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Abstract

In recent years, great progress has been made in automaéchspecognition (ASR)
system. The hidden Markov model (HMM) and dynamic time wagpiDTW) are the
two main algorithms which have been widely applied to ASReays Although, HMM
technique achieves higher recognition accuracy in cleeedp environment and noisy
environment. It needs large-set of words and realizes therithm more complexly.
Thus, more and more researchers have focused on DTW-bagedysEem.

Dynamic time warping (DTW) is based on template matchimgyit accomplish time
alignment of reference and test speech features by dynangcgmming. Conventional
DTW is fast and less complexity, however its recognitiorusacy is limited. Therefore,
Conventional DTW has mostly been used for speech recogniticlear environment.
Recently, a DTW with multireferences (mDTW) algorithm hésoabeen developed to
improve the recognition accuracy in comparison to the mddarkov model (HMM)
algorithm under noisy conditions. However the mDTW aldonitincreases the calcu-
lation cost and requires more memory resources which retthecgystem practicability.

It is possible to reconstruct the multireferences. The nethiod should be require
less memory resources and reduce the calculation costefbiney this study proposes
a reconstruction method which add a training part to the Didased ASR system. The
proposed reconstruction of references is aimed at makm@®WV algorithm more ef-

fective. According to the DTW algorithm, the optimal wargipath implies a minimum



error between any two given sequences. The algorithm thaiawe proposed will give
us a way to build a new reference to replace the original twas process will be done
in three stages; First, for each reference word, speechanttes will be divided into
two subsets. Second, for each pair of subsets, the optinfaMgth be computed and
the new reference will replace the pair of subsets. Fingllg,new references will be
input to the DTW-based ASR system to get the recognitionraoyu The feasibility of
the proposed technique was examined using computer siongafl he results demon-
strated the effectiveness of the proposed technique. Thelaion results show that
our approach yields 96.94% accuracy compared with the 97 &ecuracy of mDTW
in 20 dB white noise and 84.4% accuracy compared with 86.4é@esracy of mDTW
in 10 dB white noise. Our approach yields 94.12% accuracypesed with 94.14%
accuracy of mDTW in 20 dB babble noise and 80.82% accuracyeaosa with 81.64%
accuracy of in 10 dB babble noise. Comparing our proposdthtgae to the mDTW,

the calculation cost has been reduced 41.6%.
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Chapter 1

Introduction

1.1 Background

Speech is the primary means of communication between peéplereasons ranging
from technological curiosity about the mechanisms for naaatal realization of human
speech capabilities to the desire to automate simple taslesently requiring human-
machine interactions, research in automatic speech re@smy(and speech synthesis)
by machine has attracted a great deal of attention over thtefipa decades [50]. With
the development of technology, machines can be competemhdoy works instead
of human. Thus, itis our holy grail to make machines undaditeg human'’s speeches
and able to communicate with human by speech recognititmtéogy. The researched
motivation of automatic speech recognition (ASR) is to $farm human’s tongue sig-
nals to texts or commands. It means machines can convedisggeef phonemes, words
or sentences into messages, and then the messages are@doime texts by message
comprehension. In other word, the machine obtains the hismammands and makes
an appropriate response by message comprehension. Asifaeafhsciplinary subject,

the speech recognition is involved with computer, acosspbionetics, signal process-



ing, artificial intelligence, mathematics statistics, gsylogy, etc.

With the developments of computer, acoustic, signal pingsand pattern recog-
nition, Speech recognition has been made great stridesthech is applied widely to
many fields (i.e., industry, military, communication, mealj self-server, office auto-
matic, etc.). In the industry field, speech recognition iplegal to quality control and
checking, acoustic control of numerically controlled &tletc [32, 56, 91]. In the mil-
itary field, speech recognition is applied to flight vehictentrol system, operational
command and training of air traffic control [90]. In commuation field, speech recog-
nition is applied to use voice activation to make some calld an interactive voice
response system that offers automated employee benefimafion on demand [72].
In medical field, speech recognition is applied to speciahsils and other aids for dis-
abled persons [11]. In the consumer electronics field, $pesmognition is applied to
produces of mobile terminal, car autonavigator, domestiot, etc [10,14,17,59, 94].
Moreover, the more applications include information inguticket reservation, audio
retrieval, dictating machine, automatic translation, && an more conveniently and ef-
ficiently man-machine interactive mode, the speech retiogns close to our everyday
lives. It has many significant influence on our lifestyles.

Nowadays, speech recognition can obtain an very exceltgfdmpnance in the ideal
environment of laboratory. However, the performance ofesperecognition drops
rapidly in the noisy environment. The reasons are the veeiari speech in the trans-
mission and distort of speech in surrounding noisy enviremmFurthermore, charac-
teristics are difference from different speakers, i.ee,&pirit, sex, dialog, etc. This
sound spectrum can be significant changed from differerdkgys. Even if the same
speaker’s sound characteristic can be difference undierelifice time or spirit. In ad-

dition, reference data applied to pattern matching may atsoable to cover all the



human sound characteristics. All the factors above areidere as major obstacles for
speech recognition when applying to actual practice. Heheeimportant to improve

the performance of speech recognition in noisy environment

1.2 Classification of speech recognition

(1) Classification according to total number of vocabulary

e Small vocabulary speech recognition: The total number ocbgaized word is

usually between 1 and 100.

e Medium vocabulary speech recognition: The total numbeeobgnized word is

usually between 100 and 1000.

e Large vocabulary speech recognition: The total of numbeoggrized word is

usually more than 1000.

Because the total number of recognized speech is smalke#tert difference of all
words is large. Thus, recognition accuracy for ASR basedwalls/ocabulary is high.
On the contrary, for the large vocabulary, the recognitiocuaacy is low. Because the
feature differences of all words are small. Moreover, ineortb support faster and
higher performance hardware requirement, recognitioe should also be controlled.
However, the classified circumscription is not changel&sg given circumscription is
only a reference number, but the order of quantity is usisaiye.

(2) Classification according to recognized unit

e Word based speech recognition: The word is used as a re@sbpimnetic unit
in speech recognition. All aforehand speeches of the words be preprocessed

to reference patterns or made as the training models. Heheeyord based
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model only recognizes the word, which is exist in the refeegmatterns or training
models. If a new word needs to be recognized, then its referspeeches must
be added into the recognition model beforehand. With theease of recognize
word, the calculation cost and time are increase for redmgnmi However, the

recognition accuracy is high.

e Phoneme based speech recognition: The syllable and phasamed as a rec-
ognized phonetic unit in speech recognition. Firstly, tpeech is recognized
as a sequence of phoneme. Then, all phonemes are combinechéoveords,
phrases or sentences according to rules of syntax of spakgunage. In theory,
all phoneme phonetic units in spoken language are premedds reference pat-
terns or made the training models. Next, the phoneme basstispecognition

system can recognize all words, phrases and sentences.
(3) Classification according to recognized object

e Isolated word speech recognition: The speech recognitistes recognizes the
speech into a word, or a set of speech segments by labelirgtord) which can

be recognized into a set of word.

e Continues speech recognition: The speech recognitioesystcognizes natural
and fluent continues speech into some words, phrases onsesteorrectly. The
continuous speech recognition system is most complex. Menvé is ultimate

object of speech recognition research.
(4) Classification according to difference speaker

e Speech recognition for specific speaker: The speech regmgsiystem only can
recognize specific speaker’s speeches. The system is samgleecognition ac-

curacy is high. However, it is necessary to obtain plentyeténence speeches of

4



the speaker beforehand.

e Speech recognition for unspecific speaker: A few peopl@sddrd speeches are
used to make reference pattern or train the learning modelreter, the sys-
tem can recognize all people’s speeches, and has excefiesdtiity and wide
application. However, such system is difficult to apply tagiice with its low

recognition accuracy.
(5) Others classification

e Speaker recognition system: The processing does not rezeotire word or se-
mantics of speech, but it can recognize the speaker whotsagpeech. Thus, the
system can be used as identification. Some security accesslcgystems apply
the speaker recognition system to identify the visitorsi®irtspeeches, and give

corresponding permissions.

1.3 Motivation

Dynamic time warping (DTW) is a popular automatic speecbgedion (ASR) method

based on template matching [37,81]. DTW can accomplish éilggment of reference
and test speech features by dynamic programming. Convethiidl' W has fast search
and low complexity, but it has poor speech recognition amour Therefore, DTW has
mostly been used for speech recognition in clean speectoamvents [6,42,51,77,99].
Recently, a DTW with multireferences (mDTW) algorithm hésoabeen developed to
improve the recognition accuracy under noisy condition©weler, the mDTW al-

gorithm increases the calculation cost. Therefore, in tiésis, our motivation is to
develop a DTW-based ASR system with training part to redheectlculation cost.

Unlike a conventional DTW or mDTW, we employ an appropriairence utterances

5



to replace the original utterances. We attempt to improgeg#rformance of the DTW-
based speech recognition approach. First, we improve thr¢ tiime energy algorithm.
The new proposed approach is easily represent the smostphrgzerties between ad-
jacent frames, substantially decreases the effect of judsee. The endpoint detection
accuracy is increased. Then, we propose the union of rurspegtrum filter (RSF),
cepstrum mean substraction (CMS), and dynamic range aupmst(DRA) to reduce
noise. The recognition accuracy is better than that of RS#edl as calculation cost is
lower than that of RSF. Last, we propose the DTW with trairpagt is used to recog-
nize. Compare with the mDTW, the recognition accuracy isosirsame. However, the

calculation cost have been reduced significantly.

1.4 Thesis Overview

Chapter 1 the background of automatic speech recogniti@R{systems has been
introduced. Current ASR recognizes ether the small set afilsvand phrases or the
large vocabulary of speech sentences. For each task, bIsU&R has been developed
and improved recently. In this doctor thesis, dynamic tinegping (DTW) has been
explored and modified suitable for an efficient robust speecbgnition system.

Chapter 2 introduces the basic technologies used into ABRspeech features are
extracted by speech analysis methods and they are usedefectspecognition. Nor-
mally speech features are disturbed by various noises argith noise components
should be reduced by using noise robust technologies. Hftdr noise robust speech
features are estimated and used for speech recognitiororAsionly used speech clus-
tering technologies, DTW and hidden Markov model (HMM) héaeen already devel-

oped. In this chapter, the overview of these technologigs baen explained.



