<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Studies on hepatitis C virus infection in human B cells</td>
</tr>
<tr>
<td>Author(s)</td>
<td>中井 正人</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-09-25</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/doctoral.k11511</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/57205</td>
</tr>
<tr>
<td>Type</td>
<td>theses (doctoral)</td>
</tr>
<tr>
<td>Note</td>
<td>配架番号: 2117</td>
</tr>
<tr>
<td>File Information</td>
<td>Masato_Nakai.pdf</td>
</tr>
</tbody>
</table>

Studies on hepatitis C virus infection in human B cells
(ヒトB細胞におけるC型肝炎ウイルス感染に関する研究)

2014年 9月
北海道大学
中井正人
Studies on hepatitis C virus infection in human B cells
(ヒト B 細胞における C 型肝炎ウイルス感染に関する研究)

2014年 9月
北海道大学
中井 正人
目次

発表論文目録および学会発表目録 ・・・・・・・・・・・・・・・ 1 頁
緒言 ・・・・・・・・・・・・・・・・・・・・・・・・ 2 頁
略語表 ・・・・・・・・・・・・・・・・・・・・・・・・ 7 頁
実験材料と方法 ・・・・・・・・・・・・・・・・・・・・ 9 頁

第一章
緒言 ・・・・・・・・・・・・・・・・・・・・・・・・ 27 頁
結果 ・・・・・・・・・・・・・・・・・・・・・・・・ 28 頁
考察 ・・・・・・・・・・・・・・・・・・・・・・・・ 35 頁

第二章
緒言 ・・・・・・・・・・・・・・・・・・・・・・・・ 37 頁
結果 ・・・・・・・・・・・・・・・・・・・・・・・・ 38 頁
考察 ・・・・・・・・・・・・・・・・・・・・・・・・ 52 頁
総括および結論 ・・・・・・・・・・・・・・・・・・・・ 55 頁
謝辞 ・・・・・・・・・・・・・・・・・・・・・・・・ 57 頁
引用文献 ・・・・・・・・・・・・・・・・・・・・・・・ 58 頁
発表論文目録および学会発表目録

本研究の一部は以下の論文に発表した

1. Masato Nakai, Tsukasa Seya, Misako Matsumoto, Kunitada Shimotohno, Naoya Sakamoto, and Hussein H Aly
 The J6JFH1 strain of hepatitis C virus infects human B cells with low replication efficacy

本研究の一部は以下の学会に発表した

1. 中井 正人、Hussein H Aly、松本 美佐子、坂本 直哉、瀬谷 司
 B 細胞における HCV 感染・複製
 第 60 回 日本ウイルス学会学術集会
 2012 年 11 月 13 日～15 日 グランキューブ大阪（大阪国際会議場）

2. 中井正人、瀬谷司、松本美佐子、下遠野邦忠、アリハッサンフセイン、坂本直哉
 The J6JFH1 strain of hepatitis C virus infects human B cells with low replication efficacy
 第 79 回日本インターフェロン・サイトカイン学会学術集会
 2014 年 6 月 19 日～20 日 北海道大学医学部学友会館フロテホール
緒 言

C型肝炎ウイルス（HCV）は慢性肝障害の主たる原因の一つであり、慢性感染により肝硬変、肝細胞癌を引き起こす。歴史的には1989年に米国カイロン社のグループによりその存在が発見され（1）、現在では全世界で約3.1%程度が感染していると報告されている（2）。HCVは急性感染後、30%は自然排除されるが、残りの70%は慢性化し、肝内にて持続炎症を引き起こし、肝内の線維化が進行、慢性肝炎から肝硬変へ数十年の経過で進行し、肝細胞癌の発症の原因となる。本邦において現在では肝細胞癌の主たる原因であり、重要な健康問題である。

本邦ではGenotype1-3のウイルスが主に慢性感染しており、その中でもGenotype1b、高ウイルス量（5logIU/ml以上）は難治例とされ、これまでウイルス排除目的にさまざまな治癒が導入されてきた。1992年頃からHCV排除の目的で、IFN単独療法、IFN＋リバビリン（RBV）併用療法がC型慢性肝炎患者のHCV排除の目的で広く使われてきた。難治例であるGenotype1b高ウイルス量C型慢性肝炎患者におけるウイルス排除は、48週間のPEG-IFN+RBV併用療法を行っても50％程度であったが（3,4）、近年NS3/4Aプロテーゼインヒビターである、Telaprevir、Simeprevirが併用できるようになり、24週間の治療期間にてさらなる治療効果を得られるようになった（3,4）。現在、PEG-IFN＋RBVとTelaprevirもしくはSimeprevirを用いることで約70-80%以上の患者にSVRを得られるようになっており（3,4）、特にSimeprevirは併用による新たな大きな副作用もなく、大きな治療効果を得られるようになってきている。また、近い将来、Daclatasvir、Asunaprevir、SofosbuvirなどのDAA製剤が臨床現場で使用でき
るようになる予定であり、これらの組み合わせによる IFN を用いない治療が HCV 患者に対しての主流になっていくことが予想されている(5,6)。ただし、全ての患者を治癒に導けるわけではなく、およそ 20%程度は治療後 HCV の再燃を認めるのが現状である。さらに DAA 製剤に対する薬剤耐性の問題は残されている。

HCV はフラビウイルス科のヘパシウイルス属に分類される、1 本鎖、プラス鎖 RNA ウイルスである。構造領域 (Core, E1, E2) および非構造領域 (p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B) から構成されており、下図のようにそれぞれが別の機能を持つ蛋白をコードしている。

＜HCV ウイルスゲノムの構造と機能＞

HCV はヒトの他に、チンパンジー、ツバメに感染性を有するが、マウス、ラットといった実験動物への感染性は認めず、これが基礎実験の大きな制約となっている。また、HCV は in vivo にて肝細胞へ感染し、肝炎を惹起することがよく知られているが、in vitro ではその感染・複製効率から有効な実験に対する制約が大きく、HuH7 肝癌細胞株と JFH1 などの限られた組み合わせのみでそのライフサイクルが効果的に再現される(7)。

HCV の肝細胞への感染は、まず肝細胞表面のヘパラン硫酸などに吸着後、CD81, SRB-I, LDL-R, NPC1L1, Claudin-1, Occludin などのエントリーレセプターを介して細胞内へ侵入する (Entry)。その後細胞質内で脱核し、ウイルスゲノムが細胞質内へ放出され、そのまま mRNA として機能する。この RNA は 5' 側の IRES 領域から翻訳され、大きな前駆体蛋白が合成される。その後、宿主細胞やウイルス自身のプロテアーゼによるプロセッシングを受け、できた非構造蛋白が宿主細胞の蛋白と共に Lipid Droplet 周囲で複製複合体を形成し、小胞構造内にて RNA の複製が行われる (Replication)。その後合成された HCV-RNA は
細胞質へと運び出され、HCV コア蛋白へと受け渡されウイルス粒子が形成され（Assembly）、その後 VLDL 分泌系を介して細胞外へ放出されると考えられている（Releasing）。

＜HCV ウイルスゲノムの構造と機能＞ 文献(8)より引用

肝細胞においてはこのような生活環をとり、慢性肝疾患をもたらす HCV であるが、HCV 慢性肝炎患者の中にはリンパ増殖性疾患（LPD）や自己免疫性疾患、皮膚炎、腎炎などの肝外合併症を合併する症例が認められる(9-12)。この LPD としてクリオグロブリン血症および B 細胞性悪性リンパ腫があげられるが、HCV 非感染者よりも、HCV 慢性感染者において疫学的にその発症率が高いことが示されている(13-15)。この疫学的特徴から、血球系への HCV 感染もしくは HCV が間接的に血球系に作用し、これらの合併症をもたらす可能性が考えられている。

In vitro においては、Sung らがリンパ球指向性を持つ HCV 株が、効果的にヒトのリンパ球に対して感染性を示したことを報告している(16)が、一方でリンパ球に対する HCV 感染に否定的な論文も多数あり、感染の可否に関しては長い期間議論されている問題である。患者血清・血球などの臨床検体の解析においては、HCV-RNA が HCV 感染患者の PBMC から検出されることがいくつかのグループから報告されており(17-19)、特に HIV 共感染患者においては PBMC における HCV-RNA 検出率が高いとされている(20,21)。この現象は HIV 抗原の有無による免疫抑制環境が、リンパ球における HCV 複製増強に関与する可能性を示唆するものである。さらに、HCV-HIV 共感染患者において特に、PBMC からの HCV 粒子の持続放出が指摘されており(22)、共感染患者ではない HCV 単感染
患者においても抗ウイルス療法後に末梢血リンパ球において低レベルの HCV 複製を示唆するようなデータが報告されている（23,24）。

＜HCV の肝外合併症：文献 10 を参考に改変＞

血液系
・混合性クリオグロブリン血症
・悪性リンパ腫

腎疾患
・すう球体腎炎
（膜性増殖性すう球体腎炎など）

自己免疫性疾患
・シェーグレン症候群
・自己免疫性甲状腺炎

皮膚疾患
・続発性皮膚ポルフィリン症
・扁平苔癬

その他
・糖尿病
・特発性肺線維症

一方で、多くの論文において、B 細胞および B 細胞性リンパ腫において HCV ゲノムが存在することが報告されている（16,25,26）。特に CD27 陽性メモリー B 細胞は、陰性 B 細胞と比較してアポトーシス抵抗性であることから、CD27 陽性 B 細胞が C 型慢性肝炎患者における HCV リザーブの候補として報告されている（27）。

一方、リンパ球における HCV 感染に関しては、コンタミネーションとしての RNA と真の HCV 複製を反映した RNA を区別することが不確実であること、RNA 複製の中間生成物であるマイナス鎖 RNA の複製の検出・定量化が複雑でアーチファクトを含む可能性があること（28,29）、HCV エンベロープ糖蛋白を持つレトロウイルスもしくはレンチウイルス由来の HCV シュードウイルス（HCVpp）が初代培養 B 細胞や B 細胞株に感染性を示さないこと（30,31）などがあり、B 細胞における HCV 感染が疑わしいとの主張の根拠となっている。このように相反する意見が混在しており、B 細胞などのリンパ球における HCV 感染の可否に関しては依然として結論がはっきりしていない。

B 細胞へ HCV が感染すると仮定すると、これによって LPD、B 細胞性リンパ腫が発症する可能性や、肝移植後に HCV がほぼ必ず再発するという事実についての説明をすることが可能となると考えられる。
この問題を明らかにし、ヒトリンパ球における HCV 感染とその結果生じる現象を明らかにするため、近年発展した、in vitro における HCV 感染系を用いて研究を行った。HuH7.5.1 細胞における HCV 感染と比較すると低効率ではあるものの、我々は二つの異なるリコンピナント HCV 株がヒト B 細胞に感染性を示すことを、プラス鎖 HCV-RNA のみならず、マイナス鎖 RNA の検出と経時的な増加、NS5A 蛋白検出、リコンピナント HCV ゲノムにコードされたルシフェラーゼレポーター活性の増加によって示した。また、HCV エントリーレセプターの一つである CD81 に対する阻害抗体によるエントリー阻害、リコンピナント IFNα および NS3/4A プロテアーゼインヒビターによる複製阻害により、HCV 感染が抑制されることを示すことに成功した。また、HCV 感染がアポトーシス抵抗性を含む宿主の反応を導くことを示した。さまざまなデータから、肝細胞株と比較すると極めてその効率は低いものの、J6JFH1 HCV 株が初代 B 細胞へ感染性を有することを示唆する所見を得ることができた。
略 語 表

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>Allophycocyanin</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary ribonucleic acid</td>
</tr>
<tr>
<td>DAA</td>
<td>Direct Acting Antivirals</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-di-azobicyclo-(2,2,2)-octan</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DC</td>
<td>Dendric cell</td>
</tr>
<tr>
<td>DDW</td>
<td>double distilled water</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonate</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DW</td>
<td>distilled water</td>
</tr>
<tr>
<td>EBNA</td>
<td>Epstein-Barr virus nuclear antigen</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr Virus</td>
</tr>
<tr>
<td>EBV-LCLs</td>
<td>EBV transformed Lymphoblastoid Cell Lines</td>
</tr>
<tr>
<td>EDTA</td>
<td>Etylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorter</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescine isothiocyanate</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HCVpp</td>
<td>HCV pseudoparticles</td>
</tr>
<tr>
<td>HCVcc</td>
<td>Cell Cultured HCV</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>IC</td>
<td>Inhibitory concentration</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IRES</td>
<td>Internal ribosome entry sites</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon-regulatory factor</td>
</tr>
<tr>
<td>LDL-R</td>
<td>Low density lipoprotein receptor</td>
</tr>
<tr>
<td>LMP-1</td>
<td>Latent Membrane Protein1</td>
</tr>
<tr>
<td>LPD</td>
<td>Lymphoproliferative Disease</td>
</tr>
<tr>
<td>MDA-5</td>
<td>Melanoma differentiation associated gene 5</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimal essential medium</td>
</tr>
<tr>
<td>miRNA</td>
<td>micro RNA</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity Of Infection</td>
</tr>
</tbody>
</table>
MoDC : Monocyte-derived DC
MoMF : Monocyte-derived Macrophage
MOPS : 3-Morpholinopropanesulfonic acid
mRNA : messenger ribonucleic acid
NEAA : non-essential amino acids solution
NF-κB : Nuclear factor-kappa B
NPC1L1 : Niemann-pick C1 Like 1
PBMC : Peripheral Blood Mononuclear Cell
PCR : Polymerase Chain Reaction
PE : phycoerythrin
PEG-IFN : Pegylated Interferon
PBS : Phosphate Buffered Saline
qPCR : quantitative polymerase chain reaction
RBV : Ribavirin
RIG-I : Retinoic acid-inducible gene1
RNA : Ribonucleic Acid
rpm : revolutions per minute
SRB-I : Scavenger Receptor class B-I
SVR : Sustained Virologic Response
TAE : Tris acetate ethylenediaminetetraacetic acid
Tris : tris (hydroxymethyl) aminomethane
v/v : volume per volume
実験材料と方法

1. 実験材料

1-1. 細胞

溶液および緩衝液の組成
PBS(−) 137mM NaCl, 8.1mM Na₂HPO₄, 2.68mM KCl,
1.49mM KH₂PO₄
トリプシン液 0.25% Trypsin-0.02% EDTA-PBS(−)

試薬

使用した以下の試薬を各メーカーより購入した。
1×DMEM GIBCO-Invitrogen
FBS BioSource Intl.,Inc.
L-Glutamine GIBCO-Invitrogen
100mU/ml PenicillinG, 100μg/ml Streptmycin GIBCO-Invitrogen
NEAA GIBCO-Invitrogen
RPMI1640 GIBCO-Invitrogen

各細胞の培養条件・継代条件

1-1-1. HuH7.5.1細胞、HuH7細胞
ヒト肝癌細胞株HuH7.5.1細胞、HuH7細胞は、Scripps Research InstituteのDr. Francis V Chisariより供与された。予め56℃30分間加熱し非働化した
10%(v/v)ウシ胎児血清FBS、2mM L-Glutamine、100mU/ml Penicillin、100μg/ml Streptmycin、1×MEM Non-essential amino acidを添加した1×DMEMを用いて37℃、5%CO₂の条件下にて培養した。細胞の継代は90%confluentになり次第行った。

1-1-2. Human PBMC
ヒト末梢血単核球(PBMC)は後述する方法にて採取した。採取したPBMCおよび各分画は、予め56℃30分間加熱し非働化した10%(v/v)ウシ胎児血清FBS、2mM L-Glutamine、100mU/ml Penicillin、100μg/ml Streptmycinを添加したRPMI1640を用いて37℃、5%CO₂の条件下にて培養した。

1-1-3. B95-8
マーモセットリンパ芽球様細胞株であるB95-8は愛知県がんセンター研究所、村田貴之先生より供与された。予め56℃30分間加熱し非働化した10%(v/v)
ウシ胎児血清FBS、100mU/ml Penicillin、100μg/ml Streptmycinを添加したRPMI1640を用いて37℃、5%CO₂の条件下にて培養した。
1-1-4. EBV-LCLs
後述する方法で作成したヒトリンパ芽球様細胞株である EBV-LCLs
(EBLCL1-3 および EBL9、EBL12)は予め 56℃30 分間加熱し非働化した 10～
20%(v/v)ウシ胎児血清 FBS、100mU/ml Penicillin、100μ g/ml Streptomycin
を添加した RPMI1640 を用いて 37℃、5%CO2 の条件下にて培養した。細胞は浮
遊または半付着細胞であり、3-4 日毎に継代、2 日毎に上清交換を行った。

1-1-5. Raji 細胞
Raji 細胞（ヒトB細胞リンパ腫株：バーキットリンパ腫細胞）は、JCRB 細
c胞バンクより購入した。予め 56℃30 分間加熱し非働化した 10%(v/v)ウシ胎児血
清 FBS、2mM L-Glutamine、100mU/ml Penicillin、100μ g/ml Streptomycin
を添加した RPMI1640 を用いて 37℃、5%CO2 の条件下にて培養した。細胞は浮
遊細胞であり、3-4 日毎に継代を行った。

1-1-6. HEK293FT 細胞
ヒト胎児腎細胞株 HEK293FT 細胞はレンチウイルス発現システム
(Invitrogen) に付属していたものを用いた。予め 56℃30 分間加熱し非働化し
た 10%(v/v)ウシ胎児血清 FBS、100mU/ml Penicillin、100μ g/ml Streptomycin
を添加した 1×DMEM を用いて 37℃、5%CO2 の条件下にて培養した。細胞の継
代は 90% confluent になり次第行った。

1-2. プラスミド
使用したプラスミドは以下の通りである。

pJ6-N2X-JFH1 ：国立感染症研究所 葛田隆字先生より供与(32)
pJc1/GLuc2A ：Yale University Dr.Brett D.Lindenbach より供与(33)
pJFH1-EYFPmut ：共著者 坂本直哉先生より供与(34)
pcDNA3 DcE1E2-J6
pczVSV-G Medical School Hannover(MHH)
pHIT60 Thomas Pietschmann より供与(35)
pRV-F-Luc-I2Z
Blank vector (pcDNA3-GFP) ：Addgene より購入
2. 方法

2-1. 健常人 PBMC の採取、および MACS による B 細胞、単球の分離

溶液および緩衝液の組成
MACS Buffer 2mM EDTA(pH8) , 0.5%BSA/ PBS(-)を
0.2μmフィルターにてfiltrationしたもの

試薬および材料
以下の試薬・材料を各メーカーより購入した。
Ficoll paque plus GE-Healthcare Waukesha,WI
CD19 MACS beads Miltenyi Biotec
CD14 MACS beads Miltenyi Biotec
MACS LS カラム Miltenyi Biotec
MACS MS カラム Miltenyi Biotec
Leucosep リンパ球分離チューブ Greiner
ノポ・ヘパリン 持田製薬株式会社
Recombinant Human GM-CSF Peprotec
Recombinant Human IL-4 Peprotec

PBMC は健康成人より通常採血法にて全血を得た。なお、全血 10ml あたり
100μl のヘパリンを抗凝固剤として加えた。Ficoll paque plus を用いて比重遠心法にて分離採取を行った。Ficoll 12.5ml を Leucosep リンパ球分離チューブへ注
ぎ、2000rpm 5 分の遠心にてフィルター下層へ落し、フィルター上に全血
25ml を重層し、2000rpm、40 分で比重遠心を行った。その後上層の血清を除去
した後、単核球を含む残りの層を別の 50ml チューブへ移し、3 倍量の生理食塩水
を加え転倒混和後、1500rpm、10 分遠心し、細胞成分を沈殿させ PBMC を得た。得られた細胞は MACS Buffer にて再懸濁した。得られた末梢血単核球を
Miltenyi 社の MACS システムを用いて分離した。ヒト B 細胞として CD19 陽性
細胞を、非 B 細胞として CD19 陰性細胞、ヒト単球として CD14 陽性細胞を用
いることとして、MACS CD19 Beads および MACS CD14 Beads にて PBMC か
ら分離した。1×10^7 の PBMC 当たり 20μl の CD19 もしくは CD14 MACS ビ
ーズを加え、4℃、15 分間インキュベートした後洗浄し、MACS LS カラムおよ
び MS カラムにて 2 サイクルの MACS システムによる分離を行った。得られた
細胞は、以下に示すように CD19 陽性細胞の純度は 95%以上、CD14 陽性細胞の
純度は 98%以上であった。

ヒト単球からの Monocyte-derived DC（以下 MoDC）、Monocyte-derived
Macrophage（以下 MoMF）の誘導は以下のサイトカインを添加し培養すること
で行った。
●Monocyte-derived DC：
1×10^6/ml で Monocyte を培養し、GM-CSF 0.05 μg/ml と IL-4 0.02 μg/ml で添加し 37℃5%CO2 で培養。3 日目に上清を交換し、6-7 日目に分化完了
●Monocyte-derived MF：
5×10^5/ml で Monocyte を培養し、GM-CSF 0.02 μg/ml を添加し、37℃5%CO2 で培養。6-7 日目に分化完了。

＜MACS 分離前（左）と後（右）の Purity の代表例＞

2-2. HCVcc RNA の作成
試薬および材料
以下の試薬・材料を各メーカーより購入した。
制限酵素 XBaI および 0.1%BSA、10×M+ Buffer Takara
Nuclease free Water Ambion
T7 Megascript Kit Invivogen
Phenol:Chloroform:Isoamyl Alcohol 25:24:1 Mixed, pH5.2 Nakalai tesque
ウイルスは pJ6-N2X-JFH1 プラスミドより、Jc1-GLuc2A ウイルスは pJc1-GLuc2A プラスミドより、JFH1-EYFPmut ウイルスは pJFH1-EYFPmut プラスミドより文献を参考に以下の方法にて作成した。(7)

各々のプラスミド DNA 20 μg に、Buffer とともに制限酵素 XbaI 20U を加え、37℃で 2 時間インキュベートし制限切断を行った。制限切断した DNA に 100 μl のフェノールを加え混和し、3 分間室温にて静置した。その後 15000rpm、5 分で遠心し、上清を回収しこれにクロロホルム 100 μl を加え、15000rpm、5 分遠心した。再度上清を回収し、これに 100%エタノール 250 μl を加え、15000rpm、10 分、4℃で遠心した。上清を捨てた後、70%エタノール 100 μl を加え再度 15000rpm、3 分、4℃で遠心し、上清を捨て、10 分間風乾した。得られたペレットを Nuclease free Water にて懸濁し、Nano-View (GE Healthcare、UK) により吸光度測定を行い濃度測定した。この切断された DNA を T7 Megascript Kit を用いて RNA へ in vitro transcription を行った。具体的には、DNA 1 μg に上述のキットの ATP, CTP, GTP, UTP solution を各々 2 μl ずつ、10X Reaction buffer 2 μl、Enzyme Mix 2 μl を加え、Nuclease free Water にて総量 20 μl とした。これを 37℃で 6 時間インキュベートした。その後、テンプレート DNA に TURBO DNase 1 μl を加え 37℃、15 分でインキュベートすることでテンプレート DNA を切断した後、Nuclease free Water を加えテンプレートを総量 100 μl とした。これに 100 μl のフェノール/クロロホルムを加え 3 分静置し、その後 15000rpm、4℃で 5 分遠心した。上清を回収しこれにクロロホルム 200 μl を加え、15000rpm、5 分遠心した。再度上清を回収し、これに 100%エタノール 250 μl を加え、15000rpm、10 分、4℃で遠心した。上清を捨てた後、70%エタノール 100 μl を加え再度 15000rpm、3 分、4℃で遠心し、上清を捨て、10 分間風乾した。得られたペレットは 102 μl の Nuclease free Water で懸濁し、2 μl にて吸光度測定による濃度決定後、1 μg/μl となるように濃度調整を行い、10 μg ずつ分注して-80℃で保存した。

2-3. HCV-RNA の確認
溶液および緩衝液の組成
<table>
<thead>
<tr>
<th>溶液および緩衝液の組成</th>
<th>1ml DEPC / 1000mL DDW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1% DEPC water × 10 MOPS Buffer</td>
<td>0.2M MOPS + 50mM sodium acetate + 5mM EDTA</td>
</tr>
<tr>
<td>400 μg/ml Ethdium Bromide Agarose gel</td>
<td>400 μg Ethdium Bromide/ DEPC total 1ml</td>
</tr>
<tr>
<td></td>
<td>0.5% agarose/ 35ml DEPC water +5ml×10 MOPS Buffer +10ml formaldehyde</td>
</tr>
</tbody>
</table>
Electrophoresis Buffer ×10 MOPS Buffer 40ml
+ formaldehyde 20ml
+ DEPC water 340ml

試薬および材料
以下の試薬・材料を各メーカーより購入した。
Northen Max Formaldehyde Load Dye Ambion
RNA Millenium™ Markers Ambion

2-1にて作成した全長約10kbpのHCV-RNAが切断されていないことを確認するため、以下の方法にてRNA電気泳動を行い確認した。
RNA 5μl (=5μg) に 400μg/ml の Ethidium Bromide 2.5μl と Northen Max Formaldehyde Load Dye 12.5μl を加え、65℃で5分間加熱し、直後に氷冷にて急冷した。その後上記 Electrophoresis Buffer と Agarose gel を用いて電気泳動を行い、RNAが切断されていないことを確認した。
以下に確認した写真を示す。

2-4. HCVcc の作成
溶液および緩衝液の組成
Opti-MEM Invitrogen

試薬および材料
以下の試薬・材料を各メーカーより購入した。
Amicon Ultra-15 Centrifugal Filter Unit Millipore
Gene Pulser Cuvette (0.44cm) BIO-RAD

