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Abstract

In recent years, great progress has been made in automatic speech recognition (ASR)

system. The hidden Markov model (HMM) and dynamic time warping (DTW) are the

two main algorithms which have been widely applied to ASR system. Although, HMM

technique achieves higher recognition accuracy in clear speech environment and noisy

environment. It needs large-set of words and realizes the algorithm more complexly.

Thus, more and more researchers have focused on DTW-based ASR system.

Dynamic time warping (DTW) is based on template matching,itcan accomplish time

alignment of reference and test speech features by dynamic programming. Conventional

DTW is fast and less complexity, however its recognition accuracy is limited. Therefore,

Conventional DTW has mostly been used for speech recognition in clear environment.

Recently, a DTW with multireferences (mDTW) algorithm has also been developed to

improve the recognition accuracy in comparison to the hidden Markov model (HMM)

algorithm under noisy conditions. However the mDTW algorithm increases the calcu-

lation cost and requires more memory resources which reducethe system practicability.

It is possible to reconstruct the multireferences. The new method should be require

less memory resources and reduce the calculation cost. Therefore, this study proposes

a reconstruction method which add a training part to the DTW-based ASR system. The

proposed reconstruction of references is aimed at making the DTW algorithm more ef-

fective. According to the DTW algorithm, the optimal warping path implies a minimum
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error between any two given sequences. The algorithm that wehave proposed will give

us a way to build a new reference to replace the original two. This process will be done

in three stages; First, for each reference word, speech utterances will be divided into

two subsets. Second, for each pair of subsets, the optimal path will be computed and

the new reference will replace the pair of subsets. Finally,the new references will be

input to the DTW-based ASR system to get the recognition accuracy. The feasibility of

the proposed technique was examined using computer simulations. The results demon-

strated the effectiveness of the proposed technique. The simulation results show that

our approach yields 96.94% accuracy compared with the 97.54% accuracy of mDTW

in 20 dB white noise and 84.4% accuracy compared with 86.44% accuracy of mDTW

in 10 dB white noise. Our approach yields 94.12% accuracy compared with 94.14%

accuracy of mDTW in 20 dB babble noise and 80.82% accuracy compared with 81.64%

accuracy of in 10 dB babble noise. Comparing our proposed technique to the mDTW,

the calculation cost has been reduced 41.6%.
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Chapter 1

Introduction

1.1 Background

Speech is the primary means of communication between people. For reasons ranging

from technological curiosity about the mechanisms for mechanical realization of human

speech capabilities to the desire to automate simple tasks inherently requiring human-

machine interactions, research in automatic speech recognition (and speech synthesis)

by machine has attracted a great deal of attention over the past five decades [50]. With

the development of technology, machines can be competent for many works instead

of human. Thus, it is our holy grail to make machines understanding human’s speeches

and able to communicate with human by speech recognition technology. The researched

motivation of automatic speech recognition (ASR) is to transform human’s tongue sig-

nals to texts or commands. It means machines can convert speeches of phonemes, words

or sentences into messages, and then the messages are achieved some texts by message

comprehension. In other word, the machine obtains the human’s commands and makes

an appropriate response by message comprehension. As for aninterdisciplinary subject,

the speech recognition is involved with computer, acoustics, phonetics, signal process-
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ing, artificial intelligence, mathematics statistics, psychology, etc.

With the developments of computer, acoustic, signal processing and pattern recog-

nition, Speech recognition has been made great strides recently. It is applied widely to

many fields (i.e., industry, military, communication, medical, self-server, office auto-

matic, etc.). In the industry field, speech recognition is applied to quality control and

checking, acoustic control of numerically controlled lathe, etc [32, 56, 91]. In the mil-

itary field, speech recognition is applied to flight vehicle control system, operational

command and training of air traffic control [90]. In communication field, speech recog-

nition is applied to use voice activation to make some calls and an interactive voice

response system that offers automated employee benefit information on demand [72].

In medical field, speech recognition is applied to special utensils and other aids for dis-

abled persons [11]. In the consumer electronics field, speech recognition is applied to

produces of mobile terminal, car autonavigator, domestic robot, etc [10, 14, 17, 59, 94].

Moreover, the more applications include information inquiry, ticket reservation, audio

retrieval, dictating machine, automatic translation, etc. As an more conveniently and ef-

ficiently man-machine interactive mode, the speech recognition is close to our everyday

lives. It has many significant influence on our lifestyles.

Nowadays, speech recognition can obtain an very excellent performance in the ideal

environment of laboratory. However, the performance of speech recognition drops

rapidly in the noisy environment. The reasons are the variance of speech in the trans-

mission and distort of speech in surrounding noisy environment. Furthermore, charac-

teristics are difference from different speakers, i.e., age, spirit, sex, dialog, etc. This

sound spectrum can be significant changed from different speakers. Even if the same

speaker’s sound characteristic can be difference under difference time or spirit. In ad-

dition, reference data applied to pattern matching may alsonot able to cover all the

2



human sound characteristics. All the factors above are considered as major obstacles for

speech recognition when applying to actual practice. Hence, it is important to improve

the performance of speech recognition in noisy environment.

1.2 Classification of speech recognition

(1) Classification according to total number of vocabulary

• Small vocabulary speech recognition: The total number of recognized word is

usually between 1 and 100.

• Medium vocabulary speech recognition: The total number of recognized word is

usually between 100 and 1000.

• Large vocabulary speech recognition: The total of number recognized word is

usually more than 1000.

Because the total number of recognized speech is small, the feature difference of all

words is large. Thus, recognition accuracy for ASR based on small vocabulary is high.

On the contrary, for the large vocabulary, the recognition accuracy is low. Because the

feature differences of all words are small. Moreover, in order to support faster and

higher performance hardware requirement, recognition time should also be controlled.

However, the classified circumscription is not changeless.The given circumscription is

only a reference number, but the order of quantity is usuallysame.

(2) Classification according to recognized unit

• Word based speech recognition: The word is used as a recognized phonetic unit

in speech recognition. All aforehand speeches of the words must be preprocessed

to reference patterns or made as the training models. Hence,the word based
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model only recognizes the word, which is exist in the reference patterns or training

models. If a new word needs to be recognized, then its reference speeches must

be added into the recognition model beforehand. With the increase of recognize

word, the calculation cost and time are increase for recognition. However, the

recognition accuracy is high.

• Phoneme based speech recognition: The syllable and phonemeis used as a rec-

ognized phonetic unit in speech recognition. Firstly, the speech is recognized

as a sequence of phoneme. Then, all phonemes are combined to some words,

phrases or sentences according to rules of syntax of spoken language. In theory,

all phoneme phonetic units in spoken language are preprocessed to reference pat-

terns or made the training models. Next, the phoneme based speech recognition

system can recognize all words, phrases and sentences.

(3) Classification according to recognized object

• Isolated word speech recognition: The speech recognition system recognizes the

speech into a word, or a set of speech segments by labeling or halting, which can

be recognized into a set of word.

• Continues speech recognition: The speech recognition system recognizes natural

and fluent continues speech into some words, phrases or sentences correctly. The

continuous speech recognition system is most complex. However, it is ultimate

object of speech recognition research.

(4) Classification according to difference speaker

• Speech recognition for specific speaker: The speech recognition system only can

recognize specific speaker’s speeches. The system is simpleand recognition ac-

curacy is high. However, it is necessary to obtain plenty of reference speeches of

4



the speaker beforehand.

• Speech recognition for unspecific speaker: A few people’s standard speeches are

used to make reference pattern or train the learning model. Moreover, the sys-

tem can recognize all people’s speeches, and has excellent versatility and wide

application. However, such system is difficult to apply to practice with its low

recognition accuracy.

(5) Others classification

• Speaker recognition system: The processing does not recognize the word or se-

mantics of speech, but it can recognize the speaker who said the speech. Thus, the

system can be used as identification. Some security access control systems apply

the speaker recognition system to identify the visitors by their speeches, and give

corresponding permissions.

1.3 Motivation

Dynamic time warping (DTW) is a popular automatic speech recognition (ASR) method

based on template matching [37,81]. DTW can accomplish timealignment of reference

and test speech features by dynamic programming. Conventional DTW has fast search

and low complexity, but it has poor speech recognition accuracy. Therefore, DTW has

mostly been used for speech recognition in clean speech environments [6,42,51,77,99].

Recently, a DTW with multireferences (mDTW) algorithm has also been developed to

improve the recognition accuracy under noisy conditions. However, the mDTW al-

gorithm increases the calculation cost. Therefore, in thisthesis, our motivation is to

develop a DTW-based ASR system with training part to reduce the calculation cost.

Unlike a conventional DTW or mDTW, we employ an appropriate reference utterances
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to replace the original utterances. We attempt to improve the performance of the DTW-

based speech recognition approach. First, we improve the short time energy algorithm.

The new proposed approach is easily represent the smoothness properties between ad-

jacent frames, substantially decreases the effect of pulse-noise. The endpoint detection

accuracy is increased. Then, we propose the union of runningspectrum filter (RSF),

cepstrum mean substraction (CMS), and dynamic range adjustment (DRA) to reduce

noise. The recognition accuracy is better than that of RSF, as well as calculation cost is

lower than that of RSF. Last, we propose the DTW with trainingpart is used to recog-

nize. Compare with the mDTW, the recognition accuracy is almost same. However, the

calculation cost have been reduced significantly.

1.4 Thesis Overview

Chapter 1 the background of automatic speech recognition (ASR) systems has been

introduced. Current ASR recognizes ether the small set of words and phrases or the

large vocabulary of speech sentences. For each task, a suitable ASR has been developed

and improved recently. In this doctor thesis, dynamic time warping (DTW) has been

explored and modified suitable for an efficient robust speechrecognition system.

Chapter 2 introduces the basic technologies used into ASR. The speech features are

extracted by speech analysis methods and they are used for speech recognition. Nor-

mally speech features are disturbed by various noises and thus its noise components

should be reduced by using noise robust technologies. Afterthat, noise robust speech

features are estimated and used for speech recognition. As commonly used speech clus-

tering technologies, DTW and hidden Markov model (HMM) havebeen already devel-

oped. In this chapter, the overview of these technologies have been explained.
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Chapter 3 the importance of automatic voice activity detection (VAD) has been dis-

cussed. In particular, under noise circumstances, it has been quite difficult to design the

automatic voice activity detection with a speech recognition system. The basic concept

about VAD and its current techniques have been discussed in this chapter.

Chapter 4 introduces current noise reduction technologiesused into speech process-

ing. Among them, CMS, and RSF/DRA are explained in this chapter.

Chapter 5 introduces conventional DTW methods. Some DTW methods have been

developed and applied into several real applications. However, they have somewhat

weak against speaker independent mechanism and various noises. Some of issues in the

conventional DTW have been discussed in this chapter.

Chapter 6 has proposed new techniques using DTW, VAD, CMS andRSF/DRA. It

can realizes noise robust mechanism, robust automatic VAD and high speech recognition

accuracy. In addition, the proposed method can reduce the total calculation cost drasti-

cally compared with other methods whose recognition accuracy is almost the same.

Chapter 7 summaries the above research and give a conclusionto highlight the re-

search significance. Finally, we briefly describe some possible work for future research.
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Chapter 2

Fundamentals of speech recognition

2.1 Situation of speech recognition

Fig. 2.1 shows a diagram of an ASR system that comprises modules for voice activity

detection (VAD), feature extraction, noise reduction, andspeech recognition [16,36,45,

46,53,62,70] The unknown speech waveform is sampled, processed by these blocks, and

compared with known waveforms to make a recognition decision. The blocks shown in

this figure are discussed below and throughout the paper.