Chapter 3 the importance of automatic voice activity désacfVAD) has been dis-
cussed. In particular, under noise circumstances, it has geite difficult to design the
automatic voice activity detection with a speech recognigystem. The basic concept
about VAD and its current techniques have been discusséidsichiapter.

Chapter 4 introduces current noise reduction technolagied into speech process-
ing. Among them, CMS, and RSF/DRA are explained in this abrapt

Chapter 5 introduces conventional DTW methods. Some DTWhoast have been
developed and applied into several real applications. hewdhey have somewhat
weak against speaker independent mechanism and variaesn&ome of issues in the
conventional DTW have been discussed in this chapter.

Chapter 6 has proposed new techniques using DTW, VAD, CMRSBHF/DRA. It
can realizes noise robust mechanism, robust automatic Viahagh speech recognition
accuracy. In addition, the proposed method can reduce thkcticulation cost drasti-
cally compared with other methods whose recognition acgusaalmost the same.

Chapter 7 summaries the above research and give a conctodmghlight the re-

search significance. Finally, we briefly describe some pssiork for future research.



Chapter 2

Fundamentals of speech recognition

2.1 Situation of speech recognition

Fig. 2.1 shows a diagram of an ASR system that comprises resdoit voice activity
detection (VAD), feature extraction, noise reduction, apdech recognition [16, 36,45,
46,53,62,70] The unknown speech waveform is sampled, psecdby these blocks, and
compared with known waveforms to make a recognition degisitve blocks shown in

this figure are discussed below and throughout the paper.

Specch Decision
i Voice
signal Feat : h Result
g—> Activity [ cature Nmsc? N Speec' ‘
Detection Extraction Reduction Recognition )

Figure 2.1. ASR system diagram

2.2 Feature extraction of speech signal

The feature vector is extracted form original speech sighdétont-end processing of

ASR system, which is easy to build model and recognize. Thanpeter of feature



vector is very important to improve the recognition accyrddsually, the differences
of feature among speeches of same word should be as smalssiblpo On the con-
trary, that among differences of feature of different wastisuld be as big as possible.
Moreover, in order to reduce storage space, recognitionarus time, the number of
dimension of feature vector should be as small as possila kpeping the higher
accuracy.

Since 1980s, the cepstrum parameter is widely to ASR. Iuges linear predictive
coefficients (LPCC) [4,5,38,49], Mel-frequency cepstrwefticients (MFCC) [12] and
perceptual linear predictive (PLP) [28,31]. The MFCC is impaspular in ASR, because
the MFCC better expresses the mechanism of human’s ear. 8yzamg the spectrum
of speeches, we can obtain the better accuracy and robustM&hfrequency better
describes the nonlinear relation that human’s ear feel$réagiency of speech signal.

The equation that linear frequency is converted to Mel fezay is

o flinear
fme = 2595l0go(1+ 200 ) (2.1)

where fg is Mel frequency andiineyr is real linear frequency. In Mel frequency do-
main, the perception of hearing is symmetrical for freqyeRor different frequencies,
the speech signal in corresponding critical-band can magdasilar membrane to vi-
brate. When the bandwidth of frequency is more than thecatithand, we can not
perceive the signal. By Zwicker’s research [104], the cleaofycritical-band is same
to that of Mel frequency. Under 1000 Hz, the Mel frequencyngar distribution, and
it is logarithm distribution above 1000 Hz. This is also slnaw Fig. 2.2. So a set of
bandpass filters can be used to imitate hearing, thus, mgitice influence of noisy
circumstance. According to the different critical-bartee frequency of speech signal is
divided into a set of trilateral bandpass filters (Mel filbamks). The weighted sums of

all amplitudes of signals in the same critical-band is a®titput of a trilateral bandpass

9



filter, and then a vector is obtained from all outputs by litGan computation. Finally,

the vector is transformed to MFCC parameter by discretenedsansform (DCT).

3500 T T T T

3000

2500

2000

Mels

1500

1000

500

0 2000 4000 6000 8000 10000
Hertz

Figure 2.2. The relation between Mel frequency and lineaguiency

Fig. 2.3 shows a block diagram of the MFCC processor for dpesmgnition. The

basic steps in the processing include the following:

(1) Preemphasis

The digitized speech signadn), is through a first-order finite impulse response
(FIR) filter, it is put into spectrally flatten signal and mddss susceptible to finite

precision effects later in the signal processing. The fixet-&rder system is

10



Speech Signal

l

Preemphasis

Y

Temporal Derivative

v v

AMFCC, AAMFCC MFCC

Figure 2.3. Block diagram of MFCC processor for speech reitimg

H(z)=1-097z 1 (2.2)
In the case, the output of the preemphasiq), is related to the input to the
network,s(n), by the difference equation
s(n)=s(n)—0.97s(n—1) (2.3)
(2) Windowing

11



The next step in the processing is to window each individizahe. If we define
the window aswv(n), 0 < n < N —1, then the result of Hamming window, which

has the form

w(n) = 0.54— 0.46008( Ijrl"l) (2.4)
sw(n) =/ (Mw(n) (2.5)
sw(n) is the signal after windowing.
(3) Fast Fourier transform (FFT)
sw(n) is transformed to spectrum coefficient by FFT:
N—1 2nkn
SK) = | 3 salme T, 0<k<N-1 (2.6)
n=

(4) Mel fiter-banks

S(k) is filtered with Mel filter-banks and the logarithm enedgym) is obtained.

X (m) = In (Nfs(k)Hm(k)> . 1<m<M 2.7)
m=0

wherem is the number of filterHm(K) is the weighted factor of thet" filter in

the frequencyK andX (m) is the output ofri" filter.

(5) Discrete Fourier transform (DFT)

The MFCC coefficients(l) are obtained with DFT.

m2m+ 1)l
,/ <I<L- :
— o<I<L-1 (2.8)

where L is the total of dimension of MFCC vector.

(6) Temporal derivative

12



the first order difference c(l) and second order differenzen c(l) coefficients

can be obtained in time by the functions:

% oc(l 4+ o)
ae(l) =72 (2.9)
o2
o=—Y
W
Z oc(l+0)
anc(l) =" (2.10)
> o
o=—Y

where® andW¥ are the number of frame that is used to compute the differahce
both front and back. The(l), A c(I) andAA c(l) are spliced to MFCC feature

vector.

2.3 Pattern comparison techniques

A key question of speech recognition is how speech patterosmpared to determine
their similarity. According to the specifics of recognitisgstem, pattern comparison
can be done in a wide variety of ways [9, 64]. Usually the eapgech recognition
system uses the pattern comparison to identify. In theitrgjrall template parame-
ters are extracted from every speech unit by the featurewsequences of training.
In the recognition, the testing speech feature vector ispaoed with the all pattern
parameters. The speech unit is the result, which simil@sityighest. Because of the
speech signals are random, the length of time that the soteentes for one word
are pronounced by the same people are difference. Thusitdrances must be flexed
to same length of time before pattern comparison. Firstlyearchers align the speech

parameters into time with linear flexing method. As all tegtspeech signals are flexed

13



to length of the reference template. However, the utteramoenlinear flexing. The
consonants and the transition segments from consonantel ¥eep the fixed lengths
and their changes are less. But the flexing of vowel segmeatia@e. Thus, the linear
flexing method can not be aligned so accurately and the nssuttsatisfactory. Hence,

the more advanced Pattern comparison techniques are pighpos

2.3.1 Dynamic time warping method

The dynamic programming (DP) can solve the problem of diffiee speaking veloc-
ity. Dynamic time warping (DTW) algorithm was proposed wid by Sakoe [81],
Vintsyuk [86], et al.. The DTW algorithm is nonlinear timegaiment technology that
combines the time alignment with distance computing teldgy The DTW separates
a problem of complex global optimization into some simpleipems of local optimiza-
tion. It calculates step by step and finds out the optimal hiagcpath between the
testing pattern and reference pattern. Fig. 2.4 showsltistrétion of DTW algorithm.
The DTW algorithm overcomes the problem that speaking spe@dnuniform and
improves the performance of ASR system. The recognitionracy of speech recogni-
tion for small vocabulary is very high by DTW. But the DTW algbm is fit to that the
recognition unitis word, prase or the whole sentence. Folatge vocabulary, the DTW

algorithm is difficult to apply, because the calculationtéssarge [6,42,48,66, 77].

2.3.2 Hidden Markov Model method

The hidden Markov model (HMM) [35, 40,54, 67] is that the sgesignal can be well
characterized as a double parametric random processess Gsex to describe the sta-
tistical method of characterizing the spectral propermiethe short-time nonstationary

signal (or instantaneous character of signals), the othesed to describe the process
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Figure 2.4. lllustration of DTW
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how a short-time stationary signal is made the transitionext short-time stationary
signal, as well as dynamic character of the speech signasedBan the double ran-
dom processes, HMM approach can identify the short-tinteosiary speech signals of
difference parameter. It also can follow the process ofsiteon between these speech
signals.

The human’s process of speech also is a double stochastiegs®s. The speech
signal is a observable sequence. It is the parameters saepirat the brain makes it to
phonemes, words or sentences by the grammar and human’s.riiimgs the parameters
sequences is unobservable. Many experiments have showHdMiw approach can
describe the processing of phonation of speech signal weryrately.

All parameters of the HMM are defined as follow.

(1) N is the number of states in the model. although the statesidder for many
practical applications is often some physical significaaiteched to the sates or to sets
of states of the model. The individual states are labeldd & ...,N}, g; is the state at
timet.

(2) M is the number of distinct observation symbols in the peestahe observation
symbols are denoted &= {v1,V2,...,vm}. The observation sequence is denoted as
O=1{01,02,...,07}. T is the size of observation sequence.

(3) The state-transition probability distributidn= {a;;} where
aij=Plgi1=]jlg=i] 1<i<N,I<i<N (2.11)

N
Z ajj=1 (2.12)
&

(4) the observation symbol probability distributiBr= {b;(k)}, in which

bj(k) =Plor=wg=]j] 1<K<M,1<j<N (2.13)
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(5) The initial state distributiom = {75} in which
=Pl =i 1<i<N (2.14)

An HMM can be described with specification of two model partarsN andM,
specification of observation symbols, and the specificatitine three sets of probability

measure#\, B, andr. For convenience, we use the compact notation
A =(AB,mn) (2.15)

With the time is changed, the states can be transferred ¢laeh i is possible to the
same states. Every observation sequence has correspstatggransition probabilities
for different states. Fig. 2.5 shows an HMM with four sta{&, - -- ,S;}. The state-
transition isa;; between all states. Each observation sequen¢esi®,---,0r}. The

observation sequence is MFCC feature vector of speechlsigna

ay a a33 Ay

i ol i

01 02 03 04 O35 ......

or

>

Figure 2.5. The relation between HMM chain and parametespeéch
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2.4 \oice activity detection techniques

In the speech signal processing, the voice activity detedf/AD) technique [2, 34,
55,92, 93] is important. The VAD can distinguish the speesdnsents and nonspeech
segments from the input of digital speech signal, moreavegn determine the start-
point and end-point of speech signal accurately.

