ0 ≡ ω1 ∧ϖ1 + ω

2 ∧ϖ2 (mod ϖ0),
dϖ1 ≡ ω1 ∧ π11 (mod ϖ0,ϖ1,ϖ2),
dϖ2 ≡ ω2 ∧ π22 (mod ϖ0,ϖ1,ϖ2),

where {ϖ0, ϖ1, ϖ2, ω
1, ω2, π11, π22} is a coframe around vo ∈ R ([BCG+91, p.277]). If

the equation R is parabolic around vo,


dϖ0 ≡ ω1 ∧ϖ1 + ω

2 ∧ϖ2 (mod ϖ0),
dϖ1 ≡ ω2 ∧ π12 (mod ϖ0,ϖ1,ϖ2),
dϖ2 ≡ ω1 ∧ π12 + ω2 ∧ π22 (mod ϖ0,ϖ1,ϖ2),

where {ϖ0, ϖ1, ϖ2, ω
1, ω2, π12, π22} is a coframe around vo ∈ R ([BCG+91, p.275]).

Then, if R is hyperbolic or parabolic, the Monge characteristic systemMi of (R,D)
are defined as

Mi =
{
ϖ0 = ϖ1 = ϖ2 = ω

i = πii = 0
}

for i = 1, 2

or

M =
{
ϖ0 = ϖ1 = ϖ2 = ω

2 = π12 = 0
}
,

respectively ([IL03, p.213]). Note that they are invariant under diffeomorphisms of R
preserving D.
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3 MONGE-AMPÈRE EQUATIONS

3.1.2 Exterior differential systems and Monge-Ampère systems

An exterior differential system on a manifold Σ is a differential ideal I on Σ, namely an
algebraic ideal of the differential algebra of differential forms on Σ closed under exte-
rior differentiation. Let I = {ψ1, . . . , ψn}diff denote an exterior differential system alge-
braically generated by differential forms ψ1, . . . , ψn and their derivatives dψ1, . . . , dψn.
Especially, we say that an exterior differential system is Pfaffian if the system is generated
algebraically by 1-forms and those exterior derivatives. A differential system corresponds
to a Pfaffian system.

Let I be an exterior differential system on Σ. For a point p ∈ Σ, an integral element v
of I at p is a subspace v of TpΣ such that ψ |v = 0 for all ψ ∈ I. An integral manifold of
an exterior differential system I on Σ is an immersed submanifold ι : M ↪−→ Σ such that
ι∗ψ = 0 for all ψ ∈ I.

For a (classical) Monge-Ampère equation in coordinates description

Azxx + 2Bzxy + Czyy + D + E(zxx zyy − z2xy) = 0,(3.1.2)

where the capital letters denote functions of variables x, y, z, zx , zy, we consider the fol-
lowing exterior differential system

I = { θ, Ψ } diff ,

where θ = dz − pdx − qdy and

Ψ = Adp ∧ dy + B(dq ∧ dy − dp ∧ dx) − Cdq ∧ dx + Ddx ∧ dy + Edp ∧ dq,(3.1.3)

on the standard contact manifold J = R5 with the standard coordinate system (x, y, z,p,q).
Then a 2-dimensional integral manifold of I on which dx ∧ dy never vanishes is locally
the graph of a solution of the Monge-Ampère equation (3.1.2).

Let J be a 5-dimensional contact manifold with contact form θ and Ψ a 2-form on J
and suppose Ψ . 0 (mod θ, dθ). Then the exterior differential system

I = { θ, Ψ } diff

is called a Monge-Ampère system on J. By Darboux’s Theorem, there exists a coordinate
system (x, y, z,p,q) of J such that θ = dz− pdx−qdy and (3.1.3) holds. A 2-dimensional
integral manifold of a Monge-Ampère system on which dx ∧ dy never vanishes is the
graph of a solution of a Monge-Ampère equation (3.1.2). For a point u ∈ J, I is called
hyperbolic, parabolic or elliptic at u if Iu has two, one or no decomposable 2-covector,
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3.1 Preliminaries

modulo θu, respectively. Since J is of dimension 5, a 2-covector (Ψ + λdθ)u is decom-
posable, modulo θu, if and only if (Ψ + λdθ)2u ≡ 0 (mod θu). Then the relation

(Ψ + λdθ)2u = Ψu ∧ Ψu + 2λΨu ∧ dθu + λ
2dθu ∧ dθu ≡ 0 (mod θu)(3.1.4)

yields a quadratic equation in the variable λ. Because a root of the quadric equation
satisfies (3.1.4), I is hyperbolic, parabolic or elliptic at u ∈ J if the quadratic equation
has two, one or no real roots, respectively. If I has a decomposable 2-form ω∧π, modulo
θ, then a Monge characteristic systemM of I is defined as

H = { θ = ω = π = 0 } ,

which is a differential system of rank 2 on J. Note that they are invariant under diffeo-
morphisms of J preserving I.

Finally, we will see that, given a Monge-Ampère system I, Monge-Ampère equation
(R,D) is obtained as the prolongation of I, and describe relations between the Monge
characteristic systems of I and (R,D).

Let I = {θ, Ψ}diff be a Monge-Ampère system on J and let L(J) be the Lagrange-
Grassmann bundle over J. We obtain the prolongation (R,D) of I as follows: Let R
be the set of all 2-dimensional integral elements of I, which is a subsheaf of J (J,2)
generally, where J (J,2) means the jet space of first order over J. Assuming R is a smooth
manifold, we can define the differential system on R as the restriction of the canonical
system (J (J,2),C) to R. Then (R,D) is called the prolongation of I (cf. [BCG+91],
[IL03]).

Let us fix a point vo ∈ L(J) and take a coframe {θ, ω1, ω2, π1, π2} around uo = π(vo)
such that

dθ ≡ ω1 ∧ π1 + ω2 ∧ π2 (mod θ).

We may assume ω1 ∧ω2 |vo , 0. Let V be a neighborhood of vo such that ω1 ∧ω2 |v , 0

for all v ∈ V . Then we can take fiber coordinate functions a, b, c on V such that

π1 |v = a(v)ω1 |v + b(v)ω2 |v ,
π2 |v = b(v)ω1 |v + c(v)ω2 |v,

for v ∈ V . Writing

Ψ = A π1 ∧ ω2 + B (π2 ∧ ω2 − π1 ∧ ω1) − C π2 ∧ ω1 + Dω1 ∧ ω2 + E π1 ∧ π2,
(3.1.5)

12



3 MONGE-AMPÈRE EQUATIONS

where the capital letters denote functions around uo, we have

Ψ|v = (Aa + 2Bb + Cc + D + E(ac − b2))(v)ω1 ∧ ω2 |v .

Thus we have

R = { v ∈ V | Ψ|v = 0 }
=
{

Aa + 2Bb + Cc + D + E(ac − b2) = 0
}
,(3.1.6)

which is a subvariety of L(J). Around each regular points of R, we may define D as the
restriction of E to R. In this thesis we call the prolongation (R,D) of I the corresponding
Monge-Ampère equation. In fact, as mentioned above, for a given Monge-Ampère system
I = {θ,Ψ}diff , we can take a coordinate system (x, y, z,p,q) such that θ = dz− pdx− qdy
and set ω1 = dx, ω2 = dy, π1 = dp, π2 = dq, and then we set given Ψ as in Equation
(3.1.5). Therefore we obtain the coordinate description (3.1.6) of the Monge-Ampère
equation R.

Let I be a Monge-Ampère system and (R,D) the corresponding Monge-Ampère
equation. Let H be a Monge characteristic system of I. In the next section we will
show that there exists a Monge characteristic systemM of (R,D) such that

M ⊂ ρ−1∗ (H ).

We callM the corresponding Monge characteristic system of (R,D).

3.2 Properties and relations of Monge characteristic systems of Monge-
Ampère systems and equations

We will investigate relations between the Monge characteristic systems of Monge-Ampère
systems and those of the corresponding Monge-Ampère equations by describing these
structure equations in hyperbolic and parabolic cases individually. This observation will
be utilized for the characterization of Monge-Ampère equations in Section 3.3.

3.2.1 Hyperbolic case

First, we will choose a coframe adapted for a Monge-Ampère system. Let I = {θ,Ψ}diff
be a Monge-Ampère system and let (R,D) denote the corresponding Monge-Ampère
equation. Let us fix a point vo ∈ R. Assume I is hyperbolic around uo = π(vo). Then
we can take different functions λ1 and λ2 around uo so that Ψ + λ1dθ and Ψ + λ2dθ
are decomposable 2-forms, and hence take 1-forms ω1, ω2, π′1, π

′
2 around uo such that

13



3.2 Properties and relations of Monge characteristic systems

ωi ∧ π′i ≡ Ψ + λidθ (mod θ) for i = 1, 2. Since vo is an integral element of I, we have
ω1 ∧ π′1 |vo = ω2 ∧ π′2 |vo = 0. Hence we may assume ω1 |vo , 0 and ω2 |vo , 0. Then
π1 |vo is a multiple of ω1 |vo and π2 |vo is of ω2 |vo . Since ω1 ∧ π′1 −ω2 ∧ π′2 ≡ (λ1 − λ2) dθ
(mod θ) and λ1 − λ2 , 0, we have

dθ ≡ ω1 ∧ π1 + ω2 ∧ π2 (mod θ)

where π1 = 1
λ1−λ2 π

′
1, π2 = −

1
λ1−λ2 π

′
2. Since θ is a contact form, θ∧ω1∧ω2∧π1∧π2 , 0

around uo. Hence {θ, ω1, ω2, π1, π2} is a coframe around uo.
Next, we will choose a coframe adapted for (R,D). Let us take a neighborhood V of

vo such that ω1 ∧ ω2 |v , 0 at each v ∈ V and functions a, b, c on V such that

π1 |v = a(v)ω1 |v + b(v)ω2 |v ,
π2 |v = b(v)ω1 |v + c(v)ω2 |v ,

for v ∈ V . Since ω1 ∧ π1 |v = 0, we have b(v) = 0. Thus

D = {ϖ0 = ϖ1 = ϖ2 = 0 } ,

where ϖ0 = ρ
∗θ, ϖ1 = ρ

∗π1 − aρ∗ω1, ϖ2 = ρ
∗π2 − cρ∗ω2.

For i = 1, 2, we can write

dπi ≡ π1 ∧ (Ai π2 + Bi ω
1 + Ci ω

2) + π2 ∧ (Ei ω
1 + Fi ω

2) + Gi ω
1 ∧ ω2,

dωi ≡ π1 ∧ (Hi π2 + Ii ω
1 + Ji ω

2) + π2 ∧ (Ki ω
1 + Li ω

2) + Ni ω
1 ∧ ω2,

(3.2.7)

modulo θ, where each capital letter with an additional character indicates smooth func-
tions around uo on J. Let us omit the pullback ρ∗ in what follows. Then we have

dπ1 − adω1 ≡ Γ1ω1 ∧ ω2

dπ2 − cdω2 ≡ Γ2ω1 ∧ ω2
(mod ϖ0, ϖ1, ϖ2),

where Γ1 = A1ac + C1a − E1c + G1 − H1a2c − J1a2 + K1ac − N1a, Γ2 = A2ac + C2a −
E2c + G2 − H2ac2 − J2ac + K2c2 − N2c. Therefore we obtain the following structure
equation:


dϖ0 ≡ ω1 ∧ϖ1 + ω

2 ∧ϖ2 (mod ϖ0),
dϖ1 ≡ ω1 ∧ π11 (mod ϖ0, ϖ1, ϖ2),
dϖ2 ≡ ω2 ∧ π22 (mod ϖ0, ϖ1, ϖ2),

(3.2.8)

where π11 = da + Γ1ω2, π22 = dc − Γ2ω1.

14



3 MONGE-AMPÈRE EQUATIONS

Lemma 3.1.

Mi ⊂ ρ−1∗ (Hi) and ∂Mi ⊂ ρ−1∗ (Hi) for i = 1, 2.(3.2.9)

Proof. As we use the coframe {ϖ0, ϖ1, ϖ2, ω
1, ω2, π11, π22} taken above,

Mi =
{
ϖ0 = ϖ1 = ϖ2 = ω

i = πii = 0
}
,

ρ−1∗ (Hi) =
{
ρ∗θ = ρ∗ωi = ρ∗πi = 0

}
=
{
ϖ0 = ϖi = ω

i = 0
}
.

By (3.2.7) and (3.2.8), we have dϖ0 ≡ dϖi ≡ dωi ≡ 0 (mod ϖ0, ϖ1, ϖ2, ω
i, πii). Thus

∂Mi ⊂
{
ϖ0 = ϖi = ω

i = 0
}
= ρ−1∗ (Hi).

□

For a Monge characteristic system Hi, the systemMi satisfying (3.2.9) is called the
corresponding Monge characteristic system.

Corollary 3.2. IfHi has two independent first integrals, thenMi also has at least two.

Here, “independent” means independence as function, namely there exists two first
integrals f1, f2 ofHi such that df1 ∧ df2 , 0.

Though we obtain this corollary from the structure equation (3.2.8), to obtain more
information, we need to analyze the structure equation in more detail:

Theorem 3.3. Let I be a hyperbolic Monge-Ampère system on a 5-dimensional contact
manifold J and let H1 and H2 denote the Monge characteristic systems of I, and let
(R,D) denote the corresponding Monge-Ampère equation and M1 and M2 the corre-
sponding Monge characteristic systems respectively. Then, for i = 1, 2, ∂Mi, ∂2Mi and
∂Hi are differential systems, and satisfy that codim ∂2Mi = 3 and

∂2Mi ⊂ ρ−1∗ (∂Hi).

Proof. Let us choose the coframe {θ, ω1, ω2, π1, π2} and {ϖ0, ϖ1, ϖ2, ω
1, ω2, π11, π22}

taken above. It follows from (3.2.7) that

dπi ≡ Ai ϖ1 ∧ϖ2 +ϖ1 ∧
(
Bi ω

1 + (Aic + Ci)ω2)
+ϖ2 ∧

(
(−Aia + Ei)ω1 + Fi ω

2)
+ (Aiac + Cia − Eic + Gi)ω1 ∧ ω2

dωi ≡ Hi ϖ1 ∧ϖ2 +ϖ1 ∧
(
Ii ω

1 + (Hic + Ji)ω2)
+ϖ2 ∧

(
(−Hia + Ki)ω1 + Li ω

2)
+ (Hiac + Jia − Kic + Ni)ω1 ∧ ω2


(mod ϖ0)
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3.2 Properties and relations of Monge characteristic systems

and hence

dϖ1 ≡ ω1 ∧ π11 +ϖ1 ∧
(
(B1 − I1a)ω1 + (A1c + C1 − H1ac − J1a)ω2)

+ϖ2 ∧
(
(−A1a + E1 + H1a2 − K1a)ω1 + (F1 − L1a)ω2)

+ (A1 − H1a) ϖ1 ∧ϖ2 (mod ϖ0),

dϖ2 ≡ ω2 ∧ π22 +ϖ1 ∧
(
(B2 − I2c)ω1 + (A2c + C2 − H2c2 − J2c)ω2)

+ϖ2 ∧
(
(−A2a + E2 + H2ac − K2c)ω1 + (F2 − L2c)ω2)

+ (A2 − H2c) ϖ1 ∧ϖ2 (mod ϖ0),

where

π11 = da + (A1ac + C1a − E1c + G1 − H1a2c − J1a2 + K1ac − N1a)ω2,

π22 = dc − (A2ac + C2a − E2c + G2 − H2ac2 − J2ac + K2c2 − N2c)ω1.

By definition, one Monge characteristic system is

H1 =
{
θ = ω1 = π1 = 0

}
.

Since the structure equation ofH1 is


dθ ≡ ω2 ∧ π2

dω1 ≡ −L1ω
2 ∧ π2

dπ1 ≡ −F1ω
2 ∧ π2

(mod θ, ω1, π1),

the first derived system ofH1 is

∂H1 =
{
ω̃1 = π̃1 = 0

}
,

where ω̃1 = ω1 + L1 θ, π̃1 = π1 + F1 θ, and hence ∂H1 is a differential system on J.
On the other hand, let us recall the corresponding Monge characteristic system

M1 =
{
ϖ0 = ϖ1 = ϖ2 = ω

1 = π11 = 0
}
.

Since the structure equation ofM1 is



dϖ0 ≡ 0

dϖ1 ≡ 0

dϖ2 ≡ ω2 ∧ π22
dω1 ≡ 0

dπ11 ≡ −(A1a − E1 − H1a2 + K1a)ω2 ∧ π22

(mod ϖ0, ϖ1, ϖ2, ω
1, π11),
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3 MONGE-AMPÈRE EQUATIONS

the first derived system ofM1 is

∂M1 =
{
ϖ0 = ϖ1 = ω

1 = π11 = 0
}
,

where π11 = π11 + (A1a − E1 − H1a2 + K1a) ϖ2, and hence ∂M1 is a differential system
on R. Since 

dϖ0 ≡ ω2 ∧ϖ2

dϖ1 ≡ −(F1 − L1a)ω2 ∧ϖ2

dω1 ≡ −L1ω
2 ∧ϖ2

(mod ϖ0, ϖ1, ω
1),(3.2.10)

the second derived system ofM1 is

∂2M1 ⊂
{
ϖ̂1 = ω̂

1 = 0
}
,(3.2.11)

where ϖ̂1 = ϖ1 + (F1 − L1a) ϖ0, ω̂
1 = ω1 + L1ϖ0. We have

ρ∗(ω̃1) = ω1 + L1ϖ0 = ω̂
1,

ρ∗(π̃1) =ϖ1 + aω1 + F1ϖ0 = ϖ̂1 + a ω̂1,
(3.2.12)

and hence ∂2M1 satisfies the inclusion

∂2M1 ⊂ ρ−1∗ (∂H1) =
{
ρ∗ω̃1 = ρ∗π̃1 = 0

}
.(3.2.13)

Furthermore, since

dπ11 ≡ (acdA1 + adC1 − cdE1 + dG1 − a2cdH1 − a2dJ1 + acdK1 − adM1) ∧ ω2

modulo ϖ0, ϖ1, ω
1, π11, ω

2 ∧ϖ2, and

dA1 ∧ ω2 ≡ dC1 ∧ ω2 ≡ dE1 ∧ ω2 ≡ dG1 ∧ ω2

≡ dH1 ∧ ω2 ≡ dJ1 ∧ ω2 ≡ dK1 ∧ ω2 ≡ dM1 ∧ ω2 ≡ 0

modulo ϖ0, ϖ1, ϖ2, ω
1, π11, we have

dπ11 ≡ 0 (mod ϖ0, ϖ1, ω
1, π11, ω

2 ∧ϖ2).

Thus ∂2M1 is a differential system and codim ∂2M1 = 3.
Similarly, we can prove the claims in the case ofH2 andM2. □

The following corollary is a key of characterization of Monge-Ampère equation (see
Theorem 3.12)
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3.2 Properties and relations of Monge characteristic systems

Corollary 3.4.

ρ−1∗ (Hi) = ∂Mi + Ch(∂D) for i = 1, 2.

From (3.2.10), (3.2.11), (3.2.12) and (3.2.13), we obtain the following corollary:

Corollary 3.5. IfMi has three independent first integrals, thenHi also has two.

Remark 3.6. As it is seen in Corollary 3.2, ifHi has two independent first integrals, then
Mi also has at least two. However, it is not always true thatHi also has two independent
first integrals ifMi has two independent first integrals. For example, let us consider the
hyperbolic Monge-Ampère equation ([Boo59], [Gou90], [For06])

r − t − np
x
= 0,

where n is an integer. The Monge-Ampère system is{
θ = dz − pdx − qdy, Ψ = dp ∧ dy + dq ∧ dx − np

x
dx ∧ dy

}
diff

and decomposable 2-forms are

Ψ ± dθ =
(
dp ∓ dq − np

x
dx
)
∧ (dy ∓ dx).

Then we have

dθ = ω1 ∧ π1 + ω2 ∧ π2,

where ω1 =
1
2 (dx − dy), ω2 =

1
2 (dy + dx), π1 = dp − dq − np

x dx, π2 = dq + dp − np
x dx.

We obtain the derived systems ∂kHi for each i = 1, 2 as follows: Since the structure
equation ofH1 = {θ = ω1 = π1 = 0} is


dθ ≡ ω2 ∧ π2

dω1 = 0

dπ1 ≡ n
2x ω

2 ∧ π2
(mod θ, ω1, π1),

the first derived system is

∂H1 =
{
ω1 = π′1 = 0

}
,

where π′1 = π1 −
n
2x θ. Since the structure equation of ∂H1 is

 dω1 = 0

dπ′1 ≡
n(n+2)
4x2 ω2 ∧ θ (mod ω1, π′1),
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∂H1 is completely integrable if and only if n = 0 or −2.
On the other hand, let us recall the corresponding Monge characteristic system

M1 =
{
ϖ0 = ϖ1 = ϖ2 = ω

1 = π11 = 0
}
,

where ϖ0 = ρ∗θ, ϖ1 = ρ∗π1 − aρ∗ω1, ϖ2 = ρ∗π2 − cρ∗ω2 and let us omit the pullback
ρ∗ in what follows. Then we have

dϖ0 = ω
1 ∧ϖ1 + ω

2 ∧ϖ2,

dϖ1 = ω
1 ∧ π11 −

n
2x

ϖ1 ∧ (ω1 + ω2) − n
2x

ϖ2 ∧ (ω1 + ω2),

dϖ2 = ω
2 ∧ π22 −

n
2x

ϖ1 ∧ (ω1 + ω2) − n
2x

ϖ2 ∧ (ω1 + ω2),

where π11 = da − n(a−c)
2x ω2, π22 = dc + n(a−c)

2x ω1. Since the structure equation ofM1 is



dϖ0 ≡ 0

dϖ1 ≡ 0

dϖ2 ≡ ω2 ∧ π22
dω1 = 0

dπ11 ≡ − n
2x ω

2 ∧ π22

(mod ϖ0, ϖ1, ϖ2, ω
1, π11),

the first derived system is

∂M1 =
{
ϖ0 = ϖ1 = ω

1 = π̃11 = 0
}
,

where π̃11 = π11 + n
2x ϖ2. Since the structure equation of ∂M1 is

dϖ0 ≡ ω2 ∧ϖ22

dϖ1 ≡ n
2x ω

2 ∧ϖ2

dω1 = 0

dπ̃11 ≡ − n
2x2 ω

2 ∧ϖ2

(mod ϖ0, ϖ1, ω
1, π̃11),

the second derived system is

∂2M1 =
{
ϖ′1 = ω

1 = π′11 = 0
}
,

where ϖ′1 = ϖ1− n
2x ϖ0, π

′
11 = π̃11+

n
2x2 ϖ0 = π11+

n
2x2 ϖ0+

n
2x ϖ2. Since the structure

equation of ∂2M1 is
dϖ′1 ≡

n(n+2)
4x2 ω2 ∧ϖ0

dω1 = 0

dπ′11 ≡
n(n+2)(n−4)

8x3 ω2 ∧ϖ0

(mod ϖ′1, ω
1, π′11),(3.2.14)
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3.2 Properties and relations of Monge characteristic systems

∂2M1 is completely integrable if and only if n = −2 or 0.