Feature

Extraction

Voice

Activity

Detection

Speech

signal Noise

Reduction

Speech

Recognition

Decision

Result

Figure 2.1. ASR system diagram

2.2 Feature extraction of speech signal

The feature vector is extracted form original speech signalat front-end processing of

ASR system, which is easy to build model and recognize. The parameter of feature
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vector is very important to improve the recognition accuracy. Usually, the differences

of feature among speeches of same word should be as small as possible. On the con-

trary, that among differences of feature of different wordsshould be as big as possible.

Moreover, in order to reduce storage space, recognition cost and time, the number of

dimension of feature vector should be as small as possible upon keeping the higher

accuracy.

Since 1980s, the cepstrum parameter is widely to ASR. It includes linear predictive

coefficients (LPCC) [4,5,38,49], Mel-frequency cepstrum coefficients (MFCC) [12] and

perceptual linear predictive (PLP) [28,31]. The MFCC is most popular in ASR, because

the MFCC better expresses the mechanism of human’s ear. By analyzing the spectrum

of speeches, we can obtain the better accuracy and robust. The Mel frequency better

describes the nonlinear relation that human’s ear feels thefrequency of speech signal.

The equation that linear frequency is converted to Mel frequency is

fmel = 2595log10(1+
flinear

700
) (2.1)

where fmel is Mel frequency andflinear is real linear frequency. In Mel frequency do-

main, the perception of hearing is symmetrical for frequency. For different frequencies,

the speech signal in corresponding critical-band can make the basilar membrane to vi-

brate. When the bandwidth of frequency is more than the critical-band, we can not

perceive the signal. By Zwicker’s research [104], the change of critical-band is same

to that of Mel frequency. Under 1000 Hz, the Mel frequency is linear distribution, and

it is logarithm distribution above 1000 Hz. This is also shown in Fig. 2.2. So a set of

bandpass filters can be used to imitate hearing, thus, reducing the influence of noisy

circumstance. According to the different critical-band, the frequency of speech signal is

divided into a set of trilateral bandpass filters (Mel filter-banks). The weighted sums of

all amplitudes of signals in the same critical-band is as theoutput of a trilateral bandpass

9



filter, and then a vector is obtained from all outputs by logarithm computation. Finally,

the vector is transformed to MFCC parameter by discrete cosine transform (DCT).

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

Hertz

M
el

s

Figure 2.2. The relation between Mel frequency and linear frequency

Fig. 2.3 shows a block diagram of the MFCC processor for speech recognition. The

basic steps in the processing include the following:

(1) Preemphasis

The digitized speech signal,s(n), is through a first-order finite impulse response

(FIR) filter, it is put into spectrally flatten signal and madeless susceptible to finite

precision effects later in the signal processing. The fixed first-order system is

10



Preemphasis

FFT

Mel Filter-bank

log

DCT

Temporal Derivative

MFCC∆MFCC ∆∆MFCC

Speech Signal

Figure 2.3. Block diagram of MFCC processor for speech recognition

H(z) = 1−0.97z−1 (2.2)

In the case, the output of the preemphasis,s′(n), is related to the input to the

network,s(n), by the difference equation

s′(n) = s(n)−0.97s(n−1) (2.3)

(2) Windowing

11



The next step in the processing is to window each individual frame. If we define

the window asw(n), 06 n 6 N −1, then the result of Hamming window, which

has the form

w(n) = 0.54−0.46cos(
2nπ

N−1
) (2.4)

sw(n) = s′(n)w(n) (2.5)

sw(n) is the signal after windowing.

(3) Fast Fourier transform (FFT)

sw(n) is transformed to spectrum coefficient by FFT:

S(k) =

∣

∣

∣

∣

∣

N−1

∑
n=0

sw(n)e
− j 2πkn

N

∣

∣

∣

∣

∣

, 06 k 6 N −1 (2.6)

(4) Mel fiter-banks

S(k) is filtered with Mel filter-banks and the logarithm energyX(m) is obtained.

X(m) = ln

(

N−1

∑
m=0

S(k)Hm(k)

)

, 16 m 6 M (2.7)

wherem is the number of filter,Hm(k) is the weighted factor of themth filter in

the frequencyK andX(m) is the output ofmth filter.

(5) Discrete Fourier transform (DFT)

The MFCC coefficientsc(l) are obtained with DFT.

c(l) =

√

2
M

M

∑
m=1

X(m)cos
π(2m+1)l

2M
, 06 l 6 L−1 (2.8)

where L is the total of dimension of MFCC vector.

(6) Temporal derivative
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the first order difference△ c(l) and second order difference△△ c(l) coefficients

can be obtained in time by the functions:

△ c(l) =

Φ

∑
σ=−Φ

σc(l+σ)

Ψ

∑
σ=−Ψ

σ2

(2.9)

△△ c(l) =

Ψ

∑
σ=−Ψ

σc(l +σ)

Ψ

∑
σ=−Ψ

σ2

(2.10)

whereΦ andΨ are the number of frame that is used to compute the differenceat

both front and back. Thec(l), △ c(l) and△△ c(l) are spliced to MFCC feature

vector.

2.3 Pattern comparison techniques

A key question of speech recognition is how speech patterns is compared to determine

their similarity. According to the specifics of recognitionsystem, pattern comparison

can be done in a wide variety of ways [9, 64]. Usually the earlyspeech recognition

system uses the pattern comparison to identify. In the training, all template parame-

ters are extracted from every speech unit by the feature vector sequences of training.

In the recognition, the testing speech feature vector is compared with the all pattern

parameters. The speech unit is the result, which similarityis highest. Because of the

speech signals are random, the length of time that the some utterances for one word

are pronounced by the same people are difference. Thus, the utterances must be flexed

to same length of time before pattern comparison. Firstly, researchers align the speech

parameters into time with linear flexing method. As all testing speech signals are flexed

13



to length of the reference template. However, the utteranceis nonlinear flexing. The

consonants and the transition segments from consonant to vowel keep the fixed lengths

and their changes are less. But the flexing of vowel segments are large. Thus, the linear

flexing method can not be aligned so accurately and the resultis unsatisfactory. Hence,

the more advanced Pattern comparison techniques are proposed.

2.3.1 Dynamic time warping method

The dynamic programming (DP) can solve the problem of difference speaking veloc-

ity. Dynamic time warping (DTW) algorithm was proposed withDP by Sakoe [81],

Vintsyuk [86], et al.. The DTW algorithm is nonlinear time alignment technology that

combines the time alignment with distance computing technology. The DTW separates

a problem of complex global optimization into some simple problems of local optimiza-

tion. It calculates step by step and finds out the optimal matching path between the

testing pattern and reference pattern. Fig. 2.4 shows the illustration of DTW algorithm.

The DTW algorithm overcomes the problem that speaking speedis nonuniform and

improves the performance of ASR system. The recognition accuracy of speech recogni-

tion for small vocabulary is very high by DTW. But the DTW algorithm is fit to that the

recognition unit is word, prase or the whole sentence. For the large vocabulary, the DTW

algorithm is difficult to apply, because the calculation cost is large [6,42,48,66,77].

2.3.2 Hidden Markov Model method

The hidden Markov model (HMM) [35, 40, 54, 67] is that the speech signal can be well

characterized as a double parametric random processes. Oneis used to describe the sta-

tistical method of characterizing the spectral propertiesof the short-time nonstationary

signal (or instantaneous character of signals), the other is used to describe the process
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(a) The alignment of measurements by DTW for measuring the distance
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(b) DTW obtains a mapping between the sequences. The black

squares denote the optimum warping path

Figure 2.4. Illustration of DTW
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how a short-time stationary signal is made the transition tonext short-time stationary

signal, as well as dynamic character of the speech signal. Based on the double ran-

dom processes, HMM approach can identify the short-time stationary speech signals of

difference parameter. It also can follow the process of transition between these speech

signals.

The human’s process of speech also is a double stochastic processes. The speech

signal is a observable sequence. It is the parameters sequences that the brain makes it to

phonemes, words or sentences by the grammar and human’s minds. Thus the parameters

sequences is unobservable. Many experiments have shown theHMM approach can

describe the processing of phonation of speech signal very accurately.

All parameters of the HMM are defined as follow.

(1) N is the number of states in the model. although the states are hidden, for many

practical applications is often some physical significanceattached to the sates or to sets

of states of the model. The individual states are labeled as{1,2, . . . ,N}, qi is the state at

time t.

(2) M is the number of distinct observation symbols in the per state. The observation

symbols are denoted asV = {v1,v2, . . . ,vM}. The observation sequence is denoted as

O = {o1,o2, . . . ,oT}. T is the size of observation sequence.

(3) The state-transition probability distributionA = {ai j} where

ai j = P[qi+1 = j|qi = i] 16 i 6 N,16 i 6 N (2.11)

N

∑
j=1

ai j = 1 (2.12)

(4) the observation symbol probability distributionB = {b j(k)}, in which

b j(k) = P[ot = vk|qi = j] 16 K 6 M,16 j 6 N (2.13)
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(5) The initial state distributionπ = {πi} in which

πi = P[q1 = i] 16 i 6 N (2.14)

An HMM can be described with specification of two model parametersN andM,

specification of observation symbols, and the specificationof the three sets of probability

measuresA, B, andπ . For convenience, we use the compact notation

λ = (A,B,π) (2.15)

With the time is changed, the states can be transferred each other, it is possible to the

same states. Every observation sequence has correspondingstate-transition probabilities

for different states. Fig. 2.5 shows an HMM with four states{S1, · · · ,S4}. The state-

transition isai j between all states. Each observation sequence is{o1,o2, · · · ,oT}. The

observation sequence is MFCC feature vector of speech signal.

S1 S2 S3 S4

a11 a22 a33 a44

a12 a23 a34

o1 o2 o3 o4 o5 …... oTt

Figure 2.5. The relation between HMM chain and parameters ofspeech
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2.4 Voice activity detection techniques

In the speech signal processing, the voice activity detection (VAD) technique [2, 34,

55, 92, 93] is important. The VAD can distinguish the speech segments and nonspeech

segments from the input of digital speech signal, moreover,it can determine the start-

point and end-point of speech signal accurately.

In the isolated word speech recognition system and continuous speech recognition

system, the efficient VAD is important for improving the recognition accuracy and re-

ducing the time of processing. In the noise reduction, the VAD is also important. For

example, cepstrum mean subtraction (CMS) [24]. In order to compute the mean of en-

ergies of all speech frames, CMS must detect the endpoints ofspeech segment, in order

to reduce the distortion of transmission channel and improve the robustness of recogni-

tion. Furthermore, when the silent segments are taken out beforehand, the estimation of

energy of speech is more closer to real speech segments rather than the silent segments

are influenced by the noise in silent or nonspeech segments. Moreover, it is good for

creating the silent model and noise model that the nonspeechsegments are taken out

from the speech signal. Obviously it can decrease the collected digital data from the

analog speech signal that the starting-point and end-pointare detected accurately and

the background noises segment without the speech. Thus, it can decrease the compu-

tation cost and processing time in speech processing systems. In the variable bit rate

speech coding, the bit rate of silent segments can be reducedunder the quality of re-

ceived speech signal is kept the same. In order to decrease the transmitting power and

economize the resources of channel, the mobile terminal usually uses the the variable

bit rate speech coding. If the speech signals are nothing in the channel, it will reduce

the bit rate. Whereas, it will raise the bit rate.