In the isolated word speech recognition system and contimgpeech recognition
system, the efficient VAD is important for improving the rgodtion accuracy and re-
ducing the time of processing. In the noise reduction, th®Véalso important. For
example, cepstrum mean subtraction (CMS) [24]. In ordeptofute the mean of en-
ergies of all speech frames, CMS must detect the endpoirsisegfich segment, in order
to reduce the distortion of transmission channel and imptbe robustness of recogni-
tion. Furthermore, when the silent segments are taken dotdfeand, the estimation of
energy of speech is more closer to real speech segments ttedineghe silent segments
are influenced by the noise in silent or nonspeech segmentsedMer, it is good for
creating the silent model and noise model that the nonspssgiments are taken out
from the speech signal. Obviously it can decrease the ¢etledigital data from the
analog speech signal that the starting-point and end-poetietected accurately and
the background noises segment without the speech. Thum) ilecrease the compu-
tation cost and processing time in speech processing sgstenthe variable bit rate
speech coding, the bit rate of silent segments can be reduuder the quality of re-
ceived speech signal is kept the same. In order to decreaseatismitting power and
economize the resources of channel, the mobile terminalllysuses the the variable
bit rate speech coding. If the speech signals are nothinigerchannel, it will reduce
the bit rate. Whereas, it will raise the bit rate.

In the robust speech recognition, the intentions of VAD aeefollows.
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Nonspeech Speech

T et

(a) Nonspeech segment at the start of a word

Speech Nonspeech Speech

(b) Nonspeech segment at the median of a word

Speech Nonspeech

(c) Nonspeech segment at the end of a word

Figure 2.6. The nonspeech segments of a word
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e Detecting the speech frame and background noise from thalsafjspeech frame.
The VAD can affect the performance of ASR. If the speech segiseecognized
to noise, then some important speech data are lost and tbgmniéon accuracy
is decreased. If the noise segment is recognized to spéwmhcalculation cost
and the error probability of comparison with referencegrat will be raised, the

recognition accuracy is also decreased.

e Dividing the sentence. For the continuous speech recogngystem, the sen-
tences are divided into the recognition unit (syllable, méme, word or phrase,
e.g.) by VAD. For the man-machine interactive processirggesy, the system can
respond to user by the every sentence. If the whole senterstected in error,
the response of system may be mistake. If the system knowithefea sentence,

then it do not respond the request.

e Some speech recognition algorithms need estimate thespecharacteristics of
noise. The spectral subtraction (SS), e.g., the the spedharacteristics of noise

is estimated with the detected noise.

e Reducing the calculation cost. The calculation cost is irtgmd to low perfor-
mance hardware, mobil device or embedded system. The VARak@nout the
nonspeech segments and reduce the speech coding, thenRhgyst8m can im-

prove the recognition performance and time.

2.5 Noise reduction technique

In the early researches of speech recognition, the stasgasth databases are recorded

on the quiet circumstances. Thus, the better recogniticaracy can be gotten with
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the recognition system that speeches are trained or createference models on the
quiet circumstances. As the application of speech recognstystem, the recognition
environment is more complexity. Under real noise environtnthe recognition per-
formance is drastic lowering because the feature vect@smcrepant between the
noisy speeches and the reference models, which are creatked the quiet circum-
stances. [20, 44, 76]. Fig. 2.7 shows the waveforms of clgaech with white and
babble noises. Fig. 2.8 shows th& 8imension feature vector of MFCC for the three

waveforms. It shows the feature vectors of speech are sardidtby the noises.

3]

o

2

= ,
£

< Il Il Il

0 5000 10000 14000
Sample index
(a) The waveform of clean speech

) T T T

o

= ,
E

< Il | Il

0 5000 10000 14000
Sample index

(b) The waveform of speech with 10 dB white noise

Amplitude

0 5000 10000 14000
Sample index

(c) The waveform of speech with 10 dB babble noise

Figure 2.7. The waveforms of speech with white and babblsaxoi

The robust noisy speech recognition has been a research ifo¢be last twenty
years, the researches proposed many ways and tried to impimevperformance of
ASR system. But any perfect solution has not been proposesuist ASR system.

The major influences are the follow.
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Clean speech
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Amplitude

|
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Number of frame

Figure 2.8. The dimension feature vector of MFCC of clean speech with 10 d2avh

and babble noises

e The influence of double articulation. The acoustic featurepeech signal is
closely related with the pronounce. The acoustic featufepeech signal may
be made a great deal of different in different contexts, att@rizes some lan-
guage constructions. Moreover, two same utterances magsxghe different

meanings.

e The influence of language complexity. The meaning of a seetenclosely re-
lated with the contexts and cultural background. Furtheemthe structure of
sentence is variation in language grammar. But it is verfycdilt that the infor-

mation of context are applied to ASR.

e The influence of variation of pronunciation for speaker hethd~or the factors of
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age, sentiment, health condition, speaking speed and sb@agcoustic features

are different between utterances of same word.

e The influence of utterances for different speakers. Theantes between differ-

ent speakers are big difference, because their vocal coedfifference.

e The influence of ambient environment. The speech signal eathdtorted easily

by the noise, reverberation, microphone, transmissionmélaand so on.

The noise reduction technique can reduce the noise anatttteareal speech from
the noisy speech. It tries to increase the acoustic feafuabspeech signal possibly,

in order to improve the recognition accuracy of ASR system.
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Chapter 3

Voice Activity Detection

3.1 Introduce

The human’s speech is discontinuous. Thus, the ASR systgmnd® work when

speech is detected. Usually, only the VAD programming rumerder to reduce the
calculation cost of ASR system, when speech signal is ngtHrurthermore, the end-
points of speech are accurately detected is important toawepthe recognition accu-
racy of ASR system. Thus, VAD is a very important techniquabpem, especially in

high ambient noise environments. The accurate endpoiattieh of speech is a simple
problem in the most benign circumstances. In practice, emaare problems usually
make accurate VAD difficult in the noisy background (e.gasfar machinery running).

In nonstationary environments (e.g., the presence of daarss irregular road noise,
car horns) with speech interference (as from TV, radio).eDthctors are that the dis-
tortion introduced by the transmission system when thedpmesent, (e.g., cross-talk,
intermodulation distortion, and various types of tonakrnférence arise to various de-
grees in the communications channel) [41]. Many VAD methioalge been proposed

in speech recognition systems. VAD algorithm typicallyeslon the short-time energy
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and zero-pass ratio [15,92]. The associated techniquetiftesent features of syllables
in the time-domain and are low computational complexitythie chapter, we introduce

these ways of VAD and propose modified VAD algorithm.

3.2 Short-time energy algorithm

Since the speech signal is a nonstationary processing,ahean not been used to pro-
cess speech signal, which is used to process stationamgl sigre produced processing
of speech signal is closely-related with physical workifglmonatory organ. This phys-
ical working is slower than vibrations of sounds. The spesghal in 10~ 30 ms time
can be as a quasi-steady signal (as short-time steady, siatause the parameters of
spectrum and physical characteristics are almost invigi@@n/3]. Thus, a speech signal
can be divided into many short frames and every frame is ateattleg unit. According
to the energies of speech and nonspeech frame, short-tiengydmased VAD approach
can identify endpoints of any speech signal, because thhgyotspeech frame is larger
than that of nonspeech frame [34, 43, 68,82, 92].
The samples of a waveform of input speech signal is defingthals mis the sample
index. The short-time square energy of speech siggga(n) is defined as
foo
Eqr(n)= Y XMaw(m-—n)? (3.1)
m& o
The short-time average amplitultg,g(n) is defined as
too
Eavg(n) = m:ZOO x(m)|ew(m—n) (3.2)

The short-time logarithm enerds(og(m) is defined as
+oo X
Eiog(M) = Y logix(m)ew(m—n)] (3.3)
mM=—o0
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The w(n) is the a window function which is small width in samples, ipresents the
frame sizen. Usually the rectangular, Hamming and Hanning window fioms are

used to speech signal processing. The rectangular windoetifun is defined as

1 0<n<N-1
w(n) = (3.4)
0 other
The Hamming window function is defined as
0.54—0.64c0$2"T) 0<n<N-1
w(n) = { 1) (3.5)
0 other
The Hanning window function is defined as
0.5(1—cog2M)) 0<n<N-1
w(n) = { ( =) (3.6)
0 other

The short-time square ener@y, (n), logarithm energyE 4(n), and average am-
plitude Eag(n) can embody the signal strength, but their characteristeslidference.
To embody the dynamic range of amplitude, thgq is better tharEgy andEog. To
embody the level difference between surd and sonantzheis worse tharEg, and
Eiog- Hence we use the short-time square enéigy and rectangular window function

to detect endpoint in the chapter.

3.3 Zero-crossing rate algorithm

Sometime, aforesaid short-time energy algorithms arecumate for VAD. The human’s
pronunciation include the surd and sonant. The sonant tugexd by the vibration of
the vocal chords. The amplitude of sonant is high and perityds apparently. The surd
is without vibration of the vocal chords, it is produced bg friction, impact or plosive

that the suction of air into the mouth. Thus, the short-timergy is lower than that of
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sonant. It can be identified into nonspeech easily by sime-€nergy method. Fig. 3.2
shows a waveform of word ‘Sapporo’. The amplitude of surdrseqf is lower than that
of sonant segment, and it is almost same to that of nonspegrhent. Hence, they
are very difficult to identify with just our eyes. If the noregech and surd segments are
zoomed, we found the waveform of surd segment goes up and slowuoickly around
zero level value, and the number of crossing zero level vedu@onspeech segment
is fewer. Fig. 3.5 shows the short-time energy and zerosangsrate of frames of a
speech signal. The the number of crossing zero level valndeaised to distinguish
the endpoint of speech signal. The method is described ascressing rate (ZCR)
[3,8,19,52,63,101].

The zero-crossing rate is defined as
foo

ZCRM) =5 |sgnix(m)] - sgnfx(m— 1)] eo(m— n) (3.7)

where thesgn|-] is symbol function, it is defined as
1 x>0

sgn[x] = (3.8)
-1 x<0

The w(n) usually uses the rectangular window function.