Let us continue the calculation except for the case of n = −2 or 0. Equation (3.2.14)
implies

∂3M1 =
{
ω1 = π̂11 = 0

}
,

where π̂11 = π′11 −
n−4
2x ϖ′1 = π11 +

n(n−2)
4x2 ϖ0 − n−4

2x ϖ1 +
n
2x ϖ2. Since we have

dπ̂11 ≡ −
n(n + 4)(n − 2)

8x3
ω2 ∧ϖ0 +

(n + 4)(n − 2)
4x2

ω2 ∧ϖ1 (mod ω1),

∂3M1 is completely integrable if and only if n = −4 or 2. In the other cases,
∂4M1 = {ω1 = 0}.

The case ofH2 andM2 are as follows: ∂H2 = {ω2 = π′2 = 0}, where
π′2 = π2 −

n
2x θ, and

dπ′2 =
n(n + 2)
4x2

ω1 ∧ θ.

On the other hand, we can obtain

∂2M2 =
{
ϖ′2 = ω

2 = π′22 = 0
}
,

where ϖ′2 = ϖ2 − n
2x ϖ0, π

′
22 = π22 +

n
2x ϖ1 +

n
2x2 ϖ0, and

dϖ′2 ≡
n(n+2)
4x2 ω1 ∧ϖ0

dπ′22 ≡
n(n+2)(n−4)

8x3 ω1 ∧ϖ0

(mod ϖ′2, ω
2, π′22).

If n , −2 and 0, we have

∂3M2 =
{
ω2 = π22 = 0

}
,

where π22 = π′22 −
n−4
2x ϖ′2 = π22 +

n(n−2)
4x2 ϖ0 +

n
2x ϖ1 − n−4

2x ϖ2. Then

dπ22 ≡ −
n(n + 4)(n − 2)

8x3
ω1 ∧ϖ0 +

(n + 4)(n − 2)
4x2

ω1 ∧ϖ2 (mod ω2).

For i = 1, 2, we have obtained
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Table 1: The Number of Independent First Integrals of Each Monge Characteristic System

n
the number of independent the number of independent

first integrals ofMi first integrals ofHi

−2, 0 3 2

−4, 2 2 1

the others 1 1

3.2.2 Parabolic case

First, we choose a coframe adapted for a Monge-Ampère system: Let I = {θ, Ψ}diff
be a Monge-Ampère system and let (R,D) denote the corresponding Monge-Ampère
equation. Let us fix a point vo ∈ R. Assuming that I is a parabolic system around
uo = π(vo), we can take a function λ around uo such that Ψ + λdθ is a decomposable
2-form. Hence we may suppose that Ψ = ω ∧ π is a decomposable 2-form. By definition,
since the quadratic equation in a variable λ given by

(Ψ + λdθ)2 = 2λΨ ∧ dθ + λ2dθ ∧ dθ = 0

has the multiple root λ = 0, we have

Ψ ∧ dθ = ω ∧ π ∧ dθ = 0.

This implies

dθ ≡ ω1 ∧ π + ω ∧ π2 (mod θ),

whereω1 and π2 are 1-forms around uo. Because θ is a contact form, θ∧ω1∧π∧ω∧π2 ,
0. Hence {θ, ω1, ω, π, π2} is a coframe around uo. If ω |vo and π |vo are simultaneously
never zero, we may assume ω |vo , 0. Since dθ |vo = 0, it follows that ω1 ∧ ω |vo must be
non-zero.

Namely, we may suppose ω1 ∧ ω |vo , 0 except for the case that both ω |vo and π |vo
vanish (see Remark 3.8 below).

Secondly, let us take a neighborhood V of vo such that ω1 ∧ ω |v , 0 at each v ∈ V .
Since Ψ|v = 0 for any v ∈ V , we can take fiber coordinates a, b, c on V such that

π |v = a(v)ω1 |v + b(v)ω |v ,
π2 |v = b(v)ω1 |v + c(v)ω |v ,
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3.2 Properties and relations of Monge characteristic systems

for v ∈ V . Since ω ∧ π |v = 0, we have a(v) = 0. Thus

D = {ϖ0 = ϖ1 = ϖ2 = 0 } ,

where ϖ0 = ρ∗θ, ϖ1 = ρ∗π − bρ∗ω, ϖ2 = ρ∗π2 − bρ∗ω1 − cρ∗ω and let us omit the
pullback ρ∗ in what follows.

Putting

dπ ≡ π ∧ ( A π2 + Bω1 + Cω) + π2 ∧ ( E ω1 + F ω) + Gω1 ∧ ω
dω ≡ π ∧ (H π2 + I ω1 + J ω) + π2 ∧ (K ω1 + Lω) + N ω1 ∧ ω

(mod θ),

where each capital letter indicates smooth functions on J, we have

dπ − bdω ≡ −(Ab2 + Bb + Ec − Fb − G − Hb3 − Ib2 − Kbc + Lb2 + Nb)ω1 ∧ ω,

modulo ϖ0, ϖ1, ϖ2. Hence we obtain the structure equation:

Lemma 3.7. 
dϖ0 ≡ ω1 ∧ π + ω ∧ϖ2 (mod ϖ0)
dϖ1 ≡ ω ∧ π12 (mod ϖ0, ϖ1, ϖ2)
dϖ2 ≡ ω1 ∧ π12 + ω ∧ π22 (mod ϖ0, ϖ1, ϖ2)

where π12 = db + (Ab2 + Bb + Ec − Fb − G − Hb3 − Ib2 − Kbc + Lb2 + Nb)ω1.

Remark 3.8. If both ω |vo and π |vo vanish, it must satisfy ω1 ∧ π2 |vo , 0. We consider a
neighborhood V of vo such that ω1 ∧ π2 |v , 0 at each v ∈ V .

D = {ϖ0 = ϖ1 = ϖ2 = 0 } ,

where ϖ0 = θ, ϖ1 = π − aω1 − b π2, ϖ2 = ω − bω1 − c π2. Since ω ∧ π |v = 0 for all
v ∈ V , R ∩ V = {ac − b2 = 0} and hence vo is a singular point of R ∩ V . Thus we omit a
point vo such that both ω |vo and π |vo vanish.

Lemma 3.9.

M ⊂ ρ−1∗ (H ).

Proof. As we use the coframe taken above,

M = {ϖ0 = ϖ1 = ϖ2 = ω = π12 } ,
ρ−1∗ (H ) = { θ = ω = π = 0 }

= {ϖ0 = ϖ1 = ω = 0 } ,

and hence our assertion follows. □
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Corollary 3.10. IfH has two independent first integrals, thenM also has at least two.

In the same way as in the case of hyperbolic system, let us analyze the structure
equation in more detail:

Theorem 3.11. Let I be a parabolic Monge-Ampère system on a 5-dimensional contact
manifold J and let (R,D) denote the corresponding Monge-Ampère equation. Then it
follows that

ρ−1∗ (H ) = ∂(M + Ch(∂D))(3.2.15)

and the Monge characteristic system H of I is completely integrable if and only if the
Monge characteristicM of (R,D) is completely integrable.

Moreover, if M does not coincide with ∂M, and ∂M is a differential system on R,
then it follows that

∂2M = ρ−1∗ (H ).

Proof. Let us choose a coframe {ϖ0, ϖ1, ϖ2, ω
1, ω, π12, π22} taken above. By defini-

tion,

H = { θ = ω = π = 0 } .

Since 
dθ ≡ 0
dω ≡ −E ω1 ∧ π2
dπ ≡ −K ω1 ∧ π2

(mod θ, ω, π),

H is completely integrable if and only if E and K vanish locally.
On the other hand, let us start with the Monge characteristic system

M = {ϖ0 = ϖ1 = ϖ2 = ω = π12 = 0 } .

of (R,D). Since

dA ∧ ω1 ≡ dB ∧ ω1 ≡ dF ∧ ω1 ≡ dE ∧ ω1 ≡ dG ∧ ω1 ≡ dH ∧ ω1

≡ dI ∧ ω1 ≡ dL ∧ ω1 ≡ dK ∧ ω1 ≡ dM ∧ ω1 ≡ db ∧ ω1 ≡ 0,

modulo ϖ0, ϖ1, ϖ2, ω
1, π11, we have

dπ12 ≡ (Kb − E)ω1 ∧ π22 (mod ϖ0, ϖ1, ϖ2, ω, π12).
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3.3 Characterization of Monge-Ampère equations

Since dϖ0 ≡ dϖ1 ≡ dϖ2 ≡ dω ≡ 0 (mod ϖ0, ϖ1, ϖ2, ω, π12) and b is one of the fiber
coordinates, M is completely integrable if and only if E and K vanish locally. Hence
second assertion follows.

Since dϖ0 ≡ dϖ1 ≡ dω ≡ 0 and dϖ2 ≡ ω1 ∧ π12 (mod ϖ0, ϖ1, ϖ2, ω), first
assertion follows.

Moreover, let us suppose thatM does not coincide with ∂M and ∂M is a differential
system on R. Then

∂M = {ϖ0 = ϖ1 = ϖ2 = ω = 0 } .

Since the structure equation of ∂M is
dϖ0 ≡ 0
dϖ1 ≡ 0
dϖ2 ≡ ω1 ∧ π12

dω ≡ 0

(mod ϖ0, ϖ1, ϖ2, ω),

we have

∂2M = {ϖ0 = ϖ1 = ω = 0 } .

Consequently, we have obtained

ρ−1∗ (H ) =
{
ρ∗θ = ρ∗ω = ρ∗π = 0

}
= ∂2M .

□

3.3 Characterization of Monge-Ampère equations

The results in the previous section guide us to consider the geometric characterization of
Monge-Ampère equations. In fact, letM1 andM2 be Monge characteristic systems of a
hyperbolic equation (R,D). The differential systems ∂Mi +Ch(∂D) of corank 3 have the
possibility to be Monge characteristic systems of a hyperbolic Monge-Ampère system.
On the other hand, in parabolic case, the differential system ∂(M + Ch(∂D)) of corank
3 has the possibility to be the Monge characteristic system of a parabolic Monge-Ampère
system.

3.3.1 Hyperbolic case

Let (R,D) be a hyperbolic equation and set D = {ϖ0 = ϖ1 = ϖ2 = 0}. LetM1 andM2

denote Monge characteristic systems of (R,D).
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3 MONGE-AMPÈRE EQUATIONS

First, let us describe the structure equation ofMi. We recall the structure equation of
D 

dϖ0 ≡ ω1 ∧ϖ1 + ω
2 ∧ϖ2 (mod ϖ0),

dϖ1 ≡ ω1 ∧ π11 (mod ϖ0, ϖ1, ϖ2),
dϖ2 ≡ ω2 ∧ π22 (mod ϖ0, ϖ1, ϖ2),

and Monge characteristic systemsMi = {ϖ0 = ϖ1 = ϖ3 = ω
i = πii = 0} for i = 1, 2.

SinceM1 is of rank 2 and dϖ0 ≡ dϖ1 ≡ 0, dϖ2 ≡ ω2∧π22 (mod ϖ0, ϖ1, ϖ2, ω
1, π11),

the first derived system ∂M1 is of constant rank 3. Similarly, ∂M2 is so. We can write

dω1 ≡ ω2 ∧ (h1 π11 + k1 π22) (mod ϖ0, ϖ1, ϖ2, ω
1),

dω2 ≡ ω1 ∧ (h2 π11 + k2 π22) (mod ϖ0, ϖ1, ϖ2, ω
2).

Then since

0 = d2ϖ0

≡ −ω1 ∧ (dϖ1 +ϖ2 ∧ (h2 π11 + k2 π22)) (mod ϖ0, ϖ1, ω
2),

0 = d2ϖ0

≡ −ω2 ∧ (dϖ2 +ϖ1 ∧ (h1 π11 + k1 π22)) (mod ϖ0, ϖ2, ω
1),

we have

dϖ1 ≡ ω1 ∧ π11 −ϖ2 ∧ (h2 π11 + k2 π22) (mod ϖ0, ϖ1, ω
1 ∧ϖ2, ω

2 ∧ϖ2),

dϖ2 ≡ ω2 ∧ π22 −ϖ1 ∧ (h1 π11 + k1 π22) (mod ϖ0, ϖ2, ω
1 ∧ϖ1, ω

2 ∧ϖ1).

Furthermore, since

0 = d2ϖ1

≡ (−k1 + h2)ω2 ∧ π11 ∧ π22 (mod ϖ0, ϖ1, ϖ2, ω
1),

we have k1 = h2. Replacing ω1 − k1ϖ2 and ω2 − h2ϖ1 with ω1 and ω2 respectively, we
have

dϖ0 ≡ ω1 ∧ϖ1 + ω
2 ∧ϖ2 (mod ϖ0)

dϖ1 ≡ ω1 ∧ π11 − k2ϖ2 ∧ π22 (mod ϖ0, ϖ1, ω
1 ∧ϖ2, ω

2 ∧ϖ2)
dϖ2 ≡ ω2 ∧ π22 − h1ϖ1 ∧ π11 (mod ϖ0, ϖ2, ω

1 ∧ϖ1, ω
2 ∧ϖ2)

dω1 ≡ h1ω2 ∧ π11 (mod ϖ0, ϖ1, ϖ2, ω
1)

dω2 ≡ k2ω1 ∧ π22 (mod ϖ0, ϖ1, ϖ2, ω
2)

(3.3.16)
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3.3 Characterization of Monge-Ampère equations

Then ∂Mi + Ch(∂D) = {ϖ0 = ϖi = ω
i = 0} and we can write those structure equations

as follows:


dϖ0 ≡ ω2 ∧ϖ2

dϖ1 ≡ −k2ϖ2 ∧ π22
dω1 ≡ h1ω2 ∧ π11 +ϖ2 ∧ (A1 π11 + B1 π22)

(mod ϖ0, ϖ1, ω
1),(3.3.17)


dϖ0 ≡ ω1 ∧ϖ1

dϖ2 ≡ −h1ϖ1 ∧ π11
dω2 ≡ k2ω1 ∧ π22 +ϖ2 ∧ (A2 π11 + B2 π22)

(mod ϖ0, ϖ2, ω
2).(3.3.18)

As it is seen in Corollary 3.4, for a hyperbolic Monge-Ampère system, pullbacks of
Monge characteristic systems Hi coincide with ∂Mi + Ch(∂D), where Mi is the cor-
responding Monge characteristic system of the corresponding Monge-Ampère equation
(R,D). Conversely, we obtain the next theorem:

Theorem 3.12. Let (R,D) be a hyperbolic equation and let M1 and M2 denote the
Monge characteristic systems of (R,D). If ∂M1 + Ch(∂D) drops down to J, or equiva-
lently, ∂M2+Ch(∂D) drops down to J, then there exists a Monge-Ampère system I such
that (R,D) coincides with the prolongation of I locally. Moreover, ∂M1 + Ch(∂D) and
∂M2 + Ch(∂D) are pullbacks of the Monge characteristic systems of the system I.

First, we prove the following lemma:

Lemma 3.13. Let (R,D) be a hyperbolic equation and letM1 andM2 denote the Monge
characteristic systems of (R,D). If ∂Mi + Ch(∂D) drops down to J for all i = 1, 2,
there exists a Monge-Ampère system I such that (R,D) coincides with the prolongation
of I locally. Moreover, ∂M1 +Ch(∂D) and ∂M2 +Ch(∂D) are pullbacks of the Monge
characteristic systems of the system I.

Proof. For a point v ∈ R, we will construct a Monge-Ampère system I around ρ(v) ∈ J
and a neighborhood V of v such that (R,D) coincides with the prolongation of I on V .

Let us fix a point vo ∈ R.
Since ∂Mi+Ch(∂D) drops down to J for each i = 1, 2, there exists 1-forms π̂1, ω̂1, π̂2, ω̂

2

around uo = ρ(vo) such that ω̂1 ∧ ω̂2 |vo , 0 and

∂Mi + Ch(∂D) =
{
ρ∗θ = ρ∗π̂i = ρ

∗ω̂i = 0
}

for i = 1, 2.

Let V be a neighborhood of vo such that ω̂1 ∧ ω̂2 |v , 0 for all v ∈ V .
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3 MONGE-AMPÈRE EQUATIONS

Let denote A1, A2 and B non-zero functions on V such that ωi ∧ϖi ≡ Ai ρ
∗ω̂i ∧ ρ∗π̂i

(mod ϖ0) and ϖ0 = Bρ∗θ. Then we have

ρ∗dθ ≡ A1

B
ρ∗ω̂1 ∧ ρ∗π̂1 +

A2

B
ρ∗ω̂2 ∧ ρ∗π̂2 (mod ρ∗θ).

This implies that there exists functions K̂1, K̂2 around uo such that ρ∗K̂i =
Ai

B for i = 1, 2,

and hence we have

dθ ≡ (K̂1 ω̂
1) ∧ π̂1 + (K̂2 ω̂

2) ∧ π̂2 (mod θ).

Now let us consider the following hyperbolic Monge-Ampère system

I =
{
θ, ω̂1 ∧ π̂1

}
diff =

{
θ, ω̂2 ∧ π̂2

}
diff

and its Monge characteristic systems are Hi = {θ = π̂i = ω̂
i = 0}. From the definition

of I, each point of V is an integral element of I. Namely (R,D) coincides with the
corresponding Monge-Ampère equation locally. □

Next, we show that, for a hyperbolic equation (R,D), Ch(∂M1 +Ch(∂D)) coincides
with Ch(∂D) if and only if Ch(∂M2 + Ch(∂D)) coincides with Ch(∂D):

Lemma 3.14. Let (R,D) be a hyperbolic equation and letM1 andM2 denote the Monge
characteristic systems of (R,D). Then, Ch(∂M1 + Ch(∂D)) coincides with Ch(∂D) if
and only if Ch(∂M2 + Ch(∂D)) coincides with Ch(∂D).

Proof. From (3.3.17), if Ch(∂M1+Ch(∂D)) coincides with Ch(∂D), we have h1 = k2 =
0. From (3.3.18), if Ch(∂M2 + Ch(∂D)) coincides with Ch(∂D), we have h1 = k2 = 0.

As we assume h1 = k2 = 0, it follows from (3.3.16), (3.3.17) and (3.3.18) that

dϖ1 ≡ ω1 ∧ π11 (mod ϖ0, ϖ1, ω
1 ∧ϖ2, ω

2 ∧ϖ2),
dω1 ≡ϖ2 ∧ (A1 π11 + B1 π22) (mod ϖ0, ϖ1, ω

1),
dϖ2 ≡ ω2 ∧ π22 (mod ϖ0, ϖ2, ω

1 ∧ϖ1, ω
2 ∧ϖ2),

dω2 ≡ϖ1 ∧ (A2 π11 + B2 π22) (mod ϖ0, ϖ2, ω
2).

Since dϖ0 ≡ dϖ1 ≡ d(ω1 ∧ϖ2) ≡ d(ω2 ∧ϖ2) ≡ 0 (mod ϖ0, ϖ1, ω
2 ∧ϖ2, ω

1),

0 = d2ϖ1

≡ −B1ϖ2 ∧ π11 ∧ π22 (mod ϖ0, ϖ1, ω
2 ∧ϖ2, ω

1).
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3.3 Characterization of Monge-Ampère equations

Since dϖ0 ≡ dϖ1 ≡ dω1 ≡ 0 (mod ϖ0, ϖ1, ϖ2, ω
1),

0 = d2ω1

≡ −A1ω
2 ∧ π11 ∧ π22 (mod ϖ0, ϖ1, ϖ2, ω

1).

Therefore, we have A1 = B1 = 0.
On the other hand, since dϖ0 ≡ dϖ2 ≡ d(ω1∧ϖ1) ≡ d(ω2∧ϖ1) ≡ 0 (mod ϖ0, ϖ2, ω

1∧
ϖ1, ω

2),

0 = d2ω2

≡ A2ϖ1 ∧ π11 ∧ π22 (mod ϖ0, ϖ2, ω
1 ∧ϖ1, ω

2).

Since dϖ0 ≡ dϖ2 ≡ dω2 ≡ 0 (mod ϖ0, ϖ1, ϖ2, ω
2),

0 = d2ω2

≡ B2ω
1 ∧ π11 ∧ π22 (mod ϖ0, ϖ1, ϖ2, ω

2).