In the robust speech recognition, the intentions of VAD are the follows.
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Nonspeech Speech

(a) Nonspeech segment at the start of a word

SpeechSpeech Nonspeech

(b) Nonspeech segment at the median of a word

NonspeechSpeech

(c) Nonspeech segment at the end of a word

Figure 2.6. The nonspeech segments of a word

19



• Detecting the speech frame and background noise from the signal of speech frame.

The VAD can affect the performance of ASR. If the speech segment is recognized

to noise, then some important speech data are lost and the recognition accuracy

is decreased. If the noise segment is recognized to speech, then calculation cost

and the error probability of comparison with reference patterns will be raised, the

recognition accuracy is also decreased.

• Dividing the sentence. For the continuous speech recognition system, the sen-

tences are divided into the recognition unit (syllable, phoneme, word or phrase,

e.g.) by VAD. For the man-machine interactive processing system, the system can

respond to user by the every sentence. If the whole sentence is detected in error,

the response of system may be mistake. If the system know the end of a sentence,

then it do not respond the request.

• Some speech recognition algorithms need estimate the spectrum characteristics of

noise. The spectral subtraction (SS), e.g., the the spectrum characteristics of noise

is estimated with the detected noise.

• Reducing the calculation cost. The calculation cost is important to low perfor-

mance hardware, mobil device or embedded system. The VAD cantake out the

nonspeech segments and reduce the speech coding, then the ASR system can im-

prove the recognition performance and time.

2.5 Noise reduction technique

In the early researches of speech recognition, the standardspeech databases are recorded

on the quiet circumstances. Thus, the better recognition accuracy can be gotten with
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the recognition system that speeches are trained or createdto reference models on the

quiet circumstances. As the application of speech recognition system, the recognition

environment is more complexity. Under real noise environment, the recognition per-

formance is drastic lowering because the feature vectors are discrepant between the

noisy speeches and the reference models, which are created under the quiet circum-

stances. [20, 44, 76]. Fig. 2.7 shows the waveforms of clean speech with white and

babble noises. Fig. 2.8 shows the 3th dimension feature vector of MFCC for the three

waveforms. It shows the feature vectors of speech are so distorted by the noises.
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(a) The waveform of clean speech
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(b) The waveform of speech with 10 dB white noise
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(c) The waveform of speech with 10 dB babble noise

Figure 2.7. The waveforms of speech with white and babble noises

The robust noisy speech recognition has been a research focus in the last twenty

years, the researches proposed many ways and tried to improve the performance of

ASR system. But any perfect solution has not been proposed for robust ASR system.

The major influences are the follow.
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Figure 2.8. The 3th dimension feature vector of MFCC of clean speech with 10 dB white

and babble noises

• The influence of double articulation. The acoustic feature of speech signal is

closely related with the pronounce. The acoustic features of speech signal may

be made a great deal of different in different contexts, characterizes some lan-

guage constructions. Moreover, two same utterances may express the different

meanings.

• The influence of language complexity. The meaning of a sentence is closely re-

lated with the contexts and cultural background. Furthermore, the structure of

sentence is variation in language grammar. But it is very difficult that the infor-

mation of context are applied to ASR.

• The influence of variation of pronunciation for speaker himself. For the factors of
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age, sentiment, health condition, speaking speed and so on,the acoustic features

are different between utterances of same word.

• The influence of utterances for different speakers. The utterances between differ-

ent speakers are big difference, because their vocal cords are difference.

• The influence of ambient environment. The speech signal can be distorted easily

by the noise, reverberation, microphone, transmission channel and so on.

The noise reduction technique can reduce the noise and extract the real speech from

the noisy speech. It tries to increase the acoustic feature of real speech signal possibly,

in order to improve the recognition accuracy of ASR system.

23



Chapter 3

Voice Activity Detection

3.1 Introduce

The human’s speech is discontinuous. Thus, the ASR system begins to work when

speech is detected. Usually, only the VAD programming runs in order to reduce the

calculation cost of ASR system, when speech signal is nothing. Furthermore, the end-

points of speech are accurately detected is important to improve the recognition accu-

racy of ASR system. Thus, VAD is a very important technique problem, especially in

high ambient noise environments. The accurate endpoint detection of speech is a simple

problem in the most benign circumstances. In practice, one or more problems usually

make accurate VAD difficult in the noisy background (e.g., fans or machinery running).

In nonstationary environments (e.g., the presence of door slams, irregular road noise,

car horns) with speech interference (as from TV, radio). Other factors are that the dis-

tortion introduced by the transmission system when the speech is sent, (e.g., cross-talk,

intermodulation distortion, and various types of tonal interference arise to various de-

grees in the communications channel) [41]. Many VAD methodshave been proposed

in speech recognition systems. VAD algorithm typically relies on the short-time energy
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and zero-pass ratio [15,92]. The associated techniques usedifferent features of syllables

in the time-domain and are low computational complexity. Inthe chapter, we introduce

these ways of VAD and propose modified VAD algorithm.

3.2 Short-time energy algorithm

Since the speech signal is a nonstationary processing, the way can not been used to pro-

cess speech signal, which is used to process stationary signal. The produced processing

of speech signal is closely-related with physical working of phonatory organ. This phys-

ical working is slower than vibrations of sounds. The speechsignal in 10∼ 30 ms time

can be as a quasi-steady signal (as short-time steady state), because the parameters of

spectrum and physical characteristics are almost invariant [70,73]. Thus, a speech signal

can be divided into many short frames and every frame is as a detecting unit. According

to the energies of speech and nonspeech frame, short-time energy based VAD approach

can identify endpoints of any speech signal, because the energy of speech frame is larger

than that of nonspeech frame [34,43,68,82,92].

The samples of a waveform of input speech signal is defined asx(m), m is the sample

index. The short-time square energy of speech signalEsqr(n) is defined as

Esqr(n) =
+∞

∑
m=−∞

[x(m)ω(m−n)]2 (3.1)

The short-time average amplitudeEavg(n) is defined as

Eavg(n) =
+∞

∑
m=−∞

|x(m)|ω(m−n) (3.2)

The short-time logarithm energyElog(m) is defined as

Elog(n) =
+∞

∑
m=−∞

log[x(m)ω(m−n)]2 (3.3)
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The ω(n) is the a window function which is small width in samples, it represents the

frame sizen. Usually the rectangular, Hamming and Hanning window functions are

used to speech signal processing. The rectangular window function is defined as

ω(n) =

{

1 06 n 6 N −1

0 other
(3.4)

The Hamming window function is defined as

ω(n) =

{

0.54−0.64cos( 2nπ
N−1) 06 n 6 N −1

0 other
(3.5)

The Hanning window function is defined as

ω(n) =

{

0.5(1−cos( 2nπ
N−1)) 06 n 6 N −1

0 other
(3.6)

The short-time square energyEsqr(n), logarithm energyElog(n), and average am-

plitudeEavg(n) can embody the signal strength, but their characteristics are difference.

To embody the dynamic range of amplitude, theEavg is better thanEsqr andElog. To

embody the level difference between surd and sonant, theEavg is worse thanEsqr and

Elog. Hence we use the short-time square energyEsqr and rectangular window function

to detect endpoint in the chapter.

3.3 Zero-crossing rate algorithm

Sometime, aforesaid short-time energy algorithms are inaccurate for VAD. The human’s

pronunciation include the surd and sonant. The sonant is produced by the vibration of

the vocal chords. The amplitude of sonant is high and periodicity is apparently. The surd

is without vibration of the vocal chords, it is produced by the friction, impact or plosive

that the suction of air into the mouth. Thus, the short-time energy is lower than that of
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sonant. It can be identified into nonspeech easily by short-time energy method. Fig. 3.2

shows a waveform of word ‘Sapporo’. The amplitude of surd segment is lower than that

of sonant segment, and it is almost same to that of nonspeech segment. Hence, they

are very difficult to identify with just our eyes. If the nonspeech and surd segments are

zoomed, we found the waveform of surd segment goes up and downso quickly around

zero level value, and the number of crossing zero level valuefor nonspeech segment

is fewer. Fig. 3.5 shows the short-time energy and zero-crossing rate of frames of a

speech signal. The the number of crossing zero level value can be used to distinguish

the endpoint of speech signal. The method is described as zero-crossing rate (ZCR)

[3,8,19,52,63,101].

The zero-crossing rate is defined as

ZCR(n) =
1
2

+∞

∑
m=−∞

|sgn[x(m)]− sgn[x(m−1)]|ω(m−n) (3.7)

where thesgn[·] is symbol function, it is defined as

sgn[x] =

{

1 x > 0

−1 x < 0
(3.8)

Theω(n) usually uses the rectangular window function.

3.4 Double thresholds algorithm based on short-time en-

ergy and zero-crossing rate

The double thresholds algorithm sets two thresholds for speech signal. The starting of

speech signal is detected by the hither threshold, and then the other threshold is used to

accurately detect the real starting point of speech signal.The algorithm is described as

follow.
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Firstly, the speech signal is divided into some frames. The time of each frame is

about 20−30 ms. There is 10−20 ms overlaps for adjacent frames. We use the 23.2

ms (about 256 sample point) for a frame and the part of overlaps is 11.2 ms (about

128 sample point). The short-time energy of theith frame is defined asEi(N), the

zero-crossing rate is defined asZCRi(n). Initially, we do not known which frame is

the nonspeech or speech, hence we assume that the inchoativeshort-time part is the

nonspeech segment, there is only even distributed background noise in the part. The

threshold of zero-crossing rateIZCT , lower threshold of short-time energyITL and

higher threshold of short-time energyITU of the firstN frames can be calculated.N is

set as 5. The threshold of zero-crossing rate is defined as

IZCT = min(IF, IZC+2ζIZC) (3.9)

whereIZC is the average of ZCR of first five frames,ζIZC is the standard deviation of

ZCR, IF is empirical value, usuallyIF = 25.

IZC =
1
N

N

∑
i=1

ZCRi(n) (3.10)

ζIZC =

√

1
N

N

∑
i=1

(ZCRi(n)− IZC)2 (3.11)

The short-time energyEi(n) of the first N frames are calculated. The maximum

among short-time energies of all frames is defined asIMX , and the minimum is defined

asIMN.

I1 = 0.03× (IMX − IMN)+ IMN

I2 = 4× IMN
(3.12)

soIT L andITU are defined as

IT L = min(I1, I2) (3.13)
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ITU = 5× ITL (3.14)

Then, we detect theEi(n) of each frame which is from NoN +1 frame. IfEi(n) of

a frame is more thanITL, then the frame number is recorded asp1, detecting continues.

If Ei(n) of a frame is lower thanITL, and allEi(n) are less thanITU , which frames

are until current frame, thenp1 is updated to current frame number. Otherwise, thepth
1

frame is as the starting of speech signal.

Finally, we forward compare the ZCR of each frame from thepth
1 frame, IfZCR(n)

of continuous three frames are more thanIZCT , then thep1 is updated to first frame

number of three frames. Otherwise, the starting of speech signal is still thepth
1 frame.

The method how to detect end of speech signal is same to above mentioned method.

If we detectEi(n) of a frame is less than theITL, then the frame number is set asp2. If all

Ei(n) of the latterN frames are also less thanITL, then we detect all frames from thepth
2

frame by the ZCR, until theZCRi(n) < IZCT . The last frame whichZCRi(n) < IZCT

is the end of speech signal.