HCV-RNA は Gene Pulser II （Bio-Rad、Berkeley、California）を用いて
Electroporation 法にて HuH7.5.1 細胞へトランスフェクションを行った。その際の細胞数と使用RNA量はHuH7.5.1細胞4×10^6に対してHCV-RNA10μg
とした。HuH7.5.1 細胞を OPTIMEM400μl に懸濁し、Cuvette 内に入れ氷上で冷却した。これに 10μg の HCV-RNA を加え、Gene Pulser II にて 260V、950Cap の条件でトランスフェクションを行い、10cm ディッシュにて培養した。この培養上清を翌日に交換した後、トランスフェクション 3、5、7、9 日後にそれぞれ培養上清を回収・収集し 4℃に保存した。集めた培養上清は 2000rpm、5 分の遠心にて細胞成分を除去したのちに、Amicon Ultra 15 Centrifugal Filter Unit を用いて 3500rpm ～ 4000rpm で 30 分～60 分遠心することで 100 倍濃縮した。得られた HCVcc 濃縮液は、100μl ずつ 1.5ml チューブへ分注し、-80℃で保存した。

2-5. HCVcc 感染力価の測定
溶液および緩衝液の組成

細胞固定液	4% paraformaldehyde
細胞膜透過液	0.05% TritonX100-PBS(-)
封入液	2.3% DABCO-50% glycerol-PBS(-)
Blocking Buffer	1%BSA+1%FBS+0.05%NaN3/PBS(-)
一次抗体液	一次抗体 (1:1000) ･Blocking Buffer
二次抗体液	二次抗体 (1:1000) + DAPI(1:1000) ･PBS(-)

試薬および材料
以下の試薬・材料を各メーカーより購入した。

- goat anti-rabbit Alexa 594 Invitrogen
- rabbit IgG anti-NS5A antibody (Cl-1) 国立国際医療研究センター
 下遠野忠邦氏より供与(36)

HCVcc の感染力価 (MOI) には、使用量を段階的にふって HuH7.5.1 に再感染させ、NS5A 抗体を用いた免疫染色法にて算出した。免疫染色は以下の方法で施行した。

HuH7.5.1 細胞を 1×PBS で 2 回洗浄した後、4% パラホルムアルデヒドにて 30 分固定した。その後 1×PBS にて 2 回洗浄後、0.05% Triton を 15 分間加え Permeabilization を行った。その後 1×PBS で 2 回洗浄後、100μl の Blocking Buffer を加え室温で 1 時間インキュベートし Blocking を行った。

1 次抗体として 1/1000 量の rabbit IgG anti-NS5A antibody (Cl-1)(36) を加え 4℃ 1 時間染色後、PBS(-)にて 15 分間×4 回洗浄し、2 次抗体として 1/1000 量 Goat anti-rabbit Alexa 594 および Dapi を加え 4℃30 分で染色後 5 分間×4 回 PBS(-) にて洗浄した。蛍光検出は ZEISS 社の ZEISS LSM 510 Meta 共焦点顕微鏡を用いて検出した (36)。
2-6. HCVcc 感染実験
溶液および緩衝液の組成
トリプシン液 0.25% Trypsin-0.02% EDTA-PBS(−)

試薬および材料
以下の試薬・材料を各メーカーより購入した。

Trizol Reagent Invitrogen
BioLux Gaussia luciferase assay kit New England Biolabs

初代ヒト B 細胞および非 B 細胞、HuH7.5.1 および EBV-LCLs に MOI=1～3にて J6JFH1 を添加し、37℃5%CO₂で 3 時間インキュベートした。その後 2000rpm5 分で遠心させ細胞を回収し、1ml の培養液にて 4 回の Wash を施行した。感染直後および 1～6 日後の間に数回、細胞を回収した。初代 B 細胞、非 B 細胞は、トリプシン液 50μl にて Wash した後、細胞表面の非特異的 HCV 付着を取り除く目的で、同液にて 37℃、5 分間インキュベートし、2 回 Wash した後 Trizol Reagent を用いて Total RNA を回収した。

また、Jc1/GLuc2A を用いた感染実験においては、B 細胞に MOI=5 にて Jc1·GLuc2A を添加し、37℃5%CO₂で 3 時間インキュベートし感染させた。その後 2000rpm5 分で遠心させ細胞を回収し、1ml の培養液にて 5 回の Wash を施行した。培養液によって再懸濁し、感染 6 日目まで培養を行った。Jc1·GLuc2A の Gluc 活性を BioLux Gaussia luciferase assay kit を用いて測定した(33)(以下別記)。

なお、HCV を用いた実験は、北海道大学病原体等安全管理規定に従って行った。

2-7. EBV-LCLs 細胞株の作成
試薬および材料
以下の試薬・材料を各メーカーより購入した。

Cy closporin A (細胞生物学用) Wako

B95-8 細胞を 7×10^5 で 10cm ディッシュにて培養し、5 日後に上清を回収した。1500rpm 5 分で遠心し細胞成分を沈殿後、上清を回収し 0.45 μm のフィルターを通じ EBV ウイルス液を得た。これを培養液にて倍量希釈し、96 ウェルプレートに 2×10^5 個ずつ播いた初代 B 細胞に添加した。1 時間 37℃で感染後、細胞を遠心にて回収、再懸濁後、96 ウェルプレートにて培養した。培養中は 0.5 μg/ml の CyclosporinA を添加した。細胞数に応じて継代毎に徐々にウェルサイズを拡大し各 EBV-LCLs を作成した。
2-8. EBV-LCLs 細胞株の EBV 感染確認と表面抗原の確認

溶液および緩衝液の組成

<table>
<thead>
<tr>
<th>Solution</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACS Buffer</td>
<td>0.5%BSA+0.05% NaN3/PBS(−)</td>
</tr>
<tr>
<td>1×TAE</td>
<td>40mM Tris + 20mM CH₃COOH+1mM + EDTA(pH=8)/DW</td>
</tr>
</tbody>
</table>

試薬および材料
以下の試薬・材料を各メーカーより購入した。

- PE anti-human CD3 抗体 eBioscience
- FITC anti-human CD10 抗体 eBioscience
- PE anti-human CD14 抗体 eBioscience
- PE anti-human CD19 抗体 eBioscience
- PE anti-human CD20 抗体 eBioscience
- FITC anti-human CD45 抗体 eBioscience
- FITC anti-human CD138 抗体 eBioscience

Primers
EBV の潜在感染の確認のための PCR は、文献(37,39)を参考に以下の Primer を用いた。

<table>
<thead>
<tr>
<th>Transcript</th>
<th>Primers</th>
<th>Sequence</th>
<th>Ref no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV-EBNA-LP</td>
<td>5' Primer</td>
<td>5'- CCAGACAGCAGCCATTGTC-3'</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>5'- GGTAGAAGACCCCCCTCTTAC-3'</td>
<td></td>
</tr>
<tr>
<td>EBV-LMP-1</td>
<td>5' Primer</td>
<td>5'- TCCTCCCTCTTGCGCTACTG-3'</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>5'- TCATCAGTGTCGTCTGTC-3'</td>
<td></td>
</tr>
</tbody>
</table>

EBV-LCL1〜3 は 2-8 の方法に Total RNA を抽出、RT-PCR にて cDNA を合成後、上記の Primer を用いて PCR を行い、電気泳動にてその発現を確認した。
PCR の条件は、98℃5 分の後、98℃10 秒、55℃30 秒、72℃1 分を 35 サイクルで行った。

EBV 感染細胞の Characterization は、FACS 法にて CD45、CD19、CD3、CD14、CD20、CD10、CD138 の発現を確認した。具体的には細胞をピーリングにて回収し、PBS(−)で洗浄を行った。FACS Buffer 20 μl で再懸濁後、それぞれ 0.4 μl の抗体を加え、4℃で 15 分間静置した。PBS(−)で 2 回洗浄後、FACS Buffer 400 μl に再懸濁し、FACS Calibur にて解析した。
2-9. RNA精製、RT-PCR、定量PCR
試薬および材料
以下の試薬・材料を各メーカーより購入した。

<table>
<thead>
<tr>
<th>試薬</th>
<th>品牌</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trizol Reagent</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Glycogen solution</td>
<td>Nakalai</td>
</tr>
<tr>
<td>High-Capacity cDNA Reverse Transcription Kits</td>
<td>Applied Biosystems</td>
</tr>
<tr>
<td>Power SYBR Green PCR Master Mix</td>
<td>Applied Biosystems</td>
</tr>
</tbody>
</table>

細胞のTotal RNAはTrizol Reagentを用いて回収した。250μlのTrizolに細胞を懸濁しVortexした後、室温にて15分間インキュベートした。その後100μlのクロロホルムを添加し転倒混和した後、3分間室温でインキュベートし、12000×g15分遠心し上清を回収した。回収した上清に250μlの2-propanolと、共沈剤として10ngのglycogenを加え、-30℃で30分インキュベートした後、15000rpm、15分遠心した。上清を破棄した後、ベレットに70%Ethanol500μlを加え、15000rpm、5分遠心した。上清を破棄した後、10分間風乾を行った。その後12μlのNucrease-free Waterにて懸濁し2μlを用いてNano-View（GE Healthcare, UK）により吸光度測定を行い濃度を測定した。100-400ngのRNAに対しDNaseI処理を37℃、20分行い、2.5mMEDTAを加え80℃、2分インキュベートしDNaseを不活化した後、High-Capacity cDNA Reverse Transcription Kitsを用いてRT-PCRを行った。RT-PCRの条件は、25℃10分、37℃120分、85℃30秒、4℃10分で行った。

RT-PCRによって得られたcDNAは、HCV-RNA検出と内在性コントロール測定のための定量PCR、HCVエントリーレセプター評価のためのPCRに使用した。定量PCRは、Power SYBR Green PCR Master Mixおよび100nMのForwardおよびReverse Primerを加え、95℃10分後の後、95℃15秒、60℃1分を40サイクルの条件にてStepOne™ Real-Time PCR System (Applied Biosystems)を用いて定量PCRを行った。なお、前述の方法で作成したHCV-RNAを用いて、以下の算出式から1×10^3〜1×10^9logcopiesに相当するStandard Curve用のRNAスタンダード量を算出し、それぞれの量に相当するcDNAをRT-PCRにて作成し、スタンダードカープに使用した。これにより絶対定量法によるHCV-RNAの定量PCRを行った。使用したプライマーセットは以下に示すとおりである。

＜計算式＞

\[(X \text{ g/μl RNA} / \text{ transcript length in nucleotides} \times 340) \times 6.022 \times 10^{23} = Y \text{ molecules/μl} \]

以上は文献36,38を参考に行った。
<Primer sets for qPCR>

<table>
<thead>
<tr>
<th>Transcript</th>
<th>Primers</th>
<th>Genome coordinates</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinant</td>
<td>5’ Primer</td>
<td>161-177</td>
<td>5’-CGGGAGAGCCATAGTG-3’</td>
</tr>
<tr>
<td>Hepatitis C virus J6</td>
<td>3’ Primer</td>
<td>303-321</td>
<td>5’-AGTACCACAAGCCCTTTCG-3’</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5’ Primer</td>
<td>20-39</td>
<td>5’-GAGTCAACGGATTTGTCGT-3’</td>
</tr>
<tr>
<td></td>
<td>3’ Primer</td>
<td>238-257</td>
<td>5’-TTGATTTTGAGGGATCTCG-3’</td>
</tr>
</tbody>
</table>

2-10. Strand Specific HCV-RNA の検出
試薬および材料
以下の試薬・材料を各メーカーより購入した。
rTthDNA polymerase,Enzyme + Buffer Pack Applied Biosystems
PCR product Purification kit QIAGEN

2-8 と同様に精製した Total RNA 250 ng~1 μg を用いて、rTth polymerase および HCV plus-strand もしくは minus-strand 特異的 Primer（下記）を用いて strand specific RT-PCR を行った。PCR 反応は 70℃20 分で行った。得られた cDNA を含む溶液中には Primer の残存を認めため、これを除去する目的で PCR product Purification kit を用いて 50bp 以下のゲノムを除去した。その後得られた cDNA2 μl を用いて、実験方法 2-8 に示した方法と primer を用いて qPCR を行った。同上の方法は引用文献 40,41 を参考にした。

＜Primer sets for strand-specific RT-PCR＞

<table>
<thead>
<tr>
<th>Transcript</th>
<th>Primers</th>
<th>Genome coordinates</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis C virus J6 (Plus-strand)</td>
<td>RT-Primer</td>
<td>352-371</td>
<td>5’-GTGCACCGGTCTACGAGACCT-3’</td>
</tr>
<tr>
<td>Hepatitis C virus J6 (Minus-strand)</td>
<td>RT-Primer</td>
<td>129-128</td>
<td>5’-GAGTGTCGTCAGCCTCCAG-3’</td>
</tr>
</tbody>
</table>

2-11. 電気泳動による HCV エントリーレセプターの検出
溶液および緩衝液の組成
1×TAE 40mM Tris + 20mM CH₃COOH+1mM EDTA(pH=8)/DW
初代 B 細胞、HuH7.5.1 細胞から上述の方法で抽出した RNA を用いて作成した cDNA を用いて、HCV エントリー・レセプターである CD81、SRBI、LDL-R、NPC1L1、Occludin、Claudin1 および内在性コントロールとしての GAPDH のプライマーセットを用いて PCR を行った。プライマーセットは以下に示す。GeneAmp® PCR 9700 を用いて、98℃5 分の後、98℃10 秒、55℃30 秒、72℃1 分を 40 サイクルにて PCR を施行した。得られた PCR 産物は 2%アガロースゲルにて電気泳動を行った。

＜Primer sets used in PCR＞

<table>
<thead>
<tr>
<th>Transcript</th>
<th>Primers</th>
<th>Genome coordinates</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD81</td>
<td>5' Primer</td>
<td>11-30</td>
<td>5'-AGGGCTGCACCAAGTGCATC-3'</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>249-468</td>
<td>5'-GGCACTGGGATCTGGATG-3'</td>
</tr>
<tr>
<td>SRBI</td>
<td>5' Primer</td>
<td>383-402</td>
<td>5'-GCTCGGAGAGCGACTACATC-3'</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>633-652</td>
<td>5'-GCCACAGTCGGAGTTTTG-3'</td>
</tr>
<tr>
<td>LDL-R</td>
<td>5' Primer</td>
<td>16-35</td>
<td>5'-GGAATTCGCTGGGACCCTC-3'</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>249-268</td>
<td>5'-TCGCCACCTCCAGAAGG-3'</td>
</tr>
<tr>
<td>Occludin</td>
<td>5' Primer</td>
<td>25-44</td>
<td>5'-GCCAACCACCATCAAGGC-3'</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>260-279</td>
<td>5'-TAGCTCTGCTCAGGGAAGC-3'</td>
</tr>
<tr>
<td>Claudin-1</td>
<td>5' Primer</td>
<td>27-46</td>
<td>5'-GGGCTTCATTCTGCCCTTC-3'</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>242-261</td>
<td>5'-GCCAACCACCATCAAGG-3'</td>
</tr>
<tr>
<td>NPC1L1</td>
<td>5' Primer</td>
<td>1367-1383</td>
<td>5'-TATGGTCGCCGGAGGA-3'</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>1474-1495</td>
<td>5'-TGGCGTGTCTGAAATAC-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5' Primer</td>
<td>227-246</td>
<td>5'-TCTTCCAGGAGCGAGATCCC-3'</td>
</tr>
<tr>
<td></td>
<td>3' Primer</td>
<td>450-469</td>
<td>5'-AGCAGTTGGTGGTGCGAGGAG-3'</td>
</tr>
</tbody>
</table>

2-12. FACS 法による CD81 発現の検出
溶液および緩衝液の組成
FACS Buffer 0.5%BSA+0.05% NaN3/PBS(-)

試薬および材料
以下の試薬・材料を各メーカーより購入した。
Anti-human CD81 抗体 BD pharmingen （New Jersey、USA）
FcR Blocking Reagent Miltenyi Biotec
1% goat serum CEDARLANE
Anti-mouse IgG Alexa 488 Invitrogen
HuH7.5.1細胞、初代B細胞をFACS Bufferで2回washした後、2×10^5を同液にて再懸濁した。1次抗体としてanti-human CD81抗体(mouse IgG)を10μg/mlにて加え30分4℃でインキュベートした後、FACS bufferにて2回洗浄し、ブロッキング液として1%goat serumおよび10μlのFcR Blocking Reagentを加え、10分4℃で静置後、2次抗体としてanti-mouse IgG Alexa 488(goat IgG)を加え30分4℃暗所にてインキュベートした。2回のFACS BufferによるWashを施行した後、同液にて再懸濁し、FACS Caliburを用いて解析した。

2-13. HCVppの作成
試薬および材料
以下の試薬・材料を各メーカーより購入した。
Poly-L-Lysine Sigma-Aldrich
Lipofectamin 2000 Invitrogen
OPTIMEM Gibco/Invitrogen

HCVppはHEK293FT細胞に3種類のプラスミドをTransfectionすることで作成した。Transfection24時間前に0.01%Poly-L-Lysineにて15分間コーティングした6well plateに1.2×10^6/wellにてHEK293FTを播いた。24時間後、以下のプラスミドの組み合わせ各2.6μgずつをOPTIMEM 500μlに懸濁し5分間静置した。その後20μlのLipofectamin 2000を加えたOPTIMEM 500μlを加え、転倒混和して20分間室温にて静置した。この溶液を上記のHEK293FT細胞に添加し、37℃5%CO2の環境下にて培養した。6時間後に上清を交換し、さらに48時間培養後、上清を回収した。この上清は分注しHCVppウイルス液として-80℃で保管した。

使用したプラスミドの組み合わせとHCVppの種類は以下の通りである。
①E1E2 HCVpp：pcDNA3 DcE1E2·J6+pHIT60+pRV·F·Luc·IZ
②VSV·G HCVpp：pczVSV·G+pHIT60+pHIT60+pRV·F·Luc·IZ
(positive control)
③Blank HCVpp：Blank vector+pHIT60+pHIT60+pRV·F·Luc·IZ
(negative control)
2-14. HCVpp 感染とレポーターアッセイ（Luciferase assay）
試薬および材料
以下の試薬・材料を各メーカーより購入した。
Dual-Luciferase Reporter Assay system Promega
5×Passive Lysis Buffer Promega

2-13 で作成した HCVpp 含有液を 1×10^5 の HuH7.5.1 細胞、初代 B 細胞へ
1ml ずつ加え、37℃、5%CO2 の環境下にて培養した。72 時間後に上清を捨て、
細胞を遠心にて回収した。PBS(-)にて洗浄後、Passive lysis Buffer 50 μ l を加え
室温にて 20 分静置し可溶化した。可溶化物 10 μ l に Dual luciferase Reporter
Assay system の基質を用いて、ルミネッセンスリーダーにて測定した。各条件
におけるホタルルシフェラーゼ活性をウミシイタケルシフェラーゼ活性で補正
した。

2-15. HCV ウイルス粒子の会合・放出に関するアッセイ
初代 B 細胞に MOI=1 で J6JFH1 を感染させた。感染 6 日後、培養上清を回収
し、細胞成分を 3000rpm、5 分の遠心で除去した後、上清を回収しこれを
“Releasing Sample”と名付けた。その後、細胞を 4 回程度、凍結融解を反復し
た後、上清を回収しこれを” Assembly Sample “と名付けた。これら” Releasing
Sample “、“ Assembly Sample “および低 MOI（MOI=0.001、0.01）の J6JFH1
ウイルスをそれぞれ HuH7.5.1 に感染させ、感染後 2、4、6 日後の Total RNA
を回収し上述の RT-qPCR 法にて HCV-RNA を測定し、再感染の有無について検
討することで、B 細胞内における J6JFH1 粒子の会合の可否、B 細胞からの
J6JFH1 粒子の放出の有無を検討した。

2-16. 免疫染色
溶液および緩衝液の組成
細胞固定液 4% parafomaldehyde
細胞膜透過液 0.05% TritonX100-PBS(-)
封入液 2.3% DABCO-50% glycerol-PBS(-)
Blocking Buffer 1%BSA+1%FBS+0.05%NaN3/PBS(-)
一次抗体液 一次抗体（1:1000）×Blocking Buffer
二次抗体液 二次抗体（1:1000）+ DAPI(1:1000) /PBS(-)
HCV 感染 B 細胞、HuH7.5.1 細胞における HCV 蛋白の発現を免疫蛍光染色にて確認した。免疫染色は以下の方法で施行した。それぞれの細胞は、PBS(-)で 2 回洗浄した後、固定液にて 30 分固定した。PBS(-)にて 2 回洗浄後、細胞膜透過液を加え 15 分間静置した。PBS(-)にて 2 回洗浄後、Blocking Buffer を加え室温で 1 時間インキュベートしブロッキングを行った。1 次抗体として 1/1000 量の rabbit IgG anti-NS5A antibody (Cl-1)(36)を加え 4℃1 時間静置し、4 回の PBS(-)による洗浄後、2 次抗体として 1/1000 量 Goat anti-rabbit Alexa 594 (Invitrogen)および Dapi を加え 4℃30 分暗所で静置した。PBS(-)で 4 回洗浄し、付着細胞は DABCO で封入した。浮遊細胞は 200 μl の PBS(-)に再懸濁した後、Shandon Cytospin3（Thermo Scientific, USA）を用いてスライドガラスに付着させた後、封入液を用いて封入した。蛍光検出は ZEISS 社の ZEISS LSM 510 Meta 共焦点顕微鏡を用いて検出した（40）。

2-17. Gaussia luciferase 測定
試薬および材料
以下の試薬・材料を各メーカーより購入した。

×5 Renilla Passive Lysis Buffer Promega
BiLux Gaussia Luciferase Assay reagent New England Biolabs
NuncTM Surface Nunc (Denmark)

初代 B 細胞に Jc1/GLuc2A の濃縮培養液もしくは Mock Medium（PBS electropolated HuH7.5.1 Medium）を感染させた。培養上清を感染直後、感染 2、4、6 日後に交換・回収し 16000×g、5 分の遠心にて細胞成分を除去後、HCV 感染性の除去のために×5 Renilla Passive Lysis Buffer を加えた。Gluc 活性は 20 μl のサンプルをルミノメーター用 96 well plate (NuncTM Surface)に入れた後、各々 50 μl の BiLux Gaussia Luciferase Assay reagent を加え Berthold Centro LB 960 plate reader（Berthold TECHNOLOGIES, Germany）を用いて測定した。測定時間は 1 秒にて施行し、培養上清をベースラインとして測定し補正した相対値を算出した。
2-18. FACSを用いた細胞活性化・生存アッセイ
試薬および材料
以下の試薬・材料を各メーカーより購入した。
- Viaprobe 7AAD: BD Bioscience (New Jersey, USA)
- Annexin-V·Fluos: Roche (Mannheim, Germany)
- PE anti-human CD80抗体: eBioscience
- APC anti-human CD86抗体: eBioscience

FACS による 7AAD と Annexin V の 2 重感染によって J6JFH1 感染後の細胞生存について検討した。初代B細胞に J6JFH1 を感染し 48 時間後、細胞を回収し、PBSにて 2 回 wash した。その後 Annexin-V·FLUOS labeling solutions に再懸濁し、7AAD および Annexin-V·Fluos を加え、18℃、15 分でインキュベートし細胞を染色した。その後、FACS Calibur (BD) を用いて解析した。また、初代 B 細胞の活性化に関しては感染 24 時間後に、細胞を回収し、PBS にて 2 回 wash した。20μl の FACS Buffer に再懸濁後、4μg/ml の濃度にて PE anti-CD80 抗体、APC anti-CD86 抗体を加え 4℃、15 分インキュベートした。FACS buffer による洗浄後、400μl の FACS buffer に再懸濁し、FACS Calibur を用いて解析した。

2-19. ATPアッセイ
試薬および材料
以下の試薬・材料を各メーカーより購入した。
- CellTiter-Glo®: Promega
- Nunclon™ Surface: Nunc (Denmark)

初代 B 細胞に J6JFH1 もしくは Mock の濃縮培養液を加えた後、1×10^5/well にてルミノメーター用 96 well plate (Nunclon™ Surface; Nunc, Denmark) にて培養した。72 時間後、室温にて 30 分間静置し平衡化した後、それぞれのウェルに培養液と等量の CellTiter-Glo® を加え、シェーカーにて 2 分攪拌した。室温にて 10 分間静置したのち、用いて吸光度測定を行い、ATP 量を Berthold Centro LB 960 plate reader（Berthold TECHNOLOGIES, Germany）を用いて発光シグナルにて測定した。測定時間は 0.5 秒とし、感染直後 (Day0) の測定値に対する相対値を算出した。
2-20. miRNA 検出
試薬および材料
以下の試薬・材料を各メーカーより購入した。

<table>
<thead>
<tr>
<th>名称</th>
<th>メーカー</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qiazol Reagent</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>miScript II RT Kit</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>miScript SYBR Green PCR Kit</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>miScript Primer Assay</td>
<td>Invitrogen</td>
</tr>
</tbody>
</table>

各細胞の Total RNA を Qiazol Reagent（Invitrogen）を用いて回収後、miScript II RT Kit（Invitrogen）を用いて cDNA を合成後、miScript SYBR Green PCR Kit および miScript Primer Assay（ともに Invitrogen）を用いて miR-122 発現を測定した。U6 small nuclear RNA を内在性コントロールとして用いた。
なお、RT の条件としては 37℃60 分、95℃5 分とした。定量 PCR に関しては Quantitect SYBR Green Master Mix、10× miScript Universal Primer、10× miScript Primer Assay を用いて、95℃15 分の後、94℃15 秒、55℃30 秒、70℃30 秒を 40 サイクルの条件で行った。以上は文献 42 を参考にした。

2-21. BILN2601 (NS3/4A protease inhibitor) の使用濃度の検討
試薬および材料
以下の試薬・材料を各メーカーより供与された。

<table>
<thead>
<tr>
<th>名称</th>
<th>メーカー</th>
</tr>
</thead>
<tbody>
<tr>
<td>BILN2601</td>
<td>Behringer（Germany）</td>
</tr>
</tbody>
</table>

HuH7.5.1 細胞に MOI=1 にて J6JFH1 を 3 時間感染させ、濃度を振って BILN2601 を添加した。感染 2 日後、細胞の RNA を上述の方法で回収し、RT-PCR および定量 PCR 法にて HCV-RNA 量を測定した。BILN2601 不使用の検体を 1 として相対値を検出し、それを Y 軸に、BILN2601 を X 軸として近似曲線式を算出し、IC50、IC75、IC90 を算出した。
以下の Blocking study では IC75 の容量にて使用した。

2-22. Blocking Study
試薬および材料
以下の試薬・材料を各メーカーより購入した。

<table>
<thead>
<tr>
<th>名称</th>
<th>メーカー</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-human CD81 抗体</td>
<td>BD pharmingen</td>
</tr>
<tr>
<td>Recombinant human IFN- α</td>
<td>PeproTec</td>
</tr>
<tr>
<td>BILN2601</td>
<td>Behringer（Germany）</td>
</tr>
</tbody>
</table>
HuH7.5.1 細胞および初代 B 細胞に J6JFH1 を MOI=1 で感染させた。Blocking study として下記の①～④のサンプルとした。
①感染 1 時間前に Anti-human CD81 抗体を添加し 37℃5%CO2 でインキュベートしたサンプル（J6+CD81 Ab サンプル）
②感染後、培養液を交換した後に 200U/ml の Recombinant human IFN-α を加えたサンプル（J6+IFN α サンプル）
③感染後、培養液を交換した後に IC75 相当（実験方法 2-18 参照）の 250nM BILN2601 を加えたサンプル（J6+BILN2601 サンプル）
④感染後なにも加えないもの（陽性コントロール：J6 サンプル）
とし、感染 0-6 日後に複数回サンプル回収を行い、Total RNA を抽出し RT-qPCR 法（実験方法 2-9 参照）にて HCV-RNA 値を測定した。HCV-RNA 値は内在性コントロールとして GAPDH にて補正した。

2-23. 統計処理
有意差検定には t-検定を行って p 値を求めた。
第一章 Raji、EBV-LCLs における J6JFH1 感染の検討

緒 言

B 細胞株として以前からよく用いられている細胞として、バーキットリンパ腫細胞株である Raji 細胞がある。Sung らは、B 細胞性リンパ腫の脾臓細胞から樹立した SB 細胞と名付けた細胞から放出された HCV が、Raji 細胞へ感染性を示したと報告している（16）。

EBV は B 細胞へ感染し、潜伏感染によりリンパ芽球様細胞（EBV-LCLs）への形質転換を起こすことが知られている。これまで、EBV が HCV のヘルパーウイルスとして働いており、EBNA1 が HCV 感染を増強するという報告がある（43）。以上を踏まえると、Raji 細胞および EBV-LCLs において HCVcc 感染を証明することができる可能性が高いのではないかと推測した。

JFH1 株は脇田らにより日本人の劇症肝炎患者から分離された HCVcc であり、特に HuH7 細胞とその派生株において効率的な感染所見を示し、広く HCV のライフサイクルの検討に用いられている（7）。この JFH1 の Core〜NS2 領域を J6-CF 株に変えたキメラである J6-N2X-JFH1（以下、J6JFH1）は、より感染力が高いとされ（44）、広く肝細胞株の感染実験に用いられている。

まず、感染性が低いと予想される B 細胞への感染実験に用いることのできる、感染力のある J6JFH1 を作成した。また、B 細胞への J6JFH1 感染を検討するため、B95-8 の上清を用いて EBV を初代 B 細胞へ感染させ、30 日間程度の培養にて EBV-LCLs を複数作成した。初代 B 細胞よりも、実験系として容易な B 細胞への J6JFH1 の感染の可否につき、Raji 細胞、EBV-LCLs を用いて検討した。
結果

1.1 J6JFH1 株の作成・ウイルスタイトレーション

HCV 感染実験に用いる HCVcc をまず作成した。pJ6-N2X-JFH1 プラスマドを制限酵素である XbaI にて制限切断し直鎖状にした。切断については電気泳動にて確認した。その後、実験方法に記述した方法にて、T7 Megascript Kit を用いて in vitro transcription を行い、HCV-RNA を合成した。合成した HCV-RNA に関しては、その全長が約 10kbp と長く、RNA が切断されやすいため、電気泳動にて切断されていないことを確認の上、以下の実験に用いた。HCV-RNA を上記のように HuH7.5.1 細胞に electroporation 法にて遺伝子導入し、Day1 に Medium 交換後、Day3,5,7,9 の培養上清を回収し 4℃に保管した。回収した上清は 2000 rpm 5 min の遠心にて細胞成分を沈殿させた後、上清を Amicon Ultra-15 Centrifugal Filter Unit を用いて 100 倍濃縮した。得られたウイルス濃縮液は、HuH7.5.1 に濃度を振って再感染させ、MOI を測定した。

当初、切断されない HCV-RNA を合成するのにかなりの時間を要した。感染力のあるウイルスが作成されていることを確認するため、まず HuH7.5.1 細胞への再感染を行った。定量 PCR による HCV-RNA の持続的上昇と免疫蛍光染色による NS5A 蛋白の発現を確認した。安定して切断されない HCV-RNA 合成ができるようにになった後は、感染力の良好な J6JFH1 ウイルスを大量に作成できたため、これを大量に保管し、ロットをそろえて感染実験に用いた。MOI は HuH7.5.1 細胞への再感染を濃縮ウイルス液量を段階的にふって感染し、2 日後に免疫蛍光染色にて NS5A 蛋白発現を確認して設定した。感染を確認した免疫蛍光染色を示す（Fig1.1）。

上記ウイルス液は 5×10^7 copies/ul の HCV-RNA を含み、細胞数 1×10^5 の HuH7.5.1 に対して 1μl の添加で MOI=1 となる計算であった。感染性は良好と判断し、以後の感染実験に用いることとした。
Figure 1.1 作成した HCVcc(J6JFH1)の感染性の確認
作成した濃縮 J6JFH1 を用いて HuH7.5.1 に再感染を行った。感染 2 日後に免疫蛍光染色にて HCV 非構造蛋白である NS5A に対する抗体を用いて J6JFH1 の複製を確認した。2 日後の時点で 10-40%程度の HuH7.5.1 細胞の細胞質内に NS5A 蛋白発現が確認され、感染性を有するウイルスが作成されていることが確認された。
1.2 EBVによる不死化B細胞株（EBL9,12）の作成とJ6JFH1感染

EBVにより初代B細胞を不死化し細胞株を作成し、感染実験を行うことを試みた。健常成人から採取した初代B細胞に対し、B95-8細胞株（上清中にEBVを放出するマーモセット細胞株）の上清を添加し、EBVを感染させた。得られたコロニーをおよそ30日間にわたり培養し、EBV-LCLsを複数作成した。当初作成したEBV-LCLsのうち、細胞の状態のよい2つの細胞株を用い、これらをEBL9、EBL12と名付けた。EBL9の光学顕微鏡画像（Fig1.2A）およびFACSでの表面抗原を示す（Fig1.2B）。ともにCD45陰性、CD19陰性、CD20陰性、CD3陰性、CD14陰性であったが、CD10とCD138が陽性であった。ImmatureB細胞のマーカーであるCD10およびImmatureB細胞や形質細胞にて陽性であるCD138が陽性であること、EBV-LCLsでは表面抗原の不死化後の表面抗原の消失が報告されていること（45）から、B細胞株として矛盾しないものと判断し、感染実験を行うこととした。

次にこのEBL9、EBL12およびRaji、HuH7.5.1に対してJ6JFH1の感染実験を施行した。結果をFigure1.2Cに示す。HuH7.5.1細胞においては指数関数的に感染2日後からHCV-RNAの増加を認める一方、EBL9、EBL12細胞においては感染6日目にHCV-RNAの増加を認め、その後ゆっくりと漸減した。Raji細胞では明らかなHCV-RNAの増加は認められなかった。以上から、EBL9、EBL12細胞では感染6日頃をピークとしてJ6JFH1の感染複製が生じていることが考えられた。この傾向は3回の独立した実験で再現性が得られた。しかしその後は時間の経過とともにJ6JFH1感染を示唆すると考えられるHCV-RNAの増加は認められなくなった。Fig1.2Cから6カ月後、および12カ月後に施行した感染実験のデータをそれぞれFig1.2D、Fig1.2Eに示す。その後は何度感染実験を施行しても明らかなHCV-RNAの増加は認められなかった。

そのため、作成時点でEBL9細胞にわずかな数のB95-8細胞がコンタミネーションし、時間経過とともに増殖力の強いB95-8細胞にて置換されてしまった可能性を考えた。EBL9細胞の性染色体の核型をFISH法にて調べた結果をFig1.2Fに示す。なお、この検査・解析は株式会社SRLに委託した。この結果ではヒトX染色体、Y染色体が500個の細胞で全て検出できず、EBL9細胞がヒト細胞ではないことを示唆するものであった。またさらに、マーモセット細胞株であるB95-8細胞と、EBL9の表面マーカーのFACS解析を施行した。結果はFig1.2Gに示すように、共にCD19陰性、CD10陽性、CD138陽性であり、示していないが、CD3、14、45は共に陰性を示した。以上から、おそらくEBL9、EBL12細胞作成時にマーモセット細胞株であるB95-8細胞がコンタミネーションし、樹立当初はヒトB細胞が多く存在していたものの、その後B95-8細胞に置換されていたものと考えられた。
Figure 1.2 EBL9、EBL12細胞の表面抗原、核型と感染実験の時間経過。
(A) EBL9細胞の光学顕微鏡像。 (B) EBL9細胞の表面抗原。 CD10,138陽性だが CD3, 14, 19, 20, 45は陰性を示した。 (C) 樹立後早期の EBL9、EBL12細胞に対する J6JFH1 感染実験結果。 J6JFH1感染後 2～13日後に細胞を継代・回収し Total RNAを抽出、RT-qPCR法にて HCV-RNAを測定した。 (D) (C)から6カ月後の J6JFH1感染。感染6日目にわずかにHCV-RNA増加を認める。 (E) (C)から12カ月後頃の J6JFH1感染。HCV-RNAの経時的減少を認める。 (F) EBL9細胞のFISH法を用いたヒトX、Y染色体の検出。500個の細胞において全てX、Y染色体が検出されていない。 (G) B95-8細胞とEBL9細胞の表面抗原の比較。CD10、138はともに陽性、CD19はともに陰性を示す。
1.3 EBV による不死化 B 細胞株の再作成

EBL9、EBL12 の感染実験の結果は B 細胞株にて J6FH1 が感染・複製することを当初は示すものであった。しかし最終的には感染性を再現することはできなくなった。そのため、再度 EBV により初代 B 細胞を不死化し細胞株を作成し、感染実験を行うことを試みた。今回は B95-8 細胞株の上清を 0.45 μm のフィルターを通して細胞成分を完全に除去した後に添加し、EBV 感染させた。得られたコロニーをおよそ 30 日間にわたり培養、徐々にウェルサイズを拡張し、EBV-LCL を複数作成した。作成した細胞株の光学顕微鏡画像（Fig1.3A）を示す。

また、これら樹立された細胞が、EBV 潜在感染として矛盾しないことを示すため EBNA-LP の発現、LMP1 の発現を RT-PCR 法で確認した（Fig1.3B）。さらに、B 細胞として矛盾ないことを確認するため FACS 法にて CD45、CD19、CD3、CD14、CD138、CD10、CD20 の発現を確認した（Fig1.3C）。

汎リンパ球マーカーである CD45 は陽性、おもに T 細胞のマーカーである CD3、単球系のマーカーである CD14 は陰性を示し、B 細胞マーカーである CD19、CD20 が陽性を示した。未分化な B 細胞で一部陽性となる CD10、形質細胞で主に陽性となる CD138 は陰性であった。以上から、再樹立した EBLCL1～3 はヒト B 細胞株として矛盾しないものと判断した。
Figure 1.3 作成した EBV-LCLs の確認。
(A) EBV-LCLs の光学顕微鏡像。卵巣状の形態を持つ小型の、一部集塊する細胞を認める。
(B) EBV-LCLs の EBV 潜伏感染の確認。RT-PCR 法にて EBV-LCL1~3 における、EBV の蛋白である LMP-1 の発現を確認した。Raji 細胞を positive control、健常人から採取した Whole PBMC、HuH7.5.1 細胞を negative control として使用した。
(C) EBV-LCLs の表面抗原の確認。CD19、3、14、45、138、10、20 の発現を FACS 法にて確認した。図は LCL1 について示した。（EBLCL2、3 も同様の所見であり提示していない）
1.4 J6JFH1 株の、Raji 細胞、EBV-LCLs への感染実験