Therefore, we have A2 = B2 = 0.
Consequently, our assertion follows. □

Proof of Theorem 3.12. From Equation (3.3.17), if ∂M1 + Ch(∂D) drops down to J =
R/Ch(∂D), Ch(∂M1+Ch(∂D)) must coincides with Ch(∂D). Similarly, from Equation
(3.3.18), if ∂M2 + Ch(∂D) drops down to J, Ch(∂M2 + Ch(∂D)) must coincides with
Ch(∂D). Conversely, if Ch(∂M1 + Ch(∂D)) = Ch(∂D), or equivalently, if Ch(∂M2 +

Ch(∂D)) = Ch(∂D), then ∂Mi + Ch(∂D) drops down to J for i = 1, 2. Thus ∂M1 +

Ch(∂D) drops down to J if and only if ∂M2 + Ch(∂D) drops down to J. Consequently,
our assertion follows from Lemma 3.13 and this argument. □

Remark 3.15. ∂Mi + Ch(∂D) and h1, k2 in the above proof are corresponding to the
Mi-characteristic vector field systems Char(IF ,dMi) and Monge-Ampère invariants intro-
duced in [GK93]. They characterize Monge-Ampère equation by the invariants. On the
other hand, we characterize Monge-Ampère equation by the property that ∂Mi+Ch(∂D)
should satisfy and find that these differential systems coincides with pullbacks of the
Monge characteristic systems of the corresponding Monge-Ampère system if (R,D) is a
hyperbolic Monge-Ampère system.

o
From Lemma 3.14, we can translate Theorem 3.12 into the following corollary:

Corollary 3.16. Let (R,D) be a hyperbolic equation and let M1 and M2 denote the
Monge characteristic systems of (R,D). If Ch(∂M1 +Ch(∂D)) coincides with Ch(∂D),
or equivalently, Ch(∂M2 + Ch(∂D)) coincides with Ch(∂D), there exists a Monge-
Ampère system I such that (R,D) coincides with the prolongation of I locally.
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3 MONGE-AMPÈRE EQUATIONS

3.3.2 Parabolic case

In parabolic case, we obtain similar results to hyperbolic case. Unlike hyperbolic case,
as it is seen in Theorem 3.11, the regularity of the first derived system ∂M of the Monge
characteristic systemM of a parabolic equation does not follow from the regularity ofM.
In order to obtain a similar result to Corollary 3.16, we need a further assumption of the
regularity (see Theorem 3.18). The result for Goursat equation, i.e. a parabolic equation
whose Monge characteristic system is completely integrable (hence the assumption is
naturally satisfied) is particularly important.

First, let us describe the structure equation ofM. We recall the structure equation of
D 

dϖ0 ≡ ω1 ∧ϖ1 + ω
2 ∧ϖ2 (mod ϖ0),

dϖ1 ≡ ω2 ∧ π12 (mod ϖ0, ϖ1, ϖ2),
dϖ2 ≡ ω1 ∧ π12 + ω2 ∧ π22 (mod ϖ0, ϖ1, ϖ2),

and the Monge characteristic systemM = {ϖ0 = ϖ1 = ϖ2 = ω
2 = π12 = 0}. As we

write dω2 ≡ ω1 ∧ (h π12 + k π22) (mod ϖ0, ϖ1, ϖ2, ω
2),

0 = d2ϖ0

≡ −ω1 ∧ (dϖ1 +ϖ2 ∧ (h π12 + k π22)) (mod ϖ0, ϖ1, ω
2).

Thus we have

dϖ1 ≡ ω2 ∧ π12 −ϖ2 ∧ (h π12 + k π22) (mod ϖ0, ϖ1, ω
1 ∧ϖ2, ω

2 ∧ϖ2).

Since dϖ0 ≡ dϖ1 ≡ d(ω1 ∧ϖ2) ≡ d(ω2 ∧ϖ2) ≡ 0 (mod ϖ0, ϖ1, ϖ2, ω
1 ∧ω2, ω2 ∧

π12), we have

0 = d2ϖ1

≡ −2k ω1 ∧ π12 ∧ π22 − ω2 ∧ dπ12 (mod ϖ0, ϖ1, ϖ2, ω
1 ∧ ω2, ω2 ∧ π12)

and hence k = 0. Thus replacing ω2 − hϖ2 with ω2, we have

dϖ0 ≡ ω1 ∧ϖ1 + ω
2 ∧ϖ2 (mod ϖ0),

dϖ1 ≡ ω2 ∧ π12 (mod ϖ0, ϖ1, ω
1 ∧ϖ2, ω

2 ∧ϖ2),
dω2 ≡ 0 (mod ϖ0, ϖ1, ϖ2, ω

2).

Then ∂(M +Ch(∂D)) = {ϖ0 = ϖ1 = ω
2 = 0} and we can write its structure equation as

follows: 
dϖ0 ≡ 0
dϖ1 ≡ E ω1 ∧ϖ2

dω2 ≡ϖ2 ∧ (A π12 + B π22 + Cω1)
(mod ϖ0, ϖ1, ω

2)(3.3.19)
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Furthermore, since

0 = d2ϖ1

≡ −ω2 ∧ (dπ12 − E ω1 ∧ π22) (mod ϖ0, ϖ1, ϖ2, ω
2 ∧ π12),

we have

dπ12 ≡ E ω1 ∧ π22 (mod ϖ0, ϖ1, ϖ2, ω
2, π12).(3.3.20)

Therefore the regularity of ∂M correspond to the regularity of the function E.
As it is seen in Theorem 3.11, for a parabolic Monge-Ampère system, the pullback of

the Monge characteristic systemH coincides with ∂(M +Ch(∂D)), whereM is the cor-
responding Monge characteristic system of the corresponding Monge-Ampère equation
(R,D). Conversely, we obtain the following theorem:

Theorem 3.17. Let (R,D) be a parabolic equation. Let M denote the Monge char-
acteristic system of (R,D). If ∂(M + Ch(∂D)) drops down to J, there exists a Monge-
Ampère system I such that (R,D) coincides with the prolongation of I locally. Moreover,
∂(M + Ch(∂D)) is the pullback of the Monge characteristic system of the system I.

Proof. For each v ∈ R, we will construct a Monge-Ampère system I around ρ(v) and a
neighborhood V of v such that (R,D) coincides with the prolongation of I on V .

Let us fix a point vo ∈ R. Since ∂(M+Ch(∂D)) drops down to J, there exists 1-forms
π̂, ω̂ around uo = ρ(vo) such that ω̂ |vo , 0 and

∂(M + Ch(∂D)) =
{
ρ∗θ = ρ∗π̂ = ρ∗ω̂ = 0

}
.

Let denote A and B non-zero functions around vo such that ω2 ∧ ϖ1 ≡ A ρ∗ω̂ ∧ ρ∗π̂
(mod ϖ0) andϖ0 = Bρ∗θ, then we have dϖ0∧ω2∧ϖ1 ≡ AB ρ∗(dθ∧ω̂∧π̂) (mod ϖ0).
Since dϖ0 ∧ ω2 ∧ ϖ1 ≡ 0 (mod ϖ0), we have dθ ∧ ω̂ ∧ π̂ ≡ 0 (mod θ). Therefore,
there exists 1-forms ω̂1, π̂2 around uo such that

dθ ≡ ω̂1 ∧ π̂ + ω̂ ∧ π̂2 (mod θ).

Since θ is a contact form, 1-forms θ, ω̂1, ω̂, π̂, π̂2 are linearly independent. We may
assume that ω̂1 ∧ ω̂ |vo , 0.

Let V be a neighborhood of vo such that ω̂1 ∧ ω̂ |v , 0 for all v ∈ V .
Now let us consider the following parabolic Monge-Ampère system

I = { θ, ω̂ ∧ π̂ } diff
and its Monge characteristic system is H = {θ = π̂ = ω̂ = 0}. From the definition
of I, each point of V is an integral element of I. Namely (R,D) coincides with the
prolongation of I locally. □

30
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Theorem 3.18. Let (R,D) be a parabolic equation. LetM denote the Monge character-
istic system of (R,D) and assume the first derived system ∂M ofM is also a differential
system. If Ch(∂(M +Ch(∂D)))(v) contains Ch(∂D)(v) at each point v ∈ R, there exists
a Monge-Ampère system I such that (R,D) coincides with the prolongation of I locally.

Proof. It is sufficient to show that ∂(M + Ch(∂D)) drops down to J if Ch(∂(M +
Ch(∂D)))(v) contains Ch(∂D)(v) at each point v ∈ R.

From Equation (3.3.20) and the assumption of the regularity of ∂M, E uniformly
vanishes or is not zero at each point of R. In the former case,M is completely integrable,
namely R is a Goursat equation. In the latter case, ∂M is of constant rank 3.

As E uniformly vanishes, since dϖ1 ≡ ω2 ∧ π12 (mod ϖ0, ϖ1, ω
2 ∧ϖ2),

0 = d2ϖ1

≡ ϖ2 ∧ (−B π12 ∧ π22 + Cω1 ∧ π12) (mod ϖ0, ϖ1, ω
2).

Therefore B and C vanish on R. Additionally, because the structure equation (3.3.19)
is satisfied and Ch(∂(M + Ch(∂D)))(v) contains Ch(∂D)(v) at each point v ∈ R, A
vanishes on R. Consequently, ∂(M +Ch(∂D)) is completely integrable and hence drops
down to J.

As E is not zero at each point of R, because the structure equation (3.3.19) is satisfied
and Ch(∂(M+Ch(∂D)))(v) contains Ch(∂D)(v) at each point v ∈ R, we get Ch(∂(M+
Ch(∂D))) = Ch(∂D). Consequently, ∂(M + Ch(∂D)) drops down to J. □

Particularly we note that

Corollary 3.19. Let (R,D) be a Goursat equation andM the Monge characteristic sys-
tem of (R,D). Namely, M is completely integrable. Then (R,D) is a Monge-Ampère
equation if and only if ∂(M + Ch(∂D)) is completely integrable.

Proof. If a Goursat equation (R,D) is a Monge-Ampère equation, from Theorem 3.11,
the Monge characteristic system H of the corresponding Monge-Ampère system I is
completely integrable, and equivalently ρ−1∗ (H ) = ∂(M + Ch(∂D)) is completely inte-
grable. Conversely, if ∂(M +Ch(∂D)) is completely integrable, Ch(∂(M +Ch(∂D))) =
∂(M + Ch(∂D)) = {ϖ0 = ϖ1 = ω

2 = 0} contains Ch(∂D). Hence, from Theorem 3.18,
(R,D) is a Monge-Ampère equation. □
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4 Hyperbolic exterior differential systems

4.1 Preliminaries

Let (R,D) be a differential system. (R,D) is a hyperbolic differential system of class n +
2 (n ≥ 1) if, for a point uo ∈ R, there exists a coframe {θ1, . . . , θn, ξ1, ξ2, ω

1, ω2, π1, π2}
around uo such that

D = { θ1 = · · · = θn = ξ1 = ξ2 = 0 } ,

dθ1 ≡ 0
...

dθn ≡ 0
dξ1 ≡ ω1 ∧ π1
dξ2 ≡ ω2 ∧ π2

(mod θ1, . . . , θn, ξ1, ξ2).(4.1.1)

By definition, the Cauchy characteristic system Ch(D) of a hyperbolic differential system
is trivial. For a hyperbolic differential system (R, D) with the structure equation (4.1.1),
Monge characteristic systemsM1 andM2 are defined as

Mi =
{
θ1 = · · · = θn = ξ1 = ξ2 = ω

i = πi = 0
}
,

which are well-defined differential systems of rank 2. They are invariant under diffeomor-
phisms of R preserving D.

An exterior differential system I on Σ is a hyperbolic exterior differential system of
class n (≥ 1) ([BGH95a]) if, for each point uo ∈ Σ, there exists a coframe {θ1, . . . , θn,

ω1, ω2, π1, π2} around uo such that I is generated algebraically by 1-forms θ1, . . . , θn

and the decomposable 2-forms ω1 ∧ π1 and ω2 ∧ π2. Monge characteristic systemsM1

andM2 are defined as

Mi =
{
θ1 = · · · = θn = ω

i = πi = 0
}
,

which are well-defined differential systems of rank 2. They are invariant under diffeomor-
phisms of Σ preserving I.

It is known that the prolongation of a hyperbolic differential system and exterior dif-
ferential system is a hyperbolic differential system and therefore has the Monge charac-
teristic systems:

Theorem 4.1 ([BGH95a]). The prolongation of a hyperbolic differential system and ex-
terior differential system of class n is a hyperbolic differential system of class n + 2.

32
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We see easily that a hyperbolic Monge-Ampère system is a hyperbolic exterior dif-
ferential system of class 1 and the hyperbolic Monge-Ampère equation is a hyperbolic
differential system of class 3. Generally, so is a hyperbolic equation. Namely, the hy-
perbolic exterior differential system (resp. differential system) is a generalization of the
Monge-Ampère system (resp. hyperbolic equation). Therefore we may naturally think a
generalization of Theorem 3.3 and Corollary 3.4, which is discussed in the next section.

Finally, note that a hyperbolic, non-Pfaffian, exterior differential system has the fol-
lowing normal form (cf. (3.1.3)):

Theorem 4.2 ([SY]). Let I be a hyperbolic exterior differential system on R and (R̂, D̂)
its prolongation. Suppose I is not Pfaffian. Then there exists a coordinate system
x, y, z, p, q, t1, . . . , tn in a neighborhood of such that

I = { θ, dθ, Ψ, dt1, . . . , dtn } alg,

where

θ = dz − pdx − qdy,

Ψ = Adp ∧ dy − B(dq ∧ dy − dp ∧ dx) − Cdq ∧ dx + Ddx ∧ dy + Edp ∧ dq.

Here, A, B, C, D, E are functions of variables x, y, z, p, q, t1, . . . , tn.

From this theorem, we see clearly that a hyperbolic exterior differential system is a
generalization of Monge-Ampère system and is a second order partial differential equa-
tion of one unknown function.

4.2 Properties and relations of the Monge characteristic systems of
hyperbolic differential systems and exterior differential systems

The following theorem asserts the relations between Monge characteristic systems of a
given hyperbolic differential system and its prolongation:

Theorem 4.3. Let (R,D) be a hyperbolic differential system with dim R = n + 6 (n ≥ 1)
and (R̂, D̂) be the prolongation of (R,D), and ρ : R̂ −→ R be the canonical projection.
Let Mi (resp. M̂i) for i = 1, 2 be the Monge characteristic systems of (R,D) (resp.
(R̂, D̂)). Then M̂i, ∂M̂i, ∂2M̂i and ∂Mi are differential systems of rank 2, 3, 4 and 3

respectively, and satisfy

∂M̂i ⊂ ρ−1∗ (Mi)

∂2M̂i ⊂ ρ−1∗ (∂Mi)

( rank ρ−1∗ (Mi) − rank ∂M̂i = 1 ),

( rank ρ−1∗ (∂Mi) − rank ∂2M̂i = 1 ).
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Moreover, we have

ρ−1∗ (Mi) = ∂M̂i + Ch(∂D̂).(4.2.2)

Proof. Fix a point uo ∈ R. By definition, there exists a coframe {θ1, . . . , θn, ξ1, ξ2, ω
1, . . . , ω4}

around uo such that D = {θ1 = · · · = θn = ξ1 = ξ2 = 0} and

dθ1 ≡ 0
...

dθn ≡ 0
dξ1 ≡ ω1 ∧ ω3

dξ2 ≡ ω2 ∧ ω4

(mod θ1, . . . , θn, ξ1, ξ2).

Now we will express the derived systems of Monge characteristic systems of (R̂, D̂) by
using this coframe.

Let vo be a 2-dimensional integral element of (R,D) at uo. Then there are four cases:
ω1 ∧ ω2 |vo , 0, ω1 ∧ ω4 |vo , 0, ω2 ∧ ω3 |vo , 0, ω3 ∧ ω4 |vo , 0. Without loss of
generality, we can assume ω1 ∧ ω2 |vo , 0 since the case ω1 ∧ ω4 |vo , 0 results in the
case ω1 ∧ω2 |vo , 0 if we replace ω2 and ω4 by ω4 and −ω2 respectively in the argument
below.

Assume ω1 ∧ ω2 |vo , 0. Let U be a neighborhood of vo such that ω1 ∧ ω2 |v , 0 for
all v ∈ U . Then we can introduce functions α1 and α2 on U such that D̂ is defined on U
by the 1-forms θ1, . . . , θn, ξ1, ξ2, and

η1 = ω
3 − α1ω1, η2 = ω

4 − α2ω2.

For 1 ≤ i ≤ 4, writing

dωi ≡ ω1 ∧ (Ji ω
2 + Ki ω

3 + Li ω
4)

+ ω2 ∧ (Mi ω
3 + Ni ω

4) +Oi ω
3 ∧ ω4 (mod θ1, . . . , θn, ξ1, ξ2),

with functions Ji, Ki, Li, Mi, Ni, Oi on U , then we have

dη1 ≡ ω1 ∧ π1
dη2 ≡ ω2 ∧ π2

 (mod θ1, . . . , θn, ξ1, ξ2),

where

π1 = dα1 +
(
J3 − (M3 + J1)α1 + L3α2 + M1α

2
1 + (O3 − L1)α1α2 −O1α

2
1α2
)
ω2,

π2 = dα2 +
(−J4 + M4α1 − (L4 − J2)α2 − (O4 + M2)α1α2 + L2α

2
2 +O2α1α

2
2

)
ω1.
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Thus the Monge characteristic systems M̂i of (R̂, D̂) are defined as

M̂i =
{
θ1 = · · · = θn = ξ1 = ξ2 = η1 = η2 = ω

i = πi = 0
}
.

Since Ch(D) is defined by the 1-forms θ1, . . . , θn, ξ1, ξ2, ω
1, . . . , ω4, we have dωi ≡ 0

(mod M̂⊥i ) for i = 1, 2. By definition,

dπ1 ≡
(
L3 + (O3 − L1)α1 −O1α

2
1

)
π2 ∧ ω2 (mod M̂⊥1 ),

dπ2 ≡
(
M4 − (O4 + M2)α2 +O2α

2
2

)
π1 ∧ ω1 (mod M̂⊥2 ),

which imply

∂M̂i =
{
θ1 = · · · = θn = ξ1 = ξ2 = ηi = ω

i = π̄i = 0
}
⊂ ρ−1∗ (Mi),

where

π̄1 = π1 +
(
L3 + (O3 − L1)α1 −O1α

2
1

)
η2,

π̄2 = π2 +
(
M4 − (O4 + M2)α2 +O2α

2
2

)
η1.

Since Ch(∂D̂) is defined by the 1-forms θ1, . . . , θn, ξ1, ξ2, η1, η2, ω
1, ω2, we obtain

∂M̂i + Ch(∂D̂) =
{
θ1 = · · · = θn = ξ1 = ξ2 = ηi = ω

i = 0
}
= ρ−1∗ (Mi).

Since

dθ1 ≡ · · · ≡ dθn ≡ 0

dξ1 ≡ 0

dξ2 ≡ ω2 ∧ η2
dη1 ≡ (N3 − N1α1)ω2 ∧ η2
dω1≡ N1ω

2 ∧ η2


(mod ∂M̂⊥1 ),

we have

∂2M̂1 ⊂
{
θ1 = · · · = θn = ξ1 = ξ2 = η̄1 = ω̄

1 = 0
}
,

where η̄1 = η1 − (N3 − N1α1) ξ2, ω̄1 = ω1 − N1 ξ2.

The following formulas are useful to calculate to dπ̄1: for the pullback F of a function
around uo, since dF ≡ 0 (mod θ1, . . . , θn, ξ1, ξ2, η1, η2, ω

1, ω2), we have

dF ∧ ω2 ≡ dF ∧ η2 ≡ 0 (mod θ1, . . . , θn, ξ1, ξ2, η1, ω
1, ω2 ∧ η2)
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Moreover we have

dα2 ≡ π̄2
dα1 ∧ ω2 ≡ 0
dα1 ∧ η2 ≡ 0

dη2 ≡ −π̄2 ∧ ω2


(mod θ1, . . . , θn, ξ1, ξ2, η1, ω

1, π̄1, ω
2 ∧ η2).

Therefore we calculate

dπ̄1 ≡
(
L3 dα2 + (O3 − L1)α1 dα2 −O1α

2
1 dα2

)
∧ ω2 +

(
L3 + (O3 − L1)α1 −O1α

2
1

)
dη2

≡
(
L3 π̄2 + (O3 − L1)α1 π̄2 −O1α

2
1 π̄2
)
∧ ω2 +

(
L3 + (O3 − L1)α1 −O1α

2
1

)
ω2 ∧ π̄2

≡ 0 (mod θ1, . . . , θn, ξ1, ξ2, η1, ω
1, π̄1, ω

2 ∧ η2)

Thus ∂2M̂1 is a subbundle of TU and rank ∂2M̂1 − rank ∂M̂1 = 1.
On the other hand, since

ρ−1∗ (M1) =
{
θ1 = · · · = θn = ξ1 = ξ2 = ω

1 = ω3 = 0
}
,

dξ2 ≡ ω2 ∧ ω4

dω1 ≡ N1ω
2 ∧ ω4

dω3 ≡ N3ω
2 ∧ ω4

 (mod ρ−1∗ (M1)⊥),

we obtain ρ−1∗ (∂M1) = {θ1 = · · · = θn = ξ1 = ω1 − N1 ξ2 = ω3 − N3 ξ2 = 0}. By
definition, we have

ω̄1 = ω1 − N1 ξ2,

η̄1 = η1 − (N3 − N1α1) ξ2
= (ω3 − N3 ξ2) − α1(ω1 − N1 ξ2),

which imply

ρ−1∗ (∂M1) =
{
θ1 = · · · = θn = ξ1 = η̄1 = ω̄

1 = 0
}
⊃ ∂2M̂1.