Fig. 3.4 shows VAD method with double thresholds algorithm based on short-time

energy and zero-crossing rate in clear environment. The solid line are the detected end-

points with shot-time energy, the dashes lines are the detected end-points with ZCR.
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3.5 Modified short-time energy for VAD

The detection accuracy with normally short-time energy andZCR methods is not so

ideal. By plenty of experiment results, the detection accuracy of normally methods is

about 83%. In Eq. 3.9, theIZC+2ζIZC for first noisy segment may be zero or a very

close approximation value to zero. Hence, theIZCT may be zero or a very small value

by Eq. 3.9. If the ZCR values of some latish noisy frames are bigger than that of first

noisy frames, then it can lead to detect mistakenly. According to observe and statistics,

if the short-time energy of unvoiced consonants is very low in the beginning segment of

speech signal, then the ZCR values of continuous 10 frames are usually not more than

the 20. It is only in chance cases, a few ZCR values of noisy frames are more than 20,

as well as these noisy frames are discontinuous. Thus, theIZCT is processed as

IZCT = max(IZCT,15) (3.15)

For theITL andITU , theI1 andI2 are obtained by theIMX andIMN of the firstN

frames. Under the a relatively noise-free environment, theaverage of short-time energy

of the first 10 frames is close to 0. However, in practice, there are many kinds of noise,

the energies of these noises are difference in different cases. The differentials between

IMX andIMN may be very big, ever it is several orders of magnitude. For the Eq. 3.12,

ITL is closely related toIMN. If IT L value of a frame in firstN frames is very small,

then the other that ofN −1 frames are meaningless. It is very easy to recognize the

noise frame from noisy speech by theITL in this case.

Hence,ITL and ITU should be dynamic. They are volatile with the average of

energy of firstN frames. TheITL andITU are modified as

IMA =
1
N

N

∑
i=1

Ei(n) (3.16)
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ITL = α1 · IMA (3.17)

ITU = α2 · IMA (3.18)

whereα1 andα2 are empirical value. By many results of experiment, the higher

accuracy detection can be obtained whenα1 ≈ 0.1 andα2 ≈ 1.5

Sometimes, pulse-noise strength can be significant in the nonspeech segment, be-

cause the background noise is uncertainty. These short-time energies of pulse-noise

frames are very strong, leading to their short-time energies are more thanITU . In the

case, the pulse-noise may be recognized to speech. In practical, human’s utterance is

continuous, the adjacent frames of speech are associated. It is impossible that the undu-

lation of energy of adjacent frames is crazy. The case that the energy is instantaneous

aggrandizement can only be noise.

This problem can render frame energy larger thanITU , and thus, it may be recog-

nized as speech. To counter this, we propose smoothing the frame energy level during

nonspeech segments using the following first-order recursive equation:

Fi(n) = λFi−1(n)+(1−λ )Ei(n), (3.19)

whereλ ∈ (0,1) is the forgetting factor. The initial conditionF0(n)= 0. Then, ifFi(n)>

ITU , the update in (3.19) stops and framei is classified as speech data. Conversely, if

Fi(n)< ITU , updating continues.

The Fi(n) is easily represent the smoothness properties between adjacent frames,

substantially decreases the effect of pulse-noise.

Fig. 3.6 shows the VAD with modified short-time energy. In Fig. 3.6(e), the dash

dot lines indicate the detected endpoints with normalized short-time energy method,
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the short dashes lines indicate the detected endpoints withmodified short-time energy

method, and the solid lines indicate the detected endpointswith ZCR after modified

short-time energy. The modified short-time energy method can reduce the influence of

noisy pulse. ZCR can detect the surd segment accurately.

For the end-point detection of speech, the ZCR is not used to detect, and theITL also

is dropped, the onlyITU is used to detected the end-point. The reason is that short-time

energy of consonant is weak, and its ZCR is high. On the contrary, the short-time energy

of vowel is high and its ZCR is low. There are many kinds of phoneme construction (e.g.,

C-V, V-C, C-V-C) in other language grammar (e.g., English).However, there are only

two kinds of phoneme construction (C-V and V) in Japanese language. All of ending of

Japanese phoneme are vowel. Hence, it is no benefit to detect the end-point with ZCR,

even it is opposite effect. In the ending part of speech, there are usually some terminal

sounds that the short-time energy is very weak. These terminal sounds are no benefit to

improve the recognition accuracy of ASR system, thus it is fitthat the onlyITU is used

to detected the end-point.
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(d) Short-time logarithm energy

Figure 3.1. The short-time square energy, logarithm energyand average energy of a

speech signal
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Figure 3.2. Waveform of word ‘Sapporo’
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Figure 3.3. Short-time energy and zero-crossing rate of frames of a speech signal
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Figure 3.4. VAD with double thresholds algorithm based on short-time energy and ZCR

in clear environment
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Chapter 4

Noise Reduction

4.1 Influence of additivity and multiplicative noises

Usually, there are two kinds of noise by interrelation between single and noise. One is

additivity noise, the other is multiplicative noise [57, 100, 102]. Assuming the speech

signal iss(t) and noise signal isn(t). If the mixed superimposed waveform iss(t)+

n(t), then the noise is additivity noise. If the mixed superimposed waveform iss(t)⊗

n(t), then the noise is multiplicative noise. The additivity noise and speech signal are

independent with each other. It exists in all the time whether there are speech signal

or not. We can only reduce the influence of additivity noise, but can not eliminate

the additive noise completely. Thus, the additivity noise can effect the speech signal

inevitably. The multiplicative noise is usually caused with the unfavorable channel.

It exists with the presence of speech signal. If the speech signal disappear, then the

multiplicative noise is also disappear.

In the time domain, we assume the interfered speech signal byadditivity noise is

x(t)

x(t) = s(t)+n(t) (4.1)
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The x(t) is made Fourier transform, then the corresponding relationis follow in the

frequency domain and power spectrum.

|X(t, i)|2 = |S(t, i)+N(t, i)|2

= |S(t, i)|2+ |N(t, i)|2+2|S(t, i)||N(t, i)|cos(θ(t, i))
(4.2)

WhereX(·) is spectrum of the mixed superimposed signal,S(·) is spectrum of speech

signal,N(·) is spectrum of additivity noise.t is frame index,i is the frequency compo-

nents index of thetth frame. θ(t, i) is the phase separation between speech signal and

additivity noise on theith point. If the speech signal and additivity noise are assumedas

independent distribution of zero-mean, then

|X(t, i)|2 ≈ |S(t, i)|2+ |N(t, i)|2 (4.3)

If we can extrapolate the|N(t, i)|2, then the additivity noise can be removed in the

frequency component|S(t, i)|2 = |X(t, i)|2− |N(t, i)|2 , e.g., spectral subtraction (SS)

method. These methods are based on that additivity noise is considered to approxi-

mately invariable. In fact, it is very difficult to extrapolate the power of additivity noise

accurately. After subtracting the|N(t, i)|2, a few additivity noise is still left. Further-

more, the distribution of additivity noise is variable, butthe method is same.

Moreover, we can analyze the frequency spectral by the|N(t, i)|2 in the all spectrum

components. The frequency components which is most of|N(t, i)|2 can be filtered with

filter. The method can remove most of noise, but it is also verydifficult to confirm the

frequency of additivity noise. Some additivity noise is still left.

It is impossible that the multiplicative noises are removedwith aforementioned two

methods. Because of the multiplicative noise is appeared alongside of speech noise. In

order to remove the multiplicative noise, the interfered speech noise must be processed.

We assume the interfered speech noise by multiplicative noise is

x(t) = s(t)⊗h(t) (4.4)
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Thex(t) is made fast Fourier transform (FFT), then thex(t) is transformed as

X(t, i) = S(t, i) ·H(t, i) (4.5)

WhereX(·) is spectrum of the mixed superimposed signal,S(·) is spectrum of speech

signal, H(·) is spectrum of multiplicative noise,t is frame index,i is the frequency

components index of thetth frame. Eq. (4.5) is made logarithms transformation on both

sides.

log|X(t, i)|= log|S(t, i)|+ log|H(h, i)| (4.6)

then, made cepstrum transformation on both sides.

X cep(t,n) = Scep(t,n)+Hcep(t,n) (4.7)

WhereX cep(·) is cepstrum of the mixed superimposed signal,Scep(·) is cepstrum of

speech signal,Hcep(·) is cepstrum of additivity noise.n is the number of channel. Then,

it is same as the additivity noise, we can extrapolate theHcep(t,n), and then the mul-

tiplicative noise can be removed in the frequency componentHcep(t,n) = X cep(t,n)−

Scep(t,n).

4.2 Running spectrum filtering algorithm

Running spectrum filtering (RSF) is a noise reduction methodthat exploits the difference

of temporal variability between the spectra of speech and noise signals to remove the

noise [18,22,24–27,39,47,60,87,103]. Thus, using RSF we have evaluated the different

characteristics of speech and noise signals. In the modulation spectrum, we have found

that the noise spectrum is concentrated in the direct component (DC). Most of the noise

energy is distributed in the low-frequency band of the modulation spectrum. Fig. 4.1

shows the power spectrum of clean speech in the the modulation spectra. Fig. 4.2 shows
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Figure 4.1. Power spectrum of clean speech in the modulationspectra

the power spectrum of 5 dB white noise in the the modulation spectra. Fig. 4.3 shows the

power spectrum of mixed waveform with clean speech and 5 dB white noise in the the

modulation spectra. The black shade means the strength of energy in three figures. The

energy of clean speech becomes gradually weak with the modulation frequency raising

in Fig. 4.1. Especially, where modulation frequency is about less than 16 Hz, the energy

is particularly strong. This shows that the significant constituent of speech is in the band

[0,16] Hz. Fig. 4.2 shows the noise is distributed on whole spectrum, but the energy of

noise is stronger than another one in frequency band[0,1] Hz. The energy of speech is

strengthened on the whole spectrum, since the noise is addedin Fig. 4.3. The additivity

noise on frequency band[0,1] Hz exerts such tremendous effect on speech signal.

Fig. 4.4 shows logarithm spectrum of clean speech in the modulation spectra. Fig. 4.5

shows logarithm spectrum of mixed waveform with clean speech and 5 dB white noise

41



Figure 4.2. Power spectrum of 5 dB white noise in the modulation spectra

Figure 4.3. Power spectrum of mixed waveform with clean speech and 5 dB white noise

in the modulation spectra
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Figure 4.4. Logarithm spectrum of clean speech in the modulation spectra

Figure 4.5. Logarithm spectrum of mixed waveform with cleanspeech and 5 dB white

noise in the modulation spectra
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Figure 4.6. DTW recognition accuracy vs. band for RSF

in the modulation spectra. The distributions of energy are almost same to power spectra.

Especially, where modulation frequency is about less than 16 Hz, the energy is particu-

larly strong. To speech recognition, the important information of speech is about in the

frequency band[1,16] Hz. The multiplication noise exerts such tremendous influence

on frequency band of close 0 Hz. Fig. 4.6 shows DTW recognition accuracies for dif-

ferent bands filtered by RSF. The[1,16] Hz band is important for the speech spectrum.

Recognition accuracy is much higher in band[1,12] Hz vs than in band[0.5,12] Hz.

The figure shows that most of the noise is located in band[0,1] Hz.

Thus, removing low-frequency components with a high-pass filter can reduce the

noise. On the other hand, the speech spectrum covers a wider frequency range. There is

a little low energy of noise in the high-frequency band. Therefore, we can use a band-

pass filter to separate speech from noise. The overview of RSFprocessing is shown in

Fig. 4.7. The additive noise is reduced in the power spectra and the multiplicative noise
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is reduced in the logarithm spectra by RSF.

RSF is similar to relative spectral (RASTA), which is proposed by Hermansky et

al. [21, 29, 30, 33]. RASTA is that speech signal is filtered bya band-pass filter in each

frequency channel, according to time tract of speech parameter. RASTA uses a band-

pass filter with a sharp spectral zero at the zero frequency tocut-off slowly changing or

steady-state factors in speech spectrum.

RASTA is usually used to logarithm or power spectra. It also can be applied to

cepstrum or power spectra, which is transformed through expanding static nonlinear

transformation. RASTA uses an infinite impulse response (IIR) filter [61, 69, 71]. Its

transfer function is

H(z) = G×

zN−1
N−1

∑
n=0

(

N −1
2

−n

)

z−n

1−ρz−1 (4.8)
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Usually, theN = 5, G = 0.1, andρ = 0.98. Then,

H(z) = 0.1z4×
2+ z−1− z−3−2z−4

1−0.98z−1 (4.9)

The function of conventional IIR filter is

y(t) =

L

∑
k=0

bkz−n

1+
M

∑
k=1

akz−n

x(t) (4.10)

Wherex(t) is input signal,y(t) is output signal,ak andbk are coefficients of filter. The

IIR filter is also defined asLth-order difference equation by Eq. (4.10)

y(t) =
M−1

∑
k=0

akx(t − k)−
L

∑
k=1

bky(t − k) (4.11)

We known the output value is calculated with current input and last output values.

Hence, the effect of steady background noise is still residue after many iterations [13].

In order to cut-off the effect of input signal, the RSF uses FIR filter instead of IIR fil-

ter [23]. The transfer function of FIR filter is

y(t) =
L

∑
k=0

bkz−nx(t) (4.12)

Wherebk is coefficients of filter. In order to get the sharp filter, the order of FIR filter

must be very big. In our system, the order is usually 240. If the order is big, then the

calculation cost is big. Hence, the calculation time is big.The higher order can affect

the performance of ASR system. A high-performance FIR hardware with high order has

been designed for solving the problem in [23,96–98].

Fig. 4.8 shows the comparison of MFCC feature vector of 3th channel between clean

and noisy speech. Fig. 4.9 shows the comparison of MFCC feature vectors of 3th channel

between clean and noisy speech after RSF.
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Figure 4.8. The comparison of MFCC feature vectors of 3th channel between clean and

noisy speech
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Figure 4.9. The comparison of MFCC feature vectors of 3th channel between clean and

noisy speech after RSF
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4.3 CMS algorithm

CMS is a simple method of reducing noise [7, 58, 74, 75, 83]. White noise is uniformly

distributed in a spectrum. After feature extraction, the MFCC feature vectors are ob-

tained in the cepstral domain. In a long-time range, almost all speech features are

changed with the progress of time. On the other hand, the time-invariant noise features

in such a range are considered as almost constant. The subtraction of the time-invariant

features from noisy speech features result in the reductionof noise components. We

assume that a speech waveform is divided intoh short frames.fi(t) is thetth component

of theith frame.

Noise reduction is then executed as Eq. (4.13).

f ′i (t) = fi(t)−
1
h

h

∑
j=1

f j(t) (4.13)

Fig. 4.10 shows the comparison of MFCC feature vector of 3th channel between

clean and noisy speech after CMS.

4.4 Dynamic range adjustment algorithm

Usually, when white noise is added to a speech waveform, observing the speech wave-

form is more difficult than observing the clean speech. In addition, when RSF or CMS

is applied for noise reduction, the signal amplitude is typically reduced.

The cepstral mean-variance normalization (CMVN) is proposed to adjust the ampli-

tude [65,84,85]. The feature vector of each frame is normalized as follows

f ′i (t) =
fi(t)−µ(t)

σ(t)
(4.14)
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Figure 4.10. The comparison of MFCC feature vector of 3th channel between clean and

noisy speech after CMS

whereµ(t) is mean of all frames intth component. It is calculated as follow

µ(t) =
1
h

h

∑
i=1

fi(t) (4.15)

whereσ(t) is the standard deviation of all frames intth component. It is calculated as

follow

σ(t) =

√

√

√

√

1
h

h

∑
i=1

( fi(t)−µ(t))2 (4.16)

Since clean speech is typically used as reference data, the amplitude difference be-

tween clean and RSF- or CMS-processed noisy speech deteriorates the recognition ac-

curacy. The CMVN can normalize the waveform of each dimensional. But the lengths

of voiceless segment of identical pronunciation in different time are different. Hence,

the standard deviation are different. Then, the waveforms are made a great deal of differ-

ence for identical pronunciation in different time after CMVN processing. The shapes
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Figure 4.11. The comparison of MFCC feature vectors of 3th channel between clean

and noisy speech after RSF and DRA

of waveform are changed to original one.

Dynamic range adjustment (DRA) can be used to compensate forthis difference

using the following normalization [88,89,95].

f ′i (t) =
fi(t)

arg max
j=1,··· ,h

| f j(t)|
(4.17)

DRA makes it possible to obtain similar cepstrum data for clean speech and noisy speech

after CMS or RSF. However, The shapes of waveform are kept same to original one.

Fig.4.11 shows the comparison of MFCC feature vector of 3th channel between clean

and noisy speech after RSF and DRA. Fig.4.12 shows the comparison of MFCC feature

vector of 3th channel between clean and noisy speech after CMS and DRA.
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Figure 4.12. The comparison of MFCC feature vectors of 3th channel between clean

and noisy speech after CMS and DRA

4.5 Proposed noise reduction method

In real environment, the additivity and multiplicative noises are simultaneous. Hence,

the mixed superimposed speech waveform is as follow in time domain [1].

x(t) = s(t)⊗h(t)+n(t) (4.18)

Wherex(t) is noisy speech signal,s(t) is speech signal,h(t) is multiplicative noise, and

n(t) is additivity noise. The Eq. (4.18) is Fourier transformed on both sides. In frequency

and power spectrums, the equation is follow, which is effected by the additivity and

multiplicative noises.

X(t, i) = S(t, i)H(t, i)+N(t, i) (4.19)
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|X(t, i)|2 = |S(t, i)H(t, i)+N(t, i)|2

= |S(t, i)H(t, i)|2+ |N(t, i)|2+2Re[S(t, i)H(t, i)N(t, i)]

= |S(t, i)|2|H(t, i)|2+ |N(t, i)|2+2|S(t, i)||H(t, i)||N(t, i)|cos(θ(t, i))

(4.20)

whereθ(t, i) is the phase separation between speech signal and additivity noise on the

ith point. Because of the speech and noise can be supposed as mutually independent

zero-mean distribution, the desired value of last item is zero in Eq. (4.20). Although

instantaneous value of each frame is not zero in this item, the output value of each

filter unit is equal to weighted sum of energies of all points when computing Mel-filter.

Hence, Mel-energy of noisy speech signal is approximately equal to

Px(t, i)≈ Ps(t, i)Ph(t, i)+Pn(t, i) (4.21)

wherePx(·), Ps(·), Ph(·), andPn(·) are Mel-energy of noisy speech, clean speech, addi-

tivity noise, and multiplicative noise.

In logarithm spectrum, we definedX log, Slog, Nlog, andH log are as values of vector

for noisy speech, clean speech, additivity noise, and multiplicative noise. So

X log = Slog +H log + log(I + e(N
log−Slog−H log)) (4.22)

Similarly, we definedX cep, Scep, Ncep, andHcep are as values of cepstrum feature vector

for noisy speech, clean speech, additivity noise, and multiplicative noise in cestrum

spectrum. So

X cep = Scep +Hcep +D log(I + eD−1(Ncep−Scep−Hcep)) (4.23)

whereD is discrete cosine transformation (DCT) matrix.

According to Figs. 4.3 and 4.5, the most of energy of additivity noise distributes

in lower modulation frequency on power spectrum, especially under 1 Hz. The most of

energy of multiplication noise distributes under 1 Hz modulation frequency on logarithm
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spectrum. But some energies of additivity and multiplication noises are also distributed

in whole modulation frequency domain. RSF algorithm only can filter most of noise

by band pass filter, but some noises are still remained. In Eq.(4.23), theHcep can be

almost removed by RSF, but the effect ofD log(I + eD−1(Ncep−Scep−Hcep) is in the whole

modulation frequency domain.

On the other hand, we known the calculation cost of RSF algorithm is high, since

the high order (240) is used. In Fig. 4.7, the conventional RSF algorithm is used twice.

One is in power spectrum, the other is in logarithm spectrum.Hence, the calculation

time of ASR system with RSF is relatively high.

In order to improve the performance of ASR system, we remove the RSF for noise

reduction in power spectra. After cepstrum computing, we use RSF with band-pass

filter to reduce the noise. And then, CMS method is used to reduce the remanent noise

in whole frequency domain. CMS is simpler than RSF. The calculation cost is far lower

than that of RSF. The flowchart of this method is shown in Fig. 4.13.
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Chapter 5

Conventional Dynamic Time Warping

Algorithm

5.1 Introduce

It is well known that speech signals can not be compared directly. Usually the lengths of

time are difference, because human’s speaking rate variations are difference and cause

nonlinear fluctuation in a speech pattern time axis, even if the same utterances of same

word also are difference in different times. Thus, the time-normalization or eliminating

the fluctuation is necessary, and it has been one of central problems in speech recognition

research. The DTW algorithm is based on dynamic programming(DP) algorithm and

provides a solution to template matching for different lengths of pronunciation [37,81].

It is a nonlinear warping technique where time series are stretched and compressed to

match the reference speech. DTW aligns two sequences of feature vectors by warping

the time axis iteratively until an optimal match between thetwo sequences is found.

DTW is an appealing method because it does not require training.
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5.2 Dynamic programming algorithm

DP-matching technique is a optimization algorithm [78–80]. It is a pattern matching

algorithm for nonlinear time-normalization. DP techniquecan transform multistage de-

cision process of ASR into many absolute single-stage decision processes, then it solves

every absolute decision process one by one. DP technique canalign two speech pat-

terns that are time differences between them. DP warps the time axis of one and attains

maximum coincident time-axis with other one. Then, the time-normalization distance

(Euclidean distance) is calculated as similarity between them.

Usually, the speech signal can be expressed as a sequence of feature vector by feature

extraction. We assume the sequence of feature vectors of test speech pattern isP =

[p1, p2, · · · , pi, · · · , pI]. Wherep1 is the beginning frame,pI is the end frame,I is the

number of frames of test speech pattern. The sequence of feature vectors of reference

speech isQ = [q1,q2, · · · ,q j, · · · ,qJ]. Whereq1 is the beginning frame,qJ is the end

frame,J is the number of frames of reference speech pattern. TheP andQ must use the

same kind of feature vector, length of frame, window function and vertical shift.

In order to calculate similarity betweenP andQ, the time-normalization distance

D(P,Q) is used to measure. The time-normalization distance is moresmall, the similar-

ity is more high. TheD(P,Q) is total of distance of every pair of corresponding frames

between two patterns. The frame time-normalization distance is defined asd(pi,q j).

If number of frames ofP andQ is sameI = J, then the time-normalization distance

D(P,Q) can be calculated directly. It is as

D(P,Q) =
I

∑
i=1

d(pi,qi) (5.1)

Otherwise, number of frames ofP andQ are aligned to same. This linear extension

method can make it. IfI < J, thenP can be mapped into a sequence ofJ frames. The
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the time-normalization distanceD(P,Q) can be calculated by Eq. (5.1). However, the

method has never considered spoken times of each phoneme of speech are variable under

different time or cases. Thus, the number of frame of a phoneme is variable. Therefore,

the linear extension method is not accurate. The recognition may not be as good. Most

of researchers use the DP algorithm in ASR field.

In order to describe the matching processing of DP algorithm, we consider a two-

dimension rectangular coordinate system, where frame number of test patternI is de-

scribed as x-axis, where frame number of reference patternJ is described as y-axis. The

intersection of frame number between them is considered as matching, the time differ-

ences can be depicted by a sequence of pointc = (i, j). The DP algorithm would find

out a path, which passes some intersections of frame number.The all points in the path

are corresponding frames which are used to calculated matching distance between two

patterns. The path is not selected at random. Although pronunciation speed is variable,

but the precedence order of frame in a speech pattern is is invariable. Hence, the se-

lected path must be from upper dexter corner of rectangular coordinate system to the

lower sinister corner. Fig. 5.1 shows a selected warping path by DP algorithm.

In order to describe the warping path, the time differences between them can be as a

sequence of points:

C = [c1,c2, · · · ,cl, · · · ,cL] (5.2)

where

cl = (x(l),y(l)) (5.3)

wherex(l) is frame number of test pattern in the path,x(l) ∈ [1, · · · , I], y(l) is frame

number of reference pattern in the path,y(l) ∈ [1, · · · ,J]. The sequence of points in path

cab be considered to a function, which try to match Most similar frames from the time
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Figure 5.1. A warping path by DP algotihm

axis of patternP onto that of patternQ. The matching function is defined as

y(l) = φ(x(l)) (5.4)

As the measure of the similarity between two feature vectorsof frame pi andq j, a

Euclidean distance is defined as

d(c) = d(i, j) =‖ pi −q j ‖ (5.5)

Then, the distance of path is summation of all frame distances, and it is defined as

D(C) =
L

∑
l=1

d(cl) (5.6)

Usually, the first point isc1 = (1,1), and the last point iscL = (I,J) in path. There

are many pathes from point(1,1) to (I,J). All of matching pathes must satisfy certain
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restriction conditionsη. It can obtain its minimum distance value when the matching

functionφ(·) is determined to optimally warp the time difference betweentwo patterns.

The minimum distance value can be considered to be similarity between them. Hence,

the matching distance between test patternP and reference patternQ is defined as

D(P,Q) = min
φ(·)

φ(·)∈η

D(C) (5.7)

Usually, the DP algorithm calculates all matching distances of frames and pathes

(e.g. all intersections in Fig. 5.1). Then, selecting the path which is minimum distance

value from (1,1) to (I,J) as the matching distance between two patterns. Hence, the

calculation cost of DP algorithm is very large. It costs plenty of time to obtain the

optimal path. In fact, some points are not used by the restriction conditionsη, and the

calculation cost and time can be reduced without these points. Hence, some modified

DP algorithms are proposed and they are called DTW algorithm. Two major DTW

algorithms have been used conventionally: the one proposedby Sakoe and Chiba in

[81], and the one proposed by Itakula in [37]. These conventional DTW algorithms are

showed in Fig. 5.2 and Fig. 5.6. The two DTW algorithms proposed different adjustment

windows, warping functionφ(·) and restriction conditionsη. The two DTW algorithms

are more efficient than ordinary DP algorithm.

5.3 Sakoe-Chiba proposed DTW algorithm

A nonnegative weighting coefficientw is intentionally introduced to measure flexible

characteristic in the Eq. (5.6) by Sakoe and Chiba .Then the weighted summation of

distances on the warping functionφ(·) is

D(C) =
L

∑
l=1

d(cl)w(l) (5.8)
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wherew(l) is the weight coefficient ofc(l). So, the distance between test patternP and

reference patternQ is defined as

D(P,Q) = min
φ(·)













L

∑
l=1

d(cl)w(l)

L

∑
l=1

w(l)













(5.9)

Although the Eq. (5.9) is different with Eq. (5.6), but it is accordance with fundamental

definition of time-normalized distance. The weight coefficientw(l) is used to compen-

sate the influence of every frame on the warping functionφ(·). Thus, the similarity

between two patterns depends on the warping function and weight coefficient definition

to every pair of frames.

The warping functionφ(·) must consider the characteristics of time sequence of

speech signal, and voice versa. For example, the precedenceorder can not be changed

after warped sequence, the distance between adjacent frames can not be so large and so

on. Essential speech pattern time-axis structures are continuity, Monotonicity, limitation

on the acoustic parameter transition speech in a speech. Hence, some restrictions con-

ditions are very necessary to limit to match the frame by warping functionφ(·). These

conditions can be realized as the follow and shown in Fig. 5.2.

1) Monotonic conditions:

x(l −1)6 x(l)

y(l −1)6 y(l)
(5.10)

These monotonic conditions express the characteristics oftime sequence of speech

signal, and voice versa. The precedence order can not be changed after warped se-

quence.
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2) Continuous conditions:

x(l)− x(l−1)6 1

y(l)− y(l−1)6 1
(5.11)

The continuous conditions express how to choice the adjacent frame. By above

two restrictions, we know the pervious adjacent point ofcl is one of(x(l),y(l)− 1),

(x(l)−1,y(l)−1) and(x(l)−1,y(l)).

cl−1 =























(x(l),y(l)−1)

(x(l)−1,y(l)−1)

or (x(l)−1,y(l))

(5.12)

3) Boundary conditions:

x(1) = 1,y(1) = 1

x(L) = I,y(L) = J
(5.13)

The boundary conditions define that the beginning point mustbe the pointc1= (1,1)

and the end point iscL = (I,J) for all pathes. These also express the characteristics

of time sequence of speech signal. The two endpoints of two patterns firstly must be

aligned.

4) Adjustment window condition:

∣

∣x(l)− y(l)
∣

∣6 r (5.14)

In fact all warping pathes from(1,1) to (I,J) may not cross all points. Thus, the

adjustment windows defines the computation area for warpingfunction. These points

out of adjustment windows are excluded from calculation. Inother words, the pathes

which cross the points out of adjustment windows may not be optimal path. However,

the calculation cost of DTW algorithm can be reduced more much efficiently.
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c1=(1,1)

c2

c3

c4

c5

c6

cL=(I,J)

j=i+r

j=i-r

Adjustment windows

qJ

qj

pip1 pI

q1

Warping path

cL-1

cl=(i,j)

Figure 5.2. Warping function and adjustment window definition for Sakoe and Chiba’s

DTW algorithms

How to obtain the optimal path (i.e.D(I,J)) by above restrictions conditions? We

consider it with a negative sequence recursive processing.We known only three pathes

can pass the point(i, j) by Eq. (5.12). They are shown in Fig. 5.3. Then, these path

distancesD(i, j) from (1,1) to (i, j) are

D1(i, j) = d(i, j)+D(i−1, j)

D2(i, j) = d(i, j)+D(i−1, j−1)

D3(i, j) = d(i, j)+D(i, j−1)

(5.15)
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Thus, the optimal path from 1,1 to i, j is the path whose distance is minimum among

D1,D2andD3. And so on, the path distance of every point can be defined a recurrence

formula as

D(i, j) = d(i, j)+min













D(i−1, j)

D(i−1, j−1)

D(i, j−1)













(5.16)

We can obtain the optimal path of every point, which is from(1,1) in the adjustment

windows by Eq. (5.16). Until the last point(I,J), only one path is remained, then the

path is matching optimal path between patternP and patternQ, and the path distance is

similarity between them.

(i,j)(i,j-1)

(i-1,j-1) (i-1,j)

Figure 5.3. Continuous conditions for Sakoe and Chiba’s DTWalgorithms

In Eq. (5.9), the path distance is with weighting coefficient. Assuming the sum of

all weighting coefficient is defined as

W(C) =
L

∑
l=1

w(l) (5.17)

then, the time-normalization distance is

D(P,Q) = min
φ(·)

(

D(C)

W(C)

)

(5.18)
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It is very important how to set the reasonable weighting coefficient. It can affect the per-

formance of DTW algorithm. There are two typical weighting coefficients are defined

and shown in Fig. 5.4. They are as follows.

1) Symmetric form

w(l) = (x(l)− x(l −1))+(y(l)− y(l−1)) (5.19)

then

W(C) = I + J (5.20)

2) Asymmetric form

w(l) =

{

x(l)− x(l−1)

or y(l)− y(l−1)
(5.21)

W(C) =

{

I

or J
(5.22)

In the symmetric form,D(I,J) = D(J, I). But D(I,J) 6= D(J, I) in the asymmetric

form. In the asymmetric form, the weighting coefficientw(l) can reduce to 0 when the

anterior point of(i, j) is the point(i, j−1), and it is shown in Fig. 5.4(b). In this case,

some feature vectors are possibly excluded the warping path, but the frame weighted

distanced(i, j) ·0= 0. It is obvious that the zero weighting coefficient is unreasonable

for the veritable path. We would discuss it in late part.

Hence, there are two kinds of optimal path distances under the symmetric and asym-

metric forms.

DTW1: Symmetric Sakoe-Chiba’s DTW
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(i,j)(i-1,j)

(i-1,j-1) (i,j-1)

w(l)=1

w(l)=2
w(l)=1

(a) Symmetric form

(i,j)(i-1,j)

(i-1,j-1) (i,j-1)

w(l)=1

w(l)=1
w(l)=0

(b) Asymmetric form

Figure 5.4. Sakoe and Chiba proposed two weighting coefficients

The first point isc(1) = (1,1), and its preorder point does not exist. The initial

condition is

D(c(1)) = d(c(1))w(1) (5.23)

We assume the implicit pointc(0)= (0,0), then the weighting coefficientw(1)=1+1=

2 in symmetric form. So the weighted summation of distances of point (1,1) is

D(1,1) = 2d(1,1) (5.24)
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The optimal weighted warping path distance is:

D(i, j) = min













D(i−1, j)+d(i, j)

D(i−1, j−1)+2d(i, j)

D(i, j−1)+d(i, j)













(5.25)

The restricting condition is

j− r 6 i 6 j+ r (5.26)

The time-normalized distance of optimal warping path between two patterns is

D(I,J) =
D(I,J)
W(C)

(5.27)

whereW(C) = I + J.

DTW2: Asymmetric Sakoe-Chiba’s DTW

In a similar way, assuming the implicit pointc(0) = (0,0), then the weighting coef-

ficient w(1) = 1 in asymmetric form. So the weighted summation of distancesof point

(1,1) is

D(1,1) = d(1,1) (5.28)

The weighted optimal distance has been previously discussed. In order to avoid the

influence of zero weighting coefficient, we define a new solution for it. Assuming there

arek continuous points until the point(i, j) by the j-axis direction (e.g. Fig. 5.5). Then,

the nethermost point is(i, j− k+1). We assume its preorder point is(xp,yp).

We define the weighted summation of distances on the warping path is

D(i, j) = D(xp,yp)+
1
k

j

∑
y= j−k+1

d(i,y) (5.29)

Hence, the optimal weighted warping path distance is

D(i, j) = min













D(i−1, j)+d(i, j)

D(i−1, j−1)+d(i, j)

D(xp,yp)+
1
k ∑ j

y= j−k+1 d(i,y)













(5.30)
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(i,j)

k

(xp,yp)

(i,j-1)

(i,j-k+1)

Figure 5.5.k continuous points until the point(i, j) by the j-axis direction

The restricting condition is

j− r 6 i 6 j+ r (5.31)

The time-normalized distance of optimal warping path between two patterns is

D(I,J) =
D(I,J)
W(C)

(5.32)

whereW(C) = I or J.

5.4 Itakutra proposed DTW algorithm

Another one is Itakura proposed DTW algorithm. It is different with the Sakoe and

Chiba proposed that. The weighting coefficient never be considered. The restriction

conditions can be realized as the follow and shown in Fig. 5.6.

1) Monotonic conditions:

x(l −1)6 x(l)

y(l −1)6 y(l)
(5.33)
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c1=(1,1)

c2

c3

c4

c5

cl=(i,j)

cL=(I,J)

Adjustment windows

qJ

qj

pip1 pI

q1

Warping path

cL-1

j=i/2

j=2i

j=2i+J-2I

j=i/2+J-I/2

Figure 5.6. Warping function and adjustment window definition for Itakura’s DTW

algorithms

These monotonic conditions express the characteristics oftime sequence of speech

signal and voice versa. The precedence order can not be changed after warped sequence.

2) Continuous conditions:

x(l)− x(l−1) = 1 (5.34)

y(l)− y(l−1) =

{

0,1,2 y(l −1) 6= y(l−2)

1,2 y(l −1) = y(l−2)
(5.35)
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These continuous conditions express how to choice the adjacent frame. By these

above two restrictions, we know the pervious adjacent pointof cl is one of(x(l)−

1,y(l)),(x(l)−1,y(l)−1) and(x(l)−1,y(l)−2).

cl−1 =























(x(l)−1,y(l))

(x(l)−1,y(l)−1)

or (x(l)−1,y(l)−2)

(5.36)

3) Boundary conditions:

x(1) = 1,y(1) = 1

x(L) = I,y(L) = J
(5.37)

The boundary conditions define the beginning point must be point c1 = (1,1) and

the end point iscL = (I,J) for all pathes. These also express the characteristics of time

sequence of speech signal. The beginning and end points of two patterns must be aligned

firstly.

4) Adjustment window condition:

y(l) = 2x(l)

y(l) = 1
2x(l)

y(l) = 2x(l)+ J−2I

y(l) = 1
2x(l)+ J− 1

2I

(5.38)

By the continuous conditions Eq. 5.36, we known the slope of warping path is con-

fined between 2 and 1/2. Thus, the warping function is confined in the parallelogram

area, which is constituted with the four straight lines in Eq. 5.38. Those points out of

the area can not been calculated. In extreme cases, thei is added 1 thenj is added 2,the

last point isJ = 2I when the slope is 2. Conversely,i is added 2 thenj is added 1, the

last point isJ = 1
2I when the slope is 1/2. Hence, the Itakura proposed DTW algorithm

can be realized when12I 6 J 6 2I.
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The Itakura proposed DTW algorithm is described as ‘DTW3’ inthe thesis. The

calculated processing of optimal path is follow.

DTW3: Itakura’s DTW

The weighting coefficient is not used. The initial conditionc1 = (1,1), cL = (I,J),

d(c1) = d(1,1). Hence,

D(1,1) = d(1,1) (5.39)

We also consider it with a negative sequence recursive processing. How to calculate

the optimal path? We known only three pathes can pass the point (i, j) by Eq. (5.36).

They are shown in Fig. 5.7. Then, these path distancesD(i, j) from (1,1) to (i, j) are

D(i, j) = d(i, j)+min













D(i−1, j)

D(i−1, j−1)

D(i−1, j−2)













(5.40)

Until the last point(I,J), Only one path is remained, then the path is matching optimal

path between patternP and patternQ and its distance is similarity between them.

(i,j)(i-1,j)

(i-1,j-2)

(i-1,j-1)

Figure 5.7. Continuous conditions for Itakura’s DTW algorithm
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5.5 DTW with multireferences

Conventional DTW is capable of fast search and low complexity, but it has poor speech

recognition accuracy. In order to improve the recognition accuracy in noisy environ-

ments using DTW, a better way is to increase the number of utterances for the same

word.

mDTW [15] has been developed. First, we assume there are M reference words, and

each word has N speech utterances from difference speakers. The distance computed

between the unknown speech waveform and thenth utterance of themth reference word

is denoted asdmn, 16 m 6 M, 16 n 6 N. The distances computed between the un-

known speech waveform and all utterances of themth reference word are collected in

vectordm = [dm1dm2 . . . dmn . . .dmN ]
T. Then, all distances between the unknown speech

waveform and all reference utterances can be represented in matrix form as

D =





















dT
1

dT
2

...

dT
M





















=





















d1,1 d1,2 . . . d1,N

d2,1 d2,2 . . . d2,N

...
...

. . .
...

dM,1 dM,2 . . . dM,N





















(5.41)

Sorting the distances for every reference word into ascending order yieldsd′
m.

d′
m =

[

d′
m,1 d′

m,2 . . . d′
m,N

]

(5.42)

That is,d′
m,1 andd′

m,N are the minimum and maximum distances, respectively.

In contrast, in the mDTW approaches, the recognized word corresponds to

m=1:M
argmin d′m,1

Figure 5.8 shows the recognition accuracy of the mDTW algorithm for different

numbers of reference utterances for each word. For this implementation, the reference
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Figure 5.8. Recognition accuracy of mDTW

database consists of 100 isolated Japanese words, and every word has 10 to 50 wave-

forms spoken by different persons, and the test words are 50 isolated Japanese words.  

Note that although accuracy continues to improve with a higher number of reference 

utterances for each word, calculation com-plexity also increases substantially because 

of the increasingly large reference database. In the following section, we present a way 

of finding an appropriate reference utterance to replace the increasing number of 

utterances, thus reducing the calculation cost while maintaining the high recognition 

accuracy.
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Chapter 6

Reconstruct references DTW algorithm

As stated above, the more utterances we used for the same word, the more memory

resources and computing time we need to pay. Therefore, the problem becomes how

to find the best reference utterance to replace the large number of reference utterances.

Actually, the DTW algorithm provides the optimal path for finding the best reference

template. We give a detailed explanation in the following part.

6.1 One pair of vectors

For simplicity, first, we assume one pair of speech feature for the same word,P =

[p(1), p(2), · · · , p(i), · · · , p(I)] andQ = [q(1),q(2), · · · ,q( j), · · · ,q(J)], as mentioned in

Section 3. Then, by using the DTW algorithm, the optimal pathbetweenP andQ is

defined as

Copt = [c1,c2, · · · ,cl, · · · ,cL] (6.1)

wherecl is a point on thei− j plane, the coordinates of which are(i(l), j(l)), with the

value(p(i(l)),q( j(l))).

The optimal pathCopt is the one that minimizes the cumulative error path betweenP
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andQ. In other words, the value of each optimal path point is the cloest value between

P andQ. Therefore, let us consider defining a new vectorC′ to replaceP andQ on the

basis of the optimal path.

First, we consider the optimal path to represent a function that approximately real-

izes mapping from the axis of speech featureP onto that of speech featureQ. The slope

of every two points in this function is calculated by

S =
i(l+1)− i(l)
j(l+1)− j(l)

(6.2)

whereS is the slope of two points. Actually, there are only three kinds of slope, as

represented in Fig. 6.1.

S = else

S = 0

S =1

Figure 6.1. Types of slope

Then, every two points other than the starting point and end point will be merged

into a new point with the value expressed as

c′(l) =

{

p(i(l))+p(i(l+1))+q( j(l))
3 if S = 0

p(i(l))+q( j(l))
2 if S = 1

p(i(l))+q( j(l))+q( j(l+1))
3 else

(6.3)
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The starting point and end point remain the original values.

Finally, we define the new vectorC′ as a set of centroids calculated using Eq. (19).

C′ = [c′1,c
′
2, · · · ,c

′
N ] (6.4)

Figure 6.2 shows the details of the merging rule.

Adjustment windows

Warping path

=(1,1)

=(I,J)

=(i,j)

j = i - r

j = i + r

Figure 6.2. Merging rule

6.2 Pairs of vectors

On the basis of the above explanation, we solve the conditionin which there are pairs of

vectors. The proposed method proceeds in the following steps.

1. We assume there areM reference words, where each word hasN speech utterances
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from difference speakers. For each reference word,N speech utterances will be divided

into two subsets.

2. For each pair of subsets, the optimal path will be computed. According to Eq.

(19), the new vector will replace the pair of subsets. The number of speech utterances

will be reduced toN′ = N/2.

3. If we repeat step 2, the number of speech utterances will be further reduced. In

other words, if we repeat step 2t times (we call it trainingt times), then the number of

speech utterances will be reduced to1
2t N.

4. The distances computed between the unknown speech waveform and all utter-

ances of reference wordM are collected in a matrix as

D =





















dT
1

dT
2

...

dT
M





















=





















d1,1 d1,2 . . . d1,N′

d2,1 d2,2 . . . d2,N′

...
...

. . .
...

dM,1 dM,2 . . . dM,N′





















(6.5)

5. As in the mDTW algorithm, sort the distances for each reference word. The

recognized word corresponds to

argmin
m=1:M

d′
m,1

6. Finally, in the recognition part, the recognition accuracy will be calculated.

Figure 6.3 shows the basic algorithm of three kinds of DTW. The conventional DTW

uses the reference speech compared with the test speech. Its algorithm is simple and

fast, but the recognition accuracy is low. mDTW usesN reference speeches compared

with the test speech. Although the algorithm increases the robustness of the reference

speeches and the recognition accuracy is very high, the computation cost is significantly

increased. The proposed method not only reduces the computation cost but maintains a

high recognition accuracy (Case of training once).
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Figure 6.3. Basic algorithms of different DTW methods

6.3 Evaluation measure and results

Conventional recognition systems consist of ordinary feature extraction based on MFCC.

The entire recognition system is implemented using MATLAB.The reference database

consists of 100 isolated Japanese words, and each word has 100 waveforms spoken by

50 persons. The test words are 50 isolated Japanese words, and each word has 100 wave-

forms spoken by another 50 persons. MFCC feature vectors areextracted. These vectors

comprise 36 dimensions: 12 cepstral coefficients (si(k), i = 1,2, . . . ,12, k : time index),

12 delta cepstral coefficients (∆si(k) = si(k)− si(k−1)), and 12 delta-delta cepstral co-

efficients (∆2si(k) = ∆si(k)−∆si(k−1)). Other conditions are described in Table 6.1.

In this study, we have two main goals. One is to reduce the calculation cost. In the

following part, we will show the calculation costs of mDTW and tDTW.

To obtain the calculation cost of mDTW, we must evaluate the following cost:

CID
T,i(A) = MNCD(Hi,A)+CR(A) (6.6)

whereCID
T,i is the total calculation cost of mDTW,CD is the calculation cost of DTW, and
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Table 6.1. Experimental settings and parameters

Recognition task Isolated 100 words

Speech data 100 Japanese region names

Sampling 11.025 kHz, 16 bits

Window length 23.2 ms (256 samples)

Frame length 11.6 ms (128 samples)

Band of bandpass filter 1-15 Hz

Feature vector 36-dimensional MFCC

Noise type white noise and babble noise

CR is the calculation cost of noise reduction.M is the total number of target words, and

N is the total number of speeches for each speech word (in the experiment,M is 100 and

N is 100). We defineA as a feature vector of speech andHi as theith reference feature

vector.

In the case of tDTW-based ASR, the total calculation cost is

CTD
T,i (A) =CT (Hi,A)+

1
2t

MNCD(Hi,A)+CR(A) (6.7)

whereCT D
T,i is the total calculation cost of tDTW,CT is the calculation cost of the training

part, andt is number of training repetitions. We assume training of only once, then,

CT (Hi,A) can be expressed as

CT (Hi,A) =
1
2

MNCD(Hi,A) (6.8)

Since1
2MNCD(Hi,A) isM times1

2NCD(Hi,A), in other words,CT (Hi,A)≪MNCD(Hi,A),

thenCTD
T,i (A)≈

1
2CID

T,i(A). Apparently, the calculation cost of mDTW has been reduced;
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after training only once, the calculation cost has been reduced by almost 50%.
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Figure 6.4. Computing time of proposed DTW

Figure 6.4 shows the practical calculation cost rate. We used the Epson Pro7500

computer with the Core(TM) i7-3820 CPU @ 3.6 GHz. Note that zero training time

represents the mDTW calculation cost, and all the calculation cost rate were compared

with the mDTW calculation cost. Apparently, after trainingonce, computing time has

been reduced 41.6%. On the other hand, when the numbers of reference words becomes

half, the computing time is significantly reduced.

Our other goal is to maintain a high recognition accuracy. Figure 6.5 shows the

recognition accuracy of the two DTW algorithms with 10 dB and20 dB white and bab-

ble noise. Our approach yields 96.94% accuracy compared with the 97.54% accuracy

of mDTW in 20 dB white noise and 84.4% accuracy compared with 86.44% accuracy

of mDTW in 10 dB white noise. Our approach yields 94.12% accuracy compared with
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Figure 6.5. Recognition accuracy of tDTW algorithms with 10dB and 20 dB white and

babble noise

94.14% accuracy of mDTW in 20 dB babble noise and 80.82% accuracy compared with

81.64% accuracy of in 10 dB babble noise (case of training once).

Furthermore, Fig. 6.6 shows the tDTW recognition accuracy when the reference

utterances have been trained more than once in 10 dB and 20 dB white and babble

noise.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this paper we provide an account of the results of this work. In this work we have

proposed a new robust ASR technique that exploits VAD, noise-reduction, and DTW-

based processing. We have found that the calculation cost ofmDTW has been reduced

41.6% and recognition accuracy of the proposed method is similar to that of the mDTW.

Chapter 3 the importance of automatic voice activity detection (VAD) has been dis-

cussed. In particular, under noise circumstances, it has been quite difficult to design the

automatic voice activity detection with a speech recognition system. The basic concept

about VAD and its current techniques have been discussed in this chapter.

Chapter 4 introduces current noise reduction technologiesused into speech process-

ing. Among them, RASTA, CMS, and RSF/DRA are explained in this chapter.

Chapter 6 has proposed new techniques using DTW, VAD, CMA andRSF/DRA.

It can realizes noise robust mechanism, robust automatic VAD and high speech recog-

nition accuracy. In addition, the proposed method can reduce the total calculation cost

drastically compared with other methods whose recognitionaccuracy is almost the same.
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7.2 Future work

Although we proposed method has improved the performance ofASR system with DTW

algorithm, the recognition accuracy is not so high in low SNR. The real environment

is complicated and volatile, we must try to improve the recognition accuracy of ASR

system in order to practical application.

The VAD algorithm need to be modified and thus improved accuracy of endpoint

detection. Although the modified VAD method with short-timeenergy and ZCR mini-

mizes this effect of noise pulse, our method is limited to detect endpoint in low SNR.

Hence, we must try to research and explore new technology in order to detect endpoint

accurately in low SNR.

Since the number of reference words for the same word decrease, the recognition ac-

curacy also reduced. our future work will attempt to find the best compromises between

accuracy and complexity.

83



Bibliography

[1] A. Acero and R. Stern, “Environmental robustness in automatic speech recogni-

tion,” in Proc. International Conference on Acoustics, Speech, and Signal Pro-

cessing, no. 2, Apr. 1990, pp. 849–852.

[2] S. Al-Haddad, S. Samad, A. Hussain, K. Ishak, and H. Mirvaziri, “Decision fu-

sion for isolated Malay digit recognition using dynamic time warping (DTW) and

hidden Markov model (HMM),” inProc. The 5th Student Conference on Research

and Development, Dec. 2007, pp. 1–6.

[3] B. Atal and L. Rabiner, “A pattern recognition approach to voiced-unvoiced-

silence classification with applications to speech recognition,” IEEE Transactions

on Acoustics, Speech and Signal Processing, vol. 24, no. 3, pp. 201–212, Jun.

1976.

[4] B. S. Atal, “Effectiveness of linear prediction characteristics of the speech wave

for automatic speaker identification and verification,”Journal of the Acoustical

Society of America, vol. 55, no. 6, pp. 1304–1312, Jun. 1974.

[5] B. Atal, “Automatic recognition of speakers from their voices,” Proceedings of

the IEEE, vol. 64, no. 4, pp. 460–475, Apr. 1976.

84



[6] A. Berstein and I. Shallom, “Noise processing DTW algorithms for speech recog-

nition systems,” inProc. The 17th Convention of Electrical and Electronics En-

gineers in Israel, Mar. 1991, pp. 293–296.

[7] Z.-H. Chen, Y.-F. Liao, and Y.-T. Juang, “Eigen-prosodyanalysis for robust

speaker recognition under mismatch handset environment,”Electronics Letters,

vol. 40, no. 19, pp. 1233–1235, Sep. 2004.

[8] D. G. Childers, M. Hahn, and J. N. Larar, “Silent and voiced/unvoiced/mixed

excitation (four-way) classification of speech,”IEEE Transactions on Acoustics,

Speech and Signal Processing, vol. 37, no. 11, pp. 1771–1774, Nov. 1989.

[9] W. Chou and B.-H. Juang,Pattern recognition in speech and language process-

ing. CRC Press, 2003.

[10] I. Chung and I.-J. Chung, “Memory efficient and fast speech recognition system

for lowresource mobile devices,”IEEE Transactions on Consumer Electronics,

vol. 52, no. 3, pp. 792–796, Aug. 2006.

[11] A. Cohen and D. Graupe, “Speech recognition and controlsystem for the severely

disabled,”Journal of Biomedical Engineering, vol. 2, no. 2, pp. 97–107, Apr.

1980.

[12] S. B. Davis. and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,”IEEE Trans-

actions on Acoustics, Speech and Signal Processing, vol. 28, no. 4, pp. 357–366,

Aug 1980.

85



[13] J. de Veth and L. Boves, “Channel normalization techniques for automatic speech

recognition over the telephone,”Speech Communication, vol. 25, no. 1, pp. 149–

164, 1998.

[14] P. Ding, L. He, X. Yan, R. Zhao, and J. Hao, “Robust mandarin speech recog-

nition in car environments for embedded navigation system,” IEEE Transactions

on Consumer Electronics, vol. 54, no. 2, pp. 584–590, May 2008.

[15] N. Erdol, C. Castelluccia, and A. Zilouchian, “Recovery of missing speech pack-

ets using the short-time energy and zero-crossing measurements,”IEEE Transac-

tions on Speech and Audio Processing, vol. 1, no. 3, pp. 295–303, Jul. 1993.

[16] P. Foster and T. Schalk,Speech Recognition The Complete Practical Reference

Guide, 1st ed. CMP Books, 1993.

[17] M. Fried-Oken, “Voice recognition device as a computerinterface for motor and

speech impaired people,”Journal of Biomedical Engineering, vol. 66, no. 10, pp.

678–681, Oct. 1985.

[18] K. Fujioka and Y. Miyanaga, “A new noise reduction method of speech signal

with running spectrum filtering,” inProc. International Symposium on Intelligent

Signal Processing and Communication Systems, Nov. 2004, pp. 173–176.

[19] C. Gan and R. Donaldson, “Adaptive silence deletion forspeech storage and voice

mail applications,”IEEE Transactions on Acoustics, Speech and Signal Process-

ing, vol. 36, no. 6, pp. 924–927, Jun. 1988.

[20] Y. Gong, “Speech recognition in noisy environments: A survey,”Speech Commu-

nication, vol. 16, no. 3, pp. 261–291, Apr. 1995.

86



[21] M. Grimaldi and F. Cummins, “Speaker identification using instantaneous fre-

quencies,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 16, no. 6, pp. 1097–1111, Aug. 2008.

[22] N. Hayasaka and Y. Miyanaga, “Spectrum filtering with FRM for robust speech

recognition,” inProc. IEEE International Symposium on Circuits and Systems,

Nov. 2006, pp. 3285–3288.

[23] N. Hayasaka, S. Yoshizawa, N. Wada, Y. Miyanaga, and N. Hataoka, “A study of

robust speech recognition system and its LSI design,”The Society of Instrument

and Control Engineers, vol. 41, no. 5, pp. 473–480, May 2005.

[24] N. Hayasaka, K. Khankhavivone, Y. Miyanaga, and K. Songwatana, “New robust

speech recognition by using nonlinear running spectrum filter,” in Proc. Interna-

tional Symposium on Communications and Information Technologies, Oct. 2006,

pp. 133–136.

[25] N. Hayasaka and Y. Miyanaga, “A study of robust speech recognitoin sing FRM

filter,” in Proc. IEEE Region 10 Conference (TENCON), Nov. 2004, pp. 80–83.

[26] N. Hayasaka, Y. Miyanaga, and N. Wada, “Running spectrum filtering in speech

recognition,” inProc. International Conference on Soft Computing and Intelli-

gent Systems (SCIS), Oct. 2002, pp. 154–157.

[27] N. Hayasaka, N. Wada, S. Yoshizawa, and Y. Miyanaga, “A robust speech recog-

nition system using FRM running spectrum filtering,” inProc. International

Symposium on Control, Communications and Signal Processing (ISCCSP), Mar.

2004, pp. 401–404.

87



[28] H. Hermansky and J. Cox, L.A., “Perceptual linear predictive (PLP) analysis-

resynthesis technique,” inProc. IEEE Workshop on Applications of Signal Pro-

cessing to Audio and Acoustics, Oct. 1991, pp. 37–38.

[29] H. Hermansky and N. Morgan, “RASTA processing of speech,” IEEE Transac-

tions on Speech and Audio Processing, vol. 2, no. 4, pp. 578–589, Oct. 1994.

[30] H. Hermansky, N. Morgan, and H.-G. Hirsch, “Recognition of speech in additive

and convolutional noise based on RASTA spectral processing,” in Proc. IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

vol. 2, Apr. 1993, pp. 83–86.

[31] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,”Journal

of the Acoustical Society of America, vol. 87, no. 4, pp. 1738–1752, Api 1990.

[32] M. Herscher and R. Cox, “Voice programming of numerically controlled ma-

chines,” inProc. IEEE International Conference on Acoustics, Speech, and Sig-

nal Processing, vol. 2, May 1977, pp. 452–455.

[33] M. Holmberg, D. Gelbart, and W. Hemmert, “Automatic speech recognition with

an adaptation model motivated by auditory processing,”IEEE Transactions on

Audio, Speech, and Language Processing, vol. 14, no. 1, pp. 43–49, Jan. 2006.

[34] G. Hongbin, P. Weiyi, H. Chunru, and Z. Yongqiang, “A speech endpoint de-

tection based on dynamically updated threshold of box-counting dimension,” in

Proc. International Forum on Information Technology and Applications, vol. 2,

May. 2009, pp. 397–401.

[35] X. D. Huang, Y. Ariki, and M. A. Jack,Hidden Markov Models for Speech Recog-

nition, 1st ed. Edinburgh University Press, 1990.

88



[36] X. Huang, A. Acero, A. Acero, and H.-W. Hon,Spoken language processing: a

guide to theory, algorithm, and system development. Upper Saddle River, NJ:

Prentice Hall, 2001.

[37] F. Itakura, “Minimum prediction residual principle applied to speech recogni-

tion,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 23,

no. 1, pp. 67–72, Feb. 1975.

[38] ——, “Line spectrum representation of linear predictive coefficients of speech

signals,”Journal of the Acoustical Society of America, vol. 57, no. S1, p. S35,

Mar. 2000.

[39] Y. Jie and W. Zhenli, “Noise robust speech recognition by combining speech

enhancement in the wavelet domain and lin-log RASTA,” inProc. International

Colloquