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Theory of acoustic-phonon transmission in finite-size superlattice systems 

Seiji Mizuno and Shin-ichiro Tamura 
Department of Engineering Science, Hokkaido University, Sapporo 060, Japan 

(Received 19 August 1991) 

We develop a theory for acoustic-phonon transmission through a periodic superlattice with a finite 
number of periods. In particular, analytical expressions for the product of transfer matrices and phonon 
transmission rate are derived for the phonon propagation normal to the layer interfaces. The results are 
applied to the resonance phenomena of phonons in the triple-superlattice structure, i.e., the stack AB A 
of the periodic superlattices A and B. The phonon transmission rate and the resonance condition in this 
structure are also derived analytically. As a result, we show that the phonons in a frequency gap of the 
A superlattice can be transmitted significantly through the AB A superlattice structure when they satisfy 
the resonance condition. This happens even if the period of the A superlattice is infinity. 

I. INTRODUCfION 

Acoustic phonon propagation in synthetic superlattice 
systems with various stacking order, such as periodic, 
quasiperiodic, and random superlattices, has been investi
gated both theoretically! and experimentally.2 For pho
nons propagating in a periodic superlattice Bragg 
reflection occurs when the periodicity matches with their 
wavelength, yielding frequency gaps (i.e., stop bands) in 
the phonon dispersion relation. 3 Thus, the periodic su
perlattice exhibits a filtering action on phonons in the 
stop bands.2 By utilizing this property of phonons in the 
superlattice, we can basically realize an elastic multilay
ered system which may selectively transmit or reflect the 
phonons in some frequency window. This suggests the 
potential of designing a variety of phonon optics4 devices 
by using single- or multiple-superlattice structures. 

Recently, the numerical study on the transmission of 
phonons in the simplest multiple-superlattice system, 
where a periodic B superlattice is sandwiched by different 
periodic A superlattices, i.e., AB A superlattice structure, 
has been reported. 5 In this system, the phonons in a stop 
band of the A superlattice (A stop band) can be transmit
ted almost perfectly through the AB A system when their 
frequency satisfies a certain resonance condition. This is 
analogous to the resonant tunneling of electrons in 
multiple-quantum-well systems.6 So far, almost all of the 
phonon transmission calculation has been carried out nu
merically based on the transfer-matrix method.7 This is 
partly because in a real superlattice system the number of 
periods is finite and the perfect periodicity, valid in an 
infinite system, is absent. However, analytic expressions 
for the transmission rate in finite size systems are desir
able for studying the characteristic behaviors of phonons 
in a complicated superlattice structure. 

In the present study, we derive the general expression 
for the phonon transmission rate in the finite-size super
lattices by calculating the products of transfer matrices 
analytically. The results are applied to the phonon 
transmission in an AB A multisuperlattice system, and we 
discuss the resonance condition and the enhancements in 
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phonon transmission in this system. 
The outline of this paper is as follows. In Sec. II, we 

develop the mathematical analysis of the transfer matrix 
and the transmission rate in the periodic superlattice with 
a finite number of periods. The numerical examples of 
the phonon transmission in the single- and double
superlattice structures based on our formula are also 
presented. In Sec. III, we discuss the transmission of 
acoustic phonons in the AB A multisuperlattice system. 
Specifically, the phonon transmission rate and resonance 
condition are derived by using the analytic expression for 
the transmission rate in single periodic superlattices given 
in Sec. II. The sharp enhancements in transmission are 
predicted at phonon frequencies satisfying the resonance 
condition. In Sec. IV, a summary and conclusions are 
given. 

II. MATHEMATICAL ANALYSIS OF TRANSFER 
MATRIX AND PHONON TRANSMISSION RATE 

We study a periodic superlattice with a finite number 
of periods. A schematic picture of this system is shown 
in Fig. 1. Here, we assume that the superlattice consists 
of a periodic sequence of alternate stacking of A! and A 2 
constituent layers. The thicknesses of the A! and A 2 

layers are denoted by d A and d A , respectively, and D A 
1 2 

(= d A + d A ) is the thickness of the unit period of this 
1 2 

system. 
We consider the case where the phonon wave vector is 

parallel to the growth direction (z direction). For this 
propagation configuration all three phonon modes are 
decoupled from each other if the interfaces are a mirror
symmetry plane. We consider such a simple situation 
and treat only one mode of phonons. In the present 
study, we adopt the ·continuum model for the lattice vi
bration, which is valid for sub-THz acoustic phonons in 
most of the semiconductor superlattices. The solution to 
the one-dimensional wave equation for this elastic contin
uum is expressed in terms of a linear combination of the 
transmitted and reflected waves: 

734 © 1992 The American Physical Society 
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detector (y) 
z 

substrate (x) 

unit 
period 

FIG. 1. Schematic picture of the periodic superlattice with 
the N periods. The superlattice consists of a sequence of alter
nate stacking of A I and A 2 constituent layers. The thicknesses 
of the A I and A 2 layers are denoted by d A I and d A 2' respective-

ly, and DA (=d AI +dA2 ) represents the thickness of the unit 

period. 

(1) 

Here, i is an index specifying constituent layers, ef and e[ 
are the amplitudes of the transmitted and reflected waves, 
respectively, and k i is the wave number. The stress asso
ciated with the lattice displacement Ui is expressed as 

(2) 

where Zi (=PiVi) is the acoustic impedance with the mass 
density Pi and the sound velocity Vi' and W=kiVi is the 
angular frequency. 

The lattice displacement Ui(z) and stress Si(Z) should 
be continuous at the interfaces of adjacent layers. To 
write down these boundary conditions, it is convenient to 
introduce a two-component vector 

(3) 

Let us consider the first layer A I' sandwiched by the sub
strate denoted by x and the second layer A2 (see Fig. 1). 

The boundary conditions require 

(4) 

and 

By the definitions (1) and (2), Wi(z) can be written as 

Wi(Z)=h.i(Z)Ci (6) 

where 

-ik.z e I 

-iwZ.e -ikjz 
I 

(7) 

[e! I 
C i = e~ . 

Using Eq. (6), we can combine Eqs. (4) and (5) and get 

W A (d A )=tA (d A )Wx(O) , 
2 I - I I 

where 

1AI(dAI)=h.AI(dAI)[h.AIW)]-I. 

(8) 

(9) 

(10) 

This means that W changes to 1.04 I W after the propaga
tion of a wave through the first layer. An explicit expres
sion for matrix t. is 

-"1 

(11) 

where al=kA d A • Similarly, we can define a 2X2 ma-
1 I 

trix 1.04 2 for the A2 layer. Using 1.04 1 and 1.04 2' we can now 
relate W's right before and after the unit period consist
ing of A I and A 2 layers, 

WAI(DA)=1'AWAI(O) . 

The transfer matrix 1'A is given by 

where 

ZA 
U A = sinal cosa2 + ~ cosal sina2 , 

A2 

ZA 
2. . 

JL .04= cosal cosa2 - Z smal sma2 , 
AI 

with a2=k A d A • We note that 
2 2 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

For the superlattice with N periods, we have to calcu
late (1'.04 )N == 1'A (N). To obtain the analytical expression 
of 1'.04 (N), we first transform 1'.04 into the diagonal matrix 
fA: 

[
101 0] 

fA =5.- 11'.045.= 0 102 ' 

where 101 and "2 are the solutions of the equation 

€2_(JLA+A.AlE"+1=0. 

(19) 

(20) 

Solving Eq. (20), we have the diagonal elements of fA: 
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ILA+AA .[ [ILA+AA ]2]1/2 IJLA+AA I .:.......o.::-2---,c:..±1 1 - 2 for 2 ~ 1 

ILA +AA [[ JLA +AA]2 ] 1/2 lILA +AA I 
2 ± 2 - 1 for 2 > 1 . 

(21) 

We explicitly express the transfer matrix LA (N) for the 
following three cases. 

(a) I(ILA +AA )/21 ~ 1. In the frequency range satisfy
ing this condition, we define 0 A by 

ILA+AA 
cosO A == 2 (22) 

Hence, EI.2 can be written as 

LA (N) == (LA )N 

=S.CIA )Ns.-I 

A -II 

A rA S (N)+C (N) 2 A A 

O ., ±illA 
EI,2= cos A ±l smO A =e , (23) 

and the corresponding matrix S. is given by 

-a A 

, -iliA 
I\.A -e 

(24) 

With the use of Eqs. (19) and (24), LA (N) is calculated as 

(25) A -II 
A rA S (N)+C (N) 

2 A A 

where 

(26) 

(27) 

Thus, the elements of LA (N) has an oscillatory behavior. 
(b) (IL A + A A ) /2> 1. In this case, we define 0 A by 

ILA +AA 
coshO A == 2 

Then, EI,2 can be written as 

- he ± . he - ±II A EI,2- cos A sm A -e , 

and LA (N) has the same form as Eq. (25), but with 

sinh(NO A) 
SA(N)== . hO ' sm A 

(28) 

(29) 

(30) 

(31) 

Thus, the elements of LA (N) has an exponential behavior 
in this case. 

(c) (IL A + A A )/2 < -1. In this case, we define 0 A by 

JLA+AA 
coshO A == - 2 (32) 

Then, EI,2 can be written as 

hO - . hO ±OA EI,2=-cOS A+S1n A=-e , (33) 

and LA (N) has the same form as Eq. (25), but with 

_ N+l sinh(NO A) 
SA(N)=(-l) . hO ' 

sm A 
(34) 

(35) 

The elements of LA (N) has an exponential behavior, as in 
case (b). 

Next, we calculate the phonon transmission rate by us
ing the above analytical expressions for the transfer ma
trix. In a typical transmission experiment of phonons 
through a superlattice, a thin-film phonon detector 
(denoted by y) is deposited on top of the superlattice 
grown on a substrate x. High-frequency phonons are ex
cited at the other face of the substrate by using a super
conducting tunnel junction or by a laser excitation. Thus 
both the incident and reflected phonons exist in the sub
strate but there are only transmitted phonons in the 
detector layer. Hence for an incident phonon with unit 
displacement amplitude, we have 

Wx(z)=b.x(z) [c~ 1 (36) 

in the substrate and 

Wy(z)=b.y(z) [~ ] (37) 

in the detector layer. The amplitudes of reflection c; and 
transmission c; are determined by the continuity condi
tion for W at each layer interface. Using the transfer ma
trix LA (N), this condition yields 

(38) 

For simplicity, we write the elements of LA (N) as 
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a _l_b 
WZA 

1 

d 

where 

AA -/LA 
a= 2 SA(Nl+CA(N) , 

b=u ASA(N), 

c =~ASA(N) , 

A -II 
d =- A 2 rA SA(Nl+CA(N) . 

Accordingly, from Eqs. (36), (37), and (38), we find 

c ' y 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

The energy transmission rate T and reflection rate Rare 
defined by 

Z 
T=-Y 1c'1 2 (46) Zx Y , 

R=lc;12. (47) 

From Eqs. (44) and (45), we obtain 

Zy 
4-

T= 
Zx 

2 (48) 
Zy ZA 1 

+ [d + ~: a r --b---c 
ZA Zx 

1 

2 
Zy ZA 1 

+ [d - ~: a r --b+--c 
ZA Zx 

1 

R= 2 (49) 
Zy ZA 1 

+ [d+~:ar --b---c 
ZA Zx 

1 

It can be easily seen that 

T+R =1. (50) 

From the expression (48), we find the following results. 
In cases (b) and (c), i.e., I(/LA +AA )/21 > 1, all the matrix 
elements of T.A(N) increase exponentially (_e N OA ) for 
large N [see Eqs. (30), (31), (34), and (35)]. Therefore, the 

transmission rate decreases exponentially with increasing 
period N. Thus, the superlattice exhibits a strong filter
ing action on phonons with frequencies satisfying the 
condition I(/LA +AA )/21 > 1. These phonons correspond 
to those in the forbidden gaps (stop bands) of the ideal 
periodic superlattice with the infinite number of periods. 
On the other hand, in case (a), the matrix elements have 
the oscillatory behavior [cf., Eqs. (25)-(27)]. Therefore, 
the transmission rate is finite and the phonons can be 
transmitted through the superlattice. These phonons 
correspond to those in the allowed bands in the ideal 

~ 
'" ~ = 0.6 
e 

'" '" '! 0.4 
= 
'" f:: 

0.2 

1.0 

0.8 

0.2 

0.0 
0.0 

(b) 

B A 

0.2 0.4 0.6 0.8 1.0 

Frequency (THz) , 
~ ~ 

.v. 
0.2 0.4 0.6 0.8 1.0 

Frequency (THz) 

FIG. 2. Frequency dependence of the L-phonon transmission 
rates in (100) GaAs/ AlAs superlattices: (a) the pure A-type su
perlattice (solid line) and the pure B-type superlattice (dotted 
line) (N = M = 35); (b) the AB superlattice structure (N = 20, 
M = 15). The assumed unit periods of A and B superlattices 
consist of (6 ML AlAs)/(6 ML GaAs) and (9 ML AlAs)/(9 ML 
GaAs), respectively. The parameters used are as follows. The 
thickness of one monolayer (ML) is 2.83 A in the [100] direction 
for both GaAs (=A 2 =B2 ) and AlAs (=A1=B 1). The mass 
density and longitudinal sound velocity are 5.36 g/cm3 and 4.71 
km/s for GaAs, and 3.76 g/cm3 and 5.65 km/s for AlAs (i.e., 
PA =PB =3.76g/cm3,PA =PB =5.36 g/cm3, VA =VB =5.65 

1 1 2 2 I I 

km/s, VA 2 =VB2 =4.71 km/s). 
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periodic superlattice with the infinite number of periods. 
As a numerical example, we choose a (l()()) 

GaAsl AlAs superlattice and consider two periodic su
perlattices A and B, whose unit periods consist of (6 ML 
AIAs)/(6 ML GaAs) and (9 ML AIAs)/(9 ML GaAs), re
spectively. The number of periods in the A (B) superlat
tice is N = 35 (M = 35). In Fig. 2(a), we show the frequen
cy dependence of the longitudinal- (L-) phonon transmis
sion rates in these periodic superlattices calculated from 
Eqs. (39) and (48). We find a dip in the given frequency 
range (0 to 1 THz) for both the A-type and B-type super
lattices. These dips are due to Bragg reflections of L pho
nons in each periodic superlattice. The frequencies at the 
center of these dips predicted by the first-order Bragg 
conditions7 are 756 and 504 GHz for the A-type and B
type superlattices. These values are in agreement with 
the frequencies at the center of the dips in Fig. 2(a). 

We can also study the phonon transmission in the mul
tisuperlattice systems based on the above expressions for 
the transfer matrix and the transmission rate in a period
ic superlattice. For example, we consider the AB super
lattice system, where the periodic superlattice A is 
stacked on another periodic superlattice B. The relevant 
transfer matrix in this double-superlattice structure is 
still 2 X 2 and given by the product of the matrix LA (N) 

[Eq. (39)] and the similar matrix LB(M) for superlattice 
B, which is obtained by replacing the symbols A and N 
with Band M. Substituting the components of the prod
uct LA (M)LB(N) into Eq. (48) we can obtain the phonon 
transmission rate in the AB superlattice system. For the 
numerical example, the same A and B superlattices as
sumed above (but with M =20 and N = 15) are stacked. 

detector (y) 

~ 
A 

I~ 

substrate (x) 

FIG. 3. Schematic picture of the ABA triple superlattice. 
The superlattice A (E) consists of a sequence of alternate stack
ing of Al and A z (B I and B z) layers. The thicknesses of the Al 
and A z (B I and B z) layers are denoted by d AI and d AZ (dBI and 

d BZ )' respectively, and DA =dAI +dAZ (DB=dBI +dBz ) 

represents the length of a period of A (B) superlattice. The 
numbers of the periodicity in A and B superlattices are Nand 
M, respectively. 

The transmission rate versus frequency in this system is 
shown in Fig. 2(b). Two large dips in the same frequency 
range as in Fig. 2(a) are found. Comparing with Fig. 2(a), 
these dips can be well identified with the dips in the pure 
A-type and B-type superlattices. Therefore, the main 
features of the transmission rate in the AB superlattice 
can be explained in terms of those in the pure A-type and 
B-type superlattices. No prominent structure that is not 
seen in the pure A-type and B-type superlattices arises in 
the double-superlattice system. 

III. AB A MULTIPLE-SUPERLATTICE SYSTEM 

In this section, we apply the analytical expression for 
the transfer matrix given in Sec. II to a triple-superlattice 
structure. The system we consider consists of periodic 
superlattices A, B, and A grown on a substrate. The 
schematic picture is shown in Fig. 3. In this multiple
superlattice system the sharp structures in phonon 
transmission not attributable to the original pure A and 
B superlattices can be seen. 

For phonons propagating through this AB A system 
the relevant transfer matrix is 

LABA =UA )N(LB )M(LA )N 

=LA(N)LB(M)LA(N) . (51) 

The calculation of the matrix product of Eq. (51) is 
straightforward. The explicit expression for LABA is, 
however, lengthy and we have given in Appendix A the 
matrix elements of LABA for 

I fl-A+AA I Ifl-B+AB I 2 > I and 2 ~ 1 . (52) 

The substitution of these matrix elements to Eq. (48) 
gives the phonon transmission rate in the AB A superlat
tice structure. 

Figure 4 exhibits the calculated frequency dependence 

.. 
-:; 
g:; 

0.8 

= 0.6 
e 

"" "" .~ 0.4 
= <'OS 

~ 
0.2 

0.2 0.4 0.6 0.8 1.0 

Frequency (THz) 

FIG. 4. Frequency dependence of the L-phonon transmission 
rate in the AB A triple superlattice. The A and B superlattices 
are the same as for Fig. 2 but with N = 10 and M = 15. 
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of phonon transmission in the AB A structure where A 
and B superlattices are composed of 10 and 15 periods 
(N=lO, M=15) of GaAs/AIAs multilayers. (For sim
plicity, we assume that the substrate and the detector are 
the same materials, i.e., x = y.) The most noticeable 
feature is the appearance of three sharp enhancements in 
transmission in the dip (0.716-0.797 THz) originating 
from the Bragg reflection in the A-type superlattice. In 
order to see the details in the former structure, the 
transmission rate in the vicinity of the A-stop band is en
larged in Fig. 5(a). These enhancements in transmission 

I 

correspond to the resonant transmission, and their origin 
has been discussed only qualitatively in the previous 
work. 5 

Here, we discuss these resonant transmission quantita
tively based on the analytical expression for the transfer 
matrix derived in Sec. II. We consider the phonons with 
a frequency satisfying the condition (52); that is, the as
sumed frequency is in a stop band of the pure A-type su
perlattice but in an allowed band of the pure B-type su
perlattice. Therefore, the transfer matrices LA (N) and 
LB(M) for this frequency are given by 

A -f,L 1 A AS (N)+C (N) ----z-u ASA(N) 2 A A 
cu AI 

LA(N)= A -f,L 
cuZA ~ASA(N) A AS (N)+C (N) 

I 2 A A 

A -f,L 1 B B S (M)+C (M) ----z-u BSB(M) 2 B B 
cu BI 

LB(M)= A -f,L 
CUZB ~BSB(M) B B S (M)+C (M) 

I 2 B B 

1.0 3.0 
where 

(a) 
2.0 

0.8 

-- 1.0 . 
,/----+-

I 

<-1, 0.0 " 
(55) 

f,LA+AA 
( -1 )Ncosh(N6 A) for 2 < -1 , 

(56) 

(57) 

(58) 

where 6 A and ()B are the real quantities defined by Eqs. 
(28) [or (32)] and (22), respectively. By inserting Eqs. 
(53)-(58) into Eq. (51), we can obtain the exact expres
sion for T ABA under the condition (52). (See Appendix 
A.) The transmission rate is calculated in the same 
manner as given in Sec. II. The result for the present 
case (Zx =Zy, ZA =ZB , and ZA =ZB ) is 

I I 2 2 

(59) 

, 

....... ~ ......... -1. 0 

0.2 
-2.0 

0.0 J ~ ) \~ -3.0 
0.72 0.74 0.76 0.78 

Frequency (THz) 

1.0 rT~~~~~~~~~~~~~ 3.0 

0.8 
G> 

~ 
1:1 0.6 

= ..., .., 
·S 
.., 0.4 
1:1 
101 

~ 
0.2 

(b) 

· · · · 

-
. 

/ · · · · · · · · · 

. 
/ ......... ,\ 
. ' . . . .. 

· · · · · · . 

· · · · · · 
l-+ 

0.0 L..; ........................ ....u. ......... J..o........u. .......... ....J.... ......... .1...0110."""-.....J 
0.72 0.74 o .76 0.78 

Frequency (THz) 

2.0 

1.0 

0.0 

-1. 0 

-2. 0 

-3.0 

(53) 

(54) 

I 

" 

where 

P -G 2N9A+G -2N9A - ±e 'Fe (60) 

FIG. 5. The L-phonon transmission rate (solid line) and the 
function G _ (dotted line) within the A-stop band (at the lowest 
frequencies) in the AB A triple superlattice: (a) N = 10, M = 15; 
(b) N=20, M=15. 
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(61) 

(62) 

(63) 

Here, GA=(Zy/ZAI)a A , ~A=(ZAI/ZX)~A' GB=(Zy/ 

ZB jaB' and ~B=(ZB /Zx)~B; the upper sign corre-
I I 

sponds to the case where (J1 A + A A ) /2> 1 and the lower 
sign to (J1 A + A A ) /2 < - 1. The expression for the 
transmission in the general case (Zx'*Zy, ZA ,*ZB , and 

I I 

Z A '*ZB ) is presented in Appendix B. Hence, as the 
2 2 

number N of the A-superlattice period becomes larger, 
both P and Q increase exponentially, and therefore the 
transmission rate becomes zero in proportion to e -4Ne A. 

This is valid if the coefficients G ± of e 2Ne A in Eqs. (60) 
and (61) are nonzero. However, if these coefficients are 
zero, that is 

J1A +AA 
G + = 0 for 2 > 1 , (64a) 

J1A+AA 
G _ = 0 for < - 1 , 

2 
(64b) 

is satisfied, the transmission rate has a finite value 

(65) 

for a large N. Therefore, Eq. (64) should be called the 
resonance condition in the AB A multisuperlattice struc
tures. s In Fig. 5(a), we show the frequency dependence of 
G _ (relevant in the frequency range shown in Fig. 4). As 
expected, we can find a good coincidence of the frequen
cies at the sharp enhancements in transmission with the 
frequencies satisfying G _ =0. The small deviation be
tween frequency satisfying G _ =0 and the location of the 
transmission peak arises from the finite number (N = 10) 
of the period assumed for superlattice A; that is, the 

-2Ne 
terms of e A in Eqs. (60) and (61) have small but non-
vanishing contributions.9 If N becomes larger, the devia
tion becomes zero. In Fig. 5(b), we show the same plot as 
Fig. 5(a) for N =20. In this figure, the frequencies at the 
transmission peaks are in excellent agreement with the 
zero's of G _ . 

As shown in Sec. II, a single periodic superlattice acts 
as a filter of phonons in stop bands. However, we find 
that the phonons in the A stop bands can be transmitted 
through the AB A system when they satisfy the resonance 
condition (64), even if the period of the A superlattice is 
infinity. 

IV. SUMMARY AND CONCLUDING REMARKS 

In this study, we derived the analytic expressions for 
the products of transfer matrices and the transmission 
rate in the periodic superlattice with a finite number of 
periods. The transmission rate based on our formula 
coincides, of course, with that calculated by multiplying 
the transfer matrices for a unit period successively by a 
computer. We also have applied these exact expressions 
to the phonon propagation in the AB A multiple
superlattice system, and discussed the origin of the sharp 
enhancements in transmission. We have showed that the 
phonons in the stop bands of the A superlattice can be 
transmitted through this system (with transmission rate 
close to unity) when they satisfy the resonance condition 
(even if the period of the A superlattice is infinity), other
wise the transmission rate vanishes exponentially with 
the size of the A superlattice. 

The results of the present work suggest the possibility 
of designing phonon optics devices such as a phonon 
filter, phonon mirror, and phonon resonator. In the 
periodic superlattice systems [Fig. 2(a)], we can also 
modulate the phonon frequency of the forbidden gap by 
changing the thickness of constituent layers. We can also 
modulate the width of phonon stop bands by changing 
the constituent materials, i.e., changing acoustic 
mismatch between constituent layers, or by combining 
different superlattices. The sharp resonant transmission 
of phonons in a wide stop band will be used to generate 
or detect monochromatic high-frequency phonons excit
ed thermally in a crystal at low ambient temperatures. 
The expressions for the transfer matrix and the transmis
sion rate we derived in the present study will be useful to 
get important insights into these future applications. 
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APPENDIX A 

The elements of the transfer matrix LABA [Eq. (51)] 
under condition (52) are calculated as 

_ 1 [ A A - J1 A 1 2NfJ A 
(LABA)11-2 l±2sinhe A G±e 

+-.L [I=t= AA-J1A lG-e -2Ne A 

2 2sinh8 A + 

+-.L [AB -J1B- A~-~A D1SB(M) ' 
2 2smh 8 A 

(AI) 

(A2) 
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_ ~A 2N9.. -2N9 .. 
CLABA )2'-± 2 . h() (G±e -G'fe ) 

sm A 

+[~B- .~A2 D]SB(M) , 
2smh8A 

- 1 [ AA-/-LA 1 2N9 .. 
(IABA )22- 2 1 =F 2sinh8 A G±e 

+1. [1± AA -/-LA lG e -2N9 .. 
2 2 sinh8 A 'f 

- 21 [AB-/-LB- A~ -~A D lSB(M) , 
2smh () A 

(A3) 

(A4) 

where G ± and D are defined in Eqs. (63) and (62), respec
tively. 

APPENDIXB 

In the general case (Zx=FZy' ZA =l=ZB, and , , 
Z A =1= Z B ), the expression of the transmission rate [Eqs. 

2 2 

(59)-(62)] are rewritten as 

T= 4(Zy IZx) 
p2+Q2 ' 

where 

_ 1 [ Zy AA -/-LA 
P--2 G± 1+-z ± . h8 

x 2sm A 

(Bl) 

[i -111/N9 
.. 

[ ~: -1 11 e -2N9 .. , 

(B2) 

'For a recent review, see S. Tamura, in PHONONS 89, edited by 
S. Hunklinger, W. Ludwig, and G. Weiss (World Scientific, 
Singapore, 1989), p. 703. 
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Further, the transmission rate (65) at the resonance fre
quencies are rewritten as 

Z 
T=4-y 

Zx 

-2 

Y. Cho, IEEE J. Quantum Electron. QE-22, 1853 (1986). 
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SIn the limit of small acoustic mismatch between the constituent 
layers in superlattice A, Eq. (64) becomes CB(M)=O. This 
means that superlattice B is a quarter-wave layer as a whole 
and Eq. (65) leads to T = 1 in this limit. 

9Here we note that the following equation holds at a frequency 
in the A stop band (the first-order Bragg reflection) in Fig. 
2(a): 

- cosh8 .. =cos(a, +a2)- t82sina, sina2 , 

where 82=(Z .. -Z .. )2/Z .. Z... Because 82«1 [82 
, 2 '2 

=0.0283 for the L phonons in the (100) GaAs/ AlAs superlat-
6 - 6 

tice], coshO .. ::: 1 + t82 or 1 < e .. ::: 1 +(V2/2)8; i.e., e .. is 
close to unity. 