Similar arguments apply to the case i = 2. □

The same result holds for hyperbolic exterior differential system and is proven analo-
gously to Theorem 4.3 (cf. Theorem 3.3 and Corollary 3.4):

Theorem 4.4. Let I be a hyperbolic exterior differential system and (R̂, D̂) be the pro-
longation of I, and ρ : R̂ −→ R be the canonical projection. Let Mi (resp. M̂i) for
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i = 1, 2 be the Monge characteristic systems of (R,D) (resp. (R̂, D̂)). Then M̂i, ∂M̂i,
∂2M̂i and ∂Mi are differential systems of rank 2, 3, 4 and 3 respectively, and satisfy

∂M̂i ⊂ ρ−1∗ (Mi)

∂2M̂i ⊂ ρ−1∗ (∂Mi)

( rank ρ−1∗ (Mi) − rank ∂M̂i = 1 ),

( rank ρ−1∗ (∂Mi) − rank ∂2M̂i = 1 ).

Moreover, we have

ρ−1∗ (Mi) = ∂M̂i + Ch(∂D̂).(4.2.3)

4.3 Reduction theorem for hyperbolic differential systems

In previous section we have shown some properties that Monge characteristic systems of
a hyperbolic differential system and exterior differential system should satisfy. Especially,
Equation (4.2.2) and (4.2.3) are useful to construct a hyperbolic one or exterior differential
system on a manifold of smaller dimension from a given hyperbolic differential system.

Theorem 4.5. For the prolongation (R̂, D̂) of a hyperbolic differential system (R,D) with
dim R = n + 6 (n ≥ 1), the Cauchy characteristic system Ch(∂D̂) of the differential
system ∂D̂ is a subbundle of D̂ of rank 2, and ∂2D̂ is the differential system such that
rank ∂2D̂ − rank ∂D̂ = 2. Conversely, for a hyperbolic differential system (R,D) with
dim R = n + 6 (n ≥ 3), if Ch(∂D) is a subbundle of D of rank 2, and if ∂2D is the
differential system such that rank ∂2D − rank ∂D = 2, then (R,D) coincides with the
prolongation of the hyperbolic differential system (R/Ch(∂D), ∂D) with an independence
condition on a neighborhood.

Proof. First we will show that differential systems ∂M1 + Ch(∂D) and ∂M2 + Ch(∂D)
drop down to the quotient space R/Ch(∂D) for the Monge characteristic systemsMi of
(R,D). Using this, we will show that ∂D also drops down and (R/Ch(∂D), ∂D) is the
hyperbolic differential system we desire.

Fix a point uo ∈ R. There exists a coframe {θ1, . . . , θn, ξ1, ξ2, ω
1, ω2, π1, π2} around

uo such that D = {θ1 = · · · = θn = ξ1 = ξ2 = 0} and



dθ1 ≡ 0
...

dθn ≡ 0
dξ1 ≡ ω1 ∧ π1
dξ2 ≡ ω2 ∧ π2

(mod θ1, . . . , θn, ξ1, ξ2).
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Writing

dωi ≡ ξ1 ∧ (Ai ω
1 + Bi π1 + Ci ω

2 + Di π2)

+ ξ2 ∧ (Ei ω
1 + Fi π1 + Gi ω

2 + Hi π2) + Ii ξ1 ∧ ξ2 (mod θ1, . . . , θn),

where Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi, Ii denote functions around uo and calculating d2θi = 0

(mod θ1, . . . , θn, ξ1, ξ2), we obtain

dθi ≡ ξ1 ∧ (Ai ω
1 + Bi π1) + ξ2 ∧ (Gi ω

2 + Hi π2) + Ii ξ1 ∧ ξ2 (mod θ1, . . . , θn)
(4.3.4)

By the hypothesis Ch(∂D) ⊂ D, we have Ch(∂D) ⊂ {θ1 = · · · = θn = ξ1 = ξ2 = 0}.
Since

0 ≡ X⌟ dθi (mod (θ1)uo , . . . , (θn)uo )

≡ −
(
X⌟ (Ai ω

1 + Bi π1)
)
ξ1 −

(
X⌟ (Gi ω

2 + Hi π2)
)
ξ2(4.3.5)

for X ∈ Ch(∂D)(uo), we have

Ch(∂D) =
{
θ1 = · · · = θn = ξ1 = ξ2 = Ai ω

1 + Bi π1 = Gi ω
2 + Hi π2 = 0 (1 ≤ i ≤ n)

}
.

(4.3.6)

Since Ch(∂D) is completely integrable and Ch(∂D) ⊂ {ξ1 = ξ2 = 0}, we have

0 ≡ dξ1 ≡ ω1 ∧ π1
0 ≡ dξ2 ≡ ω2 ∧ π2

 (mod (Ch(∂D))⊥).(4.3.7)

From (4.3.5), (4.3.6), and (4.3.7), there exist i, j such that

Ch(∂D) ⊂
{
θ1 = · · · = θn = ξ1 = ξ2 = Ai ω

1 + Bi π1 = G j ω
2 + H j π2 = 0

}
,

where (Ai,Bi) , 0 and (G j ,H j ) , 0 hold. Since Ch(∂D) is of rank 2, this equality holds.
Namely

Ch(∂D) =
{
θ1 = · · · = θn = ξ1 = ξ2 = Ai ω

1 + Bi π1 = G j ω
2 + H j π2 = 0

}
.(4.3.8)

Then 1-forms

ω̄1 = Ai ω
1 + Bi π1, π̄1 = −

Bi

A2
i + B2

i

ω1 +
Ai

A2
i + B2

i

π1,

ω̄2 = G j ω
2 + H j π2, π̄2 = −

H j

H2
j + G2

j

ω2 +
G j

H2
j + G2

j

π2,
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are linearly independent and satisfy, from (4.3.4) and (4.3.8),

dθi ≡ ξ1 ∧ (αi ω̄
1) + ξ2 ∧ (βi ω̄

2) (mod θ1, . . . , θn, ξ1 ∧ ξ2)

where αi, βi is functions around uo. Then, since rank ∂2D−rank ∂D = 2, we may assume
that θ1, . . . , θn satisfy

dθ1 ≡ · · · ≡ dθn−2 ≡ 0

dθn−1 ≡ ω̄1 ∧ ξ1 + Ī1 ξ1 ∧ ξ2
dθn ≡ ω̄2 ∧ ξ2 + Ī2 ξ1 ∧ ξ2


(mod θ1, . . . , θn)

for some functions Īi around uo. Since Ch(∂D) = {θ1 = · · · = θn = ξ1 = ξ2 = ω̄
1 = ω̄2 =

0}, we can write

dξ1 ≡ ω̄1 ∧ π̄1 + ξ2 ∧ ( Ā1 π̄1 + B̄1 π̄2 + C̄1 ω̄
1 + D̄1 ω̄

2)

(mod θ1, . . . , θn, ξ1),

dω̄1 ≡ ξ2 ∧ (Ē1 π̄1 + F̄1 π̄2) + ω̄2 ∧ (h1 π̄1 + k1 π̄2) + Ḡ1 ξ2 ∧ ω̄2

(mod θ1, . . . , θn, ξ1, ω̄
1),

dξ2 ≡ ω̄2 ∧ π̄2 + ξ1 ∧ ( Ā2 π̄1 + B̄2 π̄2 + C̄2 ω̄
1 + D̄2 ω̄

2)

(mod θ1, . . . , θn, ξ2),

dω̄2 ≡ ξ1 ∧ (Ē2 π̄1 + F̄2 π̄2) + ω̄1 ∧ (h2 π̄1 + k2 π̄2) + Ḡ2 ξ1 ∧ ω̄1

(mod θ1, . . . , θn, ξ2, ω̄
2),

where hi, ki, Āi, B̄i, C̄i, D̄i, Ēi, F̄i, Ḡi are functions around uo. Calculating d2ξi = 0 under
modulo θ1, . . . , θn, ξ1, ξ2, ω̄

i, we obtain A1 = −k1, B2 = −h2. Moreover, calculating
d2θn−i+2 = 0 under modulo θ1, . . . , θn, ξ1∧ ξ2, ω̄1∧ ξ1, ω̄2∧ ξ2, we obtain h1 = k1− Ī1 =
B̄1 = 0, k2 = h2 + Ī2 = Ā2 = 0. Thus we conclude

dθ1 ≡ 0

...

dθn−2 ≡ 0

dθn−1 ≡ (ω̄1 − k1 ξ2) ∧ ξ1
dθn ≡ (ω̄2 − h2 ξ1) ∧ ξ2


(mod θ1, . . . , θn)

39



4.3 Reduction theorem for hyperbolic differential systems

dξ1 ≡ (ω̄1 − k1 ξ2) ∧ (π̄1 − C̄1 ξ2) − D̄1 ω̄
2 ∧ ξ2 (mod θ1, · · · , θn, ξ1),

dω̄1 ≡ ξ2 ∧ (Ē1 π̄1 + F̄1 π̄2) + k1 ω̄2 ∧ π̄2 + Ḡ1 ω̄
2 ∧ ξ2 (mod θ1, · · · , θn, ξ1, ω̄

1),

dξ2 ≡ (ω̄2 − h2 ξ1) ∧ (π̄2 − D̄2 ξ1) − C̄2 ω̄
1 ∧ ξ1 (mod θ1, · · · , θn, ξ2),

dω̄2 ≡ ξ1 ∧ (Ē2 π̄1 + F̄2 π̄2) + h2 ω̄1 ∧ π̄1 − Ḡ2 ω̄
1 ∧ ξ1 (mod θ1, · · · , θn, ξ2, ω̄

2).

Then, for the Monge characteristic systemsMi of (R,D), we see that

∂Mi + Ch(∂D) =
{
θ1 = · · · = θn = ξi = ω̃

i = 0
}
,

where ω̃1 = ω̄1 − k1 ξ2, ω̃2 = ω̄2 − h2 ξ1.
Next we will show that the Cauchy characteristic system of ∂Mi +Ch(∂D) coincides

with that of ∂D. Writing π̃1 = π̄1 − C̄1 ξ2 and π̃2 = π̄2 − D̄2 ξ1, we have

dξ1 ≡ ω̃1 ∧ π̃1 − D̄1 ω̃
2 ∧ ξ2 (mod θ1, . . . , θn, ξ1),

dξ2 ≡ ω̃2 ∧ π̃2 − C̄2 ω̃
1 ∧ ξ1 (mod θ1, . . . , θn, ξ2).

Since dω̃i ≡ 0 (mod θ1, . . . , θn, ξ1, ξ2, ω̃
i), we can write

dω̃1 ≡ ξ2 ∧ (Ẽ1 π̃1 + F̃1 π̃2 + G̃1 ω̃
2) (mod θ1, . . . , θn, ξ1, ω̃

1),

dω̃2 ≡ ξ1 ∧ (Ẽ2 π̃1 + F̃2 π̃2 + G̃2 ω̃
1) (mod θ1, . . . , θn, ξ2, ω̃

2).

By calculation of the following integrability conditions:

d2ξ1 = 0 under modulo θ1, . . . , θn, ξ1, ω̃
1, ω̃2 ∧ ξ2,

d2ξ2 = 0 under modulo θ1, . . . , θn, ξ2, ω̃
2, ω̃1 ∧ ξ1,

d2ω̃1 = 0 under modulo θ1, . . . , θn, ξ1, ξ2, ω̃
1,

d2ω̃2 = 0 under modulo θ1, . . . , θn, ξ1, ξ2, ω̃
2.

we have Ẽ1 = Ẽ2 = F̃1 = F̃2 = 0. Thus we achieve



dθ1 ≡ 0
...

dθn−2 ≡ 0
dθn−1 ≡ 0

dθn ≡ ω̃2 ∧ ξ2
dξ1 ≡ −D̄1 ω̃

2 ∧ ξ2
dω̃1 ≡ −G̃1 ω̃

2 ∧ ξ2

(mod θ1, . . . , θn, ξ1, ω̃
1),
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dθ1 ≡ 0
...

dθn−2 ≡ 0
dθn−1 ≡ ω̃1 ∧ ξ1

dθn ≡ 0
dξ2 ≡ −C̄2 ω̃

1 ∧ ξ1
dω̃2 ≡ −G̃2 ω̃

1 ∧ ξ1

(mod θ1, . . . , θn, ξ2, ω̃
2).

Thus we find Ch(∂Mi + Ch(∂D)) = Ch(∂D). Namely ∂Mi + Ch(∂D) drops down to
R/Ch(∂D) for all i = 1, 2.

Next we will show that the differential system ∂D drops down to R/Ch(∂D) and will
be a hyperbolic differential system on it.

Let ρ be the canonical projection from R onto R/Ch(∂D). By definition, for i = 1, 2,
there exist differential systems Hi and C on R/Ch(∂D) of corank n + 2 and n such that
ρ−1∗ (Hi) = ∂Mi + Ch(∂D) and ρ−1∗ (C) = ∂D. Then they can be written as

Hi =
{
Θ1 = · · · = Θn = Ξi = Ω

i = 0
}
,

C =
{
ρ∗Θ1 = · · · = ρ∗Θn = 0

}
,

where {Θ1, . . . , Θn, Ω
1, Ω2, Ξ1, Ξ2} is a coframe around ρ(uo) ∈ R/Ch(∂D). These

imply

dρ∗Θl ≡ 0 (mod θ1, . . . , θn)

ρ∗(Ωi ∧ Ξi) ≡ 0 (mod θ1, . . . , θn, ω̃
i ∧ ξi)

for 1 ≤ l ≤ n − 2 and i = 1, 2. Since dθl ≡ 0 (mod θ1, . . . , θn), we may assume dΘl ≡ 0

(mod Θ1, . . . , Θn). By dθn−i+2 ≡ ω̃1 ∧ ξ1 + ω̃2 ∧ ξ2 (mod θ1, . . . , θn), we have

dρ∗Θn−i+2 ≡ A1
i ρ
∗(Ω1 ∧ Ξ1) + A2

i ρ
∗(Ω2 ∧ Ξ2) (mod ρ∗Θ1, . . . , ρ

∗
Θn),

where A1
i , A2

i are functions around uo satisfying det(A j
i ) , 0. This implies that the

coefficients A1
i and A2

i in the right hand sides can be written as the pullbacks of some
functions around ρ(uo). Thus C (= ∂D) is a hyperbolic differential system on R/Ch(∂D)
and its Monge characteristic systems areHi.

Finally we will show that the prolongation of (R/Ch(∂D),C) with an independence
condition coincides locally with the given system (R,D). By the hypothesis that Ch(∂D) ⊂
D is of corank 2, we can apply Realization Lemma to ρ : R −→ R/Ch(∂D); we have a
unique map

ψ : R −→ J (R/Ch(∂D),2) ; v 7−→ ρ∗(D(v))
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such that Π ◦ ψ = ρ and D = ψ−1∗ (C∗), where Π : J (R/Ch(∂D),2) −→ R/Ch(∂D) is the
canonical projection and C∗ is the canonical system on J (R/Ch(∂D),2). Furthermore ψ
is an immersion since Ker (ψ∗)v = Ker (ρ∗)v ∩ Ch(D) = {0}.

Here, since Hi = {Θ1 = · · · = Θn = Ξi = Ω
i = 0}, we may assume ρ∗(Ω1 ∧ Ω2)

and ω1 ∧ω2 are equivalent modulo θ1, . . . , θn, ξ1, ξ2, up to scale. Then let (R̂, D̂) denote
the prolongation of (R/Ch(∂D),C) with the independence condition Ω1 ∧ Ω2. For any
v ∈ R, by definition, it is easy to see that Θi |ψ(v) = dΘi |ψ(v) = 0 and Ω1 ∧ Ω2 |ψ(v) ,
0. Namely ψ(v) is an element of R̂. By the structure equation of C, we find dim R̂ =
dim(R/Ch(∂D)) + 2 = dim R. Therefore (R,D) coincides locally with the prolongation
of (R/Ch(∂D),C) with the independence condition Ω1 ∧Ω2. □

Theorem 4.6. Let (R,D) be a hyperbolic differential system with dim R = n + 6 (n ≥
1) and Mi the Monge characteristic systems of (R,D) for i = 1, 2. If (R,D) is the
prolongation of a hyperbolic exterior differential system that is not Pfaffian, then Ch(∂D)
is a subbundle of D, ∂2D is the differential system such that rank ∂2D − rank ∂D = 1,
and Ch(∂Mi + Ch(∂D)) = Ch(∂D) for i = 1, 2. Conversely, suppose that Ch(∂D) is a
subbundle of D, and ∂2D is the differential system such that rank ∂2D − rank ∂D = 1. If
Ch(∂M1 + Ch(∂D)) = Ch(∂D), or equivalently, Ch(∂M2 + Ch(∂D)) = Ch(∂D), then
(R,D) coincides with the prolongation of a hyperbolic exterior differential system with
an independence condition on a neighborhood.

Proof. First we will show that differential systems ∂Mi + Ch(∂D) drops down to the
quotient space R/Ch(∂D) for each i = 1, 2. Using these systems, we will construct a
hyperbolic exterior differential system we desire.

Let fix a point uo ∈ R. There exists a coframe {θ1, . . . , θn, ξ1, ξ2, ω
1, ω2, π1, π2}

around uo such that D = {θ1 = · · · = θn = ξ1 = ξ2 = 0} and



dθ1 ≡ 0
...

dθn ≡ 0
dξ1 ≡ ω1 ∧ π1
dξ2 ≡ ω2 ∧ π2

(mod θ1, . . . , θn, ξ1, ξ2).

From the hypothesis Ch(∂D) ⊂ D, analogously to the proof of Theorem 4.5, we obtain

dθi ≡ ξ1 ∧ (Ai ω
1 + Bi π1) + ξ2 ∧ (Gi ω

2 + Hi π2) + Ii ξ1 ∧ ξ2 (mod θ1, . . . , θn),
(4.3.9)
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where Ai, Bi, Gi, Hi, Ii are functions around uo, and there exist i, j such that

Ch(∂D) ⊂
{
θ1 = · · · = θn = ξ1 = ξ2 = Ai ω

1 + Bi π1 = G j ω
2 + H j π2 = 0

}
with (Ai,Bi) , 0 and (G j ,H j ) , 0. Then, from the hypothesis rank ∂2D − rank ∂D = 1,
it is easy to see that Ch(∂D) is of rank 2, which implies

Ch(∂D) =
{
θ1 = · · · = θn = ξ1 = ξ2 = Ai ω

1 + Bi π1 = G j ω
2 + H j π2 = 0

}
.(4.3.10)

Then 1-forms

ω̄1 = Ai ω
1 + Bi π1, π̄1 = −

Bi

A2
i + B2

i

ω1 +
Ai

A2
i + B2

i

π1,

ω̄2 = G j ω
2 + H j π2, π̄2 = −

H j

H2
j + G2

j

ω2 +
G j

H2
j + G2

j

π2,

are linearly independent and satisfy, from (4.3.9) and (4.3.10),

dθi ≡ ξ1 ∧ αi ω̄
1 + ξ2 ∧ βi ω̄

2 (mod θ1, . . . , θn, ξ1 ∧ ξ2),(4.3.11)

where αi, βi are functions around uo. Then, by the hypothesis rank ∂2D − rank ∂D = 1,
we may assume that θ1, . . . , θn satisfy

dθ1 ≡ · · · ≡ dθn−1 ≡ 0

dθn ≡ ω̄1 ∧ ξ1 + ω̄2 ∧ ξ2 + Ī ξ1 ∧ ξ2
 (mod θ1, · · · , θn),

where Ī is a function around uo. From (4.3.10), we can write the following:

dξ1 ≡ ω̄1 ∧ π̄1 + ξ2 ∧ ( Ā1 π̄1 + B̄1 π̄2 + C̄1 ω̄
1 + D̄1 ω̄

2)

(mod θ1, . . . , θn, ξ1),

dω̄1 ≡ ξ2 ∧ (Ē1 π̄1 + F̄1 π̄2) + ω̄2 ∧ (h1 π̄1 + k1 π̄2) + Ḡ1 ξ2 ∧ ω̄2

(mod θ1, . . . , θn, ξ1, ω̄
1),

dξ2 ≡ ω̄2 ∧ π̄2 + ξ1 ∧ ( Ā2 π̄1 + B̄2 π̄2 + C̄2 ω̄
1 + D̄2 ω̄

2)

(mod θ1, . . . , θn, ξ2),

dω̄2 ≡ ξ1 ∧ (Ē2 π̄1 + F̄2 π̄2) + ω̄1 ∧ (h2 π̄1 + k2 π̄2) + Ḡ2 ξ1 ∧ ω̄1

(mod θ1, . . . , θn, ξ2, ω̄
2),

where hi, ki, Āi, B̄i, C̄i, D̄i, Ēi, F̄i, Ḡi (i = 1, 2) are functions around uo. Calculating
d2ξi = 0 (mod θ1, . . . , θn, ξ1, ξ2, ω̄

i), we obtain A1 = −k1, B2 = −h2. Moreover,
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calculating d2θn = 0 (mod θ1, . . . , θn, ξ1 ∧ ξ2, ω̄1 ∧ ξ1, ω̄2 ∧ ξ2), we obtain Ā2 = −h1,
Ī = k1 − h2, B̄1 = −k2, and C̄2 = D̄1 = 0. Thus we conclude

dθ1 ≡ 0

...

dθn−1 ≡ 0

dθn ≡ (ω̄1 − k1 ξ2) ∧ ξ1 + (ω̄2 − h2 ξ1) ∧ ξ2


(mod θ1, . . . , θn),

dξ1 ≡ (ω̄1 − k1 ξ2) ∧ (π̄1 − C̄1 ξ2) − k2 ξ2 ∧ π̄2 (mod θ1, . . . , θn, ξ1),

dω̄1 ≡ ξ2 ∧ (Ē1 π̄1 + F̄1 π̄2) + ω̄2 ∧ (h1 π̄1 + k1 π̄2) + Ḡ1 ω̄
2 ∧ ξ2

(mod θ1, . . . , θn, ξ1, ω̄
1),

dξ2 ≡ (ω̄2 − h2 ξ1) ∧ (π̄2 − D̄2 ξ1) − h1 ξ1 ∧ π̄1 (mod θ1, . . . , θn, ξ2),

dω̄2 ≡ ξ1 ∧ (Ē2 π̄1 + F̄2 π̄2) + ω̄1 ∧ (h2 π̄1 + k2 π̄2) − Ḡ2 ξ1 ∧ ω̄1

(mod θ1, . . . , θn, ξ2, ω̄
2).