作成した EBV-LCL1-3 と Raji に対して J6JFH1 を感染させた。ポジティブコントロールを HuH7.5.1 を用いた。感染実験の結果を Fig1.4 に示す。HuH7.5.1 細胞に J6JFH1 を感染させた場合は、指数関数的な HCV-RNA 増加を認める(A)が、EBL-LCLs では HCV-RNA は経時的に指数関数的な減少を認めた(B)。また、Raji 細胞においても EBV-LCLs と同様に HCV-RNA の減少を認めた(A)。

複数回の実験でも同様の所見であった。以上から、B 細胞株（Raji 細胞、EBV-LCLs）において、HCVcc 感染を示すようなデータを得ることは難しいものと考えられた。

Figure 1.4 EBV-LCLs に対する J6JFH1 の感染実験。
(A)HuH7.5.1 および Raji 細胞に対する J6JFH1 感染実験。HuH7.5.1 では指数関数的に HCV-RNA の経時的増加を認めるが、Raji 細胞では指数関数的に低下する。(B)EBV-LCLs に対する J6JFH1 感染実験。Raji 細胞と同様に、経時的に HCV-RNA は低下し、J6JFH1 の複製増殖は示唆されない。
考察

これまで、EBV が HCV のヘルパーウイルスとして機能するという報告(43)、
Raji 細胞がリンパ球指向性 HCV に感染性を示した(16)という報告がある。その
一方で、Raji 細胞に HCVcc が感染しなかったという報告(46)も認められる。ま
ず、感染力がよいと考えられる J6JFH1 株(44)を選択し、厳密な方法にて感染力
の高い J6JFH1 を作成した。

結果に示した通り、当初 EBL9、EBL12 の 2 つの細胞株に J6JFH1 が感染す
ることを示唆する所見が得られ、再現的であった。しかし時間経過とともに感染
性を示唆する経時的な HCV-RNA の増加の所見は認められなくなった。これは結
果でも述べたように、B95-8 細胞のコンタミネーションから経時的に B95-8 細胞
に置換されたため、感染性がなくなったものと考えられた。

そのため、その後新たに EBV-LCLs (EBLCL1~3 と名付けた) を樹立した。
これらの EBV-LCLs は EBV の潜伏感染が確認され、FACS によるその表面抗原
の解析から、ヒト B 細胞株として矛盾しないものであった。

これらを用いてペーキットリンパ腫細胞株である Raji 細胞、新たに樹立した
EBV-LCLs に関して、その HCVcc 感染性を評価すべく、感染実験を再施行した。
しかし、結果的には経時的に HCV-RNA の減少が認められ、HuH7.5.1 細胞と比
較しても、J6JFH1 感染を示唆するデータは得られなかった。複数回の実験にて
有意な感染を証明できなかったため、J6JFH1 株の Raji 細胞や EBV-LCLs とい
った細胞株での実験結果による感染性の証明は難しいと判断した。

EBL9、EBL12 において、樹立初期の段階で J6JFH1 添加後に HCV-RNA が
増加を示し、感染を示唆するようなデータが得られた理由は明らかなかったが、
樹立初期の段階ではヒト B 細胞がある程度の割合で残存していたものと予想さ
れ、この残存していた B 細胞に J6JFH1 が感染・増殖した可能性が考えられた。
その後感染性が消失したこと、その段階での性染色体の解析と表面抗原の FAC
解析の結果から、B95-8 細胞に置換されたと考えられた。総合で述べたように、
HCV はヒトの他にはチンパンジー、ツバイにて感染するが、マーモセットへの
感染は報告されていない。B95-8 自体が HCV に感染したとは考えにくく（実際
に置換されていなかった後の感染実験では HCV-RNA の増加は認めていない）、
EBL9、EBL12 の樹立初期に残存していたヒト B 細胞に J6JFH1 感染を認めた
ことが予想される結果であった。しかし、その後再樹立しヒト B 細胞株であるこ
とを確認した EBLCL1-3 では感染性を RT-qPCR 法にて示すことはできなかった。

HuH7.5.1 細胞などの肝細胞株においては、自らウイルス粒子を形成・放出し、
周囲の肝細胞へさらに感染拡大する(44)。B 細胞株のみでの感染実験において、
初期感染効率が低ければ、周囲への感染拡大がない、または少ないと仮定すると、
非感染細胞に対する感染細胞の割合は経時的に減少することが予想され、定量
PCRなどによるHCV-RNAの検討では感染性の証明は困難であると考えられた。これまで、リンパ球指向性を示すようなHCVを用いた場合に、感染を示唆するデータがこれまで報告されている(16,22)が、以上を考慮するとJ6JFH1を用いて既存のB細胞株にて感染性を証明、検証するのは難しいものと考えられた。

EBL9、EBL12細胞において、指数関数的にHCV-RNAが増加した理由は不明であったが、B95-8の産生する何らかの液性因子などが、間接的にEBL9、EBL12の樹立初期に残存していたヒトB細胞作用し、J6JFH1への感染性を増強していた可能性が考えられる。しかし、実験的にそれ以上の解析するのは困難であった。

以上を踏まえ、次に初代B細胞を用いた感染実験を試みるとした。
第二章 初代Ｂ細胞におけるHCVcc感染の証明

緒 言

第一章において、Ｂ細胞株においてJ6JFH1株が感染・複製することを完全に証明することはできなかったが、第一章にて考察したように、感染効率が低く、非感染細胞の増加から、実験系としてHCV-RNAの増加を検出できない可能性も考えられるため、次に初代Ｂ細胞に関して、HCVccの感染性の有無を検討した。また、Ｂ細胞以外の細胞として、非Ｂ細胞、単球および単球由来マクロファージ、単球由来樹状細胞においてもその感染性を検討した。

これまで、PBMCおよびその各分画において、MarukianらがHCVccおよびHCVppを用いた実験で感染性を評価している(47)。しかし論文中には感染後の４日までの期間での評価のみしか記載がなく、感染後１週間程度以上の評価はされていない。リンパ球指向性HCVがＢ細胞やＴ細胞などへ感染したという報告においては、比較的時間経過した後にHCV-RNAの増加やHCV蛋白の発現が報告されている(18,43)。肝細胞株と異なり、機序は不明であるがHCV-RNAの複製増加まで時間がかかる可能性も考えられる。この観点からも、感染後１週間程度の評価が必要と考えた。

以上を踏まえ、初代Ｂ細胞および非Ｂ細胞（単球、単球由来マクロファージ、単球由来樹状細胞を含む）においての感染実験を行うとともに、それらを定量PCR、strand specific qPCR、免疫蛍光染色で証明し、エントリーレセプターの阻害やリコンビナントIFNαやNS3/4Aプロテアーゼインヒビターの添加による複製の阻害にて、感染がキャンセルされるかを検討した。さらに、感染がＢ細胞にもたらす影響について、その活性化と細胞死に関して評価を行った。
結果

2.1 J6JFH1 株の初代 B 細胞における感染・複製の証明

樹立した EBV-LCL では J6JFH1 感染の所見を得ることはできなかったが、次に我々は初代 B 細胞における HCV 感染性を検討することとした。

まず健康な成人に対して採血を行い、得た全血から比重遠心法にて PBMC を採取し、PBMC から MACS CD19 Beads を用いて CD19 陽性細胞（以下初代 B 細胞）、および CD19 陰性細胞（以下、非 B 細胞）を分離した。それぞれ純度は 95%以上であった。これらの細胞に J6JFH1 を MOI=1 で感染させ、感染 2、4、6 日後に細胞を回収し Total RNA を精製した。HuH7.5.1 細胞をポジティブコントロールとして用いた。HuH7.5.1 細胞および初代 B 細胞の両者において、細胞質内の HCV-RNA の増加が認められた一方、非 B 細胞では認められなかった。ただし初代 B 細胞では HuH7.5.1 細胞と比べて HCV-RNA の増加は低率であった（Fig2.1 A）。さらに内在性コントロールである GAPDH にて HCV-RNA を補正するとより顕著な傾向となった（Fig2.1 B）。J6JFH1 の初代 B 細胞における複製を蛋白レベルにて確認するため、免疫蛍光染色にて HCV の非構造蛋白の一つであり、ウイルスの複製時に二次的に産生される蛋白である NS5A を染色し、その発現を調べた。HuH7.5.1 と比較するとかなり発現レベルは低いものの、初代 B 細胞においても NS5A の発現を検出した（Fig2.1 C）。

なお、初代培養単球（未刺激および GM-CSF 添加、IL-4+GM-CSF 添加）、Monocyte-derived DC(MoDC)、Monocyte-derived Macrophage(MoMF) に関し、B 細胞と同様に感染実験を施行したが、定量 PCR では B 細胞株と同様に経時的に HCV-RNA 量の低下を認め、B 細胞とは異なる結果であった。（Fig2.1 D および E）

以上より、B 細胞においては、非 B 細胞とは異なり低効率ながらも HCV-RNA が増加すると考えられ、B 細胞における HCVcc の感染・複製増殖が起こることが示唆された。
Figure 2.1 J6JFH1 は初代 B 細胞に感染性を示す。

（A～C）初代 B 細胞（CD19 陽性 PBMC）、非 B 細胞（CD19 陰性 PBMC）、HuH7.5.1 細胞に対して MOI=1、3 時間にて J6JFH1 を感染させた。感染 2、4、6 日目に Total RNA を回収し、HCV 由来の RNA を RT-qPCR 法にて測定した。なお GAPDH を内在性コントロールとして用いた。（A）HCV-RNA の推移（GAPDH で補正していないもの）（B）HCV-RNA の推移（GAPDH で補正した相対値）（C）HuH7.5.1 細胞および初代 B 細胞における免疫蛍光染色での J6JFH1 の感染性の証明。J6JFH1 を感染させた両者を NS5A 蛋白に対する抗体で染色した。HuH7.5.1 細胞は感染 2 日後に、初代 B 細胞は感染 6 日後に観察した。HuH7.5.1 と比較すると傾向は弱いが、初代 B 細胞でも NS5A の発現が確認された。（D, E）初代培養単球および MoDC, MoMF に対する J6JFH1 感染性の検討。B 細胞と同様に単球、MoDC、MoMF に J6JFH1 を添加し経時的な HCV-RNA を評価した。どちらも経時的に低下し、HCV-RNA の増加は認められなかった。
2.2 初代B細胞におけるHCVマイナス鎖RNAの検出

初代B細胞におけるHCV複製増殖を確認するため、複製中間産物であるマイナス鎖HCV-RNAの増加が認められるかを検討した。もしHCV粒子もしくはRNAが初代B細胞内へ侵入することなく表面へ接着しているだけであれば、マイナス鎖HCV-RNAは産生されないはずである(47-52)。我々はrTh methods(40)およびStrand-specific primersを用いてプラス鎖、マイナス鎖HCV-RNAを別々に検出した。マイナス鎖HCV-RNAの増加はHCV-RNA複製を意味するところとなる。Figure2.2に示すように、初代B細胞において経時的にプラス鎖、マイナス鎖HCV-RNA両方とも増加を認めたが、非B細胞ではともに減少を認めた(Fig2.2A)。これはGAPDHで補正し、相対値を測定するとより著明になった(Fig2.2B)。一方HuH7.5.1細胞では指数関数的にプラス鎖、マイナス鎖ともに増加を認めた(Fig2.2C)。これらの結果は、初代B細胞においてJ6JFH1が感染・複製することを示唆していると考えられる。しかし、HuH7.5.1細胞と比較するとその複製は極めて弱く、そのため免疫観光染色にてNS5A蛋白発現が非常に弱いものと考えられた。
Figure 2.2 初代 B 細胞における HCV マイナス鎖 RNA の検出。

rTth polymerase を用いた方法にて、J6JFH1 感染初代 B 細胞における HCV のプラス鎖、マイナス鎖の RNA を検出した。(A) プラス鎖 HCV-RNA のみならず、マイナス鎖 HCV-RNA も初代 B 細胞において経時的に増加を認めた。（B）(A)のデータを GAPDH で補正した場合。非 B 細胞に比較して十分な経時的増加を認めた。（C）ポジティブコントロールとしての HuH7.5.1 細胞におけるプラス鎖、マイナス鎖 HCV-RNA の推移。各 HCV-RNA は指数関数的な増加を認めた。
2.3 初代B細胞におけるHCVエントリーレセプター、miRNA122の発現

次に、初代B細胞におけるHCVエントリーレセプターの発現を検討した。一般的に報告されているHCVエントリーレセプターには、CD81、SRBI、LDL-R、NPC1L1、Claudin-1、Occludinなどがあるが、これらの発現をmRNAレベルでRT-PCR法にて検討した。結果はFig2.3Aに示すが、CD81、SRBI、NPC1L1の発現が弱いながらも認められた。　(LDL-Rもごくわずかに認められた。)

一方でタイトジャンクションの構成分子であるClaudin1とOccludinの発現は認めなかった(Fig2.3A)。また、HCVの複製を正に制御すると報告されているmiR-122の発現（40）も認められなかった(Fig2.3B)。CD81はHCVの肝細胞へのエントリーの最初の段階で働く分子であり（44）、こちらの発現は認められるも、全てのエントリーレセプターの発現があるわけではなかった。miRNA122の発現がないことと併せ、初代B細胞において肝細胞株よりもHCV-RNA感染・複製が低効率であることに矛盾しないものと考えられた。
Figure 2.3 初代B細胞におけるHCVエントリーレセプターおよびmiRNA122の発現

(A) 初代B細胞、HuH7.5.1細胞のTotal RNAを回収しRT-PCR法にて既報のHCVエントリーレセプターの発現を調査。HuH7.5.1ではCD81、SRB-1、LDL-R、NPC1L1、Claudin-1、Occludinの全ての発現を認めるが、初代B細胞ではCD81、SRB-1、NPC1L1のみ発現を認める。

(B) 初代B細胞、HuH7.5.1細胞におけるCD81発現をFACS法で確認したもの。HuH7、HuH7.5.1、HEK293FT、Raji、初代B細胞(pBcell)よりmiRNAを抽出しその発現をU6miRNAを内在性コントロールとして比較した。HuH7、HuH7.5.1ではmiRNA122の発現を認めるが、初代B細胞、Raji細胞においては発現は認められなかった。
2.4 初代 B 細胞における Blocking Study

次に、HCV エントリーレセプターであり、B 細胞に発現している CD81 の中和抗体を用いた HCV エントリーの Blocking、および HCV の複製を阻害する 2 つの薬剤-リコンビナント IFNα、HCV プロテアーゼインヒビターである BILN2601 を用いての HCV 複製の Blocking の実験を行った。図に示すように、これらの薬剤を HCV 感染前もしくは後に初代 B 細胞にて使用した場合、HCV-RNA 増加の抑制の所見を認めた (Fig2.4 A)。なお、BILN2601 の J6JFH1 に対する阻害効率に関しては、HuH7.5.1 細胞にて IC50、IC75、IC90 を算出して用いた (Fig2.4 B)。また、ポジティブコントロールとして、抗 CD81 阻害抗体、リコンビナント IFNα、BILN2601 による HCV-RNA 抑制を HuH7.5.1 にて確認した (Fig2.4 C)。HuH7.5.1 および初代 B 細胞において、BILN2601 は最も効果的に HCV-RNA を抑制した。これらのデータは実際に初代 B 細胞にて HCV 感染・複製が生じているという事実を再強調するものと考えられ、また、HuH7.5.1 と同様の HCV 感染・複製に対する Blocking が可能であることを示唆する結果であった。
Figure 2.4 J6JFH1 の B 細胞における感染は、CD81 中和抗体、IFNa、NS3/4A protease inhibitor にて阻害される。
(A) 20μg/ml の抗 CD81 中和抗体を感染1時間前に加えたもの、および感染後に 200IU/ml のリコンビナント IFNa、250nM の BILN2601 を加えたものにおける HCV-RNA の経時的推移を示す。感染2、4、6日後に RT-qPCR 法にて HCV-RNA を測定した。それぞれの HCV-RNA は GAPDH で補正した。
(B) BILN2601 の J6JFH1 に対する抑制効率の検討。HuH7.5.1 に MOI=1 にて J6JFH1 を感染させ、濃度を振って BILN2601 を加えその抑制効率を検討した。近似曲線から計算式を算出し、IC50、IC75、IC90 を計算した。
(C) HuH7.5.1 における Blocking 実験。(A) と同じに HuH7.5.1 において抗 CD81 中和抗体、リコンビナント IFNa、BILN2601 を用いて阻害実験を行った。感染直後、2日目、4日目、6日目に HCV-RNA を RT-qPCR 法にて測定した。
2.5 初代 B 細胞における HCVpp 感染による細胞内侵入の検討

HCV の細胞質内へのエントリーを確認するため、既存の肝細胞を用いた実験系でよく用いられる、HCVpp を用いて実験を行った。
HuH7.5.1 細胞および初代 B 細胞に対し、レトロウイルスを用いた HCVpp にて細胞内へのエントリーの検討を行った。①J6JFH1 の E1E2 蛋白をエンベロープとして持つ HCVpp、②VSV-G をエンベロープとして持つウイルス（ポジティブコントロール）および③レトロウイルスのネガティブコントロールを用いて感染実験を行った。結果を Fig2.5 に示す。

HuH7.5.1 細胞では、VSV-G と比較するとかなり弱いものの、E1E2 のエンベロープを持った HCVpp でもエントリーを示唆する Luciferase 活性の上昇を認めたが、一方初代 B 細胞においては VSV-G、E1E2 ともに Luciferase 活性の上昇は認められなかった。これはレトロウイルス自体が B 細胞への感染性を有しないことを示唆する結果と考えられ、この実験系を用いたエントリーの評価は困難であると考えられた。

Figure 2.5 HCVpp 感染実験。
HuH7.5.1 細胞および Primary B 細胞に対して HCVpp を添加し、72 時間後に luciferase によるレポーター アッセイを行った。HuH7.5.1 では positive control である VSV-G および HCV のエンベロープ蛋白 E1E2 をまとった HCVpp にて Luciferase 活性の上昇を認めたが、初代 B 細胞においてはどちらの上昇も認められない。
2.6 初代 B 細胞の感染性ウイルス粒子会合および放出についての検討

次に、HCV 感染した初代 B 細胞が、その後細胞質内で感染性を持ったウイルス粒子形成やウイルス粒子の放出を行うか検討することとした。J6JFH1 株を感染させた初代 B 細胞の上清を回収し、HuH7.5.1 細胞へ添加することで、再感染の有無を評価した。その後、単純に上清を回収したもの（Releasing Sample: 上清中に感染力のある HCV あるかを検討）、B 細胞を凍結融解を 5 回施行した後のライセート（Assembly Sample: 細胞内で HCV 会合が行われているかを検討）の 2 つを用いた。また、コントロールとして低力価での J6JFH1 ウイルス（MOI=0.01 および 0.001）を用いた。添加後 2、4、6 日後に HuH7.5.1 細胞を回収し、HCV-RNA 量を RT-qPCR 法にて測定した。結果は、コントロールの J6JFH1 は低いながら HCV-RNA の経時的な上昇を認めたものの、初代 B 細胞の培養上清（Releasing Sample）およびライセート（Assembly Sample）で HCV-RNA 上昇は認めなかった。この結果は、初代 B 細胞は J6JFH1 へ感染し複製はするが、ウイルス粒子のアセンプリおよび、粒子の上清への放出はできないということを示唆するものと考えられた(Fig2.6)。

Figure 2.6 J6JFH1 感染初代 B 細胞はウイルス粒子の会合、放出をできない

初代 B 細胞に J6JFH1 を 3 時間感染させ、2 回洗浄後、6 日間培養し上清を回収した。これを‘Releasing samples’と名付けた。また、その後細胞を 5 回繰り返し凍結融解し、その後上清を回収した（これを ‘Assembly samples’ と名付けた）。感染性をもつ粒子があるかどうかを検討するために、これらを HuH7.5.1 細胞へ添加し、HCV-RNA の推移を検討した。なお、コントロールとしてかなり低い MOI(0.01 および 0.001) の J6JFH1 を並行して感染させた。2、4、7 日後に細胞を回収し Total RNA を抽出後、RT-qPCR 法にて HCV-RNA を測定した。低い MOI の J6JFH1 では経時的に HCV-RNA の増加を認め、複製増殖の所見を認められるが、Releasing samples および Assembly samples では HCV-RNA の増加は認めない。
2.7 初代B細胞における異なるHCV株感染

次に、ゲノム内にGaussia Luciferase遺伝子を組み込んだJc1/GLu2Aを用いて、初代B細胞への異なるHCV株感染に関しても検討した。初代B細胞、HuH7.5.1細胞にJc1/GLuc2Aを感染させた。細胞への非特異的接着を防ぐため、5回の培養液での洗浄を行った。培養直前（Day0サンプル）、感染後2日目、4日目、6日目の培養上清を回収し、Gluc活性を測定した。HuH7.5.1細胞においては、Figure1のHCV-RNAと同様に指数関数的にGluc活性は経時的に上昇した（Fig2.7A）。一方、初代B細胞においては4日目から6日目にかけてわずかではあるが、上昇を認めた（Fig2.7B）。これらの結果は初代B細胞において実際にHCV感染が生じているものの、Jc1/ Gluc2Aの複製はかなり低いものであることを示唆する結果と考えられた。

さらに、JFH1-EYFPmutを用いて初代B細胞にて感染実験を行った。JFH1-EYFPmutをMOI=5にてHuH7.5.1細胞および初代B細胞に感染させ、6日後に細胞を回収しFACS Caliburおよび共焦点顕微鏡にて解析した。EYFPはその蛍光波長からFACS CaliburにおいてFL1にてその蛍光を検出した。

Fig2.7CおよびFig2.7Eに示すように、HuH7.5.1にてもわずかな割合でのみ検出される程度であり、初代B細胞においては検出されなかった（Fig2.7D）。このJFH1-EYFPmutはHuH7.5.1細胞においても、J6JFH1との増殖力の差があると考えられ（Fig2.7F）、また構造領域の違いも初代B細胞における感染性に対して重要である可能性が考えられた。

Figure 2.7 初代B細胞におけるJ6JFH1以外のHCVcc感染の検討

(A、B)初代B細胞およびHuH7.5.1細胞に対するJc1/ Gluc2A感染実験。MOI=5で感染後、上清中に分泌されるLuciferase活性（Gaussia luciferase）を測定した。HuH7.5.1ではGluc活性は経時的に指数関数的増加を示した(A)。一方、初代B細胞では感染4日後からわずかに上昇を認めた(B)。
(C) HuH7.5.1 に対する JFH1-EYFPmut の感染実験。感染 2 日後に細胞を回収し FACS にて EYFP の発現を確認した。左：非感染、中央：JFH1-EYFPmut、右：JFH1。少ない割合の細胞で EYFP の発現を認めた。 (D) 初代 B 細胞に対する JFH1-EYFPmut の感染実験。感染 6 日後に細胞を回収し FACS にて EYFP の発現を確認した。左：非感染、右：JFH1-EYFPmut。EYFP 発現は認められなかった。（E）HuH7.5.1 細胞に対する JFH1-EYFPmut の感染を免疫蛍光染色で確認したもの。 (F) HuH7.5.1 細胞に対する J6-JFH1 株、JFH1-EYFPmut の複製効率の検討。同じ HCV-RNA 量にて HuH7.5.1 細胞に添加し、2、4、6 日後に RNA を回収、RT-qPCR 法にて HCV-RNA を測定し、両者の比をとった。感染 6 日後には約 65 倍の HCV-RNA の差が認められた。
2.8 初代B細胞におけるHCV感染に対する宿主反応

次に、HCV感染下にてHCV感染B細胞において、B細胞の活性化が起きるか否かを検討した。B細胞の活性化マーカーであるCD80およびCD86の発現を感染2日後にFACSにて解析した。コントロールとしてHuH7.5.1の濃縮培養液を用いた。結果はFig2.8Aに示すように、Mockと比較してCD80およびCD86の発現上昇を認められた。これら活性化マーカーの上昇より、J6JFH1感染によるB細胞の活性化が示唆される結果であった。

前述のようにB細胞性リンパ腫が慢性HCV感染の合併症として知られており(14,15,17)、またアポトーシス抵抗性の獲得が癌化に必要とされている(16,26,27)。そのためわれわれはHCV感染後のアポトーシス逃避能に関して初代B細胞において検討した。in vitroで37℃の環境下では、B細胞では自然にアポトーシスが誘導されていくため、徐々にその割合は増加していく(53)。その割合をFACS法にて7AAD viaprobeおよびAnnexin Vの二重染色を用いた方法(Fig2.8B)、およびATPアッセイ(Fig2.8C)により検討した。FACSによる解析においては、HCV感染後にアポトーシス細胞(7AADおよびAnnexin両者陽性)は減少し、生細胞(両者陰性)は増加する傾向を認めた(Fig2.8B)。また、Figure2.8Cに示すようにATP活性もMockと比較して高値を示し、生細胞が多いことを示唆する結果であった。B細胞は末梢での分化のさまざまな段階において、およびさまざまなシグナルに反応し、アポトーシス細胞死を起こしやすいと報告されている(54)。今回の結果は初代B細胞が、HCVcc感染によってアポトーシスから逃避している可能性を示唆するものと考えられた。
Figure 2.8 J6JFH1 感染は初代 B 細胞を活性化しアポトーシスから保護する。初代 B 細胞に MOI = 1 にて J6JFH1 を 3 時間感染させ、2 回洗浄後培養した。2 日後細胞を回収し FACS および ATP の発現を測定した。(A) 活性化マーカーである CD80 および CD86 の発現を FACS にて測定。左：PE-CD80 抗体および APC-CD86 抗体での染色。右：それぞれの isotype control での染色。(B) Annexin V および 7AAD の 2 重染色によるアポトーシスの評価。右：Mock、左：J6JFH1。(C) ATP 測定による細胞死の評価。2×10^5 の初代 B 細胞に J6JFH1 感染もしくは Mock（非感染濃縮 HuH7.5.1 培養液）を添加し、洗浄後、96 の white microwell plate にて培養した。2 日後、CellTiter-Glo® Luminescent Cell Viability Assay Kit を用いて ATP 活性を測定した。感染直後の ATP 活性（Day0）にて補正し、相対値を比較した。
考察

第1章にて当初、EBV-LCLs、Raji細胞においてJ6JFH1による感染の可否を検討したが、感染性を示すようなデータは得られなかった。しかし本章において、ヒト末梢血B細胞がHCV株に感染性を有することを示唆するデータを得た。初代B細胞におけるJ6JFH1感染を証明するため、複製中間産物であるマイナス鎖RNAのPCR増幅、およびHCVの非構造蛋白であるNS5A発現など、複数の方法を用いてその感染の事実を確認した。また、感染により初代B細胞がアポトーシスから逃避する可能性を示唆する可能性を示唆する所見を得た。

初代B細胞におけるHCV-RNAの増加は、HCVエントリーレセプターであるCD81の阻害抗体を用いたHCVエントリー阻害により抑制された。さらに、TypeI IFNおよびNS3/4Aプロテアーゼインヒビターを用いたHCV複製阻害でもHCV-RNAの増加は抑制され、これらの結果はヒト初代B細胞におけるHCV感染・複製の存在を強調するものと考えられた。同時に、CD81阻害抗体によりHCV-RNA増加が抑制された事実からは、ヒト肝細胞と同様にB細胞においてもCD81がHCVエントリーレセプターとして使用されることを示唆される所見と考えられた。

J6JFH1株以外にも、Jc1/GLuc2A株を用いた場合も、感染を示唆する所見を得ることができた。JFH1-EYFPmutを用いた感染実験では、有意な感染を示唆するデータを示せなかったが、これはウイルス自体の力価の問題が関与すると考えられた。

最終的にはEBV-LCLsにおいては、HCVcc感染を証明することはできなかったが、複数回の実験において末梢血B細胞においてJ6JFH1感染後、HCV-RNAが増加する所見を得た。

また、本研究結果からは、B細胞におけるHCV粒子の会合・放出は否定的であり、感染した細胞からHCV粒子が放出され、感染が拡大するということは考えにくいものと考えられた。仮に感染するとても、EBV-LCLsなど、自立増殖する細胞株ではその感染効率の低さから、非感染細胞の割合が経時に増加するため、有意なHCV-RNA増加を検出できていない可能性も考えられた。

前述のようにHCV慢性感染による合併症として、クリオグロブリン血症、B細胞性悪性リンパ腫を含むリンパ増殖性疾患（LPD）がある(9-13)。多くの論文においてB細胞やリンパ腫におけるHCVゲノムの存在が主張されている(16,25,26)が、B細胞におけるHCV複製に関してはその複製中間産物であるマイナス鎖RNAの検出が複雑であることなどから議論が多いところであった(28,29)。

B細胞へのHCVエントリーに関しては、これまで否定的な報告がなされていながら、HCVエンベロープ糖蛋白をもつレトロウイルス(30)およびレンチウイルス(31)のシュードウイルス(HCVpp)を用いた実験による結果である。我々
自身でも、HCVのE1/E2蛋白および陽性コントロールとしてVSV-Gを発現するHCVppを作成し実験を試みたが、肝細胞株であるHuH7.5.1ではともに細胞内へのエントリーを示す所見を得たのに対し、初代B細胞においてはVSV-Gを使用した陽性コントロールにおける実験においても、細胞内へのエントリーを意味するルシフェラーゼ活性の増加は認められなかった。これらの事実からはHCVppのB細胞へのエントリーの有無の評価は、初代B細胞においては適切な方法ではないと考えられ、本手法によってB細胞へのHCVエントリーを議論するのではなく適切であると考えられた。

これまでに、リンパ球はHCV粒子の運び役として働きしているという報告があり(55)，そのためこれまでの報告では全PBMCの状態においては、HCVの細胞内移入ではなく細胞表面への接着・吸着が促進されるとしている。そのためB細胞におけるHCV感染は全PBMCの状態ではその感染効率の低さからもはっきりしなくなると考えられる(47)。また、非B細胞における不完全なHCVエントリーレセプターの発現が、細胞内移入せずに表面への付着をもたらすものと考えられる。B細胞はCD81、SRB-I、LDL-RおよびNPC1L1をmRNAレベルでは発現していた。B細胞は接着細胞ではないため、HCVのエントリーレセプターを構成するとされるClaudin1やOcludinは発現していない(49-52)。Claudin1およびOcludinはタイトジャンクションの構成成分であり、ヒト肝細胞においてはHCVエントリーレセプターとして機能しているとされる。しかしながら、これらの蛋白を発現する細胞においての感染実験において、Claudin1およびOcludinは感染効率を上昇させるだけであり、感染に必ずしも必要であるわけではないとされ(56)，一方でCD81は感染成立に必須であると考えられている(48)。そのため、Claudin1、OcludinおよびmiR122の欠如がヒトB細胞において低効率なHCV感染の原因となりうる可能性があると考えられる。阻害抗体におけるCD81の阻害を行うと、初代B細胞においてHCV感染が抑制されたという実際は、初代B細胞へのHCVエントリーがウイルス粒子とCD81との間の相互作用に依存していることを示唆するものである。一方で、近年報告されているHuH7細胞から非肝細胞などへゲノムを輸送しているとされるエクソソームなど、その他の非特異的なパスウェイによって仲介されない、ということを示唆するものであると考えられる(57)。

これまでのin vitroでのJFH1を用いた報告では、B細胞株においてHCV感染は証明されていない(58)。HCVはヒト肝細胞にin vivoにおいて感染し、慢性肝疾患をもたらすことが知られているが、in vitroでは限られた細胞株-HCVccの組み合わせ（HuH7とそれに由来する細胞株と、JFH1とそれに由来するキメラなど）の条件のみで、十分なHCV複製が確認されているのみである(56)。ヒト初代肝細胞を含むその他の肝細胞株においても、in vitroでは効率的な感染を
示すのは難しい(56)。これらのデータは HuH7 による HCV 種のクローン選択が、in vitro における豊富で効率的な感染に不可欠であることを示唆するものと考えられる。初代 B 細胞と J6JFH1 もこのような細胞と HCV クローンの関係にあるのかもしれない。

また、本研究において HCV 感染後に B 細胞がアポトーシスから逃避する可能性が考えられた。B 細胞のアポトーシスは 37℃の培養条件においても自然に認められるものである。我々は、Raji 細胞において過去に報告されているのと同様(46)に、初代 B 細胞においても J6JFH1 感染によって B 細胞のアポトーシスが抑制される所見を発見した。B 細胞のアポトーシスは通常はウイルス感染に続いて二次的に生じるものであるが、HCV はアポトーシスシグナルが感染によって影響を受け、細胞死から逃避する結果となるという特殊な現象を認めると考えられる。HCV によるアポトーシス制御にかかわるパスウェイの同定はできなかったが、過去の報告では E2-CD81 の結合が B 細胞の異常や、HCV 患者における弱い抗体産生に関与しているとされている(46)。B 細胞性リンパ腫は慢性 HCV 感染における合併症としてよく知られており(59)、HCV 感染細胞がアポトーシスを生じないことが、癌形成に関連している可能性があると考えられる(60-62)。これに関連するように、Cre 誘導性 HCV トランスジェニックマウスにおいて、B 細胞性リンパ腫が生じるとされる(63)。また、HuH7 細胞において Genotype3a の HCV コア遺伝子が抗アポトーシス効果を持つことが報告されている(64)。他の報告においても、HCV 持続感染を持つ、B 細胞性リンパ腫から HCV 株が株とされ、これは Genotype2b であった(16)。今回われわれは同様に Genotype2a HCV が B 細胞において抗アポトーシス効果を持つことを示唆するデータを得た。B 細胞への HCV 感染はいくつかの特殊な Genotype と関連している可能性が考えられる。
総括 および 結論

本研究において、以下の知見が得られた。

1. HCVcc の一つである J6JFH1 株が、初代培養 B 細胞に、低効率ながらも感染性を示す。

2. 初代 B 細胞において J6JFH1 は CD81 依存的に細胞へ侵入し、その複製は IFN 依存的に抑制される。

3. J6JFH1 感染初代 B 細胞の上清を HuH7.5.1 細胞に加えた場合、J6JFH1 の再感染を示唆する所見は得られない。初代 B 細胞は HCV 感染性粒子を会合・放出できない可能性がある。

4. J6JFH1 感染により初代 B 細胞の活性化を認め、細胞死から逃れ続ける可能性がある。

以上の所見から、B 細胞は低効率ながら J6JFH1 感染を認める。感染による活性化と細胞死からの逃避機構が生じることが示唆された。

この感染は HCV 粒子と CD81 との結合に依存し、エクソソームを介する非特異的なものではないと考えられた。我々はまた、感染の成立に関して、抗体によるこの HCV-CD81 の結合の阻害により感染が阻害されること、HCV 複製を抑制するような薬剤の添加により感染が阻害されることを示した。HCV 感染において B 細胞から感染性粒子が会合・放出は認めなかったが、これは血液循環において B 細胞が一時的なリサーバーとして働くものとしてあり得る結果と考えられた。本研究にて HCV 粒子の会合および放出の所見を B 細胞が示すようなデータは得られなかった。一方で Sung らは HCV 陽性の悪性リンパ腫患者から分離した B 細胞株（SB 細胞）から放出される HCV が Raji 細胞への再感染を示したというデータを示している(16)。さらにリンパ球への感染力の高い HCV を含む場合や、検出感度の高い測定系を用いることができれば、HCV 感染 B 細胞から微量の HCV 粒子が会合・放出されることを検出することも可能であると考えられる。もしそうであれば、B 細胞が HCV のリサーバーとして働き、肝移植後に HCV が再発することはいう現象も説明される可能性がある。

また、もし B 細胞が HCV 感染を許容するなら、RIG-I や MDA5 といった RNA センサーが HCV-RNA を B 細胞内において認識し、NF-κB や IRF3/7 といった細胞質内シグナルを誘導する可能性がある(56)。サイトカインネットワークの活
性化が HCV-RNA に反応して B 細胞内において引き起こされる可能性もあると考えられた。実際に HCV 感染患者においては、HCV 感染 B 細胞によって宿主因子が誘導されることが過去に報告されている (9-13)。本研究においては、これら検討はできなかったが、今後、細胞内の核酸認識のパスウェイの活性化や B 細胞特異的なクラススイッチ組み換えや体細胞変異などに関与する遺伝子の活性化などを念頭に、HCV 感染後に引き起こされるような変化の有無を今後検討していきたい。
謝辞

本研究を遂行するにあたり、有益な御指導・御助言をいただきました北海道大学大学院医学研究科病態制御学専攻免疫学分野瀬谷司教授に深く感謝いたします。終始適切な御助言、御討論を頂きました松本美佐子准教授に深く感謝いたします。

人員不足の中、研究室での研究に御助力頂いた北海道大学医学研究科内科学講座消化器内科学分野坂本直哉教授に深く感謝いたします。

また、研究に関して素人であった筆者に、一から研究に対する考え方、実験方法、データ解釈、論文作成など各方面において御指導・御援助頂きました国立感染症研究所Hussein Hassan Aly主任研究官には感謝の念に堪えません。厚く御礼申し上げます。

研究生活のあらゆる面で筆者にお力添えいただいた、北海道大学医学研究科病態制御学専攻免疫学分野の皆様、および病棟業務の間に研究のための時間を筆者に提供下さった北海道大学医学研究科内科学講座消化器内科学分野の皆様に厚く御礼申し上げます。

最後に、研究生活を支えてくれた妻、息子達、両親に感謝します。

2014年9月

中井正人
引 用 文 献

14. Mazzaro, C. et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon

39. Imai, S., Nishikawa, J. & Takeda, K. Cell-to-cell contact as an efficient
40. Ebihara, T. et al. Hepatitis C virus-infected hepatocytes extrinsically
modulate dendritic cell maturation to activate T cells and natural killer
41. Castet, V. et al. Alpha interferon inhibits hepatitis C virus replication in
(2002)
42. Kambara, H. et al. Establishment of a novel permissive cell line for the
43. Sugawara, Y. et al. Enhancement of hepatitis C virus replication by
Epstein-Barr virus-encoded nuclear antigen 1. *EMBO J.* 18(20),
5755–5760 (1999)
44. Mateu, G. et al. Intragenotypic JFH1 based recombinant hepatitis C
virus produces high levels of infectious particles but causes increased cell
of Epstein-Barr Virus (EBV)-transformed lymphoblastoid cell lines
46. Chen, Z. et al. Hepatitis C virus protects human B lymphocytes from
(2011)
47. Marukian, S. et al. Cell culture-produced hepatitis C virus does not infect
938-941 (1998)
49. Bartosch, B. et al. Cell entry of hepatitis C virus requires a set of
coreceptors that include the CD81 tetraspanin and the SR-B1 scavenger
entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. USA.100,
51. Evans, M.J. et al. Claudin-1 is a hepatitis C virus co-receptor required
52. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor

