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Abstract

Phase unwrapping is a crucial and challenging step to mdéatptacessing chains based on
phase information in many fields of research, such as magrestbonance imaging, synthetic
aperture radar interferometry and optical metrology. Ithedse research fields, the measured
parameters are modulated in the form of two-dimensionadj&ipattern. To retrieve the phase
information from the fringe pattern, Fourier domain filtegior phase shift technique can be
used. The retrieved phase values, which are wrapped phrastheadistribution of principal
values ranging from-x to 7. Thus, phase unwrapping procedure is needed to get back the
unknown multiple of27 to each pixel. This is why many algorithms have been proposed
for phase unwrapping. However, there is no agreement batieecurrent phase unwrap-
ping algorithms for different applications, due to the &xmee of disturbance in the measured
phase data. In the case that there is no disturbance in tlse plada, the unwrapped phase
can be obtained by integrating the phase gradients over hioéevdata samples, which is in-
dependent from the integration path. However, there areraksources of errors in the phase
images. Firstly, phase aliasing occurs when the true phameges by more than one cycle
(27 rad) between samples, which was caused by long baselirjest®discontinuities or high
deformation. The second source is noise, which may be cdnssgeckle noise, electronic
noise and/or fringe breaks. Those defected points in thesuned phase images are called
singular points (SPs). To exclude these invalid areas frowrapping process and get precise

unwrapped phase results can be a time-consuming process.

For this purpose, we proposed two novel phase unwrappirggitidgis for noisy phase im-
ages. The first algorithm is called rotational and direct pensators for phase unwrapping
(RC+DC). The RC+DC algorithm is a new phase unwrapping aggrdor noisy wrapped
phase maps of continuous objects to improve the accuracg@ngutational time require-
ments of phase unwrapping using a rotational compensatoy (fethod. The RC method
uses local phase information to compensate the singulaaity of phase map caused by ex-
istence of SPs. It computes the compensators through sagiegpthe effect of each SP by

adding an integral of isotropic singular function along dmyps. However, the RC method
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has a drawback of undesired phase error because the RC $tgoafiplied to the regular re-
gion with no SPs as well as to the singular region. In addjtibe RC method required high
computational time cost when the measured phase data eemeany SPs. Therefore, the
proposed algorithm (RC+DC) aims to overcome the disadgastaf the RC method. It uses
direct compensator (DC) for adjoining SP pairs, and usesd®©ther pairs. The adjoining
pair is a dipole which consists of two SPs with opposite sigeparated by one pixel hori-
zontally or vertically. The RC+DC method is fast, howevés,accuracy is not guaranteed.
Its accuracy is depending on reducing the times for usingrtbeéechnique that increases the

phase distortion in the unwrapped results.

The second proposed algorithm is based on singularity cosgten for cluster regions of
SPs; it aims to improve the performance of phase unwrapmimga localized compensator
(LC) method regards the memory shortage and computational requirements. The LC
method regularizes the inconsistencies in local areas;iwdnie clusters, around the SPs by
integrating the solution of Poisson’s equation for segsenéach cluster to evaluate the com-
pensators according to a certain mechanism. The originahe@od uses boundary element
method (BEM) to get the compensator values. However, BEMyee large error in the re-
sults when the singularity sources are position near toggensnts which compensators are
computed for them. Hence, the LC method also use singulaev@d¢composition (SVD) to
fix the errors produce from BEM step. We refer to the origin@lmethod, which uses BEM
and SVD method to obtain the compensator values, as LC.bam+s terms of accuracy,
the method using LC is superior to the other methods. De#iigeLC method has a major
disadvantage of computational cost since this method regjlong time cost to compute the
compensator values and to reduce errors. Therefore, tc@werthese drawbacks, we use
a new way to produce the compensator values. The proposedtiaig solves the Poisson’s
equation by using rotational and divergence operators tahgecompensators without any
effect of the singularity source positions. Hence, the neyppsed method does not need any
further steps to fix errors. We called this new proposed ntetsoL C phase unwrapping al-
gorithm based on rotational and divergence operators ¢t€div). The proposed LC.rot+div
algorithm is tested on both computer-simulated and experial noisy phase data. The results
show that the proposed LC.rot+div algorithm is faster coragdo the original LC.bem+svd

algorithm, meanwhile it keeps the same level of accurache@iinwrapped results.



As a summary, the proposed phase unwrapping algorithms PRCand LC.rot+div) have
been evaluated extensively using a set of simulated andiexgr&al phase data obtained from
various optical applications, such as interferometri@aatd Fourier transform profilometry
data. In addition, these proposed algorithms are also cadpa existing phase unwrapping
methods, such as the method by Goldstein et al. and leaatesgonethod with discrete cosine
transforms .... etc. The results show that the proposeditiges give better performances
regards the accuracy and computational time cost. Thexefioe two new proposed phase
unwrapping algorithms (RC+DC, LC.rot+div) are applicafde dynamic three-dimensional
shape measurements and applications that are requiregllaage data size, such as computed
tomography (CT) measurements.

Keywords: Interferometric measurements, Three-dimensional shagssuanements, Holo-

graphic data, Fringe analysis, Phase extraction, Phaseppiag, Image processing.
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CCD
SIN

SP

FTP
VSP
PDE

FT

DCT
FFT
LS-DCT
SSPU
RC
USP
DC

LC
BEM
SVD
CT

Symbols

I(z,y)
U(z,y)
fo
Po(7,y)
¢(z,y)
Ad(z,y)

AT
W]

Charge-coupled device
Signal-to-Noise ratio

Singular Point

Fourier Transform Profilometry
Virtual Singular Point

Partial Differential Equation
Fourier Transform

Discrete Cosine Transform

Fast Fourier Transform

Least-Square method by using Discrete Cosine Toamsf

Spreading Singularity Phase Unwrapping
Rotational Compensator

Unconstrained Singular Point

Direct Compensator

Localized Compensator

Boundary Element Method

Singular Value Decomposition

Computed Tomography

The intensity recorded on the CCD(at y) point,

The value of the wrapped phase,

The spatial-carrier frequency,

The phase of the background zebra pattern,

The phase of the distorted fringe pattern,

The phase caused by the object’s height distribution,
The value of the wrapped phase at pikel phase map,
Wrapped phase difference at pixeh phase map,

Wrapping operator, wherer < W] < +,
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Wrapped phase gradient at pixeh phase map,
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The SP residue,

The estimated unwrapped phase,

Horizontal wrapped phase gradient in x direction,

Vertical wrapped phase gradient in y direction,

Minimum discontinuity error in.2-norm sense,

Matrix that perform the discrete Laplacian operation,

Column vector containing the unwrapped phase values wahittkei solution,
A column vector containing the discrete Laplacian operatio the wrapped phase
differences,

Horizontal weightings,

Vertical weightings,

Matrix of weight values of every pixel in the phase map,

The wrapped phase difference vector between two adjoireds
The position of the pixel of interest, position of the adjampixel, and unit vector
of directionr’ — r, respectively,

Residue point valuey, € {—1,0,1},

A sum of the number of that not satisfying the sampling thegre
A rotational vector that is a rotation of a vector potential,

The cylindrical coordinate,

Unit vectors forR-axis andz-axis, respectively,

The outward normal unit vector to the path £ S x 2)

The effect of a single SP,

The effect of the dipole SPs in two dimensional space,

The difference vector from the negative SP to the positive SP
A phase average and a non-singular phase fluctuation, tesggc
A compensator regularizes the singularityldf

The RC for thei-th segment to cancel the singularity of

the j-th SP,
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S; The residue of thg-th SP,

0,11, andd; ; Azimuthal angles of both ends of tii¢h segment,

DCJ? The DC of a segment that is related to the adjoining pair,

T; The sign direction of'C?,

adj ™ (i) The positive SP number which belongs to the adjoining pair,

adj (7) The negative SP number which belongs to the adjoining pair,

i the segment number,

m is defined,n} = 1, whenad;™ (i) or adj~ (i) has a value of; otherwisem’ = 0,
Z The perpendicular unit vector to the domain surface,

A, The flux density that describes the spreading of singudg;iti

€L The error vector on thg-th segment in thé-th elementary loop,
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Chapter 1
Introduction

Optical measurement techniques such as interferometryfrange projection profilometry
have become crucial tools in many areas of science and esrgige Since these techniques
have the features of non-contact characteristics andyhagidurate measurement capability.
However, most optical methods require the processing oihgdrpattern. The intensity of
the fringe pattern which is produced by these optical metmeddulates the physical quantity
that is measured. This intensity varies as the cosine of agoWaich is most often directly
proportional to that physical quantity. Thus, the accuratyneasurements carried out by
these optical methods is strongly dependent on the accwidityvhich the underlying phase
distribution of the recorded fringe patterns is estimai@fferent methods are used to demod-
ulate fringe patterns in order to obtained the desired mé&dion. These method are referred
as fringe pattern analysis techniques [1-5]. Any of theswér analysis algorithms can be
divided into two main processing stages: phase extractwnplase unwrapping. The frist
stage is to extract the phase information from the fringegpat Fourier domain filtering [5—7]
or phase shift techniques [6, 8, 9] can be used for that. Ttraa®rd phase values, which are
wrapped phase, are the distribution of principal valuegiramfrom —= to . Thus, phase
unwrapping procedure is needed to get back the unknownpteutif 27 to each pixel, which
is the second main stage in any fringe analysis method. Hemvéwe defects in the fringe
patterns, such as phase discontinuity, shadow, and/oe raoesthe main difficulties in the
phase unwrapping methods. To exclude these invalid areasudnwrapping process and get
precise unwrapped phase results can be a time-consuminggstoDespite no small num-
bers of methods to estimate unwrapped phase map have bgmsedy the problem of phase

unwrapping remains unresolved.

Fringe analysis techniques are considered to be an e#eatid reliable optical noncontact
methods for surface shape measurements. In these technayst&uctured lighting pattern

is projected onto the surface of an object. According to tivéase shape of the object, the
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Figure 1.1: Fringe analysis for an object

projected pattern will be modified. This pattern is capturgé CCD camera and then stored
into computer memory. The image is then analyzed by one pfdrianalysis algorithms
to extract the phase information and retrieved the contisdform of the phase distribution
by applied one of phase unwrapping methods. Finally, bygupimase-height relationship,
the object height shape can be determined. Figure 1.1 suredahese steps about fringe

patterns analysis.

Driven by these motivations, both theoretical aspects efpghase unwrapping problem as
well as practical algorithms for its solution is examinedthms dissertation. However, we
begin with a brief explanation for the main stages of fringalgsis methods to figure out the

problems of phase processing and the circumstances in \wiegtarise.

1.1 Phase extraction

Many techniques have been proposed for the analysis ofefqpagterns. These techniques
vary in accuracy, the number of frames required and proogdsne. The aim of any fringe
pattern analysis algorithm is to obtain the phase inforomathodulated into the fringe pattern.
This phase is wrapped betwepnr, 7) and needs to be unwrapped, as will be shown in the
next section. Fringe pattern analysis algorithms can besiflad into two categories, which
are spatial and temporal techniques. Spatial methodslatddhe phase of a pixel in a fringe
pattern depending on its neighboring pixels. Examples @iagial technique such as Fourier

fringe analysis and direct phase demodulation. Spati@higoes require at least one fringe
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pattern to calculate the phase components. In contraspaialgorithms require at least
three images to calculate the phase of a pixel dependingeorathes of that pixel in different
images and independent of its surrounding pixels. An exampf a temporal methods is
phase stepping. However, in this study our main concerrsrigrithe unwrapping stage in
the analysis of fringe pattern process. This is why we wilgant only one of famous fringe
analysis technique for phase extraction stage in chaptethizh is Fourier fringe analysis

method.

1.2 Phase unwrapping

Phase unwrapping is a technique used on wrapped phase iteagaaove ther discon-
tinuities embedded within the phase map. It detecs @hase jump and adds or subtracts
an integer offset 027 to successive pixels following a threshold mechanism,,treigeving
the contiguous form of the phase map. To clarify the concéphase unwrapping technique
consider an example for one-dimensional data as shown inlE2g The actual phase data
shown by the solid line is continuous function; it has valgesater thar2w. The measured
phase (wrapped phase) shown by square symbol is detectisdrate point, its values stored
in the rangd —, 7). From the figure, it can be found that the wrapped phase ha= pmaps
because it represents the fractional part of the unwrappasigp The filled diamond symbol is
the unwrapped phase calculated from wrapped phase by agygertain process to remove

the gaps.

Phase unwrapping is not a straightforward step because qfdabsible presence of different
error sources and problems. Figure 1.3 shows examples ediorensional phase unwrap-
ping to illustrate the effect of phase aliasing or insufitisampling rate on the unwrapping
process. In the figure, the true unwrapped phase, whichagiased with a physical quantity,
is shown by solid line. The measured phase, which is wrappadepshown by square sym-
bol, is detected at discrete point. The range of these plimgéthin [0, 1) [cycle]. The filled
diamond symbol is the unwrapped phase calculated by addisigfdracting an integer offset
of 27 to the previous successive point. According to samplingmyyenore than two samples

per period of the highest frequency component must be adaifhe Nyquist rate defines

5



Introduction

Or'iginal data
Unrapped data & :
Wrappeddata O

Phase (cycle)

0 4 8 12 16 20 24 28
Sampling point

Figure 1.2: Concept of phase unwrapping technique

this minimum sampling rate [10]. Alternatively, samplingtiae Nyquist rate is equivalent to
constraining the phase change to less tharcycle orr radian per sample everywhere. In or-
der to perform the phase unwrapping process in this exartmaelifference between a sample
and the preceding sample (directly adjacent on its leftplsudated. When this difference is
larger thant+7 or smaller than-7, a wrapped phase is detected. Once the detected wrapped
phase is found, the value 0fr is either added or subtracted to or from this sample and also
all the further samples to the right-hand side of this samfpigure 1.3(a) shows a successful
case for phase unwrapping process. This is due to that theeruoh sampling points,which

is 35, is greater than Nyquist rate. It is clear that positiyeles are applied at the fifth and
seventh point in Fig. 1.3(a), as well as, negative cycleapptied around the position df2
and5.0. Meanwhile, Fig. 1.3(b) shows the result for unsuccessfulrapping process case, in
which the number of sampling points is slightly under the diggrate. Comparing results in
Fig. 1.3(a) and that one shown in Fig 1.3(b), it can be foumd tthe sixth pointin Fig. 1.3(b)
got a negative cycle at the sixth point, this result has eatdhis point. Furthermore, since

the unwrapping is applied to the rightward direction, thevtapped phase results in the right-
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hand side region of this point show incorrect results. Tlasoa for such incorrect results is
due to shortage of sampling points. However, consideringumtlary condition such as the
unwrapped phase must be zero at both ends, it can be fourat teast one unwrapping error
isincluded at any point in the region, which is called indstency in subsequent descriptions.
This additional condition (boundary condition) plays arportant role to fix the unwrapping
errors. Figure 1.3(c) shows the number of sampling pointisessmallest among the studied
cases. It shows that the unwrapped phase is not identicakttrie phase. However, any
inconsistency cannot be detected from the boundary conditi means that the number of
incorrect adding cycles with 1 is equal to that with-1, and the result seems good. It can be

concluded that consistency is one of requirements but noffigient condition.

Figure 1.4 shows examples for one-dimensional phase upivrgprocess in case where the
data contains noise with different magnitudes and0.2 cycles, respectively. The noise is
applied before phase measurements. In the figure, the tramephith noise is shown by
dotted line. The result of Fig. 1.4(a) shows that the phas@apping is completed success-
fully. However, Fig. 1.4(b) shows incorrect unwrapped ghessult, this is due to that the
noise ratio is too high. Also, it can be detected that thenedsnsistency by considering the
boundary condition at the ends of region as similar to the cdshortage of sampling points.
Also, when the magnitude of noise is grater thah it is worth to mention that the phase

unwrapping cannot be applied.
Therefore, from last examples we can summarize the proltleansffect the phase unwrap-
ping process as follow:

e Low S/N ratio of the fringes caused by electronic noise, klgegoise.

¢ Violation of sampling theorem.

e Object discontinuities.
As a result, many phase unwrapping algorithms have beerap®ein an attempt to solve
these problems. However, the variety of forms and dendiiethe noise that might be found

in real wrapped phase maps makes the problem of phase unagappre complex and dif-

ficult to solve, even with given the significant amount of sesé effort expended to date
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and the large number of existing phase unwrapping algosthAithough various methods
to estimate a correct unwrapped phase map have been propbsgdan be divided into
three categories. The first category contains algorithrasdan following the paths [11-18].
These methods involve integrating the phase gradient @lgir an image over a path start-
ing from a certain point and going over all the pixels, in @®g unwrapping the image. Path
independent unwrapping is obtained in the absence of estocas (singular points) that can
arise from either noise or object discontinuities. The wapped result is independent of the
unwrapping path; hence, the complete phase map is cortsistewever, in the presence of
corrupted pixels (singular points), taking just any pathaspossible anymore. Consequently,
unwrapping becomes path dependent, where it has to mareeetween pixels choosing the
best path to follow where the pixels are not corrupted byrefifo overcome path dependence,
many ways have been suggested and implemented. Hence,beaid that path following
methods fist search for singular points (SPs), then paietB&s by placing branch cuts. By
examining the branch cuts and determining if any appear toldeed poorly or any isolate
a region, it can be determined whether or not the paths caallog/éd to retrieve the phase

maps, as well as whether these methods succeed or fail.

The second category includes the methods which use thedegaates approach [19-25].
These algorithms use a different way for unwrapping imageevstill using the estimated
phase gradient. They use the same idea of minimization afetis gradients difference
squares as used in the leased-squares approach. Thesenddfe are taken between the
wrapped phase gradients and supposed unwrapped phasenggadin these methods, a
smooth solution is achieved by the resultant minimizatidhat can be done by integrating
over all the possible paths within the image not like patlofeing methods, which integrate
over one single path, thus, spreading the error over theanhwge. Like the previous meth-
ods, these methods also encounter a large number of errogsaaorrupted region is present
in the image. Hence, weighting parameters are introducexidoide corrupted regions. How-
ever, the success of algorithms using such a method reliesansing the weights, which puts
a huge load on the performance of the algorithm. One advambilpese methods over algo-

rithms based on following the paths is unwrapping SPs rigiores.

The last category is denoising-unwrapping methods [26-Blis type of methods performs
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phase map denoising to remove noise from wrapped phaserayai§ltering process. The fil-

tering process is sometimes applied before the unwrappoweps such as windowed Fourier
transform method [28], or it is applied simultaneously witle unwrapping process such as
dynamic filter method [29, 30]. These methods can reducedisemvithin the original spatial

resolution. However, they have a minimum signal-to-no&erfor the wrapped phase data
in which this method start to fail to obtain accurate unwegpphase result. In addition, the
unwrapped results of these methods are highly dependinglaxation parameter, which can

control the cut-off frequency of the filter.

1.3 Objective of study

Current interest in two-dimensional phase unwrapping leas Inotivated largely by coming
on techniques based phase measurements. In these measgsrgraperties of two or more
waves are diagnosed by studying the pattern of interfererested by their superposition,
and depending on how the data are processed. However, thendat usually be unwrapped
before they can be made useful. In fact, incorrect phaseappimg is often the most signifi-
cant source of error in these measurements. For this retlfgomain objective of this research
study is the development of accurate, efficient, and roboas@® unwrapping algorithms for
wrapped noisy images obtained from various optical apfitina. We propose new methods
to compensate the inconsistencies and to confine the effeathb one in a local region, how-
ever, they do that in different ways. The unwrapped resudlthese proposed methods are
similar to that of the methods based on the least square oethtowever, the unwrapping is
carried out along successive pixels as similar to the pdlbviong methods. To achieve the

main object of this study, the following steps are done:

e Investigate and demonstrate the phase unwrapping prooesprablems deeply. In
addition, a brief overview of the existing phase unwrappimehods and ideas should be

provide. Then, programming these existing phase unwrgpgdgorithms is generated.

e Figure out the ideas and prove them to propose efficient acuraie unwrapping al-

gorithms. Then, implement these new ideas to have appligaidse unwrapping algo-
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rithms in reality. After that, examine the proposed aldorits for simulated and actual

phase data to check their performance.

e Carry out comparisons between the proposed algorithmdwarekisting phase unwrap-
ping algorithms to evaluate the quality and validity for tihrevrapped images taking in
consideration the noise level and time cost for the simdldega. Furthermore, com-
parison for these algorithms is done for experimental pldas obtained from various
applications to examine the applicability and validity loése methods for actual phase
data.

1.4 Synopsis of the thesis

Chapter 1 is an introduction to the research by throwing ithiet lon the subject and main
objectives of the study. In chapter 2, a background abousgleatraction and unwrapping
is presented. In addition, a brief study for some of the egsbhase unwrapping algorithms
is also introduced. Chapter 3 presents a detailed exptanafithe phase unwrapping al-
gorithm based on rotational compensator that is the mapm fstethe first proposed phase
unwrapping algorithm which is explained in details in cleapt. In addition, the applica-
bility of the first proposed algorithm is demonstrated byngssimulated and real wrapped
phase data is also given chapter 4. Furthermore, this ahsiptevs a comparison between
the proposed algorithm and the existing phase unwrappgai#thms to examine the quality
of the unwrapped results for actual phase data. Meanwthibgpter 5 presents the idea and
details description of the second proposed algorithm fasphlunwrapping. Beside that chap-
ter 5 shows the unwrapped simulated and experimental sefsulthis proposed algorithm to
demonstrate the performance of the proposed algorithmdsyrphase images. Finally, the
work accomplished is concluded in chapter 6 with commenmgandng the significance of the

work accomplished.
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Chapter 2

Background of phase extraction and
unwrapping processes

2.1 Introduction

Many techniques allow the measurement of physical praggebi@sed on the retrieval of phase
information encoded in an interference pattern. Techrsgueh as profilometric [32, 33] and
interferometric [34, 35] methods measure mechanical pt@se(e.g., strain or deformation)
of materials. These technigues encode the informationtadgysical quantities as phase data
found in the measured intensity of a two-dimensional fripgtern. Therefore, the accuracy
of measurements carried out by these optical techniqué®isgly dependent on the accuracy
of fringe analysis techniques that use to retrieve the ptes$eabution of the recorded fringe
patterns. In general, the true phase may range over a largeval thar2z, which implies
that the obtained phase may contain discontinuities. Foyrngaars Fourier transform fringe
analysis technique [36] has been regarded as being fasebable technique for the analysis
of fringe patterns. This technique extracts the phase ofngdrpattern by using Fourier
transform and carrying out filtering in the frequence domaime phase produced by the first
stage is wrapped contairs jumps, which should be removed by using phase unwrapping

algorithm.

In this chapter, the processes of phase extraction and ppwag will be defined and ex-
plained in detail. The methods and techniques that use taand calculate the phase from
a fringe pattern are introduced; since this step, phasacdn, is strongly affected the ac-
curacy of results obtained by the unwrapping process. laness this chapter will explain
the important terminologies such as singular point (SP)samglularity in phase unwrapping
specifying how to locate SPs in the phase map. SPs are lomahsistencies that prevent

straight-forward unwrapping. Furthermore, the branchtectinique used to avoid the SP ef-
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Figure 2.1: A schematic diagram of an experimental setup system of ttdarometer tech-
nigue measurement.

fect will be presented. In addition, existing two-dimemgbphase unwrapping methods will

be presented. This chapter will help in understanding thienah presented in later chapters.

2.2 Phase extraction and calculation

Here, we present two famous examples of applications tleabased on phase measure-
ments to obtain their desired results. The two exampleswegerometric measurements and
Fourier transform profilometry measurements. In each el@me start by introducing the
principle of system setup for measuring and how the phasetiaaed from the measured

data.

2.2.1 Phase extraction for interferometric measurements

Interferometer is a technique of measuring the phase mboltom the light reflected or

transmitted from a projected object to screen in the forrmtdrference pattern. The optical
setup of interferometric system is shown in Fig 2.1. For theasuring, light from a laser
is divided by a beam splitter into two beams, one for objdatmination and another for a

reference. The object beam illuminates the object, thmithating light is transmitted through
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the object toward the detector, where it forms an image obtfject on a CCD camera. An
interferogram is a fringe pattern formed on the CCD as a teduhe interference between

the reference bean®, and the object beand). The intensity recorded on the CCD is given

by
I(z,y) = |R]*+ |0 + RO + RO", (2.1)
whereR* andO* denote the complex conjugates®fandO, respectively.

The last two terms of Eq. (2.1) contain information about déineplitude and the phase of
the object. To retrieve the phase information, two techesqare partly used. One is the
phase shift interferometry [6, 8, 9], in which several fiengatterns are recorded by varying
the known phase shift introduced to one of the beams in trexfextbmeter system. The
other one is spatial filtering for interferogram using theif@r transform method [5-7]. The
Fourier transform method requires only one fringe pattbowever, high frequency part of
spectrum in Fourier domain cannot be used. A schematicahagiescribing the use of the
Fourier transform method is shown in Fig. 2.2. In the figuine, Fourier spectrunf,(kx, ky),
shows a symmetrical distribution of the origin. Tﬁﬁ(kx, k,) is the filtered spectrum in
which the zero-frequency component and one of the symnaéttistributions are eliminated.
The center of gravity of the filtered spectrum can be alsoinbth There is a problem in the
filtering of the spectrum that we normally cannot determitgclv non-zero spectrum should
be eliminated. However, even when the eliminated term iernect, the sign of the phase
modulation is only inverted. Therefore, if we know the sidgritee phase modulation, we can
determine it after the phase unwrapping. After filtering anvetrse Fourier transformation the
complex amplitude of the wave front is obtained. From the glemdigitalized amplitude,

the phase of the wave front is calculated by the relation

Im[O(z, y)]
REO(z, y)|’

where Im and Re denote the real and the imaginary parts,aaglg. ¥(x,y) denotes the

U(z,y) = arctan (2.2)

estimated phase obtained from the evaluation of the inmtegfam, and it is a wrapped phase

ranged in the interval from-r to 7.
However, a major problem with interferometric techniquiesttrecover phase information
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Figure 2.2: Procedure for calculating the phase from an interferograRT. Fourier trans-
formation, FT! inverse Fourier transformation, th&(z, ) is a fringe pattern

~

for interferometric data, thé (., k,) shows Fourier spectrum of the fringe pat-
tern, theF'(k,, k,) shows the filtering function, thg- (%, k,) shows the filtered
spectrum, théV {®(z, y)} is the wrapped phase modulation.

is that the reconstructed phase is mathematically limibetth¢ interval(—=, 7]. Therefore,

unwrapping process is needed to apply for retrieving theicoaus phase form.

2.2.2 Phase extraction for Fourier transform profilometry measurements

Noncontact measurement methods are employed to deterhen@ree-dimensional height
distribution of an object. Several three-dimensional obofilometry methods are con-
cerned with extracting the geometry information from thaga of the measured object, such
as Moiré topography [37], phase measurement profilom88j; Fourier transform profilom-
etry (FTP) [39], and many other methods. These methods aflimaaccuracy, the number
of frames required, and the processing time. FTP is corsidas one of the most popular
among them. The FTP method is usually implemented as folltvitgally, a Ronchi grating
or a sinusoidal grating is projected onto the object’s sfaThen, a sequence of dynamic
projected zebra-patterned images can be captured by a G8&a#&om the other view point.
The projected fringe patterns are deformed or phase madulat the height distribution of

the object. Then, the deformed fringe pattern images arlyzet or demodulated using a
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fringe analysis algorithm to extract the phase distributvd the fringe patterns. Finally, the

height distribution of the object can be evaluated from theddulated phase.

The optical geometry of the measurement system for an objeuasing the traditional FTP
is as shown in Fig. 2.3(a), in which the optical axes of a mtojeand a camera lie on the
same plane oy = 0. The camera is focused to the reference plane, where themete
plane is a virtual plane that serves as a reference from whelobject height is measured.
The reference plane is located at= 0. The projector illuminates the sinusoidal pattern
to an object, as illustrated in Fig. 2.3(b). The directiontleé illuminated light is oblique
to the reference plane. The angle between the camera dimemtid the illuminated light
direction isf (wheretan(0) = dy/lp). When a sinusoidal optical field is projected onto a
three-dimensional object, the images of a projected frpageern and an object with projected

fringes can be represented by the following equations:

go(x,y) = alx,y) + b(x, y) cos[27 fox + Po(x, y)], (2.3)
g(z,y) = a(z,y) + b(z,y) cos27 for + ¢(z,y)], (2.4)

wheregq(x,y) and g(z,y) are the intensity of the images at the, y) point, a(x,y) rep-
resents the background illuminatiob(x,y) denotes amplitude modulation of the fringes,
b(x,y)/a(z,y) is the fringe contrastf, is the spatial-carrier frequency, arnd(x,y) and
¢(x,y) are the phases of the background zebra pattern and theteisfange pattern ob-
served from the camera, respectively. The phase fungtiony) contains the required infor-

mation about the shape measurement of the object, whichecegpbesented as

where¢y(x, y) is the phase caused by the angle of projection corresponalitig reference

plane, and\¢(z, y) is the phase caused by the object’s height distributionyevhe
Ag(z,y) = 27 foAx. (2.6)

The task now is to find the relationship between the extrgat@de and the height distribution
using the geometric system. As shown in Fig. 2.3(b), they&iprojected from the projector

reaches the object at poift and will cross the reference plane at paiht The relationship
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Figure 2.3: Experimental setup of three-dimensional shape measuteystem. (a) geome-
try for the projecting and imaging grating pattern on the ety, (b) sketch map

for projected light pattern.
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between the height to be measuréd, ), and the shift distance)z, by the object on the
reference plane is
Ax

Mz, y) = tan(6)

lo
= Ar— 2.7

wherel, andd, are distances, as shown in Fig. 2.3(a). From egs. (2.6) aiyl (Be height
distribution of the object can be presented by the phasg ahif z, y), as follows:
A(b(.’lf, y)lO
h = —"2 2.8
(@,y) = — Tl (2.8)
Unfortunately, most fringe analysis techniques produce-eatled “wrapped phase” instead
of the required continuous phase. Consequently, phaseapping algorithms are required to

recover the true phase from the wrapped phase.

2.3 Phase unwrapping

Phase unwrapping has been a research area for more thandadede Hundreds of papers
have been published aimed at solving the phase unwrappatdgon. Many phase unwrap-
ping algorithms have been suggested and implemented. @kerrdor such interest in phase
unwrapping is due to many applications in applied opticstbquire an unwrapping process.
Many phase unwrapping algorithms has been developed ondiata from a particular appli-
cation. There is no universal phase unwrapping algoritrah¢bn solve wrapped phase data
from any application. Moreover, phase unwrapping algargrare generally a trade off be-
tween accuracy of solution and computational requiremegsen so, the most robust phase
unwrapping algorithm cannot guarantee in giving succéssfacceptable unwrapped results

without a good set of weights.

2.3.1 Phase unwrapping definition

Commonly, most of phase unwrapping algorithms are basederassumption that the true

unwrapped phase data varies slowly enough that neighbphiage differences values are
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within one half cycle £ radian) of each other. If this assumption is true everywtlibee

unwrapping process can be applied simply by integratingoped phase differences, or gra-
dients, along any path from pixel to pixel throughout the gghdata to obtain unwrapped
phase. In one-dimensional phase unwrapping, this prosespeated from first end point
region (first pixel) toward the second end point region (tasel); hence, the phase difference

can be calculated as follows:
AV =T, — U, (2.9)

whereV; is the wrapped phase at pixein phase map. When the phase differentds’ is
larger than a half cycle the wrapped phase is shifted onescgad the shifted difference is
again smaller than a half cycle. This shift operation is sashe wrapping operation used to

obtain the principal value of the true phase. The wrappireyator is defined as follows:

T

b,
U, = W[P;] = &; — Int {2—} o (2.10)

where—7m < W[®;] < +m, @, is the continuous true phase at pixeh phase map and
Int[.] means a function that returns the nearest integer. The \m@gumperatorid[.] could
be modified to specify the corrected gradient phase differevil’ between two successive

pixels in the unwrapping path as:

VU = W0, — U,_] (2.11)

In two-dimensional phase unwrapping, there are paths wip;lit means that the last point
can be considered as the first point. In the absence of discdgtsources, the unwrapped
result is independent on the unwrapping path; therefore uttiwrapped phase map is con-
sistent. Consider that the path of loop consista/bpoints, using Egs. (2.9)-(2.11) we can

retrieve the true unwrapped phase as follows:

M

By = Do+ Y VI (2.12)
i=1

Thus, by using Eqg. (2.12) phase unwrapping will be capablett@ve the contiguous form of
the phase map. However, in the presence of discontinuithegath of integration becomes

dependent and just taking any path is not possible anyméi€q.1 (2.12) is used by itself
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Figure 2.4: Elementary path in two-dimensional coordinate for visuialg SP identification:
the white circles denote points at which the phase valueslefmed, the thick
arrows denote the direction of the path around the testedti8Pplack circle
illustrates the position of the tested SP.

to retrieve the unwrapped phase map, it may result in theiaddir subtraction of incorrect
multiples of27 which will then propagate throughout the rest of the phase. rRa&strictions
must be used on the unwrapping path in the corrupted areash wdsult in the path being
path-dependent. To avoid this situation, corrupted arehsch are singular points (SPs),
must be identified, balanced and isolated using barriean@br cuts) from the rest of the good
pixels in the phase map. Once SPs are isolated, phase unmgapiti take an independent
path avoiding these branch cuts, thus, retrieving the thase.

2.3.2 Singular points and branch cuts

A path in the two-dimensional phase map consists of a seguehlorizontal and vertical
segments joining adjacent points. To find SPs, considersedlpath starting in every point
defined by the corners of & x 2 square, as shown in Fig. 2.4. In the figure, the circles
denote points at which the wrapped phases are defined. Thkeaitows show the direction
of the considered elementary path that surround the tefRedt® filled circle denotes the
position of the tested SP, for simplicity every SP is defineith@ center of the loop. The SPs
are marked the start and end @f discontinuity line. They are identified by summing the

wrapped phase gradient,V’, as follows:
N
> VU =278 (2.13)
=1
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(a) (b)

Figure 2.5: Unwrapping path with the existence of the branch cuts in thasp map: the
thick dashed line denotes the branch cut that connects twppdsite sign SPs,
the thick arrow shows the direction of unwrapping path; arrect unwrapping
path, (b) correct unwrapping path.

whereS is the SP residue. The SP is called a positive residue whenEq. (2.13) is+1;
otherwise, it is called a negative residue wiseis —1. While, S = 0 indicates that no residue
exists. In the case of SP is presented, the result of Eq. )(isHways at1 or —1 because

the2 x 2 closed path cannot encircle more than one residue[40].

When a closed path includes same number of SPs with poséisidues and that ones with

negative residues the integral of phase gradient alonghtbsen path is equal to zero, thus,
the unwrapping process is carried out successfully. Thisbeachieved by placing lines

between SPs with opposite signed residues, which are dadaeth cuts. These branch cuts
act as barriers to prevent the unwrapping path to cross ti@mslft, 16—18], as shown in

Fig. 2.5 which illustrates the principle of unwrapping anduthe branch cuts. In Fig. 2.5(a)

the unwrapping path is going thorough the branch cut whichideeen placed to connects two
SPs in the wrapped phase map. Therefore, errors will prapagal creatér discontinuities

in the unwrapping phase map. On the other hand, Fig. 2.5¢Wskhe correct unwrapping

path that avoids the branch cut, consequently, error pedpagin the unwrapping solution is

avoided.

Many different kinds of SPs exist in the wrapped phase mapethby phase noise, spatial
under-sampling of phase, object discontinuity, etc. Sihsheae one of two forms, of which
dipole SPs or monopole SPs. Dipole SPs are those SPs thatregairs of two opposite

residues; meanwhile, monopole is a single SP in which neesponding opposite residue
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partner is existed in the wrapped phase map [17]. One spégifecof dipole SPs is called
phase noise generated dipole SPs. This is caused by themdhduation of phase due to
noise, which results in the wrapped phase gradient excg¢ﬁ’|ﬁr| > . Each pair of SPs
for this dipole type is often found close to each other (gaiheone pixel apart). This dipole
type can be easily identified and isolated in the phase magxAmple of phase noise dipole
SPs is shown in Figs. 2.6(a) and (b). The second type of SRedipoe dipoles that result
from under-sampling of the phase distribution. These @gpalre generated by the violation
of sampling theorem where the phase is not represented uffibient spatial resolution to
correctly represent the contiguous phase. This resultsatiad under-sampling steps greater
than+n/ — 7. This type of SPs dipole is characterized by that these SRsttebe well
separated when sampling theorem is broken, at which makes tlard to identify as shown
in Fig. 2.6(c).

Another kind of SP dipoles are dipoles caused by object dismoity. Sometimes wrapped
phase maps contain objects that are discontinuous by natugieas holes, sharp edges, cracks
or fluids of varying refractive index [13,41]. These diséoobus objects often generate SP
dipoles that are found on the discontinuity edges. The ex¢s of these SP dipoles depends
on the discontinuity size of the object. If the object disiauity exceedsr when wrapped,
this case will cause SPs. This object discontinuity SPsléijgocharacterized by that its SPs
tend to be well separated depending on the nature of therdisady, which makes them hard

to identify as presented in Fig. 2.6(c).

Basically, SPs appear as pairs of poles of opposite sign.edMervsome isolated SPs or SPs
of dipoles with long distances, which are called monopaitesy appear near the boundaries
of the phase map because the measurement domain is finitepvas s Figs. 2.6(d) and (e).
This can lead to that the number of positive SPs and negatigs m the measurement area
are different. Moreover, monopoles spread error througti@entire measurement area [46].
Therefore, it is needed to balance the number of positivenagdtive SPs. One solution is to
append virtual SPs (VSPs) outside the measurement ares, Qiamch cuts will link positive
and negative sources with each other forming dipole paird,then the error of monopoles
will be reduced. However, there are several positive andinegSPs in the phase map, hence,

there will be numerous possible branch cuts between thenarfypossible set of branch cuts,

25



Background of phase extraction and unwrapping processes
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Figure 2.6: Schematic figure shows SPs types: (a) one pixel apart digedegBnerated by
phase noise, (b) dipole SPs generated by phase noise s@ieetd apart, (c)
dipole SPs generated by discontinuous objects and undeplaag have the ten-
dency of lying far apart from each other and (d) & (e) are mooleSPs.

the unwrapped phase map is not the same, in spite of this oklyiowrapped phase map is
correct. To find the correct set of branch cuts, a criterios thabe set as an evaluation for
the quality of the unwrapped result. For example, Gutmarhveeber [17] used the distance

distribution of SPs inside the whole measurement area tmaie branch cuts set.

2.4 Existing phase unwrapping algorithms

In order to solve inconsistencies caused by SPs, many phagapping algorithms have been

proposed in the past. When we focus on the methods that htdred®&Ps directly, the phase
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unwrapping algorithms are classified into two types acecaydd the nature of the unwrapped
results, which are path following phase unwrapping metlamddeast squares based methods.
These phase unwrapping methods are presented in the fotj@ubsections. However, there
is another classification for the existing unwrapping mdthihat includes the methods which
do not handle the SPs such as denoising methods, we givefaekpianation about these

methods through section 1.2 in chapter 1.

2.4.1 Path following methods

A simple local phase unwrapping methods use independemirgagration between the start-
ing point and the end point to retrieve the true unwrapped@lvathe absence of SPs in the
wrapped phase map. They are a pixel-to-pixel integratiohrtigjues rely on local wrapped
phase values along a chosen path to construct the corregtitiase refereed to as unwrapped
phase. Thus, by using Eq. (2.12), these methods are capatg&ieving the contiguous
form of the phase map. However, this is not always the casetalthat the presence of noise
or corrupted areas in the wrapped phase map makes the inegrath becomes dependent.
When Eq. (2.12) is used by itself to retrieve the unwrappespmap, it may result in adding
or subtracting of incorrect multiples @fr, which will then propagate throughout the rest of
the phase map. Therefore, restrictions must be used on t&apping path in the corrupted
areas, which result in the path being dependent. To avadsttuation, corrupted areas which
are SPs must be identified, balanced and isolated usinghbcanis from the rest of the good
pixels in the phase map. Once SPs are isolated, phase unmgapiti take an independent

path avoiding these branch cuts, thus, retrieving the cbplease data.

Goldstein et al. method

The tree branch cut placement method, which is called Galust al., is one of the earliest
branch cut methods [11]. This method creates trees thakcoamumber of nearest neighbor
SPs where the net charge of every tree should be zero. Therafloen this method produces
a tree which is not neutral and is closer to the border thannauygralizing SP, this tree is

neutralized by connecting it to the nearest border pixeis fethod is very fast but it tends to
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Figure 2.7: Spreading of errors in regular regions due to the Goldsteethod handling way
for the singularity regions in the phase map: (a) SPs disititn map, (b) correct
placement of branch cuts, (c) incorrect placement of branwgdhines and phase
errors appear in regular regions.

isolate areas with dense SPs because branch cuts in suslofiszeclose on themselves. The
weakness of this method is the lack of a weighting factortf@armore, the choosing wrong
of a single branch cut causes errors propagate over the Wwhatge. To explain that consider
Fig. 2.7, this figure presents an example of SPs distributiap, shown in Fig. 2.7(a), and
the handling way of Goldstein method for these singulaetyions in the phase map. When
Goldstein method successfully can place the correct brantet between SPs, as shown
in Fig. 2.7(b); the obtained unwrapped phase result doebana any phase error and these
results are perfect results. This case happen when the 8Ngdigh, thus the number of
SPs is small. However, it is impossible to set the branch cotectly between SPs in the
case of low S/N ratio due to the existence of many SPs, as sholig. 2.7(c); making the
placement process of branch cuts more complicated. Therdfee unwrapping process can

not carry out correctly, and a lot of phase errors and jum@$amd, as shown in Fig. 2.7(c).

Noise-immune phase unwrapping method

The dipole branch cut method [12] uses the nearest neiglduwistic search to find the near-
est opposite polarity residue for every SP in the phase ntagpnhects the nearest possible
SPs pair with opposite SPs polarity by a single branch cut,des the same procedure to
the rest of the SPs until there is no SP not connected by bramchin the case of a SP
having the border closer than any balancing SP, the SP isecteth by branch cut with the

nearest border pixel, and this border as virtual SP. Oneldisdage of this branch cut method
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is that it often ends up with very long branch cuts. Many mdthwere proposed by using
more sophisticated search strategies, such as improveesheaighbor, simulated annealing,
minimum-cost matching, stable marriages and reverse ateullannealing, to find the cor-
responding dipoles with the minimum total connection l&ndi3, 14, 17]. An advantage of
these dipole methods over the tree method is that they asdikedy to create branch cuts
that isolate noisy regions in the phase map. The major dasddyge of the tree and the dipole
branch cut methods is that they use straight line branchwthitsh leads to unrealistic discon-
tinuities distorting the unwrapped phase map even thoughdttempt to balance the overall

SP reside in the unwrapped phase map; the example of thatisitus given in Fig. 2.7.

Flynn’s minimum weighted discontinuity method

Flynn method [15] suggests that the discontinuities in therapped phase, which are SPs,
must be restricted to areas of noise and true discontinuiitigg profile. These discontinuity
areas can often be identified by their low quality. This mdtivarks with or without quality
map to find the unwrapped phase surface that is matching terdygped phases and whose
discontinuities are minimal in some sense. The elementagyadion of this algorithm is to
partition the phase image into two connected regions, thise the unwrapped phase by

in one of the regions and reduce the minimal weighted sumswoditinuities. This is done
repeatedly until no suitable partitions exist. The operatiare found by creating paths that
follow discontinuity curves and extending them to form cdete partitions. The algorithm
terminates these iteration processes when no path can émdext The major disadvantage
of Flynn method is that it required too high computationatdicost since it use iteration
process during found its unwrapped results by minimize teghted sum of discontinuity
magnitudes. Furthermore, if too many of the weights are ,higls method may make poor
SP pairing due to low weight paths connecting the SPs arevadahle. This is similar case as
Goldstein method when it tries to place branch cuts for wedgghase data has high number
of SPs; therefore possibility of correct placement is powt a lot of phase errors will appear

in its unwrapped results, as illustrated in Fig. 2.7.
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2.4.2 Least squares based methods

Least squares based methods are completely different gthnfglowing methods. These
methods in general minimize up to a certain degree the driffeg between the gradients of the
wrapped and the gradient of the unwrapped solution in bathdy direction. This problem
is considered to be described by a solution of the partiémdintial equation (PDE) [24] by
appending symmetrical images outside the original image taking the Neumann condition
as a boundary condition [23, 24, 42]. Then Fourier transf@i) or discrete cosine transform
(DCT) is applied to facilitate faster computation [23, 2%Jowever, these methods do still
indirectly deal with the SP problem because their solutsooldtained by integrating over the
SPs to minimize the gradient differences [10]. The unwrdpplease maps do not contain
any continuous phase gaps, which had commonly appearee ipatin following methods.
The path dependency, which is considered as error or coeseguf the inconsistencies,
is spread throughout the whole domain in order to avoid argel#éocalized errors [10, 16].
The distributed error in the unwrapped result is considexagptable if it is smaller than the
noise level of the wrapped noisy data in the measurement.eMenvthe magnitude of error
depends on distribution of the SPs that appear around irstensphase jumping segments.
These methods that using least squares technique havevdnrgagke that they are more noise

tolerant and they achieve the global smoothness of the yp&dhsolution.

Unweighted least squares method

The unweighted least squares method [25] minimizes theréifice between the phase gradi-

ent estimate (unwrapped phase) and the true gradient iedlsedquare sense,

M—-2N-1 9 M—-1N-2 9
2 iy = @iy = VUL 4+ DN B -0y - VL (214)
=0 j5=0 i=0 j=0

Therefore, the solution that minimizes the difference shawEq. (2.14) is the unweighted
least squares solution. This equation can be modified tootine presented as follows:

Qip1;+ @i+ P + P51 — 49 = @‘I’fj — @‘I’QF_L

7

VO, - VY, (2.15)

J
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Equation (2.15) can be further modified [10] to the followpaytial differential equations in
a form as illustrates:

((I)iJrl,j —2®;; + q)zq,j) + ((I)z',jﬂ —2®;; + (I)z',jfl) = Pij (2.16)

wherep; ; = (VU — VU2 )+ (VI — VIV ).

Equation (2.16) is a discretization of Poisson’s equatio@ oectangular grid as
2 2

0
022y + 5 58 y) = plo.y) (2.17)
Equation (2.16) can be transformed into matrix vector foonransform the problem into a

linear system as
QP =p (2.18)

whereQ is a matrix that performs the discrete Laplacian operatiothe vector® shown on
the left hand side of EqQ. (2.169, is a column vector containing the unwrapped phase values
which is the solution and a column vector containing the discrete Laplacian opemnaiiothe

wrapped phase differences as shown in Eq. (2.16).

The unweighted least squares method is well defined matieaiiyat However, this method

generates a very large number of linear equations to bedelyaivalent to the total number
of pixels in the phase map. There are many methods develop=ave the linear system in
Eqg. (2.18). In essence, such methods are directly basecdashFourier transform (FFT) or
DCT or the unweighted multi-grid algorithm by Ghigilia [25]

Weighted least squares method

The weighted least squares method requires weights tovechitter results than the un-

weighted counterpart. These weights are user defined veeggimterated from quality-maps

used to isolate corrupted areas with SPs by masking themfahé evrapped phase data to

diminish their effect on the unwrapped solution. The wetdgHeast-squares method is a mod-
ification of the unweighted one where Eq. (2.14) is modifiethebequation presented in Eq.

(2.19) [25]:

M-2N-1 M—-1N-2

= ) wi; Py — By — VI, t PIPILH

1=0 j=0 1=0 j=0

N 2
;41 — By — VY[ (2.19)
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(a)

Figure 2.8: Spreading of errors in regular regions due to the LS-DCT méthandling way
for the singularity regions in the phase map: (a) SPs disttidn map, (b) phase
errors appear in regular regions.

where weights are defined as following:

w; = min(wi,, j,wi;), w!; = min(w?;,,,w?)) (2.20)

where0 < w?;,w}; < 1. The weights are squared because of the matrix opergatiomiy)
of the weighted least squares method. A drawback with thesthads is the case that if
some SPs are not masked out, they will cause the unwrappee pihle severely corrupted
depending on the density of these unmasked SPs. The mostigamame is mentioned to
least squares method is least-square method by using téisosine transform (LS-DCT).
The natural of LS-DCT method is to spread the singularitye$ & the whole domain of the
measured phase data including regular regions that havéso IEmeans that phase errors
occurred due to SPs are also propagated to regular regiarefbine the unwrapped results
obtained by LS-DCT method has phase errors with unique tyeasi example of this case is
given in Fig. 2.8. In the figure, SPs distribution map is shawig. 2.8(a); the distribution of
the phase errors appears in the measured domain due to tiengamay of LS-DCT method
for singularity regions of this example is presented in Rg@(b). These phase errors are
different from those error produce due to handling way ofdstdin for the same singularity

regions, as illustrated in Fig. 2.7(c).

Singularity spreading phase unwrapping algorithm

Singularity spreading phase unwrapping method (SSPU)i$434&ssified into methods that is

based on least squares approach. The basic idea of thiglahgdepends on the characteristic
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Figure 2.9: Schematic of the singularity spreading phase unwrappiaysingular point, (b)
compensator, (c) spread singularity.

properties of the distribution of SPs. When a SP in a phasesrfapnd, the amplitude at this
point and in its vicinity is almost zero. This phenomenonasgistent with the fact that the
amplitude should be zero when the phase is indeterminatéhdfmore, most of the SPs are
found to be locah-27 pairs. The phase data around these SPs is distorted andcha®at
value because the amplitude and phase in the SP vicinigesamtinuously affected by the
interference of propagated electromagnetic wave. Thexetbe SPs should be compensated
in a continuous manner with its vicinity instead of discr&tgphase shift. In SSPU algorithm,
compensators are not added only to the pixel values at thblBRsso those at around the SPs
[43]. Continuous-valued compensators diffuse and spteadihgularity in the phase image.

The final distribution of the compensators is determinedigy3P distribution.

Based on the aforementioned basic idea, Fig. 2.9 shows ansticediagram of the SSPU
algorithm. Figure 2.9 (a) shows the accumulation of wrapplease differenceR(z,y) at

position(z, y) in the wrapped phase image which is defined as follows:

R(z,y) = %{W[\I/(x +1,y) = V(x,y) ]+ W[¥(x+1,y+1)—¥(z+1,y)]
W (x+1Ly+1)—¥Y(z,y+ )] - W[¥(z,y+ 1) — ¥(x,y)]} (2.21)

where¥(z,y) denotes observed wrapped phase value,l&hd means the principal value
within (=7, 7]. Atan SP,R(z,y) # 0. Then, spread around and attenuate the phase incon-
sistency by adding fractions of inverse rotation to respedour phase derivatives around the
SP as shown in Fig. 2.9(b) and (c). Repeat the same treatwmemnthe whole image. Aftef
times iterations of this process over the image, it can baiedtl accumulative compensators

in x andy directions. Then, the phase data can be unwrapped simplyrbyngng the phase
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(a)

Figure 2.10: Spreading of errors in regular regions due to the SSPU metiattiling way
for the singularity regions in the phase map: (a) SPs disiitm map, (b) phase
errors appear in regular regions.

differences between the neighboring pixels. SSPU algoriths an advantage to obtain con-
tinuous phase unwrapping; however, it has drawbacks Ifiestual phase gap such as a cliff
in geographical map is also spread. In addition, it requarge computational time to obtain
a suitable result. When the maximum residue value afterghemasling process is not negligi-
ble value, means not very small, it is needed to repeat mamstof processes. Figure 2.10
gives an example of SPs distribution map and the handlingo/&5PU method to regulized
the singularity regions in the measured domain and alsstiites the phase errors appears as
a result of this handling way. SSPU method has the same girepef LS-DCT method for
spreading SPs’ singularities. However, the phase erragyzed due to these singularities
spreading for SSPU method are different in the spreadingamalyamplitude than LS-DCT
method does, as illustrated in Fig. 2.8(b). Meanwhile, pharsors appear from singularity
spreading of SSPU method are decrease at the regions thtrdrem SPs positions, as
shown in Fig. 2.10(b).

2.5 Conclusions

This chapter has presented a background about the phasetmxirand unwrapping pro-

cesses. Regards phase extraction process, famous teehnisgd for this purpose are given
and illustrated. A definition of the phase unwrapping predssalso presented, with a re-
view of some of the existing phase unwrapping algorithmse Pploblems that face many

phase unwrapping algorithms have been briefly described.nfdjor problem for all phase
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unwrapping algorithms is the SPs problem and their effecthie unwrapping process.

In summary, it is obvious that phase unwrapping has faceat gheallenges especially when
the data contains discontinuous and contiguous featurthe aiame time. There is clearly a
need for further investigation with particular emphasisatve this problem even though less
complex featured data rely extensively on weights to precaczeptable results. In essence,
the following chapters are designed to address these issiteghe ultimate goal of improv-
ing the generality and accuracy methods.
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Chapter 3

Phase unwrapping algorithm by using
rotational compensator

3.1 Introduction

The process of phase unwrapping for an image obtained bgfemeneter, which is noisy
image data, may face difficulties. Traditional phase unyiag algorithms used to estimate
two-dimensional phase distribution include much estioragrror due to effect of SPs. This
chapter introduces an accurate phase unwrapping algob#s®d on three techniques. The
developed algorithm computes the compensator valuesghrawperposing the effect of each
SP by adding an integral of isotropic singular function glany loops. The unwrapped phase
result demonstrates that the accuracy is improved by ukiagéveloped algorithm compared

with past methods based on the least squares approach.

3.2 Rotational compensator phase unwrapping method

In this chapter, we present the rotational compensatorgpinasrapping method [46] to com-
pensate the inconsistencies, and to decrease the effeatlofome with increase of distance
from SPs. The unwrapped result of this method is similar &t tf the methods based
on the least square methods; i.e., the rewrapped result isleatical to the original phase
map. However, the unwrapping is carried out along succegsiels as similar to the path-
following methods. The algorithm is based on a combinatiothieee approaches, which are
rotational compensator (RC), unconstrained singulartgmsitioning (USP), and virtual sin-
gular points (VSP). The RC method evaluates the compendaémtly without any iteration
process. However, the accuracy is not much improved by ¢@d\yRC technique itself. The

other two USP and VSP are additional approaches to impra@/adburacy. The purpose of
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USP approach is to confine the effect of compensator to smaligon and to determine the
dipole pairs. While, the VSP technique is used to locate SPsde the measured area in
which wrapped phase is obtained, these SPs have oppostéipslof the corresponding SPs

in the measured area.

3.2.1 Rotational compensator technique

As described in section 2.3, the wrapped phase distribufiioris defined at discrete points
called pixels. It is a real valued distribution betweesr, | radians as the principal value
of an unrestricted phase. Phase unwrapping process is iypicaaied out by comparing
adjoining pixels. If the true phase distribution is contias and the difference between the
phase of adjoining pixels does not exceed a half cycle, tmdition is considered as sampling
theorem. When the difference is larger than a half cycle vitepped phase is shifted one
cycle so that the shifted difference is again smaller thaalfdycle. This shift operation is
same as the wrapping operation used to obtain the princgdaévof the unrestricted phase
®, as given in Eq. (2.10). The difference vector between adjgipixels is defined using the

wrapping operatol/|.| as follows:
g(r.r') = W{D(r') — &(r)}3(r' —r) (3.1)

wherer, r’/, ands show position of the pixel of interest, position of the adjag pixel, and
unit vector of directiornv’ — r, respectively. If the pixels satisfy the sampling theoramd
the integral of the phase difference is independent of éhoitche path, hence, the integral of

g along a closed pathis zero:

%g@dlzo (3.2)

In contrast, when some pixels violate the sampling theotbmintegral can take a non-zero

value:
7{9~§dl :27erk:27rK, my € {—1,0,1} (3.3)
c k

where the right-hand siddy’, corresponds to a sum of the number of that not satisfying the

sampling theorem, ana,, is residue.
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Yamaki and Hirose proposed the idea of introducing a comgienso cancel the singular-
ity [43], which is briefly described in section 2.4.2 as SSPetmd. The computations of
compensator in SSPU method are dependent on iterationg®aoecontrast, the RC method
computes the compensators directly without any itera#atording to Helmholtz's theorem

[44], any vector is represented by sum of two kinds of vegtioes, an irrotational vector that

Is a gradient of some scalar potential, and a rotationabvebat is a rotation of a vector po-
tential. Since the unwrapped phasenust be a scalar field, the difference vegjan Eq. (3.1)

satisfies following equation:
g=V®+VxA (3.4)

Applying Stokes’ theorem to an integral of the rotation o etbove equation over a domain

enclosed by a path the following relation can be obtained:

]{g-édl:]{VxA-édl (3.5)
(3.6)

Comparing this equation with Eq. (3.3), it can be found that$ource of the singularity is

the rotation ofA:
vaA.gdzzszmk (3.7)
¢ k

Since this relation is satisfied even for any elementary,|ttmgvector potential is considered

as the superposed result of each vector potential corrdsppto each SP:
A=) A (3.8)
k

Rearranging Egs. (3.4), (3.5) and (3.8), the differencenafrapped phase between two points
can be obtained as follows:

@(r)—@(ro):/TVQD-édl :/r<g—ZVxAk> -8dl (3.9)
70 70 3

This equation shows that the singularity of the wrappecediffice vectoy is compensated
by the rotation of vector potentiad,. Thus, the integral of rotation od,, is referred as the

rotational compensator (RC).

41



Phase unwrapping algorithm by using rotational compensato

In order to evaluate each RC, let’s consider the cylindricairdinate of R, 0, =), where the

k-th SP is located at the origin. Each vector potential saghe following relation:

Each source of singularity has an axial symmetry where exs@myponent of the vectod,, is
represented only in terms of a function of radial distaRc@s A, = (ar(R), ap(R),a.(R)).
Furthermore, the-component of the unit tangential vectors zero. Therefore, the integrand

k S E e ez S E e n, .

whereer ande, are unit vectors folz-axis andz-axis, respectively, anél denotes the out-

ward normal unit vector to the patl(= s x e.). Since the integrand in the left-hand side
in Eq. (3.10) is a regular function except at the origin, thtegral path can be modified to an
arbitrary path that surrounds the origin. In the case wheeetth is taken as a circular path
with radiusR, sincen is identical toey, the left-hand side of Eq. (3.10) is readily obtained as

—2mR(0a,/OR). Therefore, the partial derivative is represented as

da, my

=——. 3.12
OR R ( )
Consequently, the integral along an arbitrary closed pgphessed in Eq. (3.10) is rewritten
as
Jq{vXAk-gdz :%%eR-ﬂdl (3.13)
(3.14)

The integral along a segment of which ends ay@andr, is evaluated by taking the closed
pathc as shown in Fig. 3.1. Since there is no SP in the domain sutlexiby the closed path
r1, T2, TA,, andra,, the integral along the closed path vanishes. Each of tlegials along
the two straight lines also vanishes because the normavectior is perpendicular to thex.
Thus, the compensator for the SP that is the integral alamgegment may be estimated from

the integral along the semicircle as follows:

A " ~ "2my, .
C’k(rl,rg):—/ VxA,-8dl =— ?eR-ndl
TAZ 02,5, mp
= —ep-ndl = —epr-(—er)Adl
/TAl R enn /«91,sk, A en ( eR)
= —my, (05, —01,,) (3.15)
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Figure 3.1: Configuration to compute the rotational compensator

wheref denotes the unbounded azimuthal angle fromuttaxis and alsa%sk > Hlsk, andA

IS the distance between the poimts andra,.

Taking ther; andr, in Eq. (3.15) as the adjoining pixetsandr’, respectively, the wrapped
phase can be unwrapped by applying the wrapped differeratervg and the compensators
C,. as follows:

O(r') = ®(r) + g(r, ) - 8(r' —7)+ > _ Ci(r, 7). (3.16)

The compensator of a SP spreads throughout the whole me@zsirarea. It shares a similar
nature with the methods based on the least square approachjdh the effect of SPs also
spread [10]. However, it is found that the compensator desa® with increasing because
the distance betweari andr is always kept constant at one pixel width. This charadieris
similar to path-following methods, in which the effect of B 8 confined into the region that

surrounds the branch cut.

3.2.2 Unconstrained singular point positioning

The RC can remove the inconsistency by canceling the singukdfect. However, it intro-
duces an undesired distortion of phase in wide area. In dodi@mit the distorted area in
the narrower region around SP, unconstrained singulat positioning technique (USP) is
proposed.
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The RC,C,, defined in EqQ. (3.15) cancels a singularity of single SP. &ffect of this single
SP can be considered as a monopole, which is proportionbkteetiprocal of the distance
R:

1
Emonopole = _EGR- (317)

If there is another SP with opposite sign is located near tiggnal one; this case corresponds
to a dipole. The effect of the dipole in two-dimensional spacevaluated as follows:

1
R?

whered is the difference vector from the negative SP to the pos&i®eand the origin is taken

Edipole = (2(d . eR)eR — d) s (318)

at the center of the two SPs. The decay of the effect induc&Pagipole is faster than that by
monopole SP. It is known that the distance of the nearest 8Paniopposite sign is shorter
than that with a same sign from an analysis of an actual noipgremental wrapped phase
[14]. Therefore, if every SP belongs to a dipole, the effdot@mpensator isd|/R times

smaller than that of a single compensator, and it means tbet & confined in a local region

around the dipole.

SP is generally positioned at the center point of an elemgpteth that consists of four pixels
aligned with square shape, and the minimpuhis limited to the pixel size. If the accurate
position of each SP is obtained, and if the distance of theldijg closer than the pixel size,

the effect of compensator is limited to a narrower region.

Itis found from Eq. (3.15) that the compensator of a segnsergpresented as the difference
of the azimuthal angle between the ends of the segment. Tdassthat the following model

of wrapped phase maps with singularities can be considered:
O(r) = W{mf(r,r,) + ¢+ 06(r)},  (m€{-1,+1}), (3.19)

where¢ andé¢(r) are a phase average and a non-singular phase fluctuatipectiesly.

Let’s consider the following wrapped difference betweejaeeht pixels:
AEW{W{D — d} — m(0 —0)}, (3.20)

in which the main feature means quantities at adjacentgi@&ubstituting Eq. (3.19) to the

difference and applying a characteristic of wrapping ofperas\W{W{¥}} = W{¥}, the
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Figure 3.2: Elementary path including an unconstrained singular poirtie Ag, means the
facing angle of the side with the endsandr; ;. TheA®, means the difference
of the wrapped phases.

wrapped difference can be reduced to:
A =W{ip' — ¢} (3.21)

This relation suggests that a minimum solutior|&f is equivalent to a solution minimizing
|[W{o¢' — do}|, hence, it can be assumed that the unknown phase fluctuatios small.
therefore, the problem to determingis reduced to how can find the solution with minimized

|A] in Eg. (3.20). Thus, the problem is defined by means of a neatifeast square problem

as follows:
3 3 9
minimize $~ A? =} <W{W{Ac1>l} - mAQl(rs)}> : (3.22)
=0 =0
Aq)l é ®l+1 - q)la q)4 - ®07 (323)
AHI £ 014_1(7'5) — 01(’)"5) > 0, 04 = 00 + 27T, (324)

wherel denotes the identifier of a segment or a pixel in an elemeidagyshown in Fig. 3.2,
and! € {0, ...,3}. Because this nonlinear minimization problem is difficoltsblve analyti-

cally, a numerical method based on a genetic algorithm gl&pplied.

The developed algorithm (RC) spreads singularities efféetach SP throughout the whole
measurement area includes the regular regions that do wetamy SPs similar as LS-DCT
method [25] and SSPU method [43]. However, LS-DCT methodaqs the singularity in the

regular regions with same amplitude of phase errors, asrshofig. 2.8(b); whilst the phase
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(a)

Figure 3.3: Spreading of errors in regular regions due to the RC methatthiag way for the
singularity regions in the phase map: (a) SPs distributicapm(b) phase errors
appear in regular regions.

errors produce due to the using of SSPU method is decreasieel i@@gions that are far from
SPs positions, as illustrated in Fig. 2.10(b), howeveséherors are big enough to affect the
accuracy of SSPU method during producing its unwrappedeptessilts. Meanwhile, the RC
method has the merit that the phase error for adjacent SBkedifs reduced than that errors
of SSPU method. This is due to that the RC method uses USPi¢geehio determine the SPs
positions, hence, the distance between these dipoles lesceimorter and the effect of their
singularities will be small than that effect produced in §SRethod. Figure 3.3 presents
the errors appear in the regular regions of the phase mapodhe handling way of the RC
method for singularity regions. The example of SPs distitioumap is shown in Fig. 3.3(a),

while Fig. 3.3(b) illustrates the phase error locations.

3.2.3 Virtual singular points

Since the measurement area is finite, there are some isaatglit-dipoles SPs with long

distances. The isolated SPs spread error throughout tive emtasurement area. When
virtual SPs (VSPs) having an opposite sign of the isolatesl @Rside the area is found, the
VSPs and the isolated SPs make dipoles, and then the errdserraguced. In the case where
the isolated SP is located near the border of the area, thelVvBP is put at the symmetrical
point to the border outside the area so that the center ofiplodeds located just on the border.
To find isolated SPs near the border, the following approseittempted; schematic example

is shown in Fig. 3.4.
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Figure 3.4: Determination of dipole pairs: (a) definition of the virtu8P candidates, each
dashed arrow shows the correspondence between originavatdal SP; (b)
search nearest SP and pairing in the first iteration: eacloarshows the nearest
opposite-signed SP, the SPs encircled are paired as dipthleschecked virtual
candidate is removed from the list of candidates in subs&icgteps; (c) the sec-
ond iteration: SPs enclosed with dashed ellipse have beeady paired; (d)
elimination of removable virtual SP pairs.
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(1) Preparation:
Mark all SPs as ‘isolated’.
For each SP, locate the symmetrical point to the nearesebpuaint. The symmetrical
point is defined and marked as a VSP candidate with oppogite $he VSP candidates

are shown as the end of arrow in Fig. 3.4 (a).

(2) Find the nearest SP:
For every SP with the mark ‘isolated’, find the nearest SP wjihosite sign among SPs
marked as ‘isolated’, also including the VSP candidatessponding to the original SP.

(3) Virtual SP determination:
If the nearest SP is the VSP candidate, the original SP iseda& ‘dipole with virtual’,
and the VSP candidate is marked as ‘virtual’. The pair of tieeshown as an encircled
pair with single headed arrow shown in Fig. 3.4 (b). In therégihe VSP candidates

with checked symbol are eliminated in subsequent steps.

(4) Dipole determination:
For each positive SP with the mark ‘isolated’, if the nearesjative SP has no other
positive SP that is closer than the original one, then botthefSPs are marked as
‘internal dipole’. The pair of them is depicted as an eneidcpair with double headed
arrow, as shown in Fig. 3.4 (b). The virtual candidates spoading to these SPs are

removed from the virtual candidates list.

(5) Repeating:
Repeat procedures from (2) to (4), until no more SPs markéd‘igblated’ are found.
After this step, all SPs are marked as ‘internal dipolepale with virtual’, or ‘virtual'.
See Fig. 3.4 (c).

(6) Elimination of removable VSP pair:
For each SP that marked ‘dipole with virtual’, if the neam@sposite signed SP within
the SPs located inside the border is also marked as ‘dipakewviviual’, let us examine
whether this pair can become a new pair. If the twice distafitiee new pair is shorter
than the sum of the distances between the SP and the curmnémp@ith the mark
‘virtual’, the total branch cut length is shorter than thereat pairs. In this case, the

new pair is coupled and the old partners ‘virtual’ are renthas shown in Fig. 3.4 (d).
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3.3 Results and discussion

3.3.1 Simulated phase data

True phase in experimental result is unknown. Hence, to eanharacteristics of unwrap-
ping methods, a wrapped phase map that is a result from a knowrapped phase map is
used instead of a wrapped phase map obtained by an experifienprepared original con-
tinuous phase map is a noisy phase map with constant grathenmage size 1300 x 100
pixel, the gradientig0.1, —0.1) cycle/pixel, and the noise has a normal distribution Wit
cycle standard deviation. The true phase map is shown ir8FB¢) together with its wrapped
phase. In this wrapped phase the numbers of positive andivee@®s are 453 and 456, re-
spectively, overall comprising almost 9% of number of akgts. It should be noted that there
are 3 unbalanced SPs which cannot make pairs even when mguwyth longer distance is
permitted. The distances of some USP dipoles are shorterttiose of the original dipoles
which consist of the constrained SPs. The distribution stfagtices between each positive SP
and its nearest negative SP is shown in Fig. 3.6. From thelisbn of the constrained SPs
that are located in center of elementary loops, it is fourad thost of the distances are con-
centrated at 1 o%/2. In contrast, the average distance of USPs is significahtbyter than
that of constrained SPs. This suggests that the effect opeasator with the use of USP is

confined in a narrower region than with constrained SP ositg.

In order to compare the characteristics, several algostara applied, which are Goldstein’s
path-following method [11], LS-DCT [25], SSPU [43], and tRE algorithm. Some results
of the unwrapped phase maps together with their rewrappasigshare shown in Fig. 3.5(b)-
(d). It can be noticed that some continuous phase gaps and fouhe unwrapped phase map
obtained by the Goldstein’s method shown in Fig. 3.5(b)haligh the unwrapped phase maps
by both LS-DCT and RC methods shown in Fig. 3.5(c) and (d) imavphase gap, a smaller
number of stripes in their rewrapped phase results thanrtgmal wrapped phase is found.
This indicates that the gradient of unwrapped phase wasresiii@ated. To demonstrate a
guantitative comparison, gradients of the unwrapped pheges are shown in table 3.1. In
the table, the gradients are obtained by fitting to a planactfan; i.e.,q@(r) = Vo - T+ do,
ando denotes the mean residual that is defined as a square rootezfrasquare residual from
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Figure 3.5: Unwrapped and rewrapped phase map of simulated phase datadiae with
o = 0.15 cycle: In each figure, the left-hand side figure shows origaraun-
wrapped phase map where phase increases with increasinggsftibess, and
the right-hand side figure shows wrapped or rewrapped phasge rfa) original

phase map, (b) Goldstein’s path-following method, (c)tiegsares method with
DCT, (d) RC method.
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Figure 3.6: Frequency histogram for distance from a positive SP to tlzgest negative SP.

. Even in original data, the is not equal to zero because the original data contains tise no
with the given standard deviation. The errors of gradiedtraean residual) (Vq@) andAgo,
are estimated as the normalized difference between theapped result and the original one,
where the normalizing factor is the reciprocal of originako From the table it is found that
the gradients are underestimated by all of the algorithrhs.Best result in terms af <V<z3)
and Ao is found for the unwrapped phase result obtained by RC meathadhich all of the
approaches are applied: the rotational compensator, twnstrained SP, and the virtual SP.
Goldstein’s method has a larges. The reason of this is evident from the unwrapped image
shown in Fig. 3.5(b); there is a continuous set of gaps. Flecomparison in table 3.1 for
the unwrapped results obtained by LS-DCT and SSPU methaddpund that the errors of
them are nearly same. In these methods, the inconsistdnci®Bs are canceled; however,

imbalance of the number of positive and negative SPs is niidered.

From a comparison among the last four rows in table 3.1, imsdbat the virtual SP approach
is more effective to improve the accuracy of the gradiend,tae unconstrained SP positioning
is more effective to reduce the error of the mean residuatsé&hesults can be explained by
the nature of each approach. The error of the gradient shisbslgerror, while the mean

residual shows local error from the global distribution loé unwrapped phase. If isolated
SPs that are not SPs containing dipoles are found in the mezhswea, the compensator
affects the entire area, which should otherwise be confimidsa local area. Since the virtual

SPs are applied to avoid the existence of such isolated B@glaobal error of is reduced.
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Algorithm Gradient ¥/¢) A(wS) %] o Ac[%]
Original (0.1000,-0.1000) ( — , — ) 0.149 —
Goldstein _ (0.0892 ,—0.0826) (—10.8,-17.4) 0.425 +184.9
LS-DCT (0.0742 ,-0.0731) (=25.8,-27.0) 0.179 +20.0
SSPU (0.0743, -0.0730) (-25.7,-27.0) 0.178 +19.7
RC(only) (0.0816,-0.0722) (—18.4,-27.9) 0.182 +21.7

RC(USP) (0.0860 , —0.0756) (-14.1,-24.5) 0.173 +15.9
RC(VSP) (0.0866 , —0.0860) (-13.4,-14.0) 0.186 +24.5
RC(USP+VSP) (0.0908 , —0.0894) (-9.2 ,-10.6) 0.168 +12.3

Table 3.1: Accuracy comparison among algorithms by planar functiam@tfor the simu-
lated phase data with.1 [cycle/pixel] constant gradient and has noise with 5
[cycle] standard deviation. 'RC(only)’ represents the eashen the unwrapped
result is obtained by using RC technique only; 'RC(USP)’he tase of using
RC and USP techniques; 'RC(VSP)’ when uses RC and VSP teesnig/hile
'RC(USP+VSP)’ represents the case when using all technjB@ USP, VSP) to
obtain the unwrapped result.

On the other hand, since it is found that the unconstrainegdSRioning can make dipoles
with shorter range, as shown in Fig. 3.6, the compensat@nmye the dipole affects only a
narrower region. These observations can be confirmed fremitualized images shown in
Fig. 3.7. This figure shows the unwrapped results with caritoas for the for cases of using
these techniques; where Figs. 3.7(a), (b), (c), and (deptdbe unwrapped results obtained
when use RC technique only, RC technique with using USP agpronly, RC technique
with using VSP approach only, and RC technique with using bliP and VSP approaches,
respectively. by count the number of contour lines in eackrapped result and compare this
with the number of stirp line in the wrapped phase data shovwigs. 3.5(a). It can be found
that, when use RC technique only the number of contours ise; while itis 15 lines when
use RC technique with using USP approach only. In the cassinfURC technique with
using VSP approach only, the number of linestisand it is17 when use all approaches (RC,
USP, VSP). Meanwhile, the number of stirps in the wrapped @210 line It can be inferred
from above discussion, that by using the all approachesebeloped RC algorithm has good
accuracy but still under-estimation.

We consider the following two reasons why the developed R@atewith all the approaches
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© @

Figure 3.7: Unwrapped phase results with contour lines for simulategydata with0.15
cycle standard deviation, obtained when uses: (a) RC teclenly, (b) RC tech-
nique with using USP approach only, (c) RC technique withgi$iISP approach
only, (d) RC technique with using both USP and VSP approaches

still has some error. The first is the position of the VSP; duthéere is no empirical basis to
put the VSP at a symmetrical point to the nearest border. Eviea position of a VSP differs
slightly from the true SP outside the region, the VSP stilkesaa dipole; therefore, the effect
to the global error corresponding to the error of the gradiesy be small. A more significant
source of error in terms of VSP is induced by incorrect coypthrough the method shown
in section 3.2.3. If the detected isolated SPs are incqrtieetposition of each VSP is taken
at a more distant point from the true SP, and then it can intheglobal error. The second
source is the model to determine the wrapped phase shown (8 &£§). If the fluctuation ¢

is not sufficiently small, the approach to determine the UsShbit suitable. This may affect to
the local error corresponding to the error of the mean residu

Figure 3.8 shows a comparison of required computationat fion the LS-DCT and the RC
methods to obtain their unwrapped phase results. In theadéthsed on the RC the computa-
tional time is almost proportional t9* with N > 200, whereN denotes the one-dimensional
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Figure 3.8: Computational time: The horizontal axi§¢ denotes one-dimensional area size
in pixels. The computational time is measured with a PC uicig CPU of Intel
Core 2 DUO (TM) with 2.13GHz clock in a single CPU operationdao

area size in units of pixels; this trend is reasonable. Isdleses, when the overhead to the
main computation is negligible, most of time is elapsed iale&tions of compensation. The
amount of evaluation time is proportional to both the numife8Ps and the number of the
segments of path to be compensated. Since both are praprtinthe area sizex( N?),

the total evaluation time is proportional f6*. In contrast, the computational time increases
with N3 in the method using LS-DCT. In this computation, a simpleogthm not a fast
Fourier transform is used, but a two-dimensional buffelsiscu Through the use of the buffer,
the computational time of two-dimensional cosine transfoneeds onlyv? multiplications.

Thus, the method based on the RC is more time-consumingiaanftLS-DCT.

3.3.2 Unwrapping for interferogram data

In order to demonstrate validity of the developed RC metlodti¢ actual experimental data,
we applied the method to measuring the phase shift in caratiee8. The result is shown
in Fig. 3.9. The fringe shown in Fig. 3.9(a) is obtained by ach&ehnder interferometer
with existing of the candle flame. The fringe pattern is a sppsed result of object light
passing through the candle flame upon the reference liglket.SFhdistribution map is shown

in Fig. 3.9(c), where the S/N is low in fringe patterns. Thiéedlence between the simulation
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data in the previous section and the experimental data ifouthis distribution. The amount
of SPs in all pixels within the image si266 x 170 pixel, reaches aroung; for all pixels.
The unwrapped results obtained by the LS-DCT [25] and d@ezldRC methods are shown
in Fig. 3.9(d) and (f), respectively. To evaluate the chimastics of the phase unwrapping
methods, the rewrapped phases for the studied algorithenalsm shown in Fig. 3.9(e) and
(g). From a comparison between the original wrapped phé&ssyrsin Fig. 3.9(b), and the
rewrapped phase results obtained by each algorithm, wergthfat the number of stripes in
rewrapped results of the studied methods is less than thvatapped phase data. However,
the results of the RC method has the nearest number of stopbe wrapped data, which
shows the highest accuracy.

Figure 3.9: Unwrapped phase of fringe by Mach-Zehnder interferomegeic&ndle flame:
(a) fringe pattern obtained with existence of flame, (b) vaeghphase map ob-
tained by Fourier domain method, (c) SPs distributions s{free and negative
SPs are represented by white and black dots, respectidly¥ (e) unwrapped
and rewrapped phases map obtained by LS-DCT method, (f) &r{gyrapped
and rewrapped phases map obtained by the developed RC method
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3.4 Conclusions

The developed phase unwrapping using rotational compans&thod has been proposed for
noisy phase data. This method is based on a combinationes #pproaches; RC, USP, and
VSP. The RC acts to compensate the singularity of each SHIfonarapping paths. The
USP technique provides freedom to adjust SP positioningderoto improve accuracy of
compensation. Since it can make some dipoles that haveeslaistances than the pixel size,
the undesired, longer effect of compensator is suppresBee.VSPs technique applies for
unpaired SPs, isolated SPs are taken outside the area toectindi effect of compensator in
local narrow regions around SPs.

In the comparisons of several methods of phase unwrappmgdh both a numerical sim-

ulation and an analysis of experimental fringe pattern, Ri@&e method demonstrates good
accuracy of unwrapping although it does not eliminate theespherror with underestimation.
However, the RC method has a drawback of undesired phagebecause the RC should be
applied to the regular region with no SPs as well as to theusmgegion. In addition, the RC

method required high computational time cost when the nredsphase data contains many
SPs. Hence, further research to reduce these drawbacksdsd& produce more accurate

and efficient phase unwrapping. This is what is done in tHewehg chapter.

56



cHAPTER 4

ROTATIONAL AND DIRECT
COMPENSATORS PHASE
UNWRAPPING ALGORITHM

® Introduction

® Basic concepts

® Direct compensator technique

® Phase unwrapping by RC and DC algorithm
® Results and discussion

® Conclusions

57






Chapter 4

Rotational and direct compensators phase
unwrapping algorithm

4.1 Introduction

Here, we introduce a new phase unwrapping approach for moeyped phase maps of con-
tinuous objects to improve the accuracy and computatiomed tequirements of phase un-
wrapping using a rotational compensator method. The pexpatgorithm is based on com-
pensating the singularity of discontinuity sources. ltsudegect compensation for adjoining

SP pairs, and uses rotational compensation for other S®. pair

In a manner similar to the phase unwrapping algorithm deesldoy Tomioka et al. [46],

the main issues determine the behavior of the proposeditigorthe RC, USP positioning
and VSP approaches to compensate the inconsistencies eodfiiwe the effect of each one
in a local region. The proposed algorithm is based on thethate however, the way of

computing the compensators for adjoining SPs pairs isréiffitsfrom RC.

4.2 Basic concepts

Phase unwrapping is an essential process of removing disadies by local neighborhood
tests and corrections to produce consistent unwrappec phags. When a closed loop in a
phase map includes SP, the integral along the loop will haxsdiee of —27.S, whereS' is the
residue of the SP, as shown in Eq. (2.13) in chapter 2. Remiagean integral of a segment

i, which is a member of the loop comprisingsegments, a€“, we can reduce Eq. (2.13)

=

(VU + Cf) = 0. (4.1)

-
Il
o
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This suggests that the singularity of is regularized by compensat6f, and phase unwrap-
ping becomes an independent path. The RC foriithesegment which is a path from to

r; 41 to cancel the singularity of thgeth SP,AC?, is represented as follows:

RC(Z — _Sj(ei-i—l,j - 0@7]'), (42)

J

whereS; denotes the residue of theth SP,0,., ; andd;, ; are azimuthal angles of both ends

of thei-th segment, where the origin is located at jhi SP.

When the measured data contains several SPs, the total neatpeof thei-th segment is

estimated as the summation of tF’@; with respect tg:
N
for =Y " fe. (4.3)
j=1

where N, denotes number of SPs in the phase map. Consequently, wetciawve the true
unwrapped phase data by summing the phase differencesdrethe2adjoining pixels and the

total compensators as follows:

M
Py = Do+ Z (VU +C), (4.4)

i=1

where(’ = (",

Itis noteworthy that Eq. (4.4) is the modification of Eq. (&) &fter removing the effect of SPs
by compensating each SP with the compensator which has posidg sign of SP. However, if
the measured phase data contains several SPs, the compsitditeach compensator becomes

a time-consuming process; this is one of the drawbacks dR@enethod.

Despite the RC which can remove the inconsistencies in tlasgmap by eliminating the
effect of singularity, it introduces an undesirable distor of phase in a wide area. The effect
of the RC for thej-th SP,"C", is decreased with increasing the distance from that SP. It
becomes small for the distant segment, however, it is nattlxaero. This means that RC
affects the regular region and its effect is considered asram of phase unwrapping. The
effect of single SP, monopole SP, is proportional to theprecal of the distanc& from the
residue:

1C1) o %. (4.5)
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In contrast, phase unwrapping method based on avoidinghr@aurts does not affect the dis-
tant segment at all. In other words, the branch cut approactpoecisely confine the singu-
larity of SP pairs within local region, but the RC method gai®the effect of singularity to

the whole region. This is another drawback of RC method.

4.3 Direct compensator technique

Every SP has a residue #fl, and a pair of two SPs with different polarities is consideas a
dipole. It was found from the distribution of SP dipole distas that there are a lot of dipole
pairs with short distances [14]. Figure 4.1 shows an exaofflees dipole distance distribution
for wrapped phase data. It can be seen that many dipoles girdbdied around one pixel
distance. Based on this finding, we have proposed a new phagapping algorithm. The
proposed algorithm reduces the drawbacks of the RC methadhvare high computational
time cost and undesired phase errors due to the RC effecgafareegions that have no SPs.
The proposed algorithm offers simple computations to carsgt the inconsistencies caused
by the pairs of the adjoining SPs by adding a direct compen$B(C), so, the effect of each
SP is confined within a closer local region. As a result, tlewbacks of RC method can be
improved. The RC along a segment is defined by computing timergtion of the differences
between the azimuthal angles for the end points of that segimeall SPs, in which each SP
is located at the origin, as illustrated in Egs. (4.2) an8)(4Hence, the summation value of
the RC along all segments @fx 2 square loop should be equal to the summatior%{fi
along the path with the opposite sign, as shown in Eq. (41)DC case, the compensator
value along the segment which crosses branch cut of adgppair equals to the value of the

phase jump which is one cycles radian).

An adjoining pair is a dipole consists of two SPs with opposign separated by one pixel
horizontally or vertically. Figure 4.2 shows the configimatof the branch cuts placed be-
tween the adjoining SPs in the phase map and the concept diirdt compensation, for
simplicity the SPs positions are defined at the center of kbged loops. In this figure, the
thick arrows across the branch cut, which are shown as tlaisketl lines, represent the posi-

tions of DCs. Figure 4.2(a) shows a case in which the brantls @laced between a pair of
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Figure 4.1: Example of dipole distance distribution: the dipole distans defined as the
distance between one SP and the closest SP with oppositgétyola

adjoining SPs horizontally, so that the DC will be added tuértical segment which crosses
the branch cut. The compensator value of the segment isedivido two compensator values
and distributed through the two adjacent loops which corttae adjoining SPs, as illustrated
in Fig. 4.2(b). The following equation explains the DC of gsent that is related to the

adjoining pair:

Tijj when the segment numbeéis a member of the loop that
bes = has thej-th SP, which belongs to the adjoining pair (4.6)

0 otherwise

WhereTj denotes the sign direction 6€, andS; denotes the residue of theth SP. When
the DC of a segment is added, the sign direction of the DC ierstégment]?, Is dependent
on the position of this segment with respect to the locatibtne tested SPs. For example,
when a vertical segment is on the right-hand of the testeth&Rign oij" is negative ~”,
and vice versa, as shown in Fig. 4.2(b). On the other hand4E2¢c) shows the case in which
the branch cut is placed vertically between the adjoining &t the DC is added horizontally.
Thus, when the segment is above the tested SP, the sifini@positive “+”, and vice versa,

as shown in Fig. 4.2(d).

Also, it is important to discuss the complex distributionSis positioning patterns and how
we compensate the singularities of these SPs. Figure 4r8seuts an example of the dis-

tribution with four SPs in the phase map. If we consider trs#riiution of these SPs in a
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Figure 4.2: The existence of the branch cuts between the adjoining StPshanconcept of
direct compensation: the thick dashed line denotes thedbrant that connects
two SPs of opposite sign, compensator position is denotdadkyarrow, the thin
arrows show the direction and distribution of compensaforsthe segments of
each SP wheré& and S’ denote the residues of the SPs.

discrete values, the distance between each other will bsaime, as shown in Fig. 4.3(a).
Therefore, it will be difficult to determine which SPs are tiesest couple to each other, to
form pairs. However, if we use USP technique to obtain anrateypositioning of each SP, as
shown in Fig. 4.3(b), we can pick a SP and another one nearligtrh a pair. Therefore, the
distance between the two SPs of each pair will be definedgelgcand the type of pair will
be distinguished without difficulty. Thus, DC is added to #uoining pairs, as illustrated in
Fig. 4.3(b).

Since the DC affects just on the branch cut, the effect of dmepensator does not propagate
to the regular region. Moreover, the DC of a segmefar all SPs,”C?, needs only two
computations in contrast to the RC for another segmén®, which needs multiple compu-
tations to evaluate effects of all SPs, according to Eq.) (& Berefore, the computational time

requirements of the proposed algorithm for computing tdahpensators will be reduced and
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Figure 4.3: Complex cases for the position patterns of SP pairs and tleetdtompensators
for the adjoining SPs pairs: (a) SPs are distributed in detervalues, (b) SPs
are distributed by using USP technique; in (b) the thick aakhne denotes the
branch cut that connects two SPs of opposite sign and alsestie direct com-
pensator positions are denoted by thick arrows.
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the accuracy of the unwrapped phase will be improved, adeitiscussed in section 4.5.

4.4 Phase unwrapping by rotational and direct compensators

algorithm

The proposed method (RC+DC) is based on coupling the RC an®@@1to compute the
compensators depending on the converging distance of 8Rsthér words, it uses DC for
computing the compensators for the pairs of adjoining SRd, uses RC to compute the
compensators for the other pairs. To explain that, it is mssltwo new parametetslj (i)
andadj~ (i), which are called adjoining parameters of the segment ghatmember of the
closed path of the adjoining SPs pair. Thi" (i) andad;~ (i) denote the positive and negative
SP numbers which belong to the adjoining pair, respectivehere: represents the segment
number. It means when the segmeérd a joint between the loop of the positive SP and that
of the negative SP of the adjoining pair, these parameters W@ues; otherwise, they are
undefined. Considering another parametxg?r this parameter is defined asg = 1, when
adj* (i) oradj (i) has a value of; otherwisem, = 0. Itis like Kroneckor’s delta function as
follows:

mi = 69470 4 5am ), (4.7)
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Therefore, the total compensators can be estimated as/fllo

C' =Y mifc+ ) miCy, (4.8)
j=1 j=1
where@ =1- m§ When@ equalsl, i.e., the SP; does not belong to the adjoining pair,
this represents the case of using RC to compute the compehsathe segment numbeiof
the j-th SP. It should be noted that the timesidf # 0 in the second summation is once for all
i for eachj related to the adjoining SPs pairs. By adding the compensatato the wrapped
phase differences according to Eq. (4.4), phase jumps werelfdue to the existence of SPs

are canceled, therefore, the unwrapped phase can be eetsaecessively.

The steps of the proposed algorithm (RC+DC) can be sumnusaiz éollows:

1. Calculate SPs in the wrapped phase map by the summatibe phiase gradients of a
2 x 2 closed loop path. The positions of SPs are determined by BSmique.

2. Appending VSPs to the monopole SPs outside the measuranean then analyze the
SP pairs which consist of two real SPs laid inside the measemearea, or consist of
one real SP and one VSP appended outside the measurememtfeeethat, define the

adjoining SPs pairs.

3. For each segmentthe parametem;ﬂ for every SPj is evaluated. van;l =1;i.e.,apair
of SPs is an adjoining pair, a DC will be added, according to(d). Otherwise, RC
will be computed using Eq. (4.2).

4. After that the total compensator for each segment throluglvhole phase map will be

computed according to Eq. (4.8).

5. Finally, the unwrapped phase data can be retrieved byygdde compensators to the

wrapped phase differences by using Eq. (4.4).

This description of direct compensation for the pairs obadpg SPs makes the proposed
algorithm simple and easy to implement. It provides a fast efficient way to unwrap the
phase map than the RC method does. The proposed RC+DC methaxles the accuracy of
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Figure 4.4: Spreading of errors in regular regions due to the proposedhae (RC+DC)
handling way for the singularity regions in the phase map): $&s distribution
map, (b) phase errors appear in regular regions.

the RC method of confining the phase errors produce due talsirty effect of the adjoining
SPs dipole pairs, which are shown in Fig. 3.3(b), by reduthegphase errors to zero by
using the DC technique, as shown in Fig. 4.4(b). Figure 4aWshan example of phase
errors spreading on the whole measured domain includeggiugar regions produced when
using the proposed method (RC+DC) to cancel the effect giusamity regions, which their
distribution is shown in Fig. 4.4(a). However, the proposégbrithm still has phase errors
due to the using of RC technique for nonadjoing SP pairs. énftitiowing section, the

performance and applicability of the proposed algorithexiamined.

4.5 Results and discussion

To evaluate the performance of the proposed algorithm (RG+both simulated and real

wrapped phase maps have been used.

4.5.1 Computer simulation results

In order to demonstrate the applicability of the proposedBC method, a simulated noisy
phase map with constant gradient is generated. This phéséasthe image siz€0 x 100
pixel®, the gradient ig0.1, —0.1) cycle/pixel, and the noise has a normal distribution with
0.15 cycle standard deviation. The original and wrapped phateata shown in Fig. 4.5(a)
and Fig. 4.5(b), respectively. In addition, Fig. 4.5 preasehe distribution patterns of SP pairs

66



Rotational and direct compensators phase unwrappingitigor

Figure 4.5: A comparison of the unwrapped phase results for simulatedgdata has noise
with ¢ = 0.15 cycle: (a) the original phase data, (b) the wrapped data,tf®
positions of all SP pairs, (d) the positions of the pairs of+amljoining SPs, (e)
the positions of the pairs of adjoining SPs, (f) unwrappesileby LS-DCT, (g)
unwrapped result by RC, and (h) unwrapped result by RC+DCa)n (b), and
(f)-(h), the phase increases with the increases of brigdgnén (f)-(h), contour
lines of the phase with the interval of one cycle are also show

for real and virtual SPs to show the position of SP pairs inpih@se map. In Fig. 4.5(c), all
SP pair positions are presented, while, in Fig. 4.5(d) agd4b(e), the positions of the pairs
of non-adjoining and adjoining SPs are shown, respectivEtlys indicates that most of SP
pairs in the phase map are adjoining pairs, therefore, thefU3C will have obvious effect on
the unwrapping process. Hence, the accuracy of the unwigpipese will be improved and
the computation time will be reduced as shown later. The apped phase results obtained
by the LS-DCT method [25], RC method [46] and the proposed RCalgorithm are shown
through Fig. 4.5(f) to Fig. 4.5(h) with contour lines. To Bwate the characteristics of the phase

67



Rotational and direct compensators phase unwrappingitiigor

Algorithm Gradient¥¢) A (ng@) [%] o
[cycle/pixel] [cycle/pixel]
Original (0.1000, -0.1000)( — , — ) 0.149
LS-DCT (0.0742,-0.0731)(-25.8, —27.0) 0.179
RC (0.0912, -0.0896)(—8.7 ,-10.4) 0.168

RC+DC (0.0956 ,-0.0951)(—4.4 , —4.9) 0.168

Table 4.1: A comparison of the accuracy for the simulation data, shawrg. 4.5.

unwrapping methods, we can count the number of contour imeee unwrapped results and
compare them with the number of stripes in the wrapped datayis in Fig. 4.5(b). From

the comparison, we can find that the number of lines in the appe&d results is less than
that in the wrapped phase data. The wrapped phase data hage20he unwrapped result
of LS-DCT method has 14 lines, the unwrapped result of RCratgn has 17 lines, and
the proposed algorithm’s result has 18 lines. The unwrapgsdt of the proposed RC+DC

algorithm has the nearest number of lines as wrapped dateh whows the highest accuracy.

Moreover, the accuracy of the proposed algorithm can be asipéd as shown in Table 4.1.
This table shows a quantitative comparison of gradientth#original and unwrapped phase
maps. In the table, the gradients are obtained by fitting tteem planar functiong, and
the o denotes the mean residual that is defined as a square root eém square residual
from the fitted functiong. The o of the original phase data is not equal to zero, because
the original data contains noise with the given standardatiem. The errors of gradient,
A (VJ)) is estimated as the normalized difference between the ypecdaresult and the
original one, where the normalizing factor is the reciptaifeoriginal one. From the table,
it can be observed that the proposed algorithm, RC+DC, ghvesmallest error in terms
of A <V¢3) This is due to the consideration of adjoining pair defimtio computation of
the compensators in the proposed algorithm. This resuliroos that the proposed method
(RC+DC) reduces the phase errors which exist mainly in tiggral RC method.

Figure 4.6 shows a comparison of required computationad bil.S-DCT, RC and RC+DC
methods for various image sizes; the horizontal axidenotes one-dimensional area size in

pixels. From the figure, the profiles of RC method and that effgtoposed method show
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Figure 4.6: Required computational time of each algorithm for variaugage sizes: The hor-
izontal axisN denotes one-dimensional area size in pixels. “RC” shows the
required time cost for RC method, “RC+DC” shows the requigsgkcution time
for the proposed method, and “LS-DCT” shows the requireceticost for LS-
DCT method. The computational time is measured with a PQaney an Intel
Core 2 DUO CPU with 2.13 GHz clock in the single CPU operatiarms

that the computation time is proportional 3. Furthermore, from Eq. (4.3), we can note
that the time cost to compute the RC for all segments is ptap@d to the product of both
the number of SPs and the number of the segments of path tonfygecsated. Since both
are proportional to the area size (NV?), the total evaluation time is proportional #¢*. In
the RC+DC method, if the cost to compute the DC is adequatabller than that of RC,
the total cost might be similar to the case of RC algorithng &rcan be understood from
Eq. (4.8). Conversely, when the number of the times of usi@gcDmputation is larger than
that of RC in the proposed method, its execution time will éguced compared to the RC
method case. As a result, by coupling RC and DC computattbesgxecution time of the
proposed method is almost one third of the execution timénefdriginal RC method. In
contrast, the computational time of LS-DCT method increasi¢h N3. In this computation,
we use a matrix form of two-dimensional discrete FT [47]. dugh the use of matrix form,

the computational time of two-dimensional cosine tramsfaeeds onlyV? multiplications.
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4.5.2 Experimental results
Experimental data obtained by interferometer

The proposed RC+DC algorithm has also been tested expesiyean two-dimensional
wrapped phase map that resulted from the analysis of reglfpattern taken from the exper-
iment carried out by using Mach-Zehnder interferometere parpose of this experiment is
to measure the phase shift in candle flames. The phase datadges size256 x 170 pixelP
and 2532 SPs (1267 for positive SPs and 1265 for negative P®) wrapped phase data
and its corresponding SPs distribution map are shown in&i{a) and Fig. 4.7(b), respec-
tively. Moreover, the unwrapped results, which have contimes, obtained by RC method
and the proposed RC+DC algorithm are given in Fig. 4.7(c)Figd4.7(d), respectively. By
comparing the number of stripe lines in the wrapped phase atad the number of contour
lines in the unwrapped results from the mid-point on the baseof each figure, it can be
observed that the wrapped data has 10 lines, the unwrappa@tl @&€RC algorithm has 8 lines
and the proposed algorithm'’s result has 9 lines. The unve@pesults in both methods are
underestimated, however, the underestimation in the gexpalgorithm (RC+DC) is smaller
than that in the RC method. This implies that the RC+DC atgorisucceed to reduce the

phase errors produced by the original RC method.

The execution time of the proposed RC+DC algorithm variggedding on the number of
SPs, data size and the ratio of the adjoining SPs. Table és&pts the execution time for
simulated and real phase maps discussed above for the RGdreett the proposed RC+DC
algorithm. The table shows the name, the size, the SPs nadiahe adjoining SPs ratio of
each phase data. For noisy phase map, the SPs ratio, whathtestto the data size, is around
9.1% and the adjoining SPs ratio £).9%. In this case, it was found that the overhead for
each algorithm is the same. However, it is large enough cozdp@ the execution time to
compute the compensators for the RC+DC algorithm, Tg,,, is almost0.7 times T,
hence, the saving time cost ratio of the proposed algorithneduced fron¥7.6% (saving
time in compensators computation)@d.2% (total saving time computation). On the other
hand, flame data has SPs ratio of approximaiet§; and the adjoining SPs ratio is around
60.4%. In this case, the overhead for the proposed algorithm (RTHB relatively small

compared to the execution time to compute the compensam9,,,.,, is almost).14 times
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Figure 4.7: Unwrapped phase result of experimental data for candle flgiaethe wrapped
data, (b) SPs distribution map, (positive and negative Siesrgpresented by
white and black dots, respectively); (c) the unwrappedlteguRC algorithm, (d)
the unwrapped result of RC+DC,

Teomp, SO that the saving time cost ratio of the proposed RC+DCriilgo is reduce from

58.6% (saving time in compensators computation)$6% (total saving time computation);
however, the amount in reduction is not like noisy phase.c&sether words, the saving
time ratio to compute compensators is almost same to thenaajoSPs ratio. Therefore, the
time to compute the DC is very small, so it is neglected and#wng time ratio to compute

compensators is governed only by the RC computation.

From Table 4.2, it can be concluded that the execution timgetrch and analyze SPs is
the same for the two examined algorithms. However, the di@acttime to compute the
compensators in the RC+DC algorithm is reduced comparehatioone of the original RC
method. This reduction in the required computation timehefproposed algorithm is due to

the direct calculation of the compensators for the adjg8Rs pairs.

Unwrapped results of phase extraction methods for object iformation obtained from

interferograms

In the holographic measurement system, two fringe patt&nosld be measured to produce

information of an object by using a similar setup of the ifgesmetric experiment shown in
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Data Data SPs  Adjoining RC (REDC) Saving

name size: ratio:  SPsratioTiyiq [S]  Tiota [S] time
Nall Ns/Nall Na/Ns Tovrh [S] Tovrh [S] ratio
[%0] [%0] Teomp [S]  Teomp [S] [%0]
Noisy 100x100 9.1 80.9 1.781 0.585 67.2
phase 0.240 0.240
1.541 0.345 77.6
Flame 256x170 5.8 60.4 19.564 8.706 55.5
1.051 1.049

18.513 7.657 58.6

Table 4.2: A comparison of the execution time cost between RC algoatiaithe proposed
RC+DC algorithm: TheT,,,;, presents the required execution time for overhead
procedure to search and analyse SPs’ distribution. Thg,, presents the required
execution time to compute the Compensators.Tihg is the summatior} ;,, =
Tovrn + Teomp- Ns and N,, denote the total number of SPs and the number of SPs
that form adjoining pairs, respectively. “Saving time @ti= 1 —T(rc1pc)/Tre;
whereTrc and T rc. pe), represent the total execution times for RC method and
the proposed method, respectively.

Fig. 2.1. Firstly, a fringe pattern was obtained in the eise of an object. This fringe is
referred as an object fringe and it is a superposed resuieddject light passing through the
object upon the reference light. The other fringe pattemessured for background, which
is the result from the same system but there is no object. figpate the information about
the object, it is needed to eliminate the background frimgefthe measured data. There are
two ways to extract the phase shift caused by the object fr@mmeasured data, and these
methods depend on the timing of the background exclusiogurgi4.8 explains schematic
diagrams to compute the phase shift of an object from exmariah data. The first method is
the pre-rejection of background data by subtracting therapped phase of background data
obtained without the existence of the object from the wrapplease data obtained with the
existence of the object. Then the phase difference is urpedhfo get the unwrapped phase
shift result, as shown in Fig. 4.8(a). Meanwhile, the othethod that is post-rejection of
background data is carried out, as illustrated in Fig. 4.8flbthis way, the phase difference
iIs computed by excluding the unwrapped background phasefidah the unwrapped phase
of the object.
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Figure 4.8: The way of an object extraction from experimental data: (a}iejection of back-
ground. (b) Post-rejection of background.

Here, we examine the effect of these extraction ways on theapped results of the phase
shift caused by an object for interferograms. The objechisféxperiment is the temperature
measurement of the heated gas (Air) around a candle flamagihraeasuring the phase shift
caused by the flame using Mach-Zehnder interferometer [B®}. fringe pattern obtained in
existence of candle is referred as object fringe. In thissueament, the exposure time cannot
be set long enough because the flame varies in time by coomdltv around the flame itself.
For this reason, the exposure time is set to 1ms. This settinge two problems: firstly, the
fringe has low S/N; secondly, we cannot apply the phase stfiniques [6, 8, 9] that use
several fringes with different reference lights to obtawrapped phase. Spatial filtering for
interferograms by using Fourier transform method [5—7}asde applied to extract the phase

information, as shown in Fig. 2.2. In addition, the backgmphase map in this experiment
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Figure 4.9: A comparison of the accuracy of the examined phase unwrgpggorithms’
results of candle flame fqre-regjection of background way to extract the object.
The left column shows the unwrapped phase results. Theaadinnn shows the
rewrapped phase results. (a) results obtained by Goldsteial. method, (b)

results obtained by Flynn method, (c) results obtained BWDICI method, (d)
results obtained by RC+DC method.
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(d)

Figure 4.10: A comparison of the accuracy of the examined phase unwrggdgorithms’
results of candle flame fquost-rejection of background way to extract the ob-
ject. The left column shows the unwrapped phase results. rigfhecolumn
shows the rewrapped phase results. (a) results obtained digstin et al.
method, (b) results obtained by Flynn method, (c) resultainbd by LS-DCT
method, (d) results obtained by RC+DC method,
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is obtained by fitting to a planar function by using infornoatifrom the wrapped phase data
extracted from the object fringe pattern. This informatisniaken from the area where the

object light did not pass through the flame in the wrapped.data

Figures 4.9 and 4.10 show the unwrapped and rewrappedsestiite phase shift of the can-
dle flame depending on the extracting ways of the object. &kbBswn results are obtained
by using the proposed (RC+DC) method and other three egiptiase unwrapping methods,
which are Goldstein et al.'s path-following method [11]ykih’'s minimum weighted discon-
tinuity algorithm [15], and LS-DCT method [25] to show thgerformance for such this
kind of phase data. Figure 4.9 presents a comparison of theaay of the examined phase
unwrapping algorithms’ results of the candle flame for mecation of the background way
to extract the object. Meanwhile, Fig. 4.10 shows the coeygbagsults for the post-rejection
way. From the figures, it can be found that the unwrappedtrebtile Goldstein et al. method
causes phase jumps; however, the other three methods hgbase jumps. Although, there
Is no phase jump in the unwrapped results obtained by LS-D€&thaoa for both ways (pre-
rejection and post-rejection) of background, its rewrapsults produced by both ways are
different, as shown in Figs. 4.9(c) and 4.10(c). This ingplieat the accuracy of LS-DCT
method remains in doubt. On the other hand, the rewrappeskpfesults in both ways for
object extraction, which are pre-rejection and post-t@acare quite similar for either Flynn
method or the RC+DC algorithm , as shown in Figs. 4.9 and 4'h6refore, it can be said that
Goldstein et al. and LS-DCT methods provide inaccurate @hasults. Meanwhile, Flynn
method and the RC+DC algorithm produce accurate resultaekier, the unwrapped results
of the examined algorithms are affected by the way of objetetion. It is understood that
in the way of post-rejection for the background, Goldsté¢ialg Flynn and LS-DCT methods
give better results than those results in the pre-rejeatiayn The reason is that the number
of SPs from the wrapped phase data in post-rejection wayhwhki2532 for the studied un-
wrapping algorithms, is smaller than its number of SPs inrpjection way, which i$8046
for Goldstein method3208 for Flynn algorithm and®690 for LS-DCT method. In contrast,
the unwrapped phase result obtained by the RC+DC methocaiwdly of pre-rejection for
the background is better than its unwrapped result obtam#te post-rejection way. This is
due to that the ratio of adjoining pair of SPs for the wrappledse data in pre-rejection way,

which is 70.41%, is larger than its ratio 060.54% in post-rejection way. This implies the
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benefit of the RC+DC algorithm which uses DC to compensatsitigularities of adjoining

pair of SPs to reduce the unwrapping error.

In addition, the execution time required for each studiggalhm to obtain the unwrapped
results is also evaluated. It is found that the highest tios ¢ produce the unwrapped
results in the both ways of object extraction are for Flynrihmad, which are&’36.60 sec in the
pre-rejection way and50.90 sec in the post-rejection way. In the meantime, the exegutio
time of the RC+DC algorithm to obtain its unwrapped result hoth ways of the object
extraction showed better performance than Flynn methodwlidch are 8.84 sec in pre-
rejection way and 8.85 sec in post-rejection way. Henceatrit lse concluded from above
discussion that the developed method (RC+DC) gives resithisacceptable quality and with
low computational time cost. Moreover, the best unwrappeasp result is the unwrapped
result shown in Fig. 4.9(d), which obtained by the RC+DC rodth

Experimental data obtained by FTP

A three-dimensional object surface is measured in our éxygert; the object is a ping-pong
ball with a diameter of roughly0 mm. The measurement system consists of a digital projector
and a CCD camera, and it conforms to the conventional crpsad-axes geometry system,
as shown in Fig. 2.3(a). The system parameterdg@are 320 mm andd, = 110 mm. The
deformed grating image captured by the CCD camera and thepedaphase image and its
corresponding SP distribution map are shown in Fig. 4.11e ifilage size isl08 x 312
pixels. The wrapped phase obtained by filtering in Fouriacsha$80 SPs, most of which
are found in the background and around the boundary of trecglgs shown in Fig. 4.11(c)

as white and black pixels.

Figure 4.12 shows a comparison of the accuracy for Flynnhate[15] and the proposed
RC+DC algorithm in regard to the unwrapped phase shift tesdithe object, the rewrapped
phase results and the profile of the object’s height. Figar&2(a) and 4.12(b) show the un-
wrapped results of the object’'s phase shift for Flynn’s radtand the proposed algorithm,
respectively. Figures 4.12(c) and 4.12(d) are the rewmppsults of the unwrapped re-
sults shown in Figs. 4.12(a) and 4.12(b), respectively. ganng these figures we can find
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Figure 4.11: Experimental measured data: (a) deformed grating imagewapped phase
image, and (c) map of distribution of SPs.

that there are phase distortions in the background and oedbe of the object in the un-
wrapped result of Flynn’s method (Figs. 4.12(a) and 4.32(t)shows that Flynn’s method
cannot remove the effect of singularity in these regionscdntrast, the proposed algorithm
(Figs. 4.12(b) and 4.12(d)) can compensate the singulafi§Ps located around the object
and in the background. Moreover, Figs. 4.12(e) and 4.12@wsthe comparison of cross-
sectional profiles of the object height for three differgrapositions, wherey = 0 mm is
corresponding the cross-section going through the ceffitdredball. In the background re-
gions (the left-hand side @) mm or the right-hand side &b mm), the large fluctuation can
be clearly observed on Flynn’s result in Fig. 4.12(e). Thiglmein these regions should be
zero, as shown for the result of the proposed algorithm irdfteside in Fig. 4.12(f). In the
background area on the right side of both figures the heighbtizero. The reason for this
is the illuminated light by the projector. Since the lightlisminated as an oblique incidence
with angled, a part of the right side of the object is not illuminated. fidfere, the right side of
the object is shadowed and the height of the boundary of theéexharea is not zero. In addi-

tion, the execution time required for Flynn algorithm toahtthe unwrapped result, which is
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Figure 4.12:

30 30
Eo20 E20
= = 77T \\,f'/" =
5 10 5 10 7 ‘
‘© (3 /.

0 20 40 60 0 20 40 60
Position [mm] Position [mm]
() (f)

Comparison of the accuracy of the examined phase unwrapgopgyithms’
results for the measured data: the first row shows the unwedgghase shift
of the object, the second row shows the rewrapped phaseo§ktii¢ object, the
third row shows the cross-sectional profile of the objectght. (a), (c), and (e)
show the results of Flynn’s method. (b), (d), and (f) showdiselts of RC+DC
algorithm.
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7277.26 sec, is too long compared with the execution time of the psepg@lgorithm to obtain
its unwrapped result, which i81.83 sec. Hence, it can be concluded from above discussion
that the proposed method gives results with acceptabletygaald with short computation

time.

4.6 Conclusions

Phase unwrapping for noisy data by using RC had good perfaren@mong the other existing
methods. However, the RC method has drawbacks of compugtione requirements and
an undesirable phase distortion in the regular regions. VvEscome these drawbacks, we
propose a new method based on coupling the existing RC arld@h&he DC compensates
the singularity of the pair of adjoining SPs connected byaabh cut with the length which is
shorter than one pixel. The compensator along the segmantribsses the branch cut is just
2. For the SPs that are not members of adjoining pairs, RC isealgis a compensator. The
proposed algorithm (RC+DC) is tested on both computer-sitad and experimental noisy
phase data. The results show that the RC+DC algorithm hasaesrnomputational time

requirement compared to the original RC method.

Furthermore, the performances of the developed phase ppimgalgorithm (RC+DC) and
of other existing phase unwrapping methods for two exampfgshase measurement ap-
plications, which are interferometric and Fourier tramsfgrofilometry measurements are
compared. In addition, the methods to extract phase infbomabout the object from inter-
ferogram maps are also investigated. The results showttbgiroposed algorithm (RC+DC)
gives results with acceptable quality and with low compatedl time cost compared to the

existing methods.
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Chapter 5

Localized compensator based on
rotational and divergence operators for
unwrapping

5.1 Introduction

Phase unwrapping for a noisy image suffers from many SPshaddstbased on spreading
singularity are useful for noisy phase images to regulateesingularity. However, these

methods have a drawback of distorting phase distributioregular areas those contain no
SPs. When the SPs are confined in some local areas, the reggilams are not distorted. In

terms of accuracy, the method using localized compens&8dig superior to the other meth-

ods. However, this method has major disadvantages of mesiangage and computational
cost since it requires high time cost to produce its unwrdppsults. In this chapter, an ef-
fective and fast phase unwrapping algorithm is presentad.pfoposed algorithm solves the
problem of memory shortage and reduce the computationalguirements of the localized
compensator method to a minimum, and together with thatapkbe same level of results

accuracy.

5.2 Phase unwrapping compensation methods

In the wrapped phase data, SPs prevent straightforwardappivg. Moreover, the exis-
tence of SPs causes the phase unwrapping process to beegpathdeént. Therefore, many
algorithms have been proposed based on compensating the gpingularities to cancel their
effect. The idea of singularities compensation was progpaséhe SSPU method [43] and in
the methods using RC [46], RC+DC [49] or a localized compenmgd.C) [48] techniques.

However, these methods compensate the singularitiesferelit ways. The SSPU method
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Figure 5.1: Schematic of rotational compensator phase unwrapping ogetthe singularity
of j — th SP is canceled by computing the RG ef th segment using eq. (5.1).

requires an iteration process to compute the compensadtioesRC method can compute the
compensators through superposing the effect of each SPdiggaen integral of isotropic
singular function along any loops. While, the RC+DC meth®dadupling the rotational and
direct techniques to compute the compensators dependitiieaonverging distance of SPs.
On the other hand, the LC method regularizes the inconsigeonly in a local areas, which
are clusters, around the SPs by integrating the solutiomissBn’s equation for each cluster

to compute the compensators.

The SSPU algorithm [43] is firstly defines SPs distributiothie phase map. Next, the com-
pensators are not added only to the pixel values at the SRddmuthose at around the SPs.
Then, this method repeat the same process over the wholeintégvever, SSPU method
spreads the singularities to the entire domain of the imagdelas is consider as disadvantage
of SSPU method. Another disadvantage is found in this metivbcth is the requirement of
large computational time to obtain a suitable result. Whenmaximum residue value after
the spreading process is not negligible value, means veayl sins needed to repeat many
times of processes. Further details regards SSPU metheogivan in section 2.4.2 in chapter
2.

The RC method [46] uses local phase information to compertsatsingularity parts of phase

map caused by existence of SPs. This method can cancel thdasity of thej-th SP, by

computing the RC of-th segment, which i§c§., in terms of its azimuthal angles as follows:
R i &

c; = —m;(0ir1,; — i), (5.1)
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Figure 5.2: Schematic of rotational and direct compensator phase uppiray method: (a)
defined SPs, (b) create SPs pairs and defined adjoining anddjaning pairs,
(c) add DC for adjoining pairs and compute RC for nonadjogqpairs.

wherem; denotes the residue of thyeth SP. Also,f; ; and 6, ; represent the azimuthal
angles of the beginning and the end points ofittlesegment, as shown in Fig. 5.1. However,
the RC method has a drawback of undesired phase error bab@RE should be applied to
the regular region with no SPs as well as to the singular redio addition, the RC method

required high computational time cost when the measuresgptiata contains many SPs.

The RC+DC method [49] is based on coupling the RC and the Diintques to compute

the compensators depending on the SPs locations. Figurdusi2ates the main steps in
the RC+DC method. First, identifying SPs locations, thesating SPs pairs and defined
adjoining and nonadjoining pairs. The RC+DC method uses Bha compensators for
the adjoining SP pairs, and uses RC to compute the compess#toonadjoining pairs.

The adjoining pair is a dipole consists of two SPs with opj@osigns separated by one pixel
horizontally or vertically. The RC+DC method is fast, howe\vts accuracy is not guaranteed.
Its accuracy is depending on reducing the times of using thedehnique that increases the

phase distortion in the unwrapped results.

The LC method [48] regularizes the inconsistencies in lacaas, which are clusters, around
the SPs by integrating the solution of Poisson’s equatioedah cluster to evaluate the com-
pensators. In other words, firstly, LC method needs to detercluster groups, then it com-
putes the compensators depending on the solution of P&ssguation for each cluster. In
terms of accuracy, the LC method is superior to the other austidespite this, the LC method
has a major disadvantage of computational cost since thisadeequires long time cost to

compute the compensators.
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Figure 5.3: Spreading of errors in regular regions due to the handling/wéthe LC method
for the singularity regions in the phase map: (a) SPs disttidn map, (b) phase
errors appear in regular regions.

The LC method has the same merit of the RC+DC method regagqshtse errors spread due
to the singularity effect of the adjoining SP dipole pairstbe regular regions that contains
no SPs. Since the phase errors of these pairs by using RC+Di@dnis zero, as shown
in Fig. 4.4(b). Figure 5.3 shows an example of phase erraeagmg on the whole phase
map includes the regular regions produced when uses the ltbohéo cancel the effect of
singularity regions, which their distribution is shown iigF5.3(a). The LC has no phase error
during compensating the singularity effects of adjoiniri®y [@&irs, in addition, this method
(LC) confines the phase error for other SPs in local regionstware cluster, as shown in
Fig. 5.3(b).

5.3 Proposed localized compensator method based on rota-

tional and divergence operators (LC.rot+div)

The LC unwrapping method confines the effect of inconsisésndue to existence of SPs in
local areas, which are clusters, by integrating the satutfdPoisson’s equation for segments
in each cluster to evaluate the compensators accordingddarcmechanism. It uses bound-
ary element method (BEM) [50] to get the compensator valBEdA produces large errors in
the results when the singularity sources are position mgtietsegments which compensators
are computed for them. Therefore, singular value decortipongiSVD) method is used to fix
the errors produce by BEM step. We will mention to the origirt@ method by LC.bem+svd.

A flowchatrt illustrates the two main steps of LC.bem+svd rodtis shown in Fig. 5.4.
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Figure 5.4: A flowchart of the original LC method (LC.bem+svd) shows W@ main steps
for this method.

In terms of accuracy, the LC.bem+svd method is superior ¢odtmer methods. Despite
this, LC.bem+svd method has a major disadvantage of corimuodécost since this method
requires long time cost to compute the compensator valuaeduce errors. Therefore, to

overcome these drawbacks, we use a new way to produce thesosatpr values.

5.3.1 The principles of the Localized compensator technicpi

When a closed loop includes SP, the integral along the lodphawve a value of-27m, as
shown in Eq (2.13), where: is S in the mentioned equation. Representing an integral of a
segment, which is a member of the loop comprisiig segments, ag!, we can reduce Eq.
(2.13) as in Eq. (4.1). This suggests that the singularity‘of regularized by compensator
c' for each segment. In the case of an arbitrary closed patsince this path is considered as
a boundary of the region that is connected with sub-regideéemnentary loops, the integral

of C'is expressed as

M
fgzw dl =21y my. (5.2)
=1 k

For example, when two adjacent loops have two SPs with ofgppslarity shown in Fig. 5.5,
the compensator value along internal segment which is camsegment between the two
loops is equal to the value of the phase jump which is one qaleadian); meanwhile, the

compensator values for the other segments which are thedaopusegments for these loops
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Figure 5.5: Example of two adjacent loops have two SPs with oppositeaipglaresenting
the compensator value for the internal segment.

are equal zero. By connecting Egs. (4.1) and (5.2), we caairotite following relation:

M
jiZcidl = =27 ) my. (5.3)
=1 k

The last example give us two conditions required to compheebmpensators for a specific
domain. The first condition is that the number of positive aadative SPs must be equaled in
the domain, means they must balance each other out in thizksta@omain, which is called

source condition, as

k

It means that the phase map is divided to regions, which diedoausters, depending on a
certain mechanism. Each cluster must have the same numipesibive and negative SPs.
The second condition is that the compensator must vanistveny doundary segment, and
this is called boundary condition. If the wrapped phaseeddiice of two adjoining nodes (

andr’ = r + § Al) is defined as vector quantity  3), it is transformed as follows:

a1
g-§= AlW{A(Z)w}

1 Ao
N (Agf) — Int {g} 27r)

B R Ag| 27

where bothg andV ¢ are constant on the segment betweeand+’, ands is the unit vector

of directionr’ — r.
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Therefore, Egs. (4.1), (5.2) and (5.3) can be rewritten bows:

flgrosi—o 5.6)
C

f}rsdzz2w§:n%. (5.7)
¢ k

L%(y§dl::—2ﬂ§:n%. (5.8)
¢ k

Since the unwrapped phagenust be a scalar field, the difference vector of wrapped phase

in Eg. (5.5) satisfies the following equation using the diegrce free vector functiom.:

g=Vo+Vx A, (5.9)
V-A=0. (5.10)

By applying Stokes’ theorem to an integral of the rotatiorEgf (5.9) over a domain en-
closed by a patld’, and by comparing the result with Eq. (5.7), the followinat®ns can be
obtained:

c=-VxA, (5.11)

Once the compensatat,that satisfies Eq. (5.8) is found, phase unwrapping can beesuc
sively carried out using the following integration or acauation of compensators:
o(r) :¢(TQ)+/ g-.§dl+/ c-8dl. (5.12)

T0 T0

The integrandg - 8, of the last term in Eq. (5.12) can be transformed as follovtis using of
Eq. (5.11):

=7 VA, (5.13)
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wheren is the outward normal unit vector of the boundatys the perpendicular unit vector
to the domain surface, the directions of these unit vecttisfg s = 2 x n; andA, = A - 2,

2-V = 0is applied for two-dimensional problem. The quanfiyv A, presents a normal flux
density of VA,. Therefore, the boundary condition for the localized congag¢or technique

is reduced to Neumann condition as:

A VA, =0. (5.14)

In the meantime, the closed integral along any gatlas in Eqg. (5.8), can be transformed by

using Stokes’ theorem and Egs. (5.11) and (5.10) as follows:
%c-édl :/Vx(—VxA)-ézdS
C S
= / V2A.dS = =21 my. (5.15)
s k
In addition, a residuez;, at the pointr;, can be expressed by Dirac’s delta function as:
S
Therefore, Poisson’s equation can be obtainedfoirom Eqs. (5.15) and (5.16), as:

VPA, = =21 ) myd(r — ). (5.17)
k

The solution of Poisson’s equation shown in Eq. (5.14), expresses the flux density that
describes the spreading of singularities, which are shovie right-hand side of Eq. (5.17).
The solution found in Eq. (5.17) is calculated with the baanyccondition given in Eq. (5.14)
for the domain which is satisfying Eq. (5.4). To solw, any filed solver can be applied.
In the orignal LC method (LC.bem+svd), BEM is used as a basiees. However, when
the point to estimate the field is located near the sourcaqoithich are SPs, the BEM has a
large computational error. To reduce this error, SVD is uedohd a minimum norm solution.

Further details are found in section 5.3.3.

Once the solution is obtained, compensator along every eegplaced in the domain is
computed as an integral of the flux density by Eq. (5.13). Harehe outward normal vector

7 cannot be defined at the segment in the domain, since the aBoulodp is not defined. In
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Figure 5.6: Definition of local domain and flux density around SPs: (aplaomain includ-
ing SPs, (b) flux distribution in the local domain. Outmostseld thick line is a
boundary of the local domain, and the grids are segmentseshehtary loops.
The dashed line in (a) represents concave polygon that em&l SPs. The
arrows in (b) are the flux density of which line width expresse magnitude.

this case, the normal vector can be replaced by 2 wheres indicates the direction of the

segment. As a result, the integral of the compensator isttewias below:

/c~§dl:/ 8% 2-VA,dl. (5.18)
70 0o

By using this relation, the wrapped phase can be unwrappé&ab{s.12).

Figure 5.6 shows an example of a determined local region arevauated flux density dis-
tribution. From the result in Fig. 5.6(b), it can be said thédrge flux density distribution was

found around SPs while it was comparatively small near thentary.
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5.3.2 Clustering

The clustering process generates zero-charged group$ wrecnamed ‘clusters’, and they
satisfy Eq. (5.4). Gutmann and Weber proposed a clustetgagithm to search branch cut
efficiently using a simulated annealing method [17]. Théistering algorithm may be ap-
plicable to determine the local domain; however, it neegeermental parameters. In the LC
method, a new clustering algorithm is proposed without aofisgperimental parameters. As
shown in section 5.3.1, although the phase compensatonedefi a cluster’s region can reg-
ularize the singularity, it distorts the regular region eféfore, the region of the cluster needs
to be as small as possible. If the measurement area is ihfimide, all the zero-charged
clusters can be found because the total numbers of themvaagsatame. However, the ac-
tual area is finite. If the total numbers of positive and nege®Ps in the area are different, the
solution could not be found. Even when the total numbersteesame, a SP to be coupled
to the other SP may be placed near the border of the area, isututside the area. In this
case, SPs in the area may become larger sized clusters. ifidlaggoroblem, virtual SPs are
introduced to be located outside the finite area [46]. Thetehing procedure to find small
sized clusters consists of two stages: cluster merging chrsder splitting, as illustrated in
the flowchart of the LC.bem+svd method shown in Fig. 5.4. Tihster merging process usu-
ally increases the size of cluster, while the cluster spiittvhich reduces the size. The main
concerning in the proposed algorithm is regard the compensamputations step, while the
proposed algorithm will use the same computations for thstel step. The complete details

about the cluster method is found in [48].

5.3.3 BEM to solve Poisson’s equation

For each cluster determined in the LC method, the domainptydpe local compensator is

defined as one pixel (elementary loop) width wider area thamegion of the convex shaped
area that contains all SPs in the balanced cluster. The laoyirad the domain is set on

the outermost segments; an example was shown in Fig. 5.A&a3hown in Eq. (5.13), the

compensator for phase unwrapping is equivalent to the flagitleof VA, when A, satisfies

a Poisson’s equation shown in Eq. (5.17) with the boundangitimn given by the Neumann

condition with zero-flux density as presented in Eq. (5.14).
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The original LC method (LC.bem+svd) uses BEM [50] as a baslees to solveA.. In
the BEM, the unknown boundary values at the boundary nodesdre solved as a set of
discretized boundary integral equations for the all boupd@des shown in Fig. 5.7. After
solving this set of equations, all boundary valuésand(V A, - 7n), are determined. Internal
flux density at arbitrary points are evaluated as hypertgargntegrals, e.g. [51-53], from the
all boundary values. Several integration points on a segarerset to estimate the integral of
the flux density on each segment, as shown in Fig. 5.7. Howed®mn the point to estimate
the field is located near the source points, which correspotite SPs, the BEM has a large

computational error.

The following flux conservation law for every elementarypomannot be satisfied due to the

error:
j{VAZ Adl =21y / mi 6(r —71,) dS, (5.19)
(& k‘ S

which is derived from Eq. (5.17) using the Gauss’ diverggheerem. To reduce this error, a
SVD is applied to find a minimum-norm solution. The error w&an thej-th segment in the
k-th elementary loope, ;, is defined as a difference between the gradient computedhy, B
(VA.);. ;> and the gradient satisfying the flux conservation Iz, ), ;:

er; = (VA.); — (VA (5.20)

The flux conservation law shown in Eq. (5.19) for the elemgnitzop & is rewritten as

((VAZ);J - ek,j) : ’kaJ— = —27ka. (521)

4
=1

J
The number of equations is identical to that of loag,and the number of unknown variables
of e; ; - ;. ; Is 4N; because each loop has four segments. Howevee, thds known as zero
on the boundary segments of which the numbeNjs Furthermore, since every internal
segment belongs to two loops, the error vectors in thesedojsl can be defined by a vector

ona Segment,
erj = ey = € (5.22)

where the two subscript pairs bf j andt’, j' indicate the same segmenfrhus, the number

of unknowns is reduced to that of internal segments; Ne.= (4N, — N,)/2. In contrast
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to the error vector, two direction vectoms; ; andny ;,, on the segmenthave the different
direction. A new unit vectord;, is introduced that is identical to eithér, ; or 7 ;/, the

normal unit vector can be defined as

~

’fl/kJ’ - dkﬂ‘di, (523)

whered,, ; can take eithet-1, depending on the loop as well as the segment. Thus, Eq.)(5.21

can be transformed to the following matrix form:

De=r, (5.24)
(D)g; = diir  (e), = d; - e,
(), = 2mmy — Y dyid; - (VA);. (5.25)

In Eq. (5.24), theD is an N;-by-N, matrix. In most clustered domains, the relation be-
tween the dimensions of the matrix is givensis < N, except a few cases in which the
domain consists of one-dimensionally aligned loops or §-2-bligned loop. Therefore, the
set of equations is a rank-deficient, under-determinedBysft linear equations that cannot
be solved in an ordinal way. However, since the solutiondisis the list of errors that should
be small, the following condition can be imposed:

2

minimize ) ’(e)i (5.26)

To solve Eq. (5.24) with this condition, SVD routine providey LAPACK [54] is used in the
LC.bem+svd method. The flux is updated by the error:

(VAZ)kJ' = (VAZ);CJ — €Lj- (527)
An example of thév A, was shown in Fig. 5.6(b).

After the V A, is obtained, the compensator for the segment is evaluatédb{b.18). In the

case where a segment belongs in several cluster domairgrimensator is accumulated as
c= Z Con, (5.28)
m

wherec,, is the compensator to the segment of tlx¢h domain.
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n-VA,=0 onl

A,(r) = J (VA," - m)A,dl + Zsﬁ. " Ve
k

T

Figure 5.7: Schematic of BEM to solve flux density: shows the steps of BEM to compute
the flux, the condition in boundafyis - VA, = 0, and for internal point inside
the specific domain isi. (r,) = [ (VAL - 72)A. dT + 3, Sp A%

Figures 5.8, 5.9 and 5.10 present examples of unwrappee pbsilts obtained for two sim-
ulated data and one experimental phase data, respectteebfiow comparison of the un-
wrapped results when they obtained by the old LC method byguBEM only, and when
LC method uses BEM and SVD. In addition, Fig. 5.10 show aagucamparison for the un-
wrapped results of experimental data obtained by the RC+Bthad and the old LC method.
Figures 5.8 and 5.9 illustrate the comparison of the siredlpbhase examples, The simulated
phase data are two phase map with the same gradignt{0.1) [cycle/pixel], and the image
areal00 x 100 [pixel’]. However, they contain a set of noise with normal distridsg but
different standard deviations. The first simulated noisggghmap with standard deviation
0.15 cycle is shown as original and wrapped phase in Fig. 5.8(@)la) respectively. This
phase data hai$3 positive SPs and56 negative SPs, as shown in Fig. 5.8(c); the sum of them
exceed®9% of the number of all pixels. The unwrapped result with contimes obtained by
the old LC method by using BEM only is shown in Fig. 5.8(d). Meile, the result obtained
when using both BEM and SVD is shown in Fig. 5.8(e). From tharégt can be seen that
in the case when the old LC method is used BEM only to obtaiteedriwrapped result, has
fluctuation. This is indicated that the gradients for thigvtappped result are not accurate as it
can be seen from the errors image generated due to using ofd@iMor unwrapped result
shown in Fig. 5.9(f) comparing the errors image producedtdube difference between the
original phase data and the unwrapped result obtained g BM and SVD, as shown in
Fig. 5.9(g). Moreover, these observations can be confirmoed Table 5.1. This table shows a

quantitative comparison of gradients of the original andmapped phase maps. In the table,
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Figure 5.8:

(f) ()

An example of unwrapped phase results for simulated phaseh@s noise with
standard deviatior).15 cycle, to show the errors produce when use BEM only
for the old LC method: (a) original phase data, (b) wrappedad4c) SPs distri-
bution map (positive and negative SPs are represented b \ahd black dots,
respectively), (d) unwrapped result of the old LC methoddiggiBEM only, (e)
unwrapped result obtained by the old LC method using both BEMSVD, (f)
errors generated due to using of BEM only for unwrapped tethd range of
values is[—0.37 : 0.4x], and (g) errors generated due to using both BEM and
SVD to produce unwrapped result the range of valuds-i537 : 0.3x]. In (a),
(b), and (d), (e), the phase increases with the increasesigiitness. In (d), (e),
contour lines of the phase with the interval of one cycle dse ahown.
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Algorithm Gradient ¥ ¢) R?>  Time
[cycle/pixel] [sec]
Original (0.1001,-0.1001) — —
LC.bem (0.1000, -0.0974) 0.0318 0.18
LC.bem+svd (0.1000, —0.1000) 0.0047 0.19

Table 5.1: A comparison of the accuracy for the simulated noisy dath vit5 cycle standard
deviation, shown in Fig. 5.8; “LC.bem” is the old LC methoddssing BEM only,
and “LC.bem+svd” is the old LC method by using both BEM and SVD

the gradients are obtained by fitting them to a planar functipwhile, R? is the squared error
between the original phase data and the unwrapped redudem be seen from this table that
the gradient forz—direction of the result obtained by BEM only has error valoenparing
with the gradient of the result obtained by both BEM and SVii] this can be approved from

the R? values, since its value is a little higher for the case of g&&M only.

The second simulated phase datathasycle standard deviation of noise, is shown as original
and wrapped phase in Fig. 5.9(a) and (b), respectively. ditase data hal$)33 positive SPs
and1031 negative SPs, as shown in Fig. 5.9(c); the sum of them ex&8¥dsf the number
of all pixels. The unwrapped and rewrapped results obtdnyetie old LC method by using
BEM only are shown in Fig. 5.9(d) and (f), respectively. Meaile, the results obtained
when using both BEM and SVD are shown in Fig. 5.9(e) and (gpeetively. It can be
observed that the unwrapped result of BEM only is not aceusatd there are many phase
jumps in it, as shown in Fig. 5.9(d). While, the unwrappediitesbtained by both BEM
and SVD shown in Fig. 5.9(e) is smooth. In addition, the sBijn the rewrapped result
provided by BEM only are not distinguished, indicates that gradients for this unwrapped
result are not accurate as also seen from the errors imageaged due to using of BEM
only for unwrapped result shown in Fig. 5.9(h) comparingeh®rs image produced due to
the difference between the original phase data and the wp&daresult obtained by using
BEM and SVD, as shown in Fig. 5.9(i). Furthermore, these nlag®ns can be confirmed
from Table 5.2. This table shows a quantitative comparidogradients of the original and
unwrapped phase maps. It can be seen from this table thatatiegt forz—direction of the

result obtained by BEM only has large error value compariity Whe gradient of the result
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Algorithm Gradient ¥ ¢) R?>  Time
[cycle/pixel] [sec]
Original (0.1001,-0.1001) — —
LC.bem (0.0789,-0.0913) 0.5797 7.22
LC.bem+svd (0.0864 , —0.0946) 0.3125 11.00

Table 5.2: A comparison of the accuracy for the simulated noisy dath Wit cycle standard
deviation, shown in Fig. 5.9; “LC.bem” is the old LC methodumssing BEM only,
and “LC.bem+svd” is the old LC method by using both BEM and SVD

obtained by both BEM and SVD, and this can be approved fronkthealues, since its value
is more higher for the case of using BEM only. However, the gotational time required to
obtained the unwrapped result obtained by both BEM and SMidgiser than that time for
using BEM only. This is considered a big disadvantage of tde.& method (LC.bem+svd)
which uses both computations of BEM and SVD to produce itsrapped results.

Figure 5.10 shows the unwrapped results of wrapped phaséaaesulted from the analysis
of real fringe pattern taken from the experiment carriedbyutising Mach-Zehnder interfer-
ometer. The purpose of this experiment is to measure theepdtak in candle flames [46].
The phase data has image sz x 170 pixeP and2532 SPs. The wrapped phase data
and its corresponding SPs distribution map are shown in3=i)(a) and (b), respectively.
Moreover, the unwrapped results, which have contour liolesined by RC+DC method and
old LC method when it uses BEM only and when it uses both BEM &¥® are given in
Fig. 5.10(c), (d) and (e), respectively. From the figureai be noticed that the contour lines
of the unwrapped result obtained by BEM only has many distack and fluctuation indicates
that this result has errors and not accurate. As well, therajpped result of RC+DC method
also has fluctuation in its contour lines, which means thatRE+DC method produces not
accurate unwrapped result. Meanwhile, the unwrappedtrelstdined by the old LC method
when using both BEM and SVD is smooth, and the shape of itocofihes are similar to the
stipes of the wrapped data. However, the time cost for thé&@+svd method when it uses
both BEM and SVD is the highest computational time cost, Whe21.87 sec, among the
studied algorithm. While, the computational time cost af bC method when using BEM

only is 11.86 sec; also, the computational time cost required for RC+DEhotkis8.8 sec.

98



Localized compensator based on rotational and divergepeeators for unwrapping

Figure 5.9: An example of unwrapped phase results for simulated phaseh@s noise with
0.2 cycle standard deviation to show the errors produce whenBEd only for
the old LC method: (a) original phase data, (b) wrapped d4td,SPs distri-
bution map (positive and negative SPs are represented b \ahd black dots,
respectively), (d) unwrapped result of the old LC method §mgiBEM only,
(e) unwrapped result obtained by the old LC method using B&hl and SVD,
(f) rewrapped result of the old LC method by using BEM only, régvrapped
result obtained by the old LC method using both BEM and SVDerfors gen-
erated due to using of BEM only for unwrapped result the raafjgalues is
[—0.067 : 1.87], and (i) errors generated due to using both BEM and SVD to
produce unwrapped result the range of valuesi6.057 : 1.37].
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Figure 5.10: Accuracy comparison for unwrapped phase results of exgariat data for can-
dle flame: (a) wrapped data, (b) SPs distribution map (pesiéind negative SPs
are represented by white and black dots, respectively)f@jrapped result of
the RC+DC method, (d) unwrapped result of the old LC methodsiyyy BEM
only, and (e) unwrapped result obtained by the old LC mettsidiguboth BEM
and SVD. In (c), (d) and (e), contour lines of the phase withititerval of one
cycle are also shown.

The too high computational time cost of the old LC method wiheses both BEM and SVD
is considered a big problem for this method, specially winenitrapped phase data has large
image size or includes high noise ratio, and this is what wiseive in the next section.

5.3.4 The description of the proposed algorithm (LC.rot+dv)

The purpose of the current proposed phase unwrapping tdgors to improve the perfor-
mance of the localized compensator phase unwrapping mé¢tlihdem+svd). This is hap-
pened by reducing the computational time cost requiredlie@d®oisson equation with Neu-
mann condition to compute the flux,A., to evaluate the compensator values with line inte-
gral of VA, shown in Eq.(5.18). To explain the idea of the proposed &lyor considerA,

as a scalar potentiap;, and consider the source charges in the right-hand in B 5vhich
are electrostatic charges8is= p, wherep is normalized by,. Therefore, itis just considered
as a potential problem in electromagnetics, and Poissapiateon shown in Eq. (5.17) can
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be modified as follows:
Vip=2S8 (5.29)
From identity of vector calculus we can get:
V-Vp=25 (5.30)

In the case of static fields, it is in general not necessaryesziibe the problem by vectors;

and the electric field at point is equal to the negative gradiéthe scalar electric potential,
E=-V¢ (5.31)

Hence, we can obtain the divergence of the electric field shaviEq. (5.30) as total charge

density divided by the permittivity of free space,
V-E=S5 (5.32)

Equation (5.32) illustrates that the integral of the eledtux, which is the compensator value
along the line segment, out of a closed surface is equal tohthge enclosed. Therefore, by
getting the solution of Eq. (5.32), the compensator valuedaectly evaluated; and this is
the merit of our proposed algorithm. In contrast, the BEM pates the solution of Poisson
equation as point values of flux, hence it requires integnatif these flux points to obtain the
compensator values. As a result, this is evaluation by UBHEMl to obtain the compensator
values produces errors, especially when the charge sowheh are SPs, are located near to
the segments that required to compute their compensatoesall herefore, SVD technique
is used in the original LC method (LC.bem+svd) to fix thesermeans that high time cost
is required. In contrast, the proposed algorithm does ned tieis step, since it computes the

line integral directly, means that it reduces the requiratiputational time cost.

Unfortunately, every elementary loop & 2 pixel path) in each cluster has only one diver-
gence equation, Eq. (5.32), with four segments (have unkrftux values). Hence, to solve
these unknown variables, more equations are needed. Theatans can be provided from

Eq. (5.31) by applying rotational operator for this equatme can get the following relation:

VxE=-VxVé (5.33)
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Figure 5.11: A schematic for the proposed algorithm to illustrate the i@ysolving Pois-
son’s equation to compute the flux values. This way usesan#df (V <), and
divergence, V-) operators to produce the flux density values directly witho
any integration to evaluate the compensators.

Because that the rotational of a scalar function equals bermce:
VxE=0 (5.34)

Equation (5.34) represents that the induced electromfuige in any closed loop equals zero
in the case of static field. The position of divergence andtranal equation points for the
flux density are depended on SP positions. Figure 5.11 sh@ebematic for the proposed
algorithm to illustrate the way for solving Poisson’s egoiatto compute the flux values.
The divergence equation is shown the divergence betwediuthines, its position is in the
center of the loop as shown in Fig 5.11. Meanwhile, the cépbiat position for the grid of
the rotational operator is shifted with5 pixel size width from the divergence point position,
as shown in Fig 5.11. Furthermore, the orientations (sign$)or —1, for rotational and
divergence matrices are dependent on the direction of flesland also are respect to their
directions for the axis andy. For cluster size of/ x N, the number of unknown variables
iS2M N — 3(N + M) + 4. Moreover, the number of divergence equationsiis— 1)(N — 1),
and the number of rotational equationg i — 2)(N — 2). Therefore, the number of total
equations i@ M N —3(N + M) +5, means it is greater than the number of unknown variables
with one redundancy equation. To solve the rotational amergence equations, simultaneous

equation can be generated by joint the rotational and dévexg matrices as,
Ax=Db (5.35)

whereA matrix is resulted as rearranging of the rotational andrgsece matricex denotes

the list of line integral of electric flux, which are the rempd the compensator values, and
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, Clustering Computation
Wrapped Determine
phase data =»| SPs positions |l |cluster |gmp |cCluster | ™=

-
and residues merging splitting (j
e+

Compensator Computation
For each cluster:

Compute LC by line integral of flux
e [density, VA, , by solving Poisson |
Equation using rotational and
divergence operators

Unwrapped
phase data

Figure 5.12: A flowchart of the proposed algorithm (LC.rot+div).

represents the list of source term. These equations canksigar equations set, in which the
matrix of equations has square shape. SinceAthatrix is a sparse matrix of which most of
its components are zero and the non-zero elements bor —1, it can be saved the memory
by compressing th& matrix. In the proposed algorithm, we convert this squasgspmatrix
to band matrix, then a routine solver provided by LAPACK [8Hised for band matrix. This
is reduce the restriction of memory shortage in the origit@imethod (LC.bem+svd). We
refer to the proposed algorithm as localized compensatsgbnwrapping method based on
rotational and divergence operators (LC.rot+div). Figbrg2 illustrates a flowchart of the
proposed algorithm (LC.rot+div), to show the main stepshia tompensator computation.
This description of using rotational and divergence omesato solve Poisson equation to
evaluate the compensator values through computing the #osgity, A., makes the proposed
algorithm (LC.rot+div) simple and easy to implement. Ityides a fast and efficient way
to unwrap the phase map, by reducing the computational &geired to compute the com-
pensator values. In the following section, the performaarue applicability of the proposed

algorithm is examined.

5.4 Results and discussion

In this section, two examples of noisy wrapped phase mapsrasented. One is a simulated

phase map where the true phase is known to evaluate the eg@irthe proposed algorithm
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Algorithm  Gradient¥¢) A <V¢3) [%] o
[cycle/pixel] [cycle/pixel]
Original  (0.1001,-0.1001) ( — , —) 0.199

LC.bem+svd (0.0864 , —0.0946) (—13.7 , —5.5) 0.361
LC.rot+div  (0.0865 ,—0.0944) (-13.6, —5.7) 0.359

Table 5.3: A comparison of the accuracy for the simulation data, showrFig. 5.13;
“LC.bem+svd” is the old LC method, and “LC.rot+div” is the pposed method.

quantitatively. The other is the experimental data obthimigh interferometer to demonstrate

the performance of the proposed method for noisy phase data.

5.4.1 Simulated wrapped phase for known phase map

In order to demonstrate the applicability of the proposem@adhm, a simulated noisy phase
map with constant gradient h&s2 cycle standard deviation is generated, shown as origi-
nal and wrapped data in Fig. 5.13(a). The unwrapped phastésebtained by the old LC
method (LC.bem+svd) [48] and the proposed modified LC allgori(LC.rot+div) are shown

in Fig. 5.13(b) and (c), respectively; with their rewrappedults. We can noticed that the
unwrapped phase results of the compared algorithms aretBrand look likes the original
phase data, as shown in the left-hand side of Fig. 5.13. Tdssreation can be confirmed
from the phase error shown Fig. 5.13(d), which is the difieesbetween the two unwrapped
results obtained by the LC.bem+svd and the proposed LGlIomethods. Moreover, the ac-
curacy of the proposed algorithm can be emphasized as sinolable 5.3. This table shows a
quantitative comparison of gradients for the original anditapped phase maps. In the table,
the gradients are obtained by fitting them to a planar functipand thes denotes the mean
residual that is defined as a square root of a mean squareaégiom the fitted functiong.
The o of the original phase data is not equal to zero, because ihi@ardata contains noise
with the given standard deviation. The errors of gradién(,vib) is estimated as the nor-
malized difference between the unwrapped result and tigenatione, where the normalizing
factor is the reciprocal of original one. From the table aih e observed that the accuracy of

the LC.bem+svd method and the proposed LC.rot+div algorighsimilar.
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(d)

Figure 5.13: A comparison of the unwrapped phase results for simulatedg@bata has noise
with o = 0.2 [cycle]: (a) the original and wrapped phase data, (b) the un-
wrapped and rewrapped results obtained by the old LC methGdgem+svd),
(c) the unwrapped and rewrapped results obtained by thegeeg modified LC
method (LC.rot+div), (d) the phase difference between tinerapped results

the range of values i§-0.17 : 0.27]. The left side in (a) to (c), the phase
increases with the increases of brightness.
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Figure 5.14: Required computational time of each algorithm for varioomsge sizes: The
horizontal axisN denotes one-dimensional area size in pixels. “LC.bem+svd”
shows the required time cost for the old LC method, and “L&do/” shows
the required execution time for the proposed method.

Figure 5.14 shows a comparison of required computationa fior the old LC.bem+svd
method and the proposed modified LC.rot+div method for verimage sizes, with the same
data component regards the gradients and the standardidewé the noise contained in
the data. In the figure, the horizontal axis denotes one-dimensional area size in pixels.
The computational time for each phase unwrapping algorilimeasured using a PC with
Intel Core 2 DUO CPU installed, with 2.13 GHz clock in a singleU operation mode.
The computing language used to implement the compared pinag@apping algorithms is C
language. From the figure, we can observed two big probleratedeto the computational
time cost of the LC.bem+svd method. The first problem is th@boild LC.bem+svd algorithm
can not provide unwrapped results for noisy phase data milge sizes greater thaf0 x 400
pixel?, due to memory shortage. This is due to that the LC.bem+sutiodeequired very
large memory size to compute the compensator values by SMibaaeo fix the errors of
the results, although there is no memory restriction by BEdthad itself. In addition, the
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Figure 5.15: The maximum cluster size for various image sizes: The haataxis NV de-
notes one-dimensional area size in pixels.

LC.bem+svd method has higher computational time cost taioliis unwrapped results for
smaller image sizes comparing with the proposed LC.rotfu@thod for the same data, as
shown in the figure. However, we can see that the computatiiona cost for the proposed
method to obtain its unwrapped result for the phase data siz#h500 x 500 pixel® is the
highest cost among the execution time of other phase data Size reason for that is the
cluster distribution and size for this data, as shown in Bi@5. It can be noticed that this size

has the maximum cluster size comparing with the other da&ssi

From above-mentioned discussion, it can be concludedtbabtecution time to compute the
compensators in the proposed algorithm LC.rot+div is redutompared to that one of the
original LC.bem+svd method and solve the problem of memboytage for larger phase data

size.

5.4.2 Experimental data obtained by interferometer

The proposed LC.rot+div algorithm has also been testedrerpatally on two-dimensional

wrapped phase map that resulted from the analysis of re@jefrpattern taken from the ex-
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Figure 5.16: Unwrapped phase results of experimental data for candlediafa) wrapped
data, (b) SPs distribution map (positive and negative SRsrepresented by
white and black dots, respectively), (c) unwrapped resiulhe old LC method
(LC.bem+svd), and (d) unwrapped result obtained by the psed method
(LC.rot+div). In (c) and (d), contour lines of the phase witie interval of
one cycle are also shown.

periment carried out by using Mach-Zehnder interferomeldis data is the same data that
used in section 5.3.3. The purpose of this experiment is t@some the phase shift in candle
flames [46]. The wrapped phase data and its correspondingiSteibution map are shown
in Fig. 5.16(a) and Fig. 5.16(b), respectively. Moreovke tnwrapped results, which have
contour lines, obtained by LC.bem+svd method and the pexpakyorithm (LC.rot+div) are
given in Fig. 5.16(c) and Fig. 5.16(d), respectively. Theumacy of phase unwrapping meth-
ods can be evaluated by comparing the shape of phase diagiontn the wrapped data and
the shape of contour lines in the unwrapped phases. It caoupel that the accuracy of the
LC.bem+svd method and the proposed method have simildrdéaecuracy. However, the
execution time required for the LC.bem+svd method to obtiaenunwrapped result, which
is 24.59 sec, is much higher compared to that of the proposed LC.rothdthod to obtain
its unwrapped result, which &91 sec. Therefore, it can be said that the proposed method
(LC.rot+div) provides its unwrapped result with same aacyrand smaller computational
time requirement compared to the LC.bem+svd method does.
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5.5 Conclusions

To solve phase unwrapping problems, many methods have lesetoged, nevertheless, pro-
viding satisfactory results with better quality leads taraet consuming process. Phase un-
wrapping for noisy data by using LC.bem+svd method had higleseuracy than the other
existing methods. However, it has drawbacks of memory ajgerand computational time
requirement, since, it is needed high time cost to solvedBais equation to produce the
compensator values. To overcome these drawbacks, we usemayeto produce the com-
pensator values. The proposed algorithm (LC.rot+div)e®ihe Poisson’s equation by using
rotational and divergence operators to get the comperssaitnout any effect of the singu-
larity source positions. The proposed algorithm was testedoth computer-simulated and
experimental noisy phase data. The results show that thgeadl LC.rot+div algorithm pro-
vides the unwrapped results with same accuracy and smaheputational time requirement
compared to the original LC.bem+svd method.
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Chapter 6
Conclusions

There has been an increasing interest in the automatiomgefanalysis over the last decade.
The main stages of fringe analysis technique are phasecégtraand phase unwrapping.
Phase unwrapping has been a research area for more than ¢abede Despite no small

amount of efforts, however, the problem remains unresolRithse unwrapping has faced
great challenges especially when the wrapped data condénentinuous and contiguous
features at the same time. There is clearly a need for furtivesstigation with particular

emphasis to solve this problem. Our work here is meant teeptesgood insight to propose

more accurate phase unwrapping algorithms.

This dissertation has made investigations in fringe pagealysis process, specially for phase
unwrapping stage. A general review to the main stages fogéranalysis process, which are
phase extraction and phase unwrapping has been introditmgever, large concerning is
given for the unwrapping stage, since it is the object of gtigdy. Therefore, the phase
unwrapping problem was presented, and the problems thabiaay phase unwrapping algo-
rithms have been briefly described. The major problem fopladise unwrapping algorithms
is the singularity problem and effect on the unwrapping pssc SPs are local inconsistencies
that prevent straight forward unwrapping. Furthermorerieflseview for some of existing

phase unwrapping methods is also introduced.

This thesis has presented two novel phase unwrapping neflloodhe purpose of more
accurate phase unwrapping for noisy wrapped phase mapsifimus optical applications.
The first proposed method is hamed rotational and direct eosgiors phase unwrapping
(RC+DC). The proposed RC+DC phase unwrapping algorithra lesmal phase information
to compensate parts of the field, which are SPs, that causesistencies in the unwrapping
results. It is based on three techniques rotational andtdicanpensators, unconstrained sin-

gular point, and virtual singular points. It uses DC for aijog SP pairs, and uses RC for
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other SP pairs. The adjoining pair is a dipole consists of$®e with opposite signs separated
by one pixel horizontally or vertically. The RC+DC methodast, however, its accuracy is
not guaranteed. Since, its accuracy is depending on regltloentimes for using the RC tech-
nigue which increases the phase distortion in the reguipomewhere SPs are not located the
unwrapped results.

The second proposed phase unwrapping algorithm is baseidgulagity compensation for
cluster regions of SPs; it aims to improve the performangehalse unwrapping using a lo-
calized compensator (LC.bem+svd) method regards the nyeshortage and computational
time requirements. The LC.bem+svd method regularizesrnbensistencies in local areas,
which are clusters, around the SPs by integrating the solati Poisson’s equation for each
cluster to evaluate the compensators. In terms of accuttaeynethod using LC.bem+svd is
superior to the other methods. Despite this, LC.bem+svthoashas a major disadvantage of
computational cost since this method requires long timé twosompute the compensators.
Hence, to overcome these drawbacks, we use a new way to grokdecompensator val-
ues. The proposed algorithm LC.rot+div solves the Poissequation by using rotational
and divergence operators to get the compensators withgwgfact of the singularity source
positions. The proposed LC.rot+div algorithm is tested othitomputer-simulated and ex-
perimental noisy phase data. The results show that the pedpalgorithm (LC.rot+div) is
faster compared to the original algorithm with LC.bem+swatanwhile it keeps the same

level of accuracy of the unwrapped results.

The proposed algorithms are tested on both simulated aretiengntal phase data. In regard
to the unwrapped phase results of simulated data, the ped@dgorithms give the best solu-
tion with high quality compared to the examined algorithnisali are Goldstein’s method and
the least squares method with DCT. Moreover, the unwrappietnods have been applied on
the measured phase maps obtained by interferometer founmega heated air around candle
flame through measuring the phase shift caused by this flartsm, the proposed methods
give the best accuracy for unwrapping this type of measuegd. dTherefore, the proposed
phase unwrapping algorithms are suitable for the compleapped phase data with large

number of SPs. The reason for the better accuracy by the pedpadgorithms results due to
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Algorithm Gradient ¥¢) A <V¢3> [%0] o  Time [sec]
Onoise: 0.15 [cycle] (N (sT) = 453, N(s™) = 456)

Original (0.1000,-0.1000) ( — , — ) 0.149 —

Goldstein  (0.0892 , -0.0826) (-10.8,-17.4) 0.425 0.12
Flynn (0.1000,-0.1000) ( 0.0 , 0.0 ) 0.159 47.81
LS-DCT (0.0742,-0.0731) (-25.8,-27.0) 0.179 0.16
SSPU (0.0743,-0.0730) (-25.7,-27.0) 0.179 5.10
RC (0.0912,-0.0896) (-8.7 ,-10.4) 0.168 3.98

RC+DC  (0.0955,-0.0952) (—4.4 , -4.9) 0.169  0.68
LC.bem+svd (0.1000,-0.1000) ( 0.0 , 0.0 ) 0.145  2.74
LC.rot+div  (0.1000,-0.1000) ( 0.0 , 0.0 ) 0.146  0.44
Troise: 0.20 [cycle] (N (sT) = 1033, N(s~) = 1031)

Original  (0.1000,-0.1000) ( — , — ) 0.199 —
Flynn (0.0999 , -0.0999) (-1.0 , -1.0) 0.260  136.30
LC.rot+div (0.0865,-0.0944) (-13.6, —-5.7) 0.3590  0.60

Table 6.1: Accuracy and computational time cost comparisons amonsttited algorithms,
for two examples of simulated noisy phase data.

it confining the effect of singularities to the local regianand each SP.

Table 6.1 provides a summary for quantitative comparisooransix existing methods, which
are Goldstein’s path-following method [11], Flynn meth@8]the LS-DCT method [25], the
SSPU method [43], the RC method with using all approaches (F8P, VSP)[46] and the old
LC method (LC.bem+svd). In addition the comparison inciuithe two proposed algorithms,
which are RC+DC method, and LC.rot+div algorithm. The tadflews the accuracy in two
cases where the standard deviation of noige1s cycle and0.20 cycle. The induced noise
caused disturbances, which are SPs, in the phase map. THenoffSPs is also shown in
the table. The total numbers of SPs & and20% of the number of all pixels for each case.
In the table, the gradients are obtained by fitting them tcaaani function, and the errors
of gradient, A (ng@) is estimated as the normalized difference between the yp&daresult
and the original one, where the normalizing factor is th@garecal of original one. Whileg
denotes the mean residual that is defined as a square rootedirasquare residual from the
fitted function,¢. Theo of the original phase data is not equal to zero, because ihieair
data contains noise with the given standard deviation. &kedolumn in the table shows

the execution time required for each algorithm to obtainedinwrapped result. In the case
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of noise with0.15 cycle, it can be revealed from Table 6.1 that both Flynn netttued the
proposed algorithm (LC.rot+div) exhibited the best accyfaetween the studied algorithms,
because they give the smallest error in termﬁ&(ﬁV&). However, the computational time
cost of Flynn method is the highest cost as compared to akigihgns. Furthermore, In the
case 0f0.2 cycle standard deviation of noise, the comparison is givéy for Flynn method
and the proposed LC.rot+div algorithm to explore their parfance in the case of high noise
since they showed the best accuracy (a5 cycle noise. It is clear that Flynn method is
better in terms of the accuracy although it has a higher céatipnal time cost to produce
its unwrapped results than the LC.rot+div does, as showhartable. Therefore, it can be
said that the proposed LC.rot+div algorithm gives accwatgrapped phase results with low
computational time cost.

As a summary, the presence of noise in the measured datajch wiany SPs are found, of-

ten makes general phase unwrapping algorithms fail to m®decurate unwrapped results.
Therefore, it is necessary to use a powerful phase unwrgppéathod to recover the desired
smooth phase surface. For this reason, we propose our n&g pharapping methods, those
are applicable for actual measured phase data that is eedriom various applications. One
example of these applications is dynamic three-dimensisim@pe measurement. When a
measured object is varied with time, enough long exposune tannot be allocated to ob-
tain a deformed fringe pattern. The obtained fringe patteth short exposure time has a
low signal-to-noise ratio. Our proposed unwrapping mesh@C+DC, LC.rot+div) are suc-

cessfully unwrapping such that kind of actual phase datappoduce smooth and accurate
unwrapped phase results with low computational time costtAer example about the appli-
cability of our proposed unwrapping methods for actual meas$ phase data is applications
that are required large phase data size measuring, meagsapplications need to generate
many phase images to collect the desired information lete¢hese applications, such as

computed tomography (CT) measurements.
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