Then, for the Monge characteristic systemsMi of (R,D), it is easy to see that

∂Mi + Ch(∂D) =
{
θ1 = · · · = θn = ξi = ω̃

i = 0
}
,

where ω̃1 = ω̄1 − k1 ξ2, ω̃2 = ω̄2 − h2 ξ1.

Next we show that h1 and k2 vanish around uo, if and only if Ch(∂M1 + Ch(∂D)) =
Ch(∂D), if and only if Ch(∂M2 + Ch(∂D)) = Ch(∂D).

Setting π̃1 = π̄1 − C̄1 ξ2, π̃2 = π̄2 − D̄2 ξ1, we have

dξ1 ≡ ω̃1 ∧ π̃1 − k2 ξ2 ∧ π̃2 (mod θ1, . . . , θn, ξ1),

dξ2 ≡ ω̃2 ∧ π̃2 − h1 ξ1 ∧ π̃1 (mod θ1, . . . , θn, ξ2).

Since dΩi ≡ 0 (mod θ1, . . . , θn, ξ1, ξ2, ω̃
i) for i = 1, 2, we can write

dω̃1 ≡ h1 ω̃2 ∧ π̃1 + ξ2 ∧ (Ẽ1 π̃1 + F̃1 π̃2 + G̃1 ω̃
2) (mod θ1, . . . , θn, ξ1, ω̃

1),

dω̃2 ≡ k2 ω̃1 ∧ π̃2 + ξ1 ∧ (Ẽ2 π̃1 + F̃2 π̃2 + G̃2 ω̃
1) (mod θ1, . . . , θn, ξ2, ω̃

2).
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and we have

dθ1 ≡ · · · ≡ dθn−1 ≡ 0

dθn ≡ ω̃2 ∧ ξ2
dξ1 ≡ −k2 ξ2 ∧ π̃2
dω̃1 ≡ h1 ω̃2 ∧ π̃1 + ξ2 ∧ (Ẽ1 π̃1 + F̃1 π̃2 + G̃1 ω̃

2)

(mod θ1, . . . , θn, ξ1, ω̃
1),



dθ1 ≡ · · · ≡ dθn−1 ≡ 0

dθn ≡ ω̃1 ∧ ξ1
dξ1 ≡ −h1 ξ1 ∧ π̃1
dω̃1 ≡ k2 ω̃1 ∧ π̃2 + ξ1 ∧ (Ẽ2 π̃1 + F̃2 π̃2 + G̃2 ω̃

2)

(mod θ1, . . . , θn, ξ2, ω̃
2).

If Ch(∂M1+Ch(∂D)) or Ch(∂M2+Ch(∂D)) coincides with Ch(∂D), h1 and k2 should
vanish. If h1 and k2 vanish, calculating d2ξ1 = 0 (mod θ1, . . . , θn, ξ1, ω̃

1, ω̃2 ∧ ξ2) ;
d2ω1 = 0 (mod θ1, . . . , θn, ξ1, ω̃

1, ξ2) ; d2ξ2 = 0 (mod θ1, . . . , θn, ξ2, ω̃
2, ω̃1 ∧ ξ1),

and d2ω2 = 0 (mod θ1, . . . , θn, ξ2, ω̃
2, ξ1), we obtain Ẽ1 = F̃1 = Ẽ2 = F̃2 = 0. Thus we

have found that Ch(∂M1 + Ch(∂D)) and Ch(∂M2 + Ch(∂D)) coincide with Ch(∂D).
Next we construct a hyperbolic exterior differential system whose prolongation coin-

cides locally with the given system (R,D). Let ρ be the canonical projection from R to
R/Ch(∂D). There exist differential system Hi and C on R/Ch(∂D) of corank n + 2 and
n such that ρ−1∗ (Hi) = ∂Mi + Ch(∂D) and ρ−1∗ (C) = ∂D. Then they can be written by

Hi =
{
Θ1 = · · · = Θn = Ξi = Ω

i = 0
}
,

C =
{
ρ∗Θ1 = · · · = ρ∗Θn = 0

}
,

with a coframe {Θ1, . . . , Θn, Ω
1, Ω2, Ξ1, Ξ2} around ρ(uo) ∈ R/Ch(∂D). These imply

dρ∗Θl ≡ 0 (mod θ1, . . . , θn),

ρ∗(Ωi ∧ Ξi) ≡ 0 (mod θ1, . . . , θn, ω̃
i ∧ ξi),

for l = 1, . . . , n − 1 and i = 1, 2. Since dθl ≡ 0 (mod θ1, . . . , θn), we may assume
dΘl ≡ 0 (mod Θ1, . . . , Θn). By dθn ≡ ω̃1 ∧ ξ1 + ω̃2 ∧ ξ2 (mod θ1, . . . , θn), we have

dρ∗Θn ≡ A1 ρ
∗(Ω1 ∧ Ξ1) + A2 ρ

∗(Ω2 ∧ Ξ2) (mod ρ∗Θ1, . . . , ρ
∗
Θn),

where A1 and A2 are functions around uo. This implies that the coefficients A1 and A2

in the right hand sides can be written as the pullbacks of some functions around ρ(uo).
Putting

I =
{
Θ1, . . . , Θn, Ω

1 ∧ Ξ1, Ω2 ∧ Ξ2
}
alg,
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we can find that I is a hyperbolic exterior differential system on a neighborhood of
R/Ch(∂D) and its Monge characteristic systems areHi.

Finally we will show that the prolongation of I with a independence condition co-
incides locally with the given system (R,D). By the hypothesis that Ch(∂D) ⊂ D is of
corank 2, we can apply Realization Lemma to ρ : R −→ R/Ch(∂D); we have a unique
map

ψ : R −→ J (R/Ch(∂D),2) ; v 7−→ ρ∗(D(v))

such that Π ◦ ψ = ρ and D = ψ−1∗ (C∗), where Π : J (R/Ch(∂D),2) −→ R/Ch(∂D) is the
canonical projection and C∗ is the canonical system on J (R/Ch(∂D),2). Furthermore,
since Ker (ψ∗)v = Ker (ρ∗)v ∩ Ch(D) = {0}, ψ is an immersion.

Here, since ρ−1∗ (Hi) = ∂Mi +Ch(∂D), we may assume ρ∗(Ω1∧Ω2) and ω1∧ω2 are
equivalent modulo θ1, . . . , θn, ξ1, ξ2, up to scale. Then let (R̂, D̂) denote the prolongation
of (R/Ch(∂D),C) with the independence conditionΩ1∧Ω2. For any v ∈ R, by definition,
it is easy to see that Θi |ψ(v) = 0, dΘi |ψ(v) = 0 and Ω1 ∧ Ω2 |ψ(v) , 0. Namely ψ(v) is an
element of R̂. By the structure equation of C, we find dim R̂ = dim(R/Ch(∂D)) + 2 =

dim R. Therefore (R,D) coincides locally with the prolongation of (R/Ch(∂D),C) with
the independence condition Ω1 ∧Ω2. □

5 Second order partial differential equations of m (≥ 2)
unknown functions

5.1 Preliminaries

5.1.1 Jet space (J2(M,n),C2) of second order

First we will recall the jet space (J2(M,n),C2) of second order in order to treat with sec-
ond order partial differential equations of m (≥ 2) unknown functions ([Yam83]). For
convention, we put J0(M,n) = M and (J1(M,n),C1) = (J (M,n),C), and write the pro-
jection Π : J1(M,n) −→ M as Π1

0 . Let Q1 = Ker (Π1
0 )∗, which is the differential system

of codimension mn. Each fiber J2(M,n)x of J2(M,n) over x ∈ J1(M,n) consists of all
n-dimensional integral elements u of C1 at x that is transverse to Q1(x) ⊂ Tx J1(M,n),
namely u∩Q1(x) = {0}. J2(M,n) is the bundle of dimension n+m+mn+m · nH2, where
mHn =

(
m+n−1

n

)
. The canonical system C2 is defined by

C2(u) = (Π2
1 )−1∗ (u) for u ∈ J2(M,n),
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where Π2
1 : J2(M,n) −→ J1(M,n) is the canonical projection. For a point uo ∈ J2(M,n),

we have a canonical coordinate (x1, . . . , xn, z1, . . . , zm,p11, . . . , p
m
n ) on a neighborhood U

of Π2
1 (uo) in J1(M,n). Let Û be a neighborhood of uo that consists of all points u ∈

Π−1(U) such that dx1 ∧ · · · ∧ dxn |u , 0. Let pa
i j for 1 ≤ a ≤ m and 1 ≤ i, j ≤ n be

functions on Û so that dpb
j |u −

∑
i pb

ji (u) dxi |u = 0 for u ∈ Û and 1 ≤ b ≤ m, 1 ≤ j ≤ n.
Since dϖb |u = 0 for u ∈ Û and 1 ≤ b ≤ m, we have pb

i j = pb
ji for 1 ≤ b ≤ m, 1 ≤ i ≤

j ≤ n. Thus (xi, za,pa
i ,p

a
i j (1 ≤ a ≤ m, 1 ≤ i ≤ j ≤ n)) forms a coordinate system on Û ,

which is called the canonical coordinate system of J2(M,n). The canonical system C2 on
Û is given by

C2 =
{
ϖa = ϖa

i = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)
}
,(5.1.1)

where ϖa = dza −∑n
i=1 pa

i dxi, ϖa
i = dpa

i −
∑n

k=1 pa
ik dxk .

5.1.2 Symbol algebras of differential systems

We will recall the symbol algebra m(x) of a differential system (M,D) at x ∈ M , in-
troduced by N. Tanaka ([Tan70]). Let (M,D) be a regular differential system such that
T M = D−µ. We recall the symbol algebra m(x) of (M,D) at x ∈ M . Let

m(x) =
−1⊕

p=−µ
gp(x), g−1(x) = D−1(x), g−p(x) = D−p(x)/D−p+1(x) (p > 1).

Let π−p denote the projection of D−p(x) onto g−p(x). For X ∈ g−p(x), Y ∈ g−q(x), the
bracket product [X, Y ] ∈ g−(p+q) (x) is well-defined by

[X, Y ] = π−(p+q) ([X̂ , Ŷ ]x),

where X̂ and Ŷ are vector fields taking values in D−p and D−q respectively such that
π−p(X̂x) = X and π−q(Ŷx) = Y . Then m(x) is a nilpotent graded Lie algebra with this
bracket operation, such that dimm(x) = dim M and satisfies

g−p(x) = [g−p+1(x), g−1(x)] for p > 1.

The graded Lie algebra m(x) is called the symbol algebra of (M,D) at x. Generally,
m =
⊕

p<0 gp is a fundamental graded Lie algebra of µ-th kind if m is a nilpotent graded
Lie algebra such that g−µ , 0 and g−k = 0 for all k > µ, and

g−p = [g−p+1, g−1] for p > 1.
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For a fundamental graded Lie algebra m, (M,D) is of type m if the symbol algebra m(x)
of (M,D) is isomorphic to m at each x ∈ M .

Conversely, given a fundamental graded Lie algebra m =
⊕−1

p=−µ gp of µ-th kind, we
can construct a regular differential system (M (m),Dm) of type m, which is called the
standard differential system of typem: Let M (m) be the simply connected Lie group with
Lie algebra m. Then we define a left invariant subbundle Dm of T M (m) by g−1. Then
(M (m),Dm) is a regular differential system of type m.

Letm =
⊕

p<0 gp be a fundamental graded Lie algebra of µ-th kind. The prolongation
g(m) =

⊕
p∈Z gp(m) of m is defined inductively as follows ([Yam93]):

g−p(m) = g−p for p > 0,

g0(m) =
{

u ∈
⊕
p<0

gp ⊗ g∗p
��� u([X, Y ]) = [u(X ), Y ] + [X, u(Y )]

}
,

gk (m) =
{

u ∈
⊕
p<0

gp+k ⊗ g∗p
��� u([X, Y ]) = [u(X ), Y ] + [X, u(Y )]

}
for k > 0.

Now we will see that g(m) is a graded Lie algebra. The bracket operation of g(m) is given
as follows: First, for u0, u′0 ∈ g0, we define [u0, u′0] ∈ g0 by

[u0, u′0](X ) = u0(u′0(X )) − u′0(u0(X )) for X ∈ m.

Thus g0(m) becomes a Lie algebra with this bracket operation. Moreover, putting

[u0, X ] = −[X, u0] = u0(X ) for u0 ∈ g0(m) and X ∈ m,

we see that
⊕

p≤0 gp(m) is a graded Lie algebra.
Similarly, for uk ∈ gk (m) (k > 0) and X ∈ m, we put [uk , X ] = −[X, uk ] = uk (X ).

For uk ∈ gk (m) and ul ∈ gl (m) (k, l ≥ 0), by induction on the integer k + l ≥ 0, we
define [uk , ul ] ∈ gk+l (m) by

[uk , ul ](X ) = [uk , [ul , X ]] − [ul , [uk , X ]] for X ∈ m.

Then it follows easily that g(m) is a graded Lie algebra with this bracket operation.
It is known that the structure of the Lie algebra A(M (m),Dm) of all infinitesimal

automorphisms of (M (m),Dm) can be described by g(m). Especially, A(M (m),Dm) is
isomorphic to g(m) when g(m) is finite dimensional. For detail, see [Tan70].

48



5 SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS OF M (≥ 2) UNKNOWN
FUNCTIONS

5.1.3 Symbol algebra C2(n,m) of (J2(M,n),C2)

We will recall the symbol algebra C2(n,m) of the canonical system (J2(M,n),C2) ([Yam82]).
Let M be a smooth manifold of dimension m + n and (J2(M,n),C2) the jet space of sec-
ond order. Let us take the canonical coordinate system (xi, za,pa

i ,p
a
i j (1 ≤ a ≤ m, 1 ≤

i ≤ j ≤ n)) on a neighborhood U as in Section 5.1.1. Then we have a local coframe{
ϖa, ϖa

i , dxi, dpa
i j (1 ≤ a ≤ m, 1 ≤ i ≤ j ≤ n)

}
,

where ϖa = dza − ∑n
i=1 pa

i dxi, ϖa
i = dpa

i −
∑n

k=1 pa
ik dxk . Let us take the dual frame of

this coframe  ∂

∂za ,
∂

∂pa
i
,

d
dxi ,

∂

∂pa
i j

(1 ≤ a ≤ m, 1 ≤ i ≤ j ≤ n)
 ,

where

d
dxi =

∂

∂xi +

m∑
a=1

pa
i
∂

∂za +

m∑
a=1

n∑
k=1

pa
ik

∂

∂pa
k
.

Then we have ∂

∂pa
i j
,

d
dxk

 =
(
δ

j
k −

1

2
δ

j
i

)
∂

∂pa
i
+

(
δi

k −
1

2
δ

j
i

)
∂

∂pa
j
,

[
∂

∂pa
i
,

d
dxk

]
= δi

k
∂

∂za

and

C2 =

⟨
∂

∂pa
i j
,

d
dxi (1 ≤ a ≤ m, 1 ≤ i ≤ j ≤ n)

⟩
,

∂ (1)C2 =

⟨
∂

∂pa
i
,
∂

∂pa
i j
,

d
dxi (1 ≤ a ≤ m, 1 ≤ i ≤ j ≤ n)

⟩
,

∂ (2)C2 = T J2(M,n).

Thus we see that the symbol algebra of (J2(M,n),C2) is isomorphic to C2(n,m), which
is defined as follows([Yam82]): Let V and W be vector space of dimension n and m
respectively. Let

C
2(V,W ) = C2−3 ⊕ C2−2 ⊕ C2−1, C2−3 = W, C2−2 = W ⊗ V, C2−1 = V ⊕W ⊗ S2(V ∗).

The bracket operations of C2(n,m) is defined through the pairing between V and V ∗ such
that V and W ⊗ S2(V ∗) are abelian subspaces of C2−1.
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5.1.4 Graded simple Lie algebras

Let g be a simple Lie algebra over C. Let us fix a Cartan subalgebra h of g. Let Φ be the
root system of g relative to h and choose a simple root system ∆ of Φ. Then we have the
root decomposition of g:

g =

(⊕
α∈Φ+
g−α

)
⊕ h ⊕

(⊕
α∈Φ+
gα

)
,

where Φ+ denotes the set of positive roots and gα = {X ∈ g | [h, X ] = α(h)X for h ∈ h}
for α ∈ Φ. Let us take a non-empty subset ∆1 of ∆. Then ∆1 induces the following
gradation:

g =
⊕
p∈Z
gp, g−p =

⊕
α∈Φ+p

g−α, g0 =

(⊕
α∈Φ+0

g−α

)
⊕ h ⊕

(⊕
α∈Φ+0

gα

)
, gp =

⊕
α∈Φ+p

gα,

where

Φ
+ =
∪
p≥0
Φ
+
p , Φ

+
p =

{
α =

l∑
i=1

niαi ∈ Φ+ ��� ∑
αk∈∆1

nk = p
}
.

Moreover, the negative part m =
⊕

p≤0 gp of g is a fundamental graded Lie algebra,
namely m satisfies

g−(p+1) = [g−p, g−1] for p > 0.

Let θ be the highest root of Φ+. Writing θ =
∑l

i=1 ni (θ)αi for some ni (θ) ∈ Z≥0, we have

µ =
∑
αk∈∆1

nk (θ),

where µ denotes the lowest integer such that g−µ , 0 and g−(µ+1) = 0, namelym is of µ-th
kind.

When g is a simple Lie algebra of type Xl , let (Xl ,∆1) denote the simple Lie algebra
g with the gradation defined by ∆1.

Conversely, it is known that the gradation of any simple graded Lie algebra over C is
obtained from some ∆1 ⊂ ∆:

Theorem 5.1 ([Yam93]). Let g =
⊕

p∈Z gp be a simple graded Lie algebra over C satisfy-
ing g−(p+1) = [g−p, g−1] for p > 0. Let Xl be the Dynkin diagram of g. Then g =

⊕
p∈Z gp

is isomorphic to a graded Lie algebra (Xl ,∆1) for some ∆1 ⊂ ∆. Moreover (Xl , ∆1) and
(Xl ,∆

′
1) are isomorphic if and only if there exists a diagram automorphism ϕ of Xl such

that ϕ(∆1) = ∆′1.

50



5 SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS OF M (≥ 2) UNKNOWN
FUNCTIONS

In Section 5.4 we will seek a simple graded Lie algebra that is isomorphic to the
prolongation of the symbol algebra of partial differential equations (or PD-manifolds
(R ; D1,D2)) of m (≥ 2) unknown functions.

5.2 Characterization of partial differential equations

Let M be a manifold of dimension m + n (m, n ≥ 2) Let R be a submanifold of J2(M,n)
satisfying the condition

ρ : R −→ J1(M,n) is submersion(R.0)

where ρ is the restriction of the projectionΠ : J2(M,n) −→ J1(M,n) to R. This condition
implies that the system of second order differential equations R never contains equations
of only first order. Let ι : R −→ J2(M,n) be the inclusion. Let D1 and D2 be differential
systems on R defined by the pullback by ι of ∂C2 and C2 respectively. Let ϖ1, . . . , ϖm

and ϖ1
1, . . . , ϖ

m
n be a 1-forms on J2(M,n) such that ∂C2 = {ϖa = 0 (1 ≤ a ≤ m)} and

C2 = {ϖa = ϖa
i = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)}. Then it follows from Condition (R.0) that

these forms ϖa, ϖa
i are independent at each point on R and that

D1 =
{
ϖa = 0 (1 ≤ a ≤ m)

}
, D2 =

{
ϖa = ϖa

i = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)
}
.

(5.2.2)

Here, by our abuse of notation, we write ι∗ϖ as ϖ. Thus we see that

D1 and D2are differential systems of codimension m and m + mn respectively.(R.1)

From (5.1.1), there exist 1-forms ω1, . . . , ωn on R such that the forms ϖa, ϖa
i , and ωi are

independent at each point and dϖa ≡ ∑i ω
i ∧ϖa

i (mod ϖb (1 ≤ b ≤ m)). Therefore we
have

∂D2 ⊂ D1.(R.2)

Since Ch(D1) = {ϖa = ϖa
i = ω

i = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)},

Ch(D1) is a subbundle of D2 of codimension n.(R.3)

Since dϖa ∧ ω1 ∧ · · · ∧ ωn ≡ 0 (mod ϖb (1 ≤ b ≤ m)) for 1 ≤ a ≤ m, we have

D1 is of Cartan rank n.(R.4)
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Applying Realization Lemma to ρ : R −→ J1(M,n) and D2, we obtain

Ch(D1) ∩ Ch(D2) = {0}.(R.5)

In fact, from Ker ρ∗ = Ch(D1) ⊂ D2, we have the unique map ψ : R −→ J (J1(M,n),n)
such that ρ = Π ◦ψ and D2 = ψ−1∗ (C), where Π : J (J1(M,n),n) −→ J1(M,n) is the pro-
jection and C is the canonical system of J (J1(M,n)). By definition, for v ∈ R, ψ(v) is n-
dimensional integral element of (J1(M,n),C1) and transverse to Q1 = Ker (Π1

0 )∗(ρ(v)).
Namely ψ(v) ∈ J2(M,n). By the uniqueness of ψ, we have ψ = ι. Therefore Ch(D1)(v)∩
Ch(D2)(v) = Ker ρ∗(v) ∩ Ch(D2)(v) = {0}.

Furthermore we will see that there exists an additional differential system F in the
following lemma:

Lemma 5.2. Let R be a manifold and D1, D2 differential systems satisfying four condi-
tions from (R.1) to (R.4). Then there exists a unique subbundle F of D1 of corank n such
that ∂F ⊂ D1. Moreover, we have F ∩ D2 = Ch(D1). Furthermore, if m ≥ 3, F is
completely integrable.

Proof. D1 and D2 are locally expressed as follows:

D1 =
{
ϖ1 = · · · = ϖm = 0

}
D2 =

{
ϖ1 = · · · = ϖm = ϖ1

1 = · · · = ϖm
n = 0

}
with linearly independent 1-forms ϖ1, . . . , ϖm, ϖ1

1, . . . , ϖ
m
n . Condition (R.2) implies

dϖa ≡ 0 (mod ϖb, ϖb
j (1 ≤ b ≤ m, 1 ≤ j ≤ n)) for 1 ≤ a ≤ m, and thus they

are expressed as dϖa ≡ ∑b, j π
a j
b ∧ ϖ

b
j (mod ϖc

k (1 ≤ c ≤ m, 1 ≤ k ≤ n)). Since
Ch(D1) ⊂ D2, for each point x and X ∈ Ch(D1)(x), we have

0 ≡ X⌟ dϖa (mod ϖ1
x , . . . , ϖ

m
x )

≡
∑
b, j

π
a j
b (X ) ϖb

j

Therefore, Ch(D1) = {ϖa = ϖa
i = π

a j
b = 0 (1 ≤ a, b ≤ m, 1 ≤ i, j ≤ n)}. On the other

hand, from Condition (R.4), we can take 1-forms ω1, . . . , ωn so that ϖ1 ∧ · · · ∧ ϖm ∧
ω1∧ · · · ∧ωn , 0 and dϖa ∧ω1∧ · · · ∧ωn ≡ 0 (mod ϖb (1 ≤ b ≤ m)). Substituting the
expression of dϖa into the second equation, we obtain πa j

b ≡ 0 (mod ϖc, ϖc
k , ω

k (1 ≤
c ≤ m, 1 ≤ k ≤ n)). Thus, from Condition (R.3), we achieve

Ch(D1) =
{
ϖa = ϖa

i = ω
i = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)

}
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and the ϖa, ϖa
i , ω

i are linearly independent. This allows us to write dϖa ≡ ∑i ω
i ∧ πa

i
(mod ϖb (1 ≤ b ≤ m)). Since dϖa ≡ 0 (mod ϖb, ϖb

j (1 ≤ b ≤ m, 1 ≤ j ≤ n)), we
have πa

i ≡ 0 (mod ϖb, ϖb
j , ω

j (1 ≤ b ≤ m, 1 ≤ j ≤ n)), which implies Ch(D1) ⊂
{ϖa = ωi = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)}. Therefore, for each point x and X ∈
Ch(D1)(x), we have 0 ≡ X⌟ dϖa ≡ −∑i π

a
i (X )ωi

x (mod ϖb
x (1 ≤ b ≤ m)) and thus

Ch(D1) = {ϖa = πa
i = ωi = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)}. This follows us to write

πa
i ≡

∑
b, j Aa j

ib ϖ
b
j +
∑

j Ba
i j ω

j (mod ϖc (1 ≤ c ≤ m)) with some functions Aa j
ib , Ba

i j
and that the ϖa, πa

i , ω
i are linearly independent. Substituting this into

∑
i ω

i ∧ πa
i ≡ 0

(mod ϖb, ϖb
j (1 ≤ b ≤ m, 1 ≤ j ≤ n)), we obtain Ba

ji = Ba
i j . Replacing Aa j

ib ϖ
b
j by ϖa

i ,
we achieve

dϖa ≡
∑

i

ωi ∧ϖa
i (mod ϖ1, . . . , ϖm)(5.2.3)

and find that the ϖa, ϖa
i , ω

i are linearly independent.
Let F be a subbundle of D1 of corank n defined by the ϖa and ωi, which satisfies

∂F ⊂ D1. Now, let F̂ be an another subbundle of D1 of corank n satisfying ∂F̂ ⊂ D1.
Write F̂ = {ϖa = ω̂i = 0 (1 ≤ a ≤ m, 1 ≤ i ≤ n)} with some 1-forms ω̂i. Since
∂F̂ ⊂ D1, dϖa ≡ 0 (mod ϖb, ω̂ j (1 ≤ b ≤ m, 1 ≤ j ≤ n)). By Equation (5.2.3),
we have ωi ≡ 0 (mod ϖb, ϖb

j , ω̂
j (1 ≤ b ≤ m, 1 ≤ j ≤ n)). This follows us to write

ωi ≡ ∑ j Ai
j ω̂

j+
∑

b, j Bi j
b ϖ

b
j (mod ϖc, ϖc

k (1 ≤ c ≤ m, 1 ≤ k ≤ n)) with some functions

Ai
j , Bi j

b . Substituting this into Equation (5.2.3), we have, for 1 ≤ a ≤ m, B ji
a = Bi j

a and

Bi j
b = 0 (b , a). It follows from m ≥ 2 that Bi j

a = 0 for 1 ≤ a ≤ m and 1 ≤ i, j ≤ n. Thus
we achieve F = F̂. From the expression of F, it easily follows that F ∩ D2 = Ch(D1).

Assume m ≥ 3. Since

0 = d2ϖa

≡
∑

i

dωi ∧ϖa
i (mod ϖb, ω j (1 ≤ b ≤ m, 1 ≤ j ≤ n)),

we have dωi ≡ 0 (mod ϖb, ϖa
j , ω

j (1 ≤ b ≤ m, 1 ≤ j ≤ n)) , for 1 ≤ a ≤ m, 1 ≤ i ≤ n.
For m ≥ 3, dωi ≡ 0 (mod ϖb, ω j (1 ≤ b ≤ m, 1 ≤ j ≤ n)), which implies that F is
completely integrable. □

Under certain assumptions, converse of the above discussion is true: Let D1, D2 be
differential systems on a manifold R satisfying the condition from (R.1) to (R.5) and the
condition

F is completely integrable,(R.6)
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where the differential system F is defined in Lemma 5.2. Condition (R.6) is satisfied
automatically from (R.1) to (R.4) unless m = 2. A triplet (R ; D1,D2) satisfying the con-
ditions from (R.1) to (R.6) is called a PD-manifold of second order. Then the following
theorem implies that a PD-manifold (R ; D1,D2) is locally embedded into (J2(M,n),C2):

Theorem 5.3. Let (R ; D1,D2) be a PD-manifold of second order. Let F be the differen-
tial system on R in Lemma 5.2. Assume R is regular with respect to F, namely the space
M = R/F of leaves of the foliation is a manifold of dimension m + n such that each fiber
of the projection ρ : R −→ M is connected and ρ is submersion. Then there exists a local
embedding ι : R −→ J2(M,n) such that ρ = Π ◦ ι and D2 = ι−1∗ (C2), where Π = Π2

1 ◦Π1
0

and Πk
k−1 is the canonical projection of Jk (M,n) onto Jk−1(M,n) for k = 1, 2.

J1(J1(M,n),n)

��

// J2(M,n)

Π2
1xx

J1(Q,n)

ΠQ

��

J1(M,n)

Π1
0

��
R

p
//

ψ

::

Q = R/Ch(D1)

ϕ

77

q
// M = R/F

Proof. Let Q = R/Ch(D1) be the space of leaves of the foliation. By the assumption on
R, R is regular with respect to Ch(D1) as well. Let p denote the canonical projection of
R onto Q. Since Ker p∗ = Ch(D1) and Ch(F) = F ⊃ Ker p∗, it follows that there exist
differential systems C1

Q and FQ on Q such that D1 = p−1∗ (C1
Q) and F = p−1∗ (FQ). FQ is a

subbundle of C1
Q of codimension n and completely integrable. Let q denote the canonical

projection of Q onto M . By applying Realization Lemma to q, we find that there exists a
unique map ϕ : Q −→ J1(M,n) such that q = Π1

0 ◦ ϕ and C1
Q = ϕ

−1
∗ (C1

M ), and, moreover,
that ϕ is immersion, where C1

M is the canonical system on J1(M,n). Since dim J1(M,n) =
m + n + mn = dimQ, ϕ is a local diffeomorphism, namely (J1(M,n),C1

M ) and (Q,C1
Q)

are locally equivalent. By applying Realization Lemma to the map p, we find that there
exists a unique map ψ : R −→ J1(Q, n) such that ρ = ΠQ ◦ ψ and D2 = ψ−1∗ (C1), where
ΠQ : J1(Q,n) −→ Q is the canonical projection. It follows from Ker ρ∗ = Ch(D1) and

54



5 SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS OF M (≥ 2) UNKNOWN
FUNCTIONS

(R.5) that ψ is immersion. Finally we will show that ψ(v) is a n-dimensional integral
element of C1

M and ψ(v) ∩ Ker (Π1
0 )∗(ϕ(p(v))) for each v ∈ R. Since ψ(v) = p∗(D2(v))

and Ch(D1) is a subbundle of D2 of codimension n, ψ(v) is a n-dimensional integral
element of CM . Since D2(v) ∩ F (v) = Ch(D1) and Ker (Π1

0 )∗(ϕ(p(v))) = FQ (p(v)), we
have p−1∗ (ψ(v) ∩Ker (Π1

0 )∗) = Ch(D1). □

5.3 Partial differential equations of finite type

We will seek an example of partial differential equations of finite type by utilizing funda-
mental graded Lie algebras, simple Lie algebras and representation theory.

5.3.1 Symbol algebra of PD-manifold (R ; D1,D2)

We will define the symbol algebra s(x) = s−3(x) ⊕ s−2(x) ⊕ s−1(x) of a PD-manifold
(R ; D1,D2) at a point x ∈ R, following [Yam82]. Let us fix a point x ∈ R and put
D−1 = D2, D−2 = D1 and D−3 = T R. We set

s−3(x) = D−3(x)/D−2(x), s−2(x) = D−2(x)/D−1(x), s−1(x) = D−1(x).

The bracket operation of s(x) is defined as follows: Let π−p denote the projection of
D−p(x) onto s−p(x) for 1 ≤ p ≤ 3. For X ∈ s−p(x), Y ∈ s−q(x), the bracket product
[X, Y ] ∈ s−(p+q) (x) is well-defined by

[X, Y ] = π−(p+q) ([X̂ , Ŷ ]x),

where X̂ and Ŷ denote vector fields taking values in D−p and D−q respectively such that
π−p(X̂x) = X and π−q(Ŷx) = Y . Let f(x) = Ch(D1)(x). It follows from (R.3) that f(x)
is a subspace of s−1(x) of codimension n. For X ∈ s−1(x), since dϖa (X, Y ) = 0 for all
Y ∈ D1(x) if and only if [X, s−2(x)] = 0, we obtain

f(x) =
{

X ∈ s−1(x) | [X, s−2(x)] = 0
}
.(5.3.4)

Let ϖa, ϖa
i (1 ≤ a ≤ m, 1 ≤ i ≤ n) denote 1-forms defining D1 and D2 as in (5.2.2).

Since they are the restriction of the defining 1-forms of C2, we see that s(x) is isomorphic
to a graded Lie subalgebra of C2(n,m) satisfying s−3(x) ≃ C2−3, s−2(x) ≃ C2−2 and f(x) =
Ch(∂C2)(x) ∩ Tx R.

We assume Ch(D1) , {0}, namely f(x) , {0} at each point x ∈ R in what follows.
If Ch(D1) = {0}, applying Realization Lemma to the projection π : R −→ M = R/F
and D1, we have a map ψ : R −→ J1(M,n) such that π = Π1

0 ◦ ψ and D1 = ψ−1∗ (C1).
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Since Kerψ∗(v) = F (v) ∩ Ch(D1)(v) = {0} for v ∈ R and dim R = codimCh(D1) =
dim J1(M,n), R is locally diffeomorphic to J1(M,n). Therefore D2 is completely inte-
grable if R is integrable.

Now we assume that there exists a n-dimensional integral element V of (R,D2) at
each point x ∈ R such that

s−1(x) = V ⊕ f(x),

where V is an abelian subalgebra in s(x). By fixing a basis of s−3(x), we identify s−3(x)
with a m-dimensional vector space W . It follows from V ∩ f(x) = {0} and (5.3.4) that
s−2(x) is identified with W ⊗ V ∗ through the bracket product [ , ] : s−2(x) × s−1(x) −→
s−3(x). Let µ : f(x) −→ W ⊗ S2(V ∗) be a linear map defined by

µ( f )(v1,v2) = [[ f , v1], v2] ∈ s−3(x) ≃ W for f ∈ f(x) and v1, v2 ∈ V,

which implies µ( f )(v1,v2) = µ( f )(v2,v1). Moreover, we see easily that µ is injective.
Thus, we obtain

s−3(x) ≃ W, s−2(x) ≃ W ⊗ V ∗, s−1(x) = V ⊕ f(x), f(x) ⊂ W ⊗ S2(V ∗).

In consequent two sections we will seek a PD-manifold (R ; D1,D2) of type s = s−3 ⊕
s−2 ⊕ s−1 satisfying

s−3 = W, s−2 = W ⊗ V ∗, s−1 = V ⊕ f(5.3.5)

where W and V are vector spaces of dimension m and n, and f is a non-zero subspace of
W ⊗ S2(V ∗). Here, especially we have dim s−2 = dim s−3 · (dim s−1 − dim f), which will
be utilized in Section 5.4.

5.3.2 Example of partial differential equations of finite type

We will consider an example of partial differential equations (R ; D1,D2) of finite type
and see that it has a pseudo-product structure of irreducible type (l,S) ([Sa88], [YY02]):

Example 5.4. Let us consider the following system of second order partial differential
equations of two unknown functions z1, z2 with three independent variables x1, x2, x3 :

∂2za

∂x1∂x1
=

∂2za

∂x2∂x2
=

∂2za

∂x2∂x3
=

∂2za

∂x3∂x3
= 0 for a = 1, 2.(5.3.6)
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Note that the system of equations of one unknown function

∂2z
∂x1∂x1

=
∂2z

∂x2∂x2
=

∂2z
∂x2∂x3

=
∂2z

∂x3∂x3
= 0

is known as a model equation of type (A4, {α1,α2,α4}) ([Yam09, Section 5.3]). The
system of equations (5.3.6) defines the submanifold R of J2(R4,2) and differential system
D on R as follows:

R =
{

pa
11 = pa

22 = pa
23 = pa

33 = 0 (a = 1, 2)
}

D =
{
ϖ1 = ϖ2 = ϖ1

1 = ϖ
1
2 = ϖ

1
3 = ϖ

2
1 = ϖ

2
2 = ϖ

2
3 = 0

}
where (xi, za,pa

i ,p
a
i j (1 ≤ a ≤ 2, 1 ≤ i ≤ j ≤ 3)) is the canonical coordinate system of

J2(R4,2) and

ϖ1 = dz1 − p11 dx1 − p12 dx2 − p13 dx3,

ϖ2 = dz2 − p21 dx1 − p22 dx2 − p23 dx3,

ϖ1
1 = dp11 − p112 dx2 − p113 dx3,

ϖ1
2 = dp12 − p112 dx1,

ϖ1
3 = dp13 − p113 dx1,

ϖ2
1 = dp21 − p212 dx2 − p213 dx3,

ϖ2
2 = dp22 − p212 dx1,

ϖ2
3 = dp23 − p213 dx1.

We obtain the symbol algebra m(x) = m of (R, D) at each point x as follows:

m = g−3 ⊕ g−2 ⊕ g−1, g−3 = W, g−2 = W ⊗ V ∗, g−1 = V ⊕ f,
f = W ⊗ ⟨e1 ⊚ e2, e1 ⊚ e3⟩ ⊂ W ⊗ S2(V ∗),

where W and V is vector spaces of dimension 2 and 3 respectively, and {e1, e2, e3} is a
basis of V ∗. Now we will see that the prolongation g(m) of m is isomorphic to a pseudo-
product GLA of irreducible type (l,S) for some simple graded Lie algebra l of depth 1

and irreducible l-module S.
Let a = sl(2,R) and b = sl(3,R). Let us fix a Cartan subalgebra ha of a (resp. hb of

b) and let Φa (resp. Φb) be a root system of a (resp. b) relative to ha (resp. hb). Let us
fix a simple root system ∆a = {α1} of Φa (resp. ∆b = {β1, β2} of Φb). Then we have
Φa = {±α1}, Φb = {±β1, ±β2, ±(β1 + β2)} and the root decomposition of a (resp. b)
relative to ∆a (resp. ∆b):

a = ha ⊕
⊕
α∈Φa
g
a
α, b = hb ⊕

⊕
β∈Φb
g
b
β,
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where gaα = {X ∈ a | [H, X ] = α(H)X (H ∈ ha)} (resp. gbβ) is the root space for α ∈ Φa
(resp. β ∈ Φb). Let ∆a1 = {α1} = ∆a and ∆b1 = {β1} ⊂ ∆b. They define gradations of a
and b of depth 1 as follows:

a = a−1 ⊕ a0 ⊕ a1, a±1 = g
a
±α1 , a0 = h

a,

b = b−1 ⊕ b0 ⊕ b1, b±1 = g
b
±β1 ⊕ g

b
±(β1+β2), b0 = h

b ⊕ gb−β2 ⊕ g
b
β2
.

Let U be a vector space over R of dimension 2. Let l = l−1 ⊕ l0 ⊕ l1 be the reductive
graded Lie algebra of depth 1 defined by

l = a ⊕ b ⊕ gl(U), [a, gl(U)] = [b, gl(U)] = 0,

l±1 = a±1 ⊕ b±1, l0 = a0 ⊕ b0 ⊕ gl(U).

Note that the semisimple ideal l̂ = l−1 ⊕ [l−1, l1] ⊕ l1 of l coincides with a ⊕ b, which is
not simple (cf. [Sa88], [YY02]).

Let {ϖa1} and {ϖb1, ϖb2} be fundamental weights relative to ∆a and ∆b. Let Ta (resp.
Tb) be the irreducible a-module (resp. b-module) with highest weight ϖa1 (resp. ϖb2).
Then S = Ta ⊗ Tb ⊗ U is a faithful irreducible l-module and decomposed as follows:

S =
−1⊕

p=−3
Sp, S−3 = Va1 ⊗ V b1 ⊗ U, S−2 =

(
Va1 ⊗ V b0 ⊕ Va0 ⊗ V b1

)
⊗ U,

S−1 = Va0 ⊗ V b0 ⊗ U,

where Va0 = V (ϖa1), Va1 = V (ϖa1 − α1), V b0 = V (ϖb2) ⊕ V (ϖb2 − β2), V b1 = V (ϖb2 −
(β1 + β2)) and V (λ) is the weight space with weight λ. Since dim S−3 = 2, dim S−2 = 6

and dim l−1 = 3, it follows from the property of S (see [Sa88, Proposition 4.3.1] or
[YY02, Lemma 2.1 (4)]) that S−2 is isomorphic to W ⊗ V ∗, where W = S−3 and V = l−1.
Namely l−1 ⊕ S is isomorphic to m. Moreover, by direct calculation, we can see that the
prolongation of m is isomorphic to l ⊕ S.

5.4 Partial differential equations of simple type

We will seek a simple graded Lie algebra of type (Xl ,∆1) that the negative part m is iso-
morphic to the symbol algebra of PD-manifolds of m (≥ 2) unknown functions. A neces-
sary condition for this is that m is of third kind and dim g−3 ≥ 2. From extended Dynkin
diagrams (see Figure 5.1), the simple graded Lie algebras of type (Xl ,∆1) satisfying this
condition are the followings: (Al , {αi,α j ,αk }) (1 ≤ i < j < k ≤ l, (i, k) , (1, l)),
(Bl , {α1,αi}) (3 ≤ i ≤ l), (Cl , {αi,αl }) (2 ≤ i ≤ l − 1), (Dl , {α1,αi}) (3 ≤ i ≤
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l − 2), (Dl , {αi,αl }) (3 ≤ i ≤ l − 2), (E6, {α4}), (E6, {α1,α3}), (E7, {α3}), (E7, {α5}),
(E7, {α2,α7}), (E7, {α6,α7}), (E8, {α2}), (E8, {α7}), (F4, {α2}), (G2, {α1}).

However, we will find that there exist no such simple graded Lie algebras. Precisely,
we state as follows:

Theorem 5.5. Let s =
⊕−1

p=−3 sp be a fundamental graded Lie algebra satisfying (5.3.5).
Then, for any simple graded Lie algebra g =

⊕
p∈Z gp of type (Xl ,∆1), s is never isomor-

phic to the negative part m =
⊕

p<0 gp of g. In other words, there are no PD-manifolds
of m (≥ 2) unknown functions of type s that the prolongation of s is isomorphic to some
simple graded Lie algebra.

Note that, among (Xl ,∆1) listed above, (Cl , {αi,αl }) (2 ≤ i ≤ l−1), (Dl , {αi,αl }) (3 ≤
i ≤ l − 2), (E6, {α1,α3}) and (E7, {α6,α7}) appeared in Theorem 2.3 (a) of [YY07]. That
is, they are the prolongation of m = l−1 ⊕ S for some pseudo-product graded Lie algebra
of type (l,S). In the case of (Cl , {αi,αl }) (2 ≤ i ≤ l −1) and (Dl , {αi,αl }) (3 ≤ i ≤ l −2),
according to Case (3) and (9) in Section 3 of [YY07], since dim g−2 = dim l−1(= dimV )
and f = S−1, m cannot be isomorphic to s satisfying (5.3.5). In the case of (E6, {α1,α3}),
according to Case (2) in Section 4 of [YY07], since dim g−3 · (dim g−1−dim f)−dim g−2 =
|Φ+3 | · ( |Φ+1 | − |Ψ1 |)− |Φ+2 | > 0, m cannot be isomorphic to s satisfying (5.3.5). In the case
of (E7, {α6,α7}), according to Case (4) in Section 4 of [YY07], since dim g−3 · (dim g−1−
dim f)−dim g−2 = |Φ+3 | · ( |Φ+1 | − |Ψ7 |)− |Φ+2 | > 0, m cannot be isomorphic to s satisfying
(5.3.5).

Thus it is enough to investigate the other types: (Al , {αi,α j ,αk }) (1 ≤ i < j < k ≤
l, (i, k) , (1, l)), (Bl , {α1,αi}) (3 ≤ i ≤ l), (Dl , {α1,αi}) (3 ≤ i ≤ l − 2), (E6, {α4}),
(E7, {α3}), (E7, {α5}), (E7, {α2,α7}), (E8, {α2}), (E8, {α7}), (F4, {α2}), (G2, {α1}).

Now we begin to prove Theorem 5.5 by contradiction. Let (Xl ,∆1) be one of the other
types. Suppose that the negative part m =

⊕
p<0 gp satisfies (5.3.5). Let Φf = {α ∈ Φ+ |

g−α ⊂ f}. We divide each cases (Xl ,∆1) into sequent subsections:
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Figure 5.1: The Extended Dynkin Diagrams
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5.4.1 (Al , {αi,α j ,αk })-type (1 ≤ i < j < k ≤ l, (i, k) , (1, l))

Φ
+
3 =

{
αp + · · · + αi + · · · + α j + · · · + αk + · · · + αq | 1 ≤ p ≤ i, k ≤ q ≤ l

}
,

Φ
+
2 =

{
αp + · · · + αi + · · · + α j + · · · + αq | 1 ≤ p ≤ i, j ≤ q < k

}
∪
{
αp + · · · + α j + · · · + αk + · · · + αq | i < p ≤ j, k ≤ q ≤ l

}
,

Φ
+
1 =

{
αp + · · · + αi + · · · + αq | 1 ≤ p ≤ i ≤ q < j

}
∪
{
αp + · · · + α j + · · · + αq | i < p ≤ j ≤ q < k

}
∪
{
αp + · · · + αk + · · · + αq | j < p ≤ k ≤ q ≤ l

}
,

Φf =
{
αp + · · · + α j + · · · + αq | i < p ≤ j ≤ q < k

}
.

Then we have |Φ+3 | = i(l − k + 1), |Φ+2 | = i(k − j) + ( j − i)(l − k + 1), |Φ+1 | = i( j − i) +
( j − i)(k − j) + (k − j)(l − k + 1) and dim f = ( j − i)(k − j). Therefore,

|Φ+3 | · (|Φ+1 | − dim f) − |Φ+2 |
=(i − 1)(i + 1)( j − i)(l − k + 1) + i(k − j)(l − k)(l − k + 2) > 0,

which implies that m cannot satisfy (5.3.5).
Now we will describe a model equation of the PD-manifold of type (Al , {αi,α j ,αk }).

We have the following matrix representation of a real form sl(l + 1,R) =
⊕3

p=−3 gp of
(Al , {αi,α j ,αk }):

g−3 =


*.....,
0 0 0 0

0 0 0 0

0 0 0 0

Z 0 0 0

+/////-

�����������
Z ∈ M (l − k + 1, i)


,

g−2 =


*.....,

0 0 0 0

0 0 0 0

P1 0 0 0

0 P2 0 0

+/////-

�����������
P1 ∈ M (k − j, i),

P2 ∈ M (l − k + 1, j − i)


,

g−1 =


*.....,

0 0 0 0

X1 0 0 0

0 F 0 0

0 0 X2 0

+/////-

�����������
X1 ∈ M ( j − i, i), X2 ∈ M (l − k + 1, k − j),

F ∈ M (k − j, j − i)


,
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5.4 Partial differential equations of simple type

g0 =


*.....,

L1 0 0 0

0 L2 0 0

0 0 L3 0

0 0 0 L4

+/////-

�����������
L1 ∈ M (i, i), L2 ∈ M ( j − i, j − i),

L3 ∈ M (k − j, k − j), L4 ∈ M (l − k + 1, l − k + 1),∑4
i=1 tr Li = 0


,

gi =
{

tX | X ∈ g−i
}

for 1 ≤ i ≤ 3,

where M (a,b) denotes the space of all a × b matrices.
Now we recall the formula for the Maurer-Cartan form on M (m) by N. Tanaka in

Section 2.3 of [Tan70]:

Proposition 5.6. Let m =
⊕−1

p=−3 gp be a fundamental graded Lie algebra of third kind
and (M (m),Dm) the standard differential system of type m. Let u−p denote the projection
of m onto g−p for p = 1, 2, 3, which may be regarded as a g−p-valued function on m. Let
η−p be the g−p-component of the Maurer-Cartan form of M (m). Then η−p is expressed as
follows:

η−3 = du−3 −
1

3
[u−2, du−1] −

2

3
[u−1, du−2] +

1

6
[u−1, [u−1, du−1]],

η−2 = du−2 −
1

2
[u−1, du−1],(5.4.7)

η−1 = du−1.

Here, M (m) is identified with m by f = ρ ◦ S, where ρ denotes the projection of the
affine transformation group AF (m) of m onto m and S : M (m) −→ AF (m) is induced by
the injective homomorphism s of m into the Lie algebra af(m) of all infinitesimal affine
transformation of m defined by

s(X )(Y ) = X +
∑

p,q<0

q
p + q

[up(X ), uq(Y )] ∈ m for X, Y ∈ m.

By definition, we have the standard differential system Dm of type m as follows:

Dm = { η−3 = η−2 = 0 } .

With respect to the matrix representation of sl(l + 1,R), we may write u−p as

u−3 =
*.....,
0 0 0 0

0 0 0 0

0 0 0 0

Z 0 0 0

+/////-
, u−2 =

*.....,
0 0 0 0

0 0 0 0

P1 0 0 0

0 P2 0 0

+/////-
, u−1 =

*.....,
0 0 0 0

X1 0 0 0

0 F 0 0

0 0 X2 0

+/////-
.

62



5 SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS OF M (≥ 2) UNKNOWN
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Substituting them for the formula, we have

η−3 =

*.....,
0 0 0 0

0 0 0 0

0 0 0 0

Θ0 0 0 0

+/////-
, η−2 =

*.....,
0 0 0 0

0 0 0 0

Θ1 0 0 0

0 Θ2 0 0

+/////-
,

and

Dm = {Θ0 = Θ1 = Θ2 = 0 } ,

where

Θ0 = dZ − 1

3
P2dX1 +

1

3
dX2P1 −

2

3
X2dP1 +

2

3
dP2X1

+
1

6
X2(FdX1 − dFX1) − 1

6
(X2dF − dX2F)X1,

Θ1 = dP1 −
1

2
FdX1 +

1

2
dFX1,

Θ2 = dP2 −
1

2
X2dF +

1

2
dX2F.

The exterior derivative of Θ0 is

dΘ0 = −dX2 ∧ d
(
P1 +

1

2
FX1

)
− d
(
P2 −

1

2
X2F
)
∧ dX1.

Putting

P̂1 = P1 +
1

2
FX1, P̂2 = P2 −

1

2
X2F, X̂1 = X1, X̂2 = −X2,

we have

Θ0 = dZ − 1

3
(P̂2 + X̂2F) dX̂1 −

1

3
dX̂2(P̂1 + FX̂1) − 1

3
X̂2dFX̂1 +

2

3
X̂2dP̂1 +

2

3
dP̂2 X̂1,

Θ1 = dP̂1 − FdX̂1,

Θ2 = dP̂2 − dX̂2F,

dΘ0 = dX̂2 ∧ dP̂1 − dP̂2 ∧ dX̂1,

dΘ1 = − dF ∧ dX̂1,

dΘ2 = dX̂2 ∧ dF.

63



5.4 Partial differential equations of simple type

Digressing from determinating of the model equation, we now show theoretically that
(M (m),Dm) is locally embedded into the 2-jet space (J2(Q,n),C2

Q) over some manifold
Q. From the structure equation of Dm, we have

∂Dm = {Θ0 = 0 } ,
Ch(∂Dm) =

{
Θ0 = Θ1 = Θ2 = dX̂1 = dX̂2 = 0

}
,(5.4.8)

which are differential systems of codimension n3 + n2 and n3 + n2 + (n1 − f ). Here, let
ni = dim g−i for 1 ≤ i ≤ 3 and f = dim f. Putting

F =
{
Θ0 = dX̂1 = dX̂2 = 0

}
,

we see that F is a completely integrable differential system of codimension n3 + (n1 − f ).
Let N = M (m)/Ch(∂Dm) and Q = M (m)/F be spaces of leaves of the foliation. Let
πM : M (m) −→ N and πN : N −→ Q be the projections. From (5.4.8), ∂Dm and F drop
down to N . Since Ker (πN )∗ = F is a subbundle of ∂Dm of codimension n1 − f , applying
Realization Lemma to πN , we have ψN : N −→ J1(Q,n1 − f ) as in the lemma. Since
Ker (ψN )∗ = Ker (πM ) ∩ Ch(∂Dm) = {0}, ψN is immersion. Note that dim J1(Q,n1 −
f ) − dim N = n3(n1 − f ) − n2 > 0. Since Ker (πM )∗ = Ch(∂Dm) is a subbundle of Dm
of codimension n1 − f , applying Realization Lemma to πM , we have ψM : M (m) −→
J1(N,n1 − f ) as in the lemma. Since Ker (ψM )∗ = Ker (πM ) ∩ Ch(Dm) = {0}, ψM is
immersion. Since ψM (v) = (πM )∗(Dm (v)) for v ∈ M and (ψN )−1∗ (C1

Q) = ∂Dm, ψM (v)
is a (n1 − f )-dimensional integral element of C1

Q. Moreover, since (ψN )−1∗ (Q1) = F,
where Q1 = Ker (Π1

0 )∗ and Π1
0 : J1(Q,n1 − f ) −→ Q the projection, we have ψM (v) ∩

Q1(πM (v)) = {0}. Thus we have ψM (v) ∈ J2(Q,n1 − f ).

J1(J1(Q,n1 − f ),n1 − f )

��

// J2(Q,n1 − f )

Π2
1

vv
J1(N,n1 − f )

��

J1(Q,n1 − f )

Π1
0

��
M (m)

πM

//

ψM

77

N = M (m)/Ch(∂D)

ψN

55

πN

// Q = M (m)/F
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Now we return to the calculation of the model equation. From F = {Θ0 = dX̂1 =

dX̂2 = 0}, we calculate

Θ0 ≡ d
(
Z − 1

3
X̂2FX̂1 +

2

3
X̂2P̂1 +

2

3
P̂2 X̂1

)
(mod F⊥).

Putting Ẑ = Z − 1
3 X̂2FX̂1 +

2
3 X̂2P̂1 +

2
3 P̂2 X̂1, we have achieved a normal form of Dm:

Θ0 = dẐ − dX̂2P̂1 − P̂2dX̂1,

Θ1 = dP̂1 − FdX̂1,

Θ2 = dP̂2 − dX̂2F.

From now on, fix index ranges 1 ≤ α, β ≤ l, i + 1 ≤ m, n ≤ j, j + 1 ≤ s, t ≤ k, and
k + 1 ≤ a, b ≤ l + 1. Setting

X̂1 = (ym
α ), X̂2 = (xa

s ), F = ( f s
m), Ẑ = (za

α), P̂1 = (ps
α), P̂2 = (qa

m),

we have

Θ0 = *,dza
α −
∑

t

pt
αdxa

t −
∑

n

qa
n dyn

α
+-a,α

,

Θ1 = *,dps
α −
∑

n

f s
n dyn

α
+-s,α

,

Θ2 = *,dqa
m −
∑

t

f t
mdya

t
+-a,m

.

Therefore we have a model equation of (Al , {αi,α j ,αk }) (1 ≤ i < j < k ≤ l, (i, k) ,
(1, l)) as follows:



∂zb
α

∂xa
s
=
∂za

β

∂ym
α
= 0 for a , b, α , β,

∂za
α

∂xa
s
=
∂zb

α

∂xb
s
,

∂za
α

∂ym
α
=
∂za

β

∂ym
β

,

∂2za
α

∂xa
s ∂xa

t
= 0,

∂2za
α

∂ym
α ∂y

n
α
= 0.
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5.4 Partial differential equations of simple type

For example, a model equation of type (A4, {α1,α2,α3}) is



∂z1
∂x2
=
∂z2
∂x3

,
∂z1
∂x3
=
∂z2
∂x2
= 0,

∂2z1
∂x1∂x1

=
∂2z1
∂x2∂x2

=
∂2z2
∂x1∂x1

= 0,

where x1, x2, x3 and z1, z2 are independent and dependent variables.
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5.4.2 (Bl , {α1,αi})-type (3 ≤ i ≤ l)

Φ
+
3 =

{
α1 + · · · + αp + 2αp+1 + · · · + 2αi + · · · + 2αl | 1 ≤ p < i

}
,

Φ
+
2 =

{
α1 + · · · + αi + · · · + αp | i ≤ p ≤ l

}
∪
{
α1 + · · · + αi + · · · + αp + 2αp+1 + · · · + 2αl | i ≤ p < l

}
∪
{
αp + · · · + αq−1 + 2αq + · · · + 2αi + · · · + 2αl | 1 < p < q ≤ i

}
,

Φ
+
1 =

{
α1 + · · · + αp | 1 ≤ p < i

}
∪
{
αp + · · · + αi + · · · + αq | 1 < p ≤ i ≤ q ≤ l

}
∪
{
αp + · · · + αi + · · · + αq + 2αq+1 + · · · + 2αl | 1 < p ≤ q < l

}
.

Then we see that Φf = ∅. In fact, for any α ∈ Φ+1 , there exists β ∈ Φ+2 satisfying
α + β ∈ Φ+3 according to the following list:

α ∈ Φ+1 β ∈ Φ+2
α1 + · · · + αp

(1 ≤ p < i − 1)
αp+1 + · · · + αi−1 + 2αi + · · · + 2αl

α1 + · · · + αi−1 αi−1 + 2αi + · · · + 2αl

αp + · · · + αi + · · · + αq

(1 < p ≤ i ≤ q < l)
αp+1 + · · · + αq + 2αq+1 + · · · + 2αl

αp + · · · + αi + · · · + αl

(1 < p ≤ i)
α1 + · · · + αp + · · · + αi + · · · + αl

αp + · · · + αi + · · · + αq + 2αq+1 + · · · + 2αl

(1 < p ≤ q < l)
α1 + · · · + αp + · · · + αi + · · · + αq

Therefore [X, g−2] , 0 for all X ∈ g−1. Namely f = {0}, which implies m cannot satisfy
(5.3.5).

Now we will describe a model equation of the PD-manifold of type (Bl , {α1,αi}) (3 ≤
i ≤ l). Let n = 2l + 1 and let Ek be the identity matrix of size k. We have

o(n,R) =
{

X ∈ gl(n,R) | tX J + JX = 0
}
,
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5.4 Partial differential equations of simple type

where

J =

*........,

1

Ei−1
En−2i

Ei−1
1

+////////-
.

Then we have the following matrix representation of a real form o(n,R) =
⊕3

p=−3 gp of
(Bl , {α1,αi}):

g−3 =



*........,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Z 0 0 0 0

0 −tZ 0 0 0

+////////-

��������������
Z ∈ M (i − 1,1)


,

g−2 =



*........,

0 0 0 0 0

0 0 0 0 0

P1 0 0 0 0

0 P2 0 0 0

0 0 −tP1 0 0

+////////-

��������������
P1 ∈ M (n − 2i,1),

P2 ∈ o(i − 1,R)


,

g−1 =



*........,

0 0 0 0 0

X1 0 0 0 0

0 X2 0 0 0

0 0 −tX2 0 0

0 0 0 −tX1 0

+////////-

��������������
X1 ∈ M (i − 1,1),

X2 ∈ M (n − 2i, i − 1)


,

g0 =



*........,

L1 0 0 0 0

0 L2 0 0 0

0 0 L3 0 0

0 0 0 −tL2 0

0 0 0 0 −tL1

+////////-

��������������
L1, L4 ∈ R, L2 ∈ M (i − 1, i − 1),

L3 ∈ o(n − 2i,R)


,

gi =
{

tX | X ∈ g−i
}

for 1 ≤ i ≤ 3.

With respect to the matrix representation of o(n,R), we may write the projection u−p :
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m −→ g−p as

u−3 =

*........,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Z 0 0 0 0

0 −tZ 0 0 0

+////////-
, u−2 =

*........,

0 0 0 0 0

0 0 0 0 0

P1 0 0 0 0

0 P2 0 0 0

0 0 −tP1 0 0

+////////-
(P2 = −tP2),

u−1 =

*........,

0 0 0 0 0

X1 0 0 0 0

0 X2 0 0 0

0 0 −tX2 0 0

0 0 0 −tX1 0

+////////-
.

Substituting them for Formula (5.4.7), we have

η−3 =

*.........,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Θ0 0 0 0 0

0 −tΘ0 0 0 0

+/////////-
, η−2 =

*.........,

0 0 0 0 0

0 0 0 0 0

Θ1 0 0 0 0

0 Θ2 0 0 0

0 0 −tΘ1 0 0

+/////////-
,

and

Dm = {Θ0 = Θ1 = Θ2 = 0 } ,

where

Θ0 = dZ − 1

3
P2dX1 −

1

3
dtX2P1 +

2

3
tX2dP1 +

2

3
dP2X1

− 1

6
tX2(X2dX1 − dX2X1) +

1

6
(tX2dX2 − dtX2X2)X1,

Θ1 = dP1 −
1

2
X2dX1 +

1

2
dX2X1,

Θ2 = dP2 +
1

2
tX2dX2 −

1

2
dtX2X2.

The exterior derivative of Θ0 is

dΘ0 = −d
(
P2 +

1

2
tX2X2

)
∧ dX1 + dtX2 ∧ d

(
P1 +

1

2
X2X1

)
.
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Putting

P̂1 = P1 +
1

2
X2X1, P̂2 = P2 +

1

2
tX2X2,

we have

Θ0 = dZ − 1

3
(P̂2 +

tX2X2) dX1 −
1

3
dtX2(P̂1 + X2X1) − 1

3
tX2dX2X1 +

2

3
tX2dP̂1 +

2

3
dP̂2X1,

Θ1 = dP̂1 − X2dX1,

Θ2 = dP̂2 − dtX2X2,

dΘ0 = −dP̂2 ∧ dX1 + dtX2 ∧ dP̂1,

dΘ1 = −dX2 ∧ dX1,

dΘ2 = dtX2 ∧ dX2.

Digressing from determinating of the model equation, we now show theoretically that
(M (m),Dm) is locally embedded into the 2-jet space (J2(Q,n),C2

Q) over some manifold
Q. From the structure equation of Dm, we have

∂Dm = {Θ0 = 0 } ,
Ch(∂Dm) =

{
Θ0 = Θ1 = Θ2 = dX1 = dtX2 = 0

}
= {0},(5.4.9)

which are differential systems of codimension n3 + n2 and n3 + n2 + n1. Here, let ni =

dim g−i for 1 ≤ i ≤ 3. Putting

F =
{
Θ0 = dX1 = dtX2 = 0

}
= {Θ0 = dX1 = dX2 = 0 } ,

we see that F is a completely integrable differential system of codimension n3 + n1. Let
Q = M (m)/F be the space of leaves of the foliation. Let idM : M (m) −→ M (m) and
πQ : N −→ Q be the identity map and the projection respectively.Since Ker (πQ)∗ = F
is a subbundle of ∂Dm of codimension n1, applying Realization Lemma to πQ, we have
ψN : N −→ J1(Q,n1) as in the lemma. Since Ker (ψN )∗ = Ker (πN ) ∩ Ch(∂Dm) = {0},
ψN is immersion. Note that dim J1(Q,n1) − dim M (m) = dim g−3 · dim g−1 − dim g−2 =
i(i−2)(n−2i)+ 1

2i(i−1) > 0. Since Ker (idM )∗ = {0} is a subbundle of Dm of codimension
n1, applying Realization Lemma to idM , we have ψ : M (m) −→ J1(M (m),n1) as in
the lemma. Since Ker (ψM )∗ = Ker (πM ) ∩ Ch(Dm) = {0}, ψM is immersion. Since
ψM (v) = (πM )∗(D(v)) for v ∈ M (m) and (ϕ)−1∗ (C1

Q) = ∂Dm, ψM (v) is a n1-dimensional
integral element of C1

Q. Moreover, since ϕ−1∗ (Q1) = F, where Q1 denotes the kernel of
(Π1

0 )∗ and Π1
0 : J1(N,n1) −→ N the projection, ψM (v) ∩ Q1(πM (v)) = {0}. Thus we

have ψM (v) ∈ J2(Q,n1).
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J1(J1(Q,n1),n1)

��

// J2(Q,n1)

Π2
1ww

J1(M (m),n1)

��

J1(Q,n1)

Π1
0

��
M (m)

idM

//

ψM

99

M (m)

ϕ

77

πQ
// Q = M (m)/F

Now we return to the calculation of the model equation. From F = {Θ0 = dX1 =

dX2 = 0} = {Θ0 = dX1 = dtX2 = 0}, we calculate

Θ0 ≡ d
(
Z − 1

3
tX2X2X1 +

2

3
tX2P̂1 +

2

3
P̂2X1

)
(mod F⊥).

Putting Ẑ = Z − 1
3

tX2X2X1 +
2
3

tX2P̂1 +
2
3 P̂2X1, we have achieved a normal form of Dm:

Θ0 = dẐ − dtX2P̂1 − P̂2dX1,

Θ1 = dP̂1 − X2dX1,

Θ2 = dP̂2 − dtX2X2.

Since (M (m),Dm) is embedded into the 2-jet space J2(Q,n1), we should think n1-dimensional
integral element and manifold where dX1 and dX2 are independent. However, by dΘ2 =

dX2 ∧ dX1, there are no integral elements and manifolds.
Now we generalize the above discussion as follows:

Proposition 5.7. Letm be a fundamental graded Lie algebra of third kind and (M (m),Dm)
the standard differential system of type m. Assume Ch(∂Dm) = {0}. Then (M (m),Dm)
is locally embedded into a 2-jet space (J2(Q,nQ),C2

Q) and furthermore (M (m),Dm) has
no nQ-dimensional integral elements and manifolds.

Proof. Let η−p be the g−p-component of the Maurer-Cartan form of M (m). From Formula
(5.4.7) in Section 5.4.1, we have the structure equation of Dm:


dη−3 = −[η−1, η−2],

dη−2 = −
1

2
[η−1, η−1],

(5.4.10)
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5.4 Partial differential equations of simple type

Therefore we have ∂Dm = {η−3 = 0}. Let F = {η−3 = η−1 = 0}. It follows from the above
structure equation that F is completely integrable. Let Q = M (m)/F be the space of
leaves of the foliation and π : M (m) −→ Q the projection. Applying Realization Lemma
to π, since Ker π∗ = F is a subbundle of ∂Dm of codimension n1 = dim g−1, we have the
unique map ψQ : M (m) −→ J1(Q,n1) such that π = ΠQ ◦ ψQ and ∂Dm = (ψQ)−1∗ (C1

Q),
where ΠQ : J1(M (m),n1) −→ Q is the projection and CQ is the canonical system of
J1(Q,n1). Then ψQ is immersion since Ker (ψQ)∗ = F ∩ Ch(∂Dm) = {0}. Applying
Realization Lemma to the identity map idM : M (m) −→ M (m), since Ker (idM )∗ is a
subbundle of Dm of codimension n1, we have a map ψM : M (m) −→ J1(M (m),n1).
Then ψM is immersion since Ker (ψM )∗ = Ker (idM )∗ ∩ Ch(Dm) = {0}. Since ∂Dm =
(ψQ)−1∗ (C1

Q), ψM (v) is a n1-dimensional integral element of C1
Q for v ∈ M (m). Since

F = (ψQ)−1∗
(
Ker (ΠQ)∗

)
, we see that ψM (v) ∩ Ker (ΠQ)∗ = {0} for v ∈ M (m), which

implies ψM (v) ∈ J2(Q,n1). Namely M (m) is locally embedded into (J2(Q,n1),C2
Q).

Regarding M (m) as a submanifold of J2(Q,n1), we consider n1-dimensional integral
elements ν with the independence condition η−1 |ν , 0. However, it follows from dη−2 =
−1
2 [η−1, η−1] that Dm has no such integral elements. □

J1(J1(Q,n1),n1)

��

// J2(Q,n1)

ww
J1(M (m),n1)

��

J1(Q,n1)

ΠQ

��
M (m)

idM

//

ψM

99

M (m)

ψQ

77

πQ
// Q = M (m)/F
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5 SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS OF M (≥ 2) UNKNOWN
FUNCTIONS

5.4.3 (Dl , {α1,αi})-type (3 ≤ i ≤ l − 2)

Φ
+
3 =

{
α1 + · · · + αp−1 + 2αp + · · · + 2αi + · · · + 2αl−2 + αl−1 + αl | 1 < p ≤ i

}
,

Φ
+
2 =

{
α1 + · · · + αi + · · · + αp | i ≤ p ≤ l

}
∪ { α1 + · · · + αi + · · · + αl−2 + αl }
∪
{
α1 + · · · + αi + · · · + αp + 2αp+1 + · · · + 2αl−2 + αl−1 + αl | i ≤ p ≤ l − 3

}
∪
{
αp + · · · + αq−1 + 2αq + · · · + 2αi + · · · + 2αl−2 + αl−1 + αl | 1 < p < q ≤ i

}
,

Φ
+
1 =

{
α1 + · · · + αp | 1 ≤ p < i

}
∪
{
αp + · · · + αi + · · · + αq | 1 < p ≤ i ≤ q ≤ l

}
∪
{
αp + · · · + αi + · · · + αl−2 + αl | 1 < p ≤ i

}
∪ {αp + · · · + αi + · · · + αq−1 + 2αq + · · · + 2αl−2 + αl−1 + αl |

1 < p ≤ i < q ≤ l − 2},
Then we see that Φf = ∅, which implies that m cannot satisfy (5.3.5).

Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have
Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.
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5.4 Partial differential equations of simple type

5.4.4 (E6, {α4})-type

Let
(c1 c3 c4 c5 c6

c2

)
denote the root c1α1 + . . . + c6α6 of E6.

Φ+3 consists of the following roots:

1 2 3 2 1
1

1 2 3 2 1
2

Φ+2 consists of the following roots:

0 1 2 1 0
1

1 1 2 1 0
1

0 1 2 1 1
1

1 2 2 1 0
1

1 1 2 1 1
1

0 1 2 2 1
1

1 2 2 1 1
1

1 1 2 2 1
1

1 2 2 2 1
1

Φ+1 consists of the following roots:

0 0 1 0 0
0

0 1 1 0 0
0

0 0 1 1 0
0

0 0 1 0 0
1

1 1 1 0 0
0

0 1 1 1 0
0

0 1 1 0 0
1

0 0 1 1 1
0

0 0 1 1 0
1

1 1 1 1 0
0

1 1 1 0 0
1

0 1 1 1 1
0

0 1 1 1 0
1

0 0 1 1 1
1

1 1 1 1 1
0

1 1 1 1 0
1

0 1 1 1 1
1

1 1 1 1 1
1

Then we see that Φf = ∅, which implies that m cannot satisfy (5.3.5).
Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have

Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.
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5.4.5 (E7, {α3})-type

Let
(c1 c3 c4 c5 c6 c7

c2

)
denote the root c1α1 + · · · + c7α7 of E7,

Φ+3 consists of the following roots:

1 3 4 3 2 1
2

2 3 4 3 2 1
2

Φ+2 consists of the following roots:

1 2 2 1 0 0
1

1 1 2 1 1 0
1

0 1 2 2 1 0
1

1 2 2 1 1 0
1

1 1 2 2 1 0
1

1 2 2 2 1 0
1

1 2 3 2 1 0
1

1 2 3 2 1 0
2

0 1 2 1 1 1
1

1 1 2 1 1 1
1

0 1 2 2 1 1
1

1 2 2 1 1 1
1

1 1 2 2 1 1
1

0 1 2 2 2 1
1

1 2 2 2 1 1
1

1 1 2 2 2 1
1

1 2 2 2 2 1
1

1 2 3 2 1 1
1

1 2 3 2 2 1
1

1 2 3 2 1 1
2

1 2 3 3 2 1
1

1 2 3 2 2 1
2

1 2 3 3 2 1
2

1 2 4 3 2 1
2

Φ+1 consists of the following roots:

0 1 0 0 0 0
0

1 1 0 0 0 0
0

0 1 1 0 0 0
0

1 1 1 0 0 0
0

0 1 1 1 0 0
0

0 1 1 0 0 0
1

1 1 1 1 0 0
0

1 1 1 0 0 0
1

0 1 1 1 1 0
0

0 1 1 1 0 0
1

1 1 1 1 1 0
0

1 1 1 1 0 0
1

0 1 1 1 1 1
0

0 1 1 1 1 0
1

1 1 1 1 1 1
0

1 1 1 1 1 0
1

0 1 1 1 1 1
1

1 1 1 1 1 1
1

0 1 2 1 0 0
1

1 1 2 1 0 0
1

0 1 2 1 1 0
1

1 1 2 1 1 0
1

0 1 2 2 1 0
1

1 1 2 2 1 0
1

0 1 2 1 1 1
1

1 1 2 1 1 1
1

0 1 2 2 1 1
1

1 2 2 1 1 1
1

1 1 2 2 1 1
1

0 1 2 2 2 1
1

1 1 2 2 2 1
1

Then we see that Φf = ∅, which implies that m cannot satisfy (5.3.5).
Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have

Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.
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5.4 Partial differential equations of simple type

5.4.6 (E7, {α5})-type

Φ+3 consists of the following roots:

1 2 3 3 2 1
1

1 2 3 2 2 1
2

1 2 3 3 2 1
2

1 2 4 3 2 1
2

1 3 4 3 2 1
2

2 3 4 3 2 1
2

Φ+2 consists of the following roots:

0 1 2 2 1 0
1

1 1 2 2 1 0
1

1 2 2 2 1 0
1

1 2 3 2 1 0
1

1 2 3 2 1 0
2

0 1 2 2 1 1
1

1 1 2 2 1 1
1

0 1 2 2 2 1
1

1 2 2 2 1 1
1

1 1 2 2 2 1
1

1 2 2 2 2 1
1

1 2 3 2 1 1
1

1 2 3 2 2 1
1

1 2 3 2 1 1
2

1 2 3 2 2 1
2

Φ+1 consists of the following roots:

0 0 0 1 0 0
0

0 0 1 1 0 0
0

0 0 0 1 1 0
0

0 1 1 1 0 0
0

0 0 1 1 0 0
1

0 0 1 1 1 0
0

0 0 0 1 1 1
0

1 1 1 1 0 0
0

0 1 1 1 1 0
0

0 1 1 1 0 0
1

0 0 1 1 1 0
1

0 0 1 1 1 1
0

1 1 1 1 1 0
0

1 1 1 1 0 0
1

0 1 1 1 1 1
0

0 1 1 1 1 0
1

0 0 1 1 1 1
1

1 1 1 1 1 1
0

1 1 1 1 1 0
1

0 1 1 1 1 1
1

1 1 1 1 1 1
1

0 1 2 1 0 0
1

1 1 2 1 0 0
1

0 1 2 1 1 0
1

1 2 2 1 0 0
1

1 1 2 1 1 0
1

1 2 2 1 1 0
1

0 1 2 1 1 1
1

1 1 2 1 1 1
1

1 2 2 1 1 1
1

Then we have Φf = ∅, which implies that m cannot satisfy (5.3.5).
Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have

Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.
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5 SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS OF M (≥ 2) UNKNOWN
FUNCTIONS

5.4.7 (E7, {α2,α7})-type

Φ+3 consists of the following roots:

1 2 3 2 1 1
2

1 2 3 3 2 1
1

1 2 3 2 2 1
2

1 2 3 3 2 1
2

1 2 4 3 2 1
2

1 3 4 3 2 1
2

2 3 4 3 2 1
2

Φ+2 consists of the following roots:

0 0 1 1 1 1
1

0 1 1 1 1 1
1

1 1 1 1 1 1
1

1 2 3 2 1 0
2

0 1 2 1 1 1
1

1 1 2 1 1 1
1

0 1 2 2 1 1
1

1 2 2 1 1 1
1

1 1 2 2 1 1
1

0 1 2 2 2 1
1

1 2 2 2 1 1
1

1 1 2 2 2 1
1

1 2 2 2 2 1
1

1 2 3 2 1 1
1

1 2 3 2 2 1
1

1 2 3 3 2 1
1

Φ+1 consists of the following roots:

0 0 0 0 0 1
0

0 0 0 0 0 0
1

0 0 1 0 0 0
1

0 0 0 0 1 1
0

0 1 1 0 0 0
1

0 0 1 1 0 0
1

0 0 0 1 1 1
0

1 1 1 0 0 0
1

0 1 1 1 0 0
1

0 0 1 1 1 0
1

0 0 1 1 1 1
0

1 1 1 1 0 0
1

0 1 1 1 1 1
0

0 1 1 1 1 0
1

1 1 1 1 1 1
0

1 1 1 1 1 0
1

0 1 2 1 0 0
1

1 1 2 1 0 0
1

0 1 2 1 1 0
1

1 2 2 1 0 0
1

1 1 2 1 1 0
1

0 1 2 2 1 0
1

1 2 2 1 1 0
1

1 1 2 2 1 0
1

1 2 2 2 1 0
1

1 2 3 2 1 0
1

Then we see that Φf = ∅, which implies that m cannot satisfy (5.3.5).
Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have

Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.
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5.4 Partial differential equations of simple type

5.4.8 (E8, {α2})-type

Let
(c1 c3 c4 c5 c6 c7 c8

c2

)
denote the root c1α1 + · · · + c8α8 of E8.

Φ+3 consists of the following roots:

1 3 5 4 3 2 1
3

2 3 5 4 3 2 1
3

2 4 5 4 3 2 1
3

2 4 6 4 3 2 1
3

2 4 6 5 3 2 1
3

2 4 6 5 4 2 1
3

2 4 6 5 4 3 1
3

2 4 6 5 4 3 2
3

Φ+2 consists of the following roots:

1 2 3 2 1 0 0
2

1 2 3 2 1 1 0
2

1 2 3 2 2 1 0
2

1 2 3 3 2 1 0
2

1 2 4 3 2 1 0
2

1 3 4 3 2 1 0
2

2 3 4 3 2 1 0
2

1 2 3 2 1 1 1
2

1 2 3 3 2 1 1
2

1 2 3 2 2 2 1
2

1 2 4 3 2 1 1
2

1 2 3 3 2 2 1
2

1 3 4 3 2 1 1
2

1 2 4 3 2 2 1
2

1 2 3 3 3 2 1
2

2 3 4 3 2 1 1
2

1 3 4 3 2 2 1
2

1 2 4 3 3 2 1
2

2 3 4 3 2 2 1
2

1 3 4 3 3 2 1
2

1 2 4 4 3 2 1
2

2 3 4 3 3 2 1
2

1 3 4 4 3 2 1
2

2 3 4 4 3 2 1
2

2 3 5 4 3 2 1
2

2 4 5 4 3 2 1
2

Φ+1 consists of the following roots:

0 0 0 0 0 0 0
1

0 0 1 0 0 0 0
1

0 1 1 0 0 0 0
1

0 0 1 1 0 0 0
1

1 1 1 0 0 0 0
1

0 1 1 1 0 0 0
1

0 0 1 1 1 0 0
1

1 1 1 1 0 0 0
1

0 1 1 1 1 0 0
1

0 0 1 1 1 1 0
1

1 1 1 1 1 0 0
1

0 1 1 1 1 1 0
1

0 0 1 1 1 1 1
1

1 1 1 1 1 1 0
1

0 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1

0 1 2 1 0 0 0
1

1 1 2 1 0 0 0
1

0 1 2 1 1 0 0
1

1 2 2 1 0 0 0
1

1 1 2 1 1 0 0
1

0 1 2 2 1 0 0
1

1 2 2 1 1 0 0
1

1 1 2 2 1 0 0
1

1 2 2 2 1 0 0
1

1 2 3 2 1 0 0
1

0 1 2 1 1 1 0
1

1 1 2 1 1 1 0
1

0 1 2 2 1 1 0
1

1 2 2 1 1 1 0
1

1 1 2 2 1 1 0
1

0 1 2 2 2 1 0
1

1 2 2 2 1 1 0
1

1 1 2 2 2 1 0
1

1 2 2 2 2 1 0
1

1 2 3 2 1 1 0
1

1 2 3 2 2 1 0
1

1 2 3 3 2 1 0
1

0 1 2 1 1 1 1
1

0 1 2 2 1 1 1
1

1 1 2 1 1 1 1
1

0 1 2 2 2 1 1
1

1 2 2 1 1 1 1
1

1 1 2 2 1 1 1
1

1 2 2 2 1 1 1
1

1 1 2 2 2 1 1
1

0 1 2 2 2 2 1
1

1 2 3 2 1 1 1
1

1 2 2 2 2 1 1
1

1 1 2 2 2 2 1
1

1 2 3 2 2 1 1
1

1 2 2 2 2 2 1
1

1 2 3 3 2 1 1
1

1 2 3 2 2 2 1
1

1 2 3 3 2 2 1
1

1 2 3 3 3 2 1
1

Then we see that Φf = ∅, which implies that m cannot satisfy (5.3.5).
Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have

Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.
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5.4.9 (E8, {α7})-type

Φ+3 consists of the following roots:

2 4 6 5 4 3 1
3

2 4 6 5 4 3 2
3

Φ+2 consists of the following roots:

0 1 2 2 2 2 1
1

1 1 2 2 2 2 1
1

1 2 2 2 2 2 1
1

1 2 3 2 2 2 1
1

1 2 3 2 2 2 1
2

1 2 3 3 2 2 1
1

1 2 3 3 2 2 1
2

1 2 3 3 3 2 1
1

1 2 4 3 2 2 1
2

1 2 3 3 3 2 1
2

1 3 4 3 2 2 1
2

1 2 4 3 3 2 1
2

2 3 4 3 2 2 1
2

1 3 4 3 3 2 1
2

1 2 4 4 3 2 1
2

2 3 4 3 3 2 1
2

1 3 4 4 3 2 1
2

1 3 5 4 3 2 1
2

2 3 4 4 3 2 1
2

1 3 5 4 3 2 1
3

2 3 5 4 3 2 1
2

2 3 5 4 3 2 1
3

2 4 5 4 3 2 1
2

2 4 5 4 3 2 1
3

2 4 6 4 3 2 1
3

2 4 6 5 3 2 1
3

2 4 6 5 4 2 1
3

Φ+1 consists of the following roots:

0 0 0 0 0 1 0
0

0 0 0 0 1 1 0
0

0 0 0 0 0 1 1
0

0 0 0 1 1 1 0
0

0 0 0 0 1 1 1
0

0 0 1 1 1 1 0
0

0 0 0 1 1 1 1
0

0 1 1 1 1 1 0
0

0 0 1 1 1 1 1
0

0 0 1 1 1 1 0
1

1 1 1 1 1 1 0
0

0 1 1 1 1 1 1
0

0 1 1 1 1 1 0
1

0 0 1 1 1 1 1
1

1 1 1 1 1 1 1
0

1 1 1 1 1 1 0
1

0 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1

0 1 2 1 1 1 0
1

1 1 2 1 1 1 0
1

0 1 2 2 1 1 0
1

1 2 2 1 1 1 0
1

1 1 2 2 1 1 0
1

0 1 2 2 2 1 0
1

1 2 2 2 1 1 0
1

1 1 2 2 2 1 0
1

1 2 2 2 2 1 0
1

1 2 3 2 1 1 0
1

1 2 3 2 2 1 0
1

1 2 3 2 1 1 0
2

1 2 3 3 2 1 0
1

1 2 3 2 2 1 0
2

1 2 3 3 2 1 0
2

1 2 4 3 2 1 0
2

1 3 4 3 2 1 0
2

2 3 4 3 2 1 0
2

0 1 2 1 1 1 1
1

0 1 2 2 1 1 1
1

1 1 2 1 1 1 1
1

0 1 2 2 2 1 1
1

1 2 2 1 1 1 1
1

1 1 2 2 1 1 1
1

1 2 2 2 1 1 1
1

1 1 2 2 2 1 1
1

1 2 3 2 1 1 1
1

1 2 2 2 2 1 1
1

1 2 3 2 1 1 1
2

1 2 3 2 2 1 1
1

1 2 3 3 2 1 1
1

1 2 3 3 2 1 1
2

1 2 4 3 2 1 1
2

1 3 4 3 2 1 1
2

2 3 4 3 2 1 1
2

Then we see that Φf = ∅, which implies that m cannot satisfy (5.3.5).
Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have

Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.
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5.4.10 (F4, {α2})-type

Let
(
c1 c2 c3 c4

)
denote the root c1α1 + · · · + c4α4 of F4.

Φ+3 consists of the following roots:

1 3 4 2 2 3 4 2

Φ+2 consists of the following roots:

1 2 2 0 1 2 2 1 1 2 3 1 1 2 2 2 1 2 3 2 1 2 4 2

Φ+1 consists of the following roots:

0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1

0 1 2 0 1 1 2 0 0 1 2 1 1 1 2 1 0 1 2 2 1 1 2 2

Then we see that Φf = ∅, which implies that m cannot satisfy (5.3.5).
Let (M (m),Dm) be the standard differential system of type m. Since f = {0}, we have

Ch(∂Dm) = {0}. Therefore, it follows from Propostion 5.7 that (M (m),Dm) is locally
embedded into a 2-jet space (J2(Q,n1),C2

Q) but Dm has no n1-dimensional integrable
elements and manifolds.

5.4.11 (G2, {α1})-type

We have Φ+3 = {3α1 + 2α2, 3α1 + α2}, Φ+2 = {2α1 + α2}, Φ+1 = {α1, α1 + α2}. Then
Φf = ∅, which implies that m cannot satisfy (5.3.5). For more detail, we refer to [Car10],
[Tan70], and [Yam93].
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