3.4 Double thresholds algorithm based on short-time en-
ergy and zero-crossing rate

The double thresholds algorithm sets two thresholds foedpsignal. The starting of
speech signal is detected by the hither threshold, and beeather threshold is used to
accurately detect the real starting point of speech sigrtas. algorithm is described as

follow.
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Firstly, the speech signal is divided into some frames. Tine bf each frame is
about 20- 30 ms. There is 16 20 ms overlaps for adjacent frames. We use the 23
ms (about 256 sample point) for a frame and the part of overigd12 ms (about
128 sample point). The short-time energy of iHeframe is defined a&;(N), the
zero-crossing rate is defined Z€R;(n). Initially, we do not known which frame is
the nonspeech or speech, hence we assume that the incheladiidime part is the
nonspeech segment, there is only even distributed backdroaise in the part. The
threshold of zero-crossing rat&CT, lower threshold of short-time enerdyfL and
higher threshold of short-time energyU of the firstN frames can be calculatebll is

set as 5. The threshold of zero-crossing rate is defined as
1ZCT = mil’l(”:,@—i-zazc) (3.9)

wherel ZC is the average of ZCR of first five frame§zc is the standard deviation of

ZCR,IF is empirical value, usuallif = 25.

I
1ZC= 5 5 ZCR(n) (3.10)
1 N _
Qze =1y (ZCR(n) —1ZC)? (3.11)

The short-time energ¥; (n) of the firstN frames are calculated. The maximum

among short-time energies of all frames is definetMiX, and the minimum is defined

as|MN.
l1 =0.03x (IMX—=IMN) +I1MN
(3.12)
lo =4 xIMN
solTL andITU are defined as
ITL =min(I1,12) (3.13)

28



ITU =5xITL (3.14)

Then, we detect thE;(n) of each frame which is from Nbl + 1 frame. IfE;(n) of
a frame is more thahr L, then the frame number is recordedmsdetecting continues.
If Ei(n) of a frame is lower thanTL, and allE;(n) are less thahTU, which frames
are until current frame, thepy is updated to current frame number. Otherwise,pfie
frame is as the starting of speech signal.

Finally, we forward compare the ZCR of each frame from pieframe, 1fZCR(n)
of continuous three frames are more tHZCT, then thep; is updated to first frame
number of three frames. Otherwise, the starting of speegtakis still theptlh frame.

The method how to detect end of speech signal is same to abaviiomed method.
If we detectE; (n) of a frame is less than th& L, then the frame number is set@s If all
Ei(n) of the latteN frames are also less th&fiL, then we detect all frames from tipé"
frame by the ZCR, until th&CR;(n) < 1ZCT. The last frame whicZCR;(n) < 1ZCT
is the end of speech signal.

Fig. 3.4 shows VAD method with double thresholds algorithesdd on short-time
energy and zero-crossing rate in clear environment. The koé are the detected end-

points with shot-time energy, the dashes lines are the etend-points with ZCR.
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3.5 Modified short-time energy for VAD

The detection accuracy with normally short-time energy a2@@R methods is not so
ideal. By plenty of experiment results, the detection aacyrof normally methods is
about 83%. In Eq. 3.9, theZC + 2, zc for first noisy segment may be zero or a very
close approximation value to zero. Hence, tAET may be zero or a very small value
by Eq. 3.9. If the ZCR values of some latish noisy frames aggédai than that of first
noisy frames, then it can lead to detect mistakenly. Accaydo observe and statistics,
if the short-time energy of unvoiced consonants is very lowhe beginning segment of
speech signal, then the ZCR values of continuous 10 frangegsarally not more than
the 20. It is only in chance cases, a few ZCR values of noispésaare more than 20,

as well as these noisy frames are discontinuous. Thu$ZtE is processed as
I|ZCT = max(1ZCT, 15) (3.15)

For thel TL andITU, thel; andl, are obtained by thEMX andIMN of the firstN
frames. Under the a relatively noise-free environmentatrerage of short-time energy
of the first 10 frames is close to 0. However, in practice,dgl@e many kinds of noise,
the energies of these noises are difference in differer@scabhe differentials between
IMX andIMN may be very big, ever it is several orders of magnitude. FeEf). 3.12,
ITL is closely related téMN. If ITL value of a frame in firsN frames is very small,
then the other that dl — 1 frames are meaningless. It is very easy to recognize the
noise frame from noisy speech by thEL in this case.

Hence,ITL andITU should be dynamic. They are volatile with the average of

energy of firstN frames. ThdTL andl TU are modified as

IMA = Ei(n) (3.16)



ITL = a7 - IMA (3.17)

ITU = - IMA (3.18)

wherea; and a, are empirical value. By many results of experiment, the @&igh
accuracy detection can be obtained wiagm= 0.1 anda, ~ 1.5

Sometimes, pulse-noise strength can be significant in thepeech segment, be-
cause the background noise is uncertainty. These shastdimergies of pulse-noise
frames are very strong, leading to their short-time energre more thahTU. In the
case, the pulse-noise may be recognized to speech. Ingada¢tuman’s utterance is
continuous, the adjacent frames of speech are associaitetnpossible that the undu-
lation of energy of adjacent frames is crazy. The case tlaetiergy is instantaneous
aggrandizement can only be noise.

This problem can render frame energy larger thd, and thus, it may be recog-
nized as speech. To counter this, we propose smoothingahefenergy level during

nonspeech segments using the following first-order reeeiesguation:
Fi(n) =AR_1(n)+ (1-A)Ei(n), (3.19)

whereA € (0,1) is the forgetting factor. The initial conditidfy(n) = 0. Then, iff(n) >
ITU, the update in (3.19) stops and fraims classified as speech data. Conversely, if
Fi(n) < ITU, updating continues.

The F(n) is easily represent the smoothness properties betweeceatjiames,
substantially decreases the effect of pulse-noise.

Fig. 3.6 shows the VAD with modified short-time energy. In.R3g6(e), the dash

dot lines indicate the detected endpoints with normalizeattstime energy method,
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the short dashes lines indicate the detected endpointswatlified short-time energy
method, and the solid lines indicate the detected endpuiitts ZCR after modified
short-time energy. The modified short-time energy methadreduce the influence of
noisy pulse. ZCR can detect the surd segment accurately.

For the end-point detection of speech, the ZCR is not useettxt] and theT L also
is dropped, the onlyTU is used to detected the end-point. The reason is that shuet-t
energy of consonant is weak, and its ZCR is high. On the contiae short-time energy
of vowel is high and its ZCR is low. There are many kinds of pdrae construction (e.g.,
C-V, V-C, C-V-C) in other language grammar (e.g., EnglisHpwever, there are only
two kinds of phoneme construction (C-V and V) in Japanesguage. All of ending of
Japanese phoneme are vowel. Hence, it is no benefit to dieeeht-point with ZCR,
even it is opposite effect. In the ending part of speechgthes usually some terminal
sounds that the short-time energy is very weak. These tatrmaunds are no benefit to
improve the recognition accuracy of ASR system, thus it it the only TU is used

to detected the end-point.
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Chapter 4

Noise Reduction

4.1 Influence of additivity and multiplicative noises

Usually, there are two kinds of noise by interrelation betweingle and noise. One is
additivity noise, the other is multiplicative noise [571002]. Assuming the speech
signal iss(t) and noise signal is(t). If the mixed superimposed waveformsg) +
n(t), then the noise is additivity noise. If the mixed superinggzbsaveform iss(t) ®
n(t), then the noise is multiplicative noise. The additivity s@iand speech signal are
independent with each other. It exists in all the time whethere are speech signal
or not. We can only reduce the influence of additivity noiset dan not eliminate
the additive noise completely. Thus, the additivity noisa effect the speech signal
inevitably. The multiplicative noise is usually causedhwihe unfavorable channel.
It exists with the presence of speech signal. If the speegptakidisappear, then the
multiplicative noise is also disappear.

In the time domain, we assume the interfered speech signatlitivity noise is
X(t)

X(t) = s(t) +n(t) (4.1)
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The x(t) is made Fourier transform, then the corresponding reldasdiellow in the
frequency domain and power spectrum.
X(ELD)[? = [S(t,i) +N(t,i)[?

= ISP +IN(E D2+ 2IS(t, )] IN(, i) cog B(t, 1))

WhereX(-) is spectrum of the mixed superimposed sigi®al) is spectrum of speech

(4.2)

signal,N(+) is spectrum of additivity noisd.is frame indexj is the frequency compo-
nents index of the¢'" frame. O(t,i) is the phase separation between speech signal and
additivity noise on thé" point. If the speech signal and additivity noise are assuased

independent distribution of zero-mean, then
X(t,1)]2 = |S(t,)[>+ [N(t,i)[? (4.3)

If we can extrapolate thiN(t,i)|2, then the additivity noise can be removed in the
frequency componen§(t,i)|? = |X(t,i)|>— [N(t,i)|? , e.g., spectral subtraction (SS)
method. These methods are based on that additivity noisenisidered to approxi-
mately invariable. In fact, it is very difficult to extrapa&éethe power of additivity noise
accurately. After subtracting thél(t,i)|%, a few additivity noise is still left. Further-
more, the distribution of additivity noise is variable, Iaé method is same.

Moreover, we can analyze the frequency spectral byitkigi)|? in the all spectrum
components. The frequency components which is mogt @fi)|? can be filtered with
filter. The method can remove most of noise, but it is also @#ficult to confirm the
frequency of additivity noise. Some additivity noise idl $gift.

It is impossible that the multiplicative noises are remowgith aforementioned two
methods. Because of the multiplicative noise is appeartgaide of speech noise. In
order to remove the multiplicative noise, the interferedesyh noise must be processed.

We assume the interfered speech noise by multiplicativeensi
X(t) = s(t) @ h(t) (4.4)
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Thex(t) is made fast Fourier transform (FFT), then #{g) is transformed as

X (t,i) = S(t,i) - H(t,i) (4.5)

WhereX(-) is spectrum of the mixed superimposed sigi®gl) is spectrum of speech
signal, H(-) is spectrum of multiplicative noisé, is frame index,i is the frequency
components index of th& frame. Eq. (4.5) is made logarithms transformation on both
sides.

log|X(t,i)| =log|S(t,i)| +log|H (h,i)] (4.6)

then, made cepstrum transformation on both sides.
X®P(t,n) = SP(t, n) + HP(t, n) (4.7)

Where X®®P(.) is cepstrum of the mixed superimposed sigr&fP(-) is cepstrum of
speech signaH ®P(-) is cepstrum of additivity noisen is the number of channel. Then,
it is same as the additivity noise, we can extrapolateHF#(t,n), and then the mul-
tiplicative noise can be removed in the frequency compoREfit(t,n) = XP(t,n) —

(1, ).

4.2 Running spectrum filtering algorithm

Running spectrum filtering (RSF) is a noise reduction methatexploits the difference
of temporal variability between the spectra of speech ansengignals to remove the
noise [18,22,24-27,39,47,60,87,103]. Thus, using RSFawve avaluated the different
characteristics of speech and noise signals. In the modnlspectrum, we have found
that the noise spectrum is concentrated in the direct coemd®C). Most of the noise
energy is distributed in the low-frequency band of the matiah spectrum. Fig. 4.1

shows the power spectrum of clean speech in the the modulgiectra. Fig. 4.2 shows
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Freguency (kHz)

Modulation Fregusncy (Hz)

Figure 4.1. Power spectrum of clean speech in the modulafientra

the power spectrum of 5 dB white noise in the the modulati@esp. Fig. 4.3 shows the
power spectrum of mixed waveform with clean speech and 5 diBewiloise in the the
modulation spectra. The black shade means the strengtleagyeim three figures. The
energy of clean speech becomes gradually weak with the ratolulfrequency raising
in Fig. 4.1. Especially, where modulation frequency is albess than 16 Hz, the energy
is particularly strong. This shows that the significant ¢itaent of speech is in the band
[0,16] Hz. Fig. 4.2 shows the noise is distributed on whole specthunthe energy of
noise is stronger than another one in frequency B@riJ Hz. The energy of speech is
strengthened on the whole spectrum, since the noise is addegl 4.3. The additivity
noise on frequency bari@, 1] Hz exerts such tremendous effect on speech signal.
Fig. 4.4 shows logarithm spectrum of clean speech in the tatido spectra. Fig. 4.5

shows logarithm spectrum of mixed waveform with clean sheew 5 dB white noise
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Freguency [kHz)

8 16 24 32 40
Modulation Frequency (Hz)

Figure 4.2. Power spectrum of 5 dB white noise in the modaegpectra

Freguency (kHz)

o 16 24 32 40
Modulation Fregusncy (Hz)

Figure 4.3. Power spectrum of mixed waveform with clean spe@d 5 dB white noise

in the modulation spectra

42



i - p i
Wi g4, 'k e o i WA G i L
¥ i L hoialgd Fw g e oy
; *Lnn.uh” u_ﬁ ; *_.J .-_ ¥ *._ v* \tnh _
1rl i g pay gt vk “- | i
¥ 1,4 [} ol L .
-..ﬁ.._‘ kf b _ _J. ikl h___u...! .m yer
Bl YT My g ) i i T B i
y 4 b L TRl WYL gl ._u_-m.:.ru.u N | gakFigs
..t IR L 1 a-. __r b e
P man W LT e g T g Ay
. L] : | .wh_. el i_uL.L L f-_ uq” .._u» w.‘ g
PR P st i ' ST T
ol il g W HAE SIRIA (P
o Pl g ¥ P el %, 14 y
LERRE 5 ,.t_e R ".E .j ._:_,r.s g 1
R R T8 h T D A Y
44 h u_‘ ¥ Pl pine H._I_I..w”._ (¥ Ag l...#t_ﬂ...u.b i i ol
!n—. . "e. _u* ¢.H_._.. _h_ .._.Eﬂ_ _s __._ f ! ou f
1 ! i | ¥
gy Ll e e Al gt W e i P g
3 - 1 u Y 3 §° e
LAl n.fh # i !‘rul!.‘ g s __._.. iy Flati ¥
g o dburdh’ gl _u:.__ <] .__-. iy, .n.._ﬂ..b.‘ ._..._..J w
i ___ LTI _FV! 4 ._w.t} i m._._. wd_ ol
LR " e B sl g 1T by ‘:w:. HL ¥, 4 -
[ R T s kT b .tr 4+ 4 ey }t._. .ﬂ.. +
ar -y % .ﬂ. P s e | ] _“_._..L (" JEN
-_.r:\_.__. #Ibm’u _..ﬂ!.pr.“rbu _ﬂl # L sl | ki
bt o e !
H o i T 0y
Sl ¥ .1 i b i

[an] Lo |
_HN_I_VG ADUsh =

32 40

24

Modulation Fregusncy (Hz)

Figure 4.4. Logarithm spectrum of clean speech in the mdidulapectra

R T DA e e, i 3
R,
45 g i F
o .m._.-_.ﬁu.- ‘
-5l

(ZHp) Aouernb el

Modulation Frequency (Hz)

Figure 4.5. Logarithm spectrum of mixed waveform with clspeech and 5 dB white
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Figure 4.6. DTW recognition accuracy vs. band for RSF

in the modulation spectra. The distributions of energy &reat same to power spectra.
Especially, where modulation frequency is about less tltaH4, the energy is particu-
larly strong. To speech recognition, the important infatioraof speech is about in the
frequency bandl,16] Hz. The multiplication noise exerts such tremendous infteen
on frequency band of close 0 Hz. Fig. 4.6 shows DTW recogmiticcuracies for dif-
ferent bands filtered by RSF. Th 16] Hz band is important for the speech spectrum.
Recognition accuracy is much higher in baddl2] Hz vs than in band0.5,12] Hz.
The figure shows that most of the noise is located in dany Hz.

Thus, removing low-frequency components with a high-pdss ftan reduce the
noise. On the other hand, the speech spectrum covers a wadeehcy range. There is
a little low energy of noise in the high-frequency band. Efiere, we can use a band-
pass filter to separate speech from noise. The overview ofR&fessing is shown in

Fig. 4.7. The additive noise is reduced in the power specttalze multiplicative noise
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Figure 4.7. Overview of RSF

is reduced in the logarithm spectra by RSF.

RSF is similar to relative spectral (RASTA), which is propdsby Hermansky et
al. [21, 29, 30, 33]. RASTA is that speech signal is filteredaldyand-pass filter in each
frequency channel, according to time tract of speech paeErmBRASTA uses a band-

pass filter with a sharp spectral zero at the zero frequencyttoff slowly changing or

steady-state factors in speech spectrum.

transfer function is

RASTA is usually used to logarithm or power spectra. It alao be applied to
cepstrum or power spectra, which is transformed througlamaing static nonlinear

transformation. RASTA uses an infinite impulse responde)(filter [61, 69, 71]. Its

N-1
N—-1
oS (N
X n=

1-pz1
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Usually, theN =5,G = 0.1, andp = 0.98. Then,

247173 _274

A
H(2) = 012" x —— "o (4.9)
The function of conventional lIR filter is
L
z ka_n
k=0
y(t) = ———X(1) (4.10)
1+ Z az "
k=1

Wherex(t) is input signaly(t) is output signalax andby are coefficients of filter. The

IR filter is also defined ak!"-order difference equation by Eq. (4.10)

M-1 L
yt) = > ax(t—k) — 3 byt—k) (4.11)
k=0 k=1

We known the output value is calculated with current inpud déast output values.
Hence, the effect of steady background noise is still resafter many iterations [13].
In order to cut-off the effect of input signal, the RSF useR Flter instead of IIR fil-

ter [23]. The transfer function of FIR filter is

L
y(t) =3 bz "X(t) (4.12)
K=0

Whereby is coefficients of filter. In order to get the sharp filter, thheer of FIR filter
must be very big. In our system, the order is usually 240. dfdider is big, then the
calculation cost is big. Hence, the calculation time is bige higher order can affect
the performance of ASR system. A high-performance FIR hardwith high order has
been designed for solving the problem in [23,96-98].

Fig. 4.8 shows the comparison of MFCC feature vectoi'd€Bannel between clean
and noisy speech. Fig. 4.9 shows the comparison of MFCCrieaégtors of 8 channel

between clean and noisy speech after RSF.
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Figure 4.8. The comparison of MFCC feature vectorstbtBannel between clean and

noisy speech

Clean speech
L = = = Clean+white 10 dB |/
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Figure 4.9. The comparison of MFCC feature vectorstbtBannel between clean and

noisy speech after RSF
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4.3 CMS algorithm

CMS is a simple method of reducing noise [7,58, 74, 75, 83]it8umoise is uniformly
distributed in a spectrum. After feature extraction, the@@feature vectors are ob-
tained in the cepstral domain. In a long-time range, almbsspeech features are
changed with the progress of time. On the other hand, theitiragiant noise features
in such a range are considered as almost constant. Thedudstraf the time-invariant
features from noisy speech features result in the reductiaroise components. We
assume that a speech waveform is divided insbort frames f; (t) is thet'" component
of theit" frame.

Noise reduction is then executed as Eq. (4.13).

() = fit) — =

= |

h
zlf,-(t) (4.13)
=

Fig. 4.10 shows the comparison of MFCC feature vector'BfcBannel between

clean and noisy speech after CMS.

4.4 Dynamic range adjustment algorithm

Usually, when white noise is added to a speech waveform rabgethe speech wave-
form is more difficult than observing the clean speech. Intaald when RSF or CMS
is applied for noise reduction, the signal amplitude isd¢gfly reduced.

The cepstral mean-variance normalization (CMVN) is preglo® adjust the ampli-

tude [65, 84, 85]. The feature vector of each frame is nozrdlas follows

(1) = MWK (4.14)
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Figure 4.10. The comparison of MFCC feature vector'BicBannel between clean and

noisy speech after CMS

wherep(t) is mean of all frames itf component. It is calculated as follow

1 h
KO =55 10 (4.15)

wherea (t) is the standard deviation of all framestiA component. It is calculated as

follow

h
(1) =\, 3. (1)~ H(D)? 416

Since clean speech is typically used as reference datantpktade difference be-
tween clean and RSF- or CMS-processed noisy speech dateddhe recognition ac-
curacy. The CMVN can normalize the waveform of each dimeradioBut the lengths
of voiceless segment of identical pronunciation in différéme are different. Hence,
the standard deviation are different. Then, the wavefommsede a great deal of differ-

ence for identical pronunciation in different time after @M processing. The shapes
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Amplitude

Clean speech
\/ | = = =Clean+white 10 dB

10 20 30 40 50 60
Number of frames
Figure 4.11. The comparison of MFCC feature vectors'BfcBannel between clean

and noisy speech after RSF and DRA

of waveform are changed to original one.
Dynamic range adjustment (DRA) can be used to compensathidifference

using the following normalization [88, 89, 95].

Py fi(t)
fl(t) = argj:r?%h‘fj(t)‘ (4.17)

DRA makes it possible to obtain similar cepstrum data foauelgpeech and noisy speech

after CMS or RSF. However, The shapes of waveform are kept sammriginal one.
Fig.4.11 shows the comparison of MFCC feature vectofbéBannel between clean

and noisy speech after RSF and DRA. Fig.4.12 shows the cisopasf MFCC feature

vector of 3" channel between clean and noisy speech after CMS and DRA.
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Figure 4.12. The comparison of MFCC feature vectors'BfcBannel between clean

and noisy speech after CMS and DRA

4.5 Proposed noise reduction method

In real environment, the additivity and multiplicative ses are simultaneous. Hence,

the mixed superimposed speech waveform is as follow in tiomeain [1].
X(t) = s(t) @ h(t) +n(t) (4.18)

Wherex(t) is noisy speech signad(t) is speech signah(t) is multiplicative noise, and

n(t) is additivity noise. The Eq. (4.18) is Fourier transformadoth sides. In frequency
and power spectrums, the equation is follow, which is effédty the additivity and

multiplicative noises.

X(t,i) = S(t,i)H(t, 1)+ N(t,i) (4.19)
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X(LD[F = [St,i)H(LD) +N(t,i)?
= |S(t,i)H(t,i) 2+ [N(t,i)[2+ 2Re[S(t,i)H (t,i)N(t,i)] (4.20)
=[S DAHE D+ N D+ 2[S(t1) |[H (5 DIIN(E D) cogB(t, 1))
wheref(t,i) is the phase separation between speech signal and agditdite on the
it" point. Because of the speech and noise can be supposed aalynimdependent
zero-mean distribution, the desired value of last item i® ze Eq. (4.20). Although
instantaneous value of each frame is not zero in this item,othtput value of each
filter unit is equal to weighted sum of energies of all pointseew computing Mel-filter.

Hence, Mel-energy of noisy speech signal is approximatglyakto

whereR(-), Ps(+), Ph(+), andPy(-) are Mel-energy of noisy speech, clean speech, addi-
tivity noise, and multiplicative noise.
In logarithm spectrum, we definet®, S%, N'%9, andH'%9 are as values of vector

for noisy speech, clean speech, additivity noise, and pligétive noise. So
X109 — 909 | {109 | [og(] 4 eN'?-S¥-H")) (4.22)

Similarly, we defined®P, S*P NP andHP are as values of cepstrum feature vector
for noisy speech, clean speech, additivity noise, and plidétive noise in cestrum

spectrum. So
XO8P — SP 4 P | Dlog(| + P (NP —SP—H™)) (4.23)

whereD is discrete cosine transformation (DCT) matrix.
According to Figs. 4.3 and 4.5, the most of energy of additivioise distributes
in lower modulation frequency on power spectrum, espsciaider 1 Hz. The most of

energy of multiplication noise distributes under 1 Hz madioin frequency on logarithm

52



spectrum. But some energies of additivity and multiplicathoises are also distributed
in whole modulation frequency domain. RSF algorithm only &iter most of noise
by band pass filter, but some noises are still remained. I(4£83), theH®*P can be
almost removed by RSF, but the effectdfog(l + P~ (N**~S*~H™) i5 i the whole
modulation frequency domain.

On the other hand, we known the calculation cost of RSF algoris high, since
the high order (240) is used. In Fig. 4.7, the conventiondf Rigorithm is used twice.
One is in power spectrum, the other is in logarithm spectritance, the calculation
time of ASR system with RSF is relatively high.

In order to improve the performance of ASR system, we rembgeRSF for noise
reduction in power spectra. After cepstrum computing, we BRSF with band-pass
filter to reduce the noise. And then, CMS method is used toaethe remanent noise
in whole frequency domain. CMS is simpler than RSF. The datmn cost is far lower

than that of RSF. The flowchart of this method is shown in Fi$34
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Figure 4.13. Overview of union of RSF CMS and DRA method
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Chapter 5

Conventional Dynamic Time Warping

Algorithm

5.1 Introduce

It is well known that speech signals can not be comparedttiiré¢sually the lengths of
time are difference, because human’s speaking rate \@rgére difference and cause
nonlinear fluctuation in a speech pattern time axis, evemeifsame utterances of same
word also are difference in different times. Thus, the tinoemalization or eliminating
the fluctuation is necessary, and it has been one of centifallggns in speech recognition
research. The DTW algorithm is based on dynamic programiid) algorithm and
provides a solution to template matching for different lgrsgof pronunciation [37, 81].

It is a nonlinear warping technique where time series aetddted and compressed to
match the reference speech. DTW aligns two sequences afdéeatctors by warping
the time axis iteratively until an optimal match between tWwe sequences is found.

DTW is an appealing method because it does not require rigaini
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5.2 Dynamic programming algorithm

DP-matching technique is a optimization algorithm [78-80]is a pattern matching
algorithm for nonlinear time-normalization. DP technidguas transform multistage de-
cision process of ASR into many absolute single-stage egsocesses, then it solves
every absolute decision process one by one. DP techniqualicgmtwo speech pat-
terns that are time differences between them. DP warpsitieedkis of one and attains
maximum coincident time-axis with other one. Then, the tmoemalization distance
(Euclidean distance) is calculated as similarity betwéemt

Usually, the speech signal can be expressed as a sequeratuwéfvector by feature
extraction. We assume the sequence of feature vectorsto$dgesch pattern iB =
[P1, P2, Pi, -+, Pi]. Wherep; is the beginning framep, is the end framel is the
number of frames of test speech pattern. The sequence afdeatctors of reference
speech iQ = [d1,0,--,qj, -~ ,01]. Whereq, is the beginning frameq; is the end
frame,J is the number of frames of reference speech pattern PldredQ must use the
same kind of feature vector, length of frame, window funci@md vertical shift.

In order to calculate similarity betwedh and Q, the time-normalization distance
D(P,Q) is used to measure. The time-normalization distance is srogdl, the similar-
ity is more high. TheD(P,Q) is total of distance of every pair of corresponding frames
between two patterns. The frame time-normalization distas defined ad(pj,q;).

If number of frames oP andQ is samd = J, then the time-normalization distance

D(P,Q) can be calculated directly. It is as

|
D(P,Q) = ;d(pi,qi) (5.1)

Otherwise, number of frames & andQ are aligned to same. This linear extension

method can make it. If < J, thenP can be mapped into a sequenceldfames. The
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the time-normalization distand®(P, Q) can be calculated by Eq. (5.1). However, the
method has never considered spoken times of each phonepesatsare variable under
different time or cases. Thus, the number of frame of a ph@nsmariable. Therefore,
the linear extension method is not accurate. The recognitiay not be as good. Most
of researchers use the DP algorithm in ASR field.

In order to describe the matching processing of DP algorithrerconsider a two-
dimension rectangular coordinate system, where frame puwiltest pattern is de-
scribed as x-axis, where frame number of reference paltsrdescribed as y-axis. The
intersection of frame number between them is consideredaashing, the time differ-
ences can be depicted by a sequence of goiaf(i, j). The DP algorithm would find
out a path, which passes some intersections of frame nufberall points in the path
are corresponding frames which are used to calculated mgtdistance between two
patterns. The path is not selected at random. Although pr@ation speed is variable,
but the precedence order of frame in a speech pattern isasiafe. Hence, the se-
lected path must be from upper dexter corner of rectangwardinate system to the
lower sinister corner. Fig. 5.1 shows a selected warpinly patDP algorithm.

In order to describe the warping path, the time differeneg®/ben them can be as a
sequence of points:

C:[CLCZ?“'?CU‘“?CL] (52)
where
¢ = (x(1),y(1) (5.3)

wherex(l) is frame number of test pattern in the patfl,) € [1,---,1], y(I) is frame
number of reference pattern in the pattl,) € [1,---,J]. The sequence of points in path

cab be considered to a function, which try to match Most sinfilames from the time
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Frame number of reference pattern

1 i 1

Frame number of test pattern

Figure 5.1. A warping path by DP algotihm

axis of patterrP onto that of patteriQ. The matching function is defined as

y(h) = o(x(1)) (5.4)

As the measure of the similarity between two feature veatbfsame p; andq;, a

Euclidean distance is defined as
d(c) =d(i,j) =[ pi—qj | (5.5)

Then, the distance of path is summation of all frame distsyexed it is defined as
L
D(C) = Y d(a) (5.6)
=1
Usually, the first point i€; = (1,1), and the last point is_. = (1,J) in path. There

are many pathes from poift, 1) to (1,J). All of matching pathes must satisfy certain
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restriction conditiong). It can obtain its minimum distance value when the matching
function @(-) is determined to optimally warp the time difference betwten patterns.
The minimum distance value can be considered to be sinyilaeitween them. Hence,

the matching distance between test patieand reference patte is defined as

D(P.Q) = min D(C) (5.7)
o(-)en

Usually, the DP algorithm calculates all matching distanceframes and pathes
(e.g. all intersections in Fig. 5.1). Then, selecting thehpehich is minimum distance
value from (1,1) to (I,J) as the matching distance betweem gatterns. Hence, the
calculation cost of DP algorithm is very large. It costs pyeaf time to obtain the
optimal path. In fact, some points are not used by the réistniconditionsn, and the
calculation cost and time can be reduced without these qokiénce, some modified
DP algorithms are proposed and they are called DTW algoritAimo major DTW
algorithms have been used conventionally: the one propbgesiakoe and Chiba in
[81], and the one proposed by Itakula in [37]. These coneeraliDTW algorithms are
showed in Fig. 5.2 and Fig. 5.6. The two DTW algorithms praubdifferent adjustment
windows, warping functiomp(-) and restriction conditiong. The two DTW algorithms

are more efficient than ordinary DP algorithm.

5.3 Sakoe-Chiba proposed DTW algorithm

A nonnegative weighting coefficient is intentionally introduced to measure flexible
characteristic in the Eq. (5.6) by Sakoe and Chiba .Then thigited summation of

distances on the warping functiasg-) is

D(C) = Y dlew(l) 58)



wherew(l) is the weight coefficient of(l). So, the distance between test pattersnd
reference patter@ is defined as

L
S d(c)wi(l)
=1

D(P,Q) =min | = —— (5.9)

ZW(D

=1

Although the Eq. (5.9) is different with Eq. (5.6), but it iscrdance with fundamental
definition of time-normalized distance. The weight coedfitiw(l) is used to compen-
sate the influence of every frame on the warping functgn. Thus, the similarity
between two patterns depends on the warping function anghivedefficient definition
to every pair of frames.

The warping functionp(-) must consider the characteristics of time sequence of
speech signal, and voice versa. For example, the precedeteecan not be changed
after warped sequence, the distance between adjacentsfizamenot be so large and so
on. Essential speech pattern time-axis structures arencayt Monotonicity, limitation
on the acoustic parameter transition speech in a speectteHsome restrictions con-
ditions are very necessary to limit to match the frame by wmarfunction¢(-). These
conditions can be realized as the follow and shown in Fig. 5.2

1) Monotonic conditions:

x(I=1) < x(I)

y(l=1) <vy()

(5.10)

These monotonic conditions express the characteristiimmefsequence of speech
signal, and voice versa. The precedence order can not bgethaiter warped se-

quence.
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2) Continuous conditions:

X —x(1-1)<1

yh)-y(l-1) <1

(5.11)

The continuous conditions express how to choice the adjdcame. By above

two restrictions, we know the pervious adjacent pointiofs one of (x(l),y(l) — 1),

(x(1) = 1,y(1) = 1) and(x(1) — 1,y(1)).

C-1= (x(1) —1,y()—1) (5.12)

3) Boundary conditions:
(5.13)

The boundary conditions define that the beginning point ieshe point; = (1,1)
and the end point is; = (1,J) for all pathes. These also express the characteristics
of time sequence of speech signal. The two endpoints of twtenpa firstly must be
aligned.

4) Adjustment window condition:
x(1) —y()| <r (5.14)

In fact all warping pathes fronil,1) to (I,J) may not cross all points. Thus, the
adjustment windows defines the computation area for warfuingtion. These points
out of adjustment windows are excluded from calculationottmer words, the pathes
which cross the points out of adjustment windows may not ke path. However,

the calculation cost of DTW algorithm can be reduced morehafficiently.
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Figure 5.2. Warping function and adjustment window defomitior Sakoe and Chiba’s

DTW algorithms

How to obtain the optimal path (i.€>(l,J)) by above restrictions conditions? We
consider it with a negative sequence recursive procesgiegknown only three pathes
can pass the poiri, j) by Eq. (5.12). They are shown in Fig. 5.3. Then, these path

distance®(i, j) from (1,1) to (i, j) are

Da(i,j) =d(i,j)+D(i—1,j—1) (5.15)



Thus, the optimal path from,1 toi, j is the path whose distance is minimum among

D1,DandD3. And so on, the path distance of every point can be defineduareswe

formula as
D(i—1,j)
D(i,j)=d(i,j)+min| D(i—-1,j—1) (5.16)
D(i,j—1)

We can obtain the optimal path of every point, which is frdyil) in the adjustment
windows by Eq. (5.16). Until the last poiiit,J), only one path is remained, then the
path is matching optimal path between patterand patterrQ, and the path distance is

similarity between them.

(iJ'.—I) (ij)

(i-1j-1) (i-1,j)

Figure 5.3. Continuous conditions for Sakoe and Chiba’s Dalgérithms

In Eg. (5.9), the path distance is with weighting coefficieAssuming the sum of

all weighting coefficient is defined as
W(C) = Z w(l) (5.17)
then, the time-normalization distance is

— min( 2©)
LR o1
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It is very important how to set the reasonable weightingficieht. It can affect the per-
formance of DTW algorithm. There are two typical weightirgeficients are defined
and shown in Fig. 5.4. They are as follows.

1) Symmetric form

w(l) = (x(I) =x(I = 1)) + (y(I) =y(I = 1)) (5.19)

then

W(C) =1+J (5.20)

2) Asymmetric form

w(l) = { () =x(=1) (5.21)
or y(I)—y(l-1)
|
W(C) = { (5.22)
or J

In the symmetric formP(l,J) = D(J,1). But D(l,J) # D(J,1) in the asymmetric
form. In the asymmetric form, the weighting coefficiemtl ) can reduce to 0 when the
anterior point of(i, j) is the point(i, j — 1), and it is shown in Fig. 5.4(b). In this case,
some feature vectors are possibly excluded the warping pattthe frame weighted
distanced(i, j) - 0= 0. It is obvious that the zero weighting coefficient is unceable
for the veritable path. We would discuss it in late part.

Hence, there are two kinds of optimal path distances un@éesytmmetric and asym-
metric forms.

DTW1: Symmetric Sakoe-Chiba’'s DTW
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(-lj)  wl=1 (i)

=2/

(i-1,j-1) (ij-1)

(a) Symmetric form

Q1) W=l G

=1
" wh=0

)

L
(1j-1) (ij-1)
(b) Asymmetric form

Figure 5.4. Sakoe and Chiba proposed two weighting cosffisie

The first point isc(1) = (1,1), and its preorder point does not exist. The initial
condition is

D(c(1)) = d(c(1))w(1) (5.23)

We assume the implicit poict0) = (0, 0), then the weighting coefficiem(1) =1+1=

2 in symmetric form. So the weighted summation of distanég®mt (1,1) is

D(1,1) = 2d(1,1) (5.24)
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The optimal weighted warping path distance is:
D(i—1,j)+d(,j)
D(@i,j)=min | D(@i—-1,j—1)+2d(, j) (5.25)
D@, j—1)+d(, j)
The restricting condition is
j—r<i<j4r (5.26)
The time-normalized distance of optimal warping path betwsvo patterns is

D(1,J)

D(1,d) = W

(5.27)

whereW (C) =1 +J.

DTW2: Asymmetric Sakoe-Chiba’'s DTW

In a similar way, assuming the implicit poiot0) = (0, 0), then the weighting coef-
ficientw(1) = 1 in asymmetric form. So the weighted summation of distatg®int
(1,1)is

D(1,1) = d(1,1) (5.28)

The weighted optimal distance has been previously disdusserder to avoid the
influence of zero weighting coefficient, we define a new sotutfor it. Assuming there
arek continuous points until the poirt, j) by the j-axis direction (e.g. Fig. 5.5). Then,
the nethermost point i§, j —k+1). We assume its preorder point(i, yp).

We define the weighted summation of distances on the warfatigip

j

D5 =DOGYp) +; Y diiy) (5.29)
y={TKr1

Hence, the optimal weighted warping path distance is
D(i—1,j)+d(,j)
D@, j)=min| D(@i-1,j-1)+d(i,j) (5.30)
D(Xp,Yp) + Z)j/:j—k+1d(i7Y)
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(ij)

' (ij-1)

(ij-k+1)
(XpVp)

Figure 5.5k continuous points until the poitit, j) by the j-axis direction

The restricting condition is

jor<i<j+r (5.31)

The time-normalized distance of optimal warping path betwsvo patterns is

D(1,d) = (5.32)

whereW(C) =1 or J.

5.4 Itakutra proposed DTW algorithm

Another one is Itakura proposed DTW algorithm. It is differevith the Sakoe and
Chiba proposed that. The weighting coefficient never beidensd. The restriction
conditions can be realized as the follow and shown in Fig. 5.6

1) Monotonic conditions:

X(I=1) < x(I)

y(l=1) <y(l)

(5.33)
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i=2i

c=(1])
j=2i+J-21
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Pr

Figure 5.6. Warping function and adjustment window defimtfor Itakura’'s DTW

algorithms

These monotonic conditions express the characteristiimefsequence of speech
signal and voice versa. The precedence order can not beeathaftgr warped sequence.

2) Continuous conditions:

x()—x(1-1)=1 (5.34)

(5.35)

0,12 | -1 )
y<|>—y<|—1>:{ Vi -1) (-2

12 y(l-1)=y(l-2)
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These continuous conditions express how to choice the emljdame. By these

above two restrictions, we know the pervious adjacent pofrg; is one of (x(I) —

Ly(1),(x(1) = Ly(l) = 1) and (x(1) — L, y(l) - 2).

C-1= (x(h) —L,y(1) - 1) (5.36)

3) Boundary conditions:
x(1)=1y(1)=1

X(L)=1,y(L)=J

The boundary conditions define the beginning point must betwe = (1,1) and

(5.37)

the end point ix. = (I,J) for all pathes. These also express the characteristiceef ti
sequence of speech signal. The beginning and end pointegidtterns must be aligned
firstly.

4) Adjustment window condition:

(5.38)

By the continuous conditions Eq. 5.36, we known the slopearfping path is con-
fined between 2 and/2. Thus, the warping function is confined in the parallelogra
area, which is constituted with the four straight lines in E¢8. Those points out of
the area can not been calculated. In extreme casesislaeded 1 then is added 2,the
last point isJ = 2l when the slope is 2. Converselyis added 2 then is added 1, the
last point isJ = 31 when the slope is /2. Hence, the Itakura proposed DTW algorithm

can be realized whejl <J < 2I.
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The Itakura proposed DTW algorithm is described as ‘DTWa3tha thesis. The
calculated processing of optimal path is follow.
DTW3: Itakura’s DTW
The weighting coefficient is not used. The initial condition= (1,1), ¢, = (I,J),
d(c1) =d(1,1). Hence,
D(1,1) =d(1,1) (5.39)
We also consider it with a negative sequence recursive psotg How to calculate

the optimal path? We known only three pathes can pass thé @ojn by Eq. (5.36).

They are shown in Fig. 5.7. Then, these path distab¢éeg) from (1,1) to (i, j) are

D(i—1,j)
D(i,j)=d(i,j)+min| D(i—1,j-1) (5.40)
D(i—1,j—2)

Until the last point(l,J), Only one path is remained, then the path is matching optimal

path between pattefid and patterrQ and its distance is similarity between them.

(i-1j) (i)

(i-1,j-2)

Figure 5.7. Continuous conditions for Itakura’s DTW alglom
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5.5 DTW with multireferences

Conventional DTW is capable of fast search and low complexity, but it has poor speech
recognition accuracy. In order to improve the recognition accuracy in noisy environ-
ments using DTW, a better way is to increase the number of utterances for the same
word.

mDTW [15] has been developed. First, we assume there are M reference words, and
each word has N speech utterances from difference speakers. The distance computed
between the unknown speech waveform andtAetterance of thet" reference word
is denoted aslyy, 1< m< M, 1< n<N. The distances computed between the un-
known speech waveform and all utterances ofriffereference word are collected in
vectordm = [dm1dm - - - A - - .dmN]T. Then, all distances between the unknown speech

waveform and all reference utterances can be represented in matrix form as

d] dh1 cho ... din
D— d-zr _ d271 d272 d27N (5.41)
dh | | dwa dwz o dun |

Sorting the distances for every reference word into ascending order diglds

dn=1| di; dip ... din (5.42)

That is,d;, ; anddy,  are the minimum and maximum distances, respectively.

In contrast, in the mDTW approaches, the recognized word corresponds to

gmjp dms
Figure 5.8 shows the recognition accuracy of the mDTW algorithm for different

numbers of reference utterances for each word. For this implementation, the reference
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Figure 5.8. Recognition accuracy of mDTW

databaseonsistsof 100 isolatedJapanes&ords,andeveryword has10 to 50 wave-
forms spokenby different personsandthe testwordsare 50 isolatedJapanesvords.
Note that althoughaccuracycontinuesto improve with a higher numberof reference
utterancedor eachword, calculationcom-plexity alsoincreasesubstantiallypecause
of theincreasinglylargereferenceadatabaseln thefollowing section,we presenta way
of finding an appropriatereferenceutteranceto replacethe increasingnumber of

utterancesthus reducingthe calculationcost while maintainingthe high recognition

accuracy.

72



Chapter 6

Reconstruct references DTW algorithm

As stated above, the more utterances we used for the same therdhore memory

resources and computing time we need to pay. Therefore,rtidgm becomes how
to find the best reference utterance to replace the large ewaflbeference utterances.
Actually, the DTW algorithm provides the optimal path fording the best reference

template. We give a detailed explanation in the following pa

6.1 One pair of vectors

For simplicity, first, we assume one pair of speech featuretfe same wordP =

[p(1), p(2),---,p(i),---, p(1)] andQ = [a(1),qa(2),---,a(]),--- ,a(J)], as mentioned in
Section 3. Then, by using the DTW algorithm, the optimal gaghweenP andQ is

defined as
Copt = [€1,C2, -+, ,CL] (6.1)

wherec; is a point on the — j plane, the coordinates of which &fiél ), j(1)), with the

value(p(i(l)),a(i(1)))-

The optimal patlC, is the one that minimizes the cumulative error path between
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andQ. In other words, the value of each optimal path point is tloest value between
P andQ. Therefore, let us consider defining a new ve€bto replaceP andQ on the
basis of the optimal path.

First, we consider the optimal path to represent a functiam &approximately real-
izes mapping from the axis of speech featBrento that of speech featu€@ The slope

of every two points in this function is calculated by

i+ —i(h

j+1 =i

whereS is the slope of two points. Actually, there are only threedsirof slope, as

(6.2)

represented in Fig. 6.1.

S =else

Figure 6.1. Types of slope

Then, every two points other than the starting point and emdtpvill be merged
into a new point with the value expressed as

PUO+PI0HL)+a0) if g =

¢(l) =1 Bibai() fs=1 (6.3)

Ri())+ali0)+al0+D) - glse
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The starting point and end point remain the original values.

Finally, we define the new vect@ as a set of centroids calculated using Eq. (19).
C'= [C€I.7C/27"' 7C;\l] (6.4)

Figure 6.2 shows the details of the merging rule.

qa-F-——-—-—-=-=- =

qj

~ —_—
_——— - -

Figure 6.2. Merging rule

6.2 Pairs of vectors

On the basis of the above explanation, we solve the conditiaich there are pairs of

vectors. The proposed method proceeds in the followingsstep

1. We assume there avkreference words, where each word hespeech utterances
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from difference speakers. For each reference wrgheech utterances will be divided
into two subsets.

2. For each pair of subsets, the optimal path will be computed. According to Eq.
(19), the new vector will replace the pair of subsets. The number of speech utterances
will be reduced td\’ = N/2.

3. If we repeat step 2, the number of speech utterances will be further reduced. In
other words, if we repeat stept 2imes (we call it training times), then the number of
speech utterances will be reducedzlltbl.

4. The distances computed between the unknown speech waveform and all utter-

ances of reference woid are collected in a matrix as

df dig dip ... Oy
o d] _ | 1 da2 . dow (6.5)
] di 11 dvi dvz2 ... dun |

5. As in the mDTW algorithm, sort the distances for each reference word. The

recognized word corresponds to
AR s

6. Finally, in the recognition part, the recognition accuracy will be calculated.

Figure 6.3 shows the basic algorithm of three kinds of DTW. The conventional DTW
uses the reference speech compared with the test speech. Its algorithm is simple and
fast, but the recognition accuracy is low. mDTW uséseference speeches compared
with the test speech. Although the algorithm increases the robustness of the reference
speeches and the recognition accuracy is very high, the computation cost is significantly

increased. The proposed method not only reduces the computation cost but maintains a

high recognition accuracy (Case of training once).
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Figure 6.3. Basic algorithms of different DTW methods

6.3 Evaluation measure and results

Conventional recognition systems consist of ordinaryuiesaéxtraction based on MFCC.
The entire recognition system is implemented using MATLABe reference database
consists of 100 isolated Japanese words, and each word Basal@forms spoken by
50 persons. The test words are 50 isolated Japanese woddsaemword has 100 wave-
forms spoken by another 50 persons. MFCC feature vectoextnacted. These vectors
comprise 36 dimensions: 12 cepstral coefficiestk|,i = 1,2,...,12 k : time index),
12 delta cepstral coefficientAg (k) = s (k) —s(k— 1)), and 12 delta-delta cepstral co-
efficients 0\°s (k) = As (k) — As (k— 1)). Other conditions are described in Table 6.1.

In this study, we have two main goals. One is to reduce thaitzlon cost. In the
following part, we will show the calculation costs of mMDTWdiDTW.

To obtain the calculation cost of mMDTW, we must evaluate tieding cost:
C3(A) = MNCp(H;, A) +Cr(A) (6.6)
where(;'r'?i is the total calculation cost of mMDTW is the calculation cost of DTW, and
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Table 6.1. Experimental settings and parameters

Recognition task Isolated 100 words
Speech data 100 Japanese region names
Sampling 11.025 kHz, 16 bits
Window length 23.2 ms (256 samples)
Frame length 11.6 ms (128 samples)
Band of bandpass filter 1-15Hz
Feature vector 36-dimensional MFCC
Noise type white noise and babble noise

Cris the calculation cost of noise reductid¥l.is the total number of target words, and
N is the total number of speeches for each speech word (in gexiexentM is 100 and

N is 100). We defing\ as a feature vector of speech atidas thei!" reference feature
vector.

In the case of tDTW-based ASR, the total calculation cost is

CiP(A) =Cr(Hi,A) + %MNCD(HHA> +Cr(A) (6.7)

WhereC‘{'iD is the total calculation cost of tDTWr is the calculation cost of the training
part, andt is number of training repetitions. We assume training ofyamice, then,

Cr(Hi,A) can be expressed as

Cr(Hi,A) = %MNCD(Hi,A) (6.8)

Since3MNCp (Hi, A) isM timesiNCp (Hi, A), in other wordsCr (Hi, A) < MNCp(Hi, A),

thenC{P(A) ~ 3CIP(A). Apparently, the calculation cost of MDTW has been reduced;
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after training only once, the calculation cost has beenagediby almost 50%.

100%

90%

80% r

70%

60% [

50% [

Calculation cost rate

40%

30%

20%

10% I I I I I I
0

Training time

Figure 6.4. Computing time of proposed DTW

Figure 6.4 shows the practical calculation cost rate. Wael tise Epson Pro7500
computer with the Core(TM) i7-3820 CPU @ 3.6 GHz. Note thabzeaining time
represents the mDTW calculation cost, and all the calanatbst rate were compared
with the mDTW calculation cost. Apparently, after trainiogce, computing time has
been reduced 41.6%. On the other hand, when the numbergoémee words becomes
half, the computing time is significantly reduced.

Our other goal is to maintain a high recognition accuracygufé 6.5 shows the
recognition accuracy of the two DTW algorithms with 10 dB &@ddB white and bab-
ble noise. Our approach yields 96.94% accuracy comparddtiat 97.54% accuracy
of mDTW in 20 dB white noise and 84.4% accuracy compared witd48% accuracy

of mMDTW in 10 dB white noise. Our approach yields 94.12% aacyiicompared with
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Figure 6.5. Recognition accuracy of tDTW algorithms withdBand 20 dB white and

babble noise

94.14% accuracy of mDTW in 20 dB babble noise and 80.82% acguwompared with
81.64% accuracy of in 10 dB babble noise (case of trainingpnc
Furthermore, Fig. 6.6 shows the tDTW recognition accuratgmthe reference

utterances have been trained more than once in 10 dB and 20hitB and babble

noise.
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Figure 6.6. Recognition accuracy of proposed DTW
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this paper we provide an account of the results of this wankthis work we have
proposed a new robust ASR technique that exploits VAD, Amseiction, and DTW-
based processing. We have found that the calculation casDdfW has been reduced
41.6% and recognition accuracy of the proposed method itssita that of the mDTW.

Chapter 3 the importance of automatic voice activity désacfVAD) has been dis-
cussed. In particular, under noise circumstances, it has geite difficult to design the
automatic voice activity detection with a speech recognigystem. The basic concept
about VAD and its current techniques have been discusséidsichiapter.

Chapter 4 introduces current noise reduction technolagied into speech process-
ing. Among them, RASTA, CMS, and RSF/DRA are explained is tthapter.

Chapter 6 has proposed new techniques using DTW, VAD, CMARSH/DRA.
It can realizes noise robust mechanism, robust automati2 &Ad high speech recog-
nition accuracy. In addition, the proposed method can redhe total calculation cost

drastically compared with other methods whose recognécmuracy is almost the same.
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7.2 Future work

Although we proposed method has improved the performan&8Bfsystem with DTW
algorithm, the recognition accuracy is not so high in low SNRe real environment
is complicated and volatile, we must try to improve the regtign accuracy of ASR
system in order to practical application.

The VAD algorithm need to be modified and thus improved aayucd endpoint
detection. Although the modified VAD method with short-tiemergy and ZCR mini-
mizes this effect of noise pulse, our method is limited taeedeendpoint in low SNR.
Hence, we must try to research and explore new technologydier ®o detect endpoint
accurately in low SNR.

Since the number of reference words for the same word degréeesrecognition ac-
curacy also reduced. our future work will attempt to find tlesttcompromises between

accuracy and complexity.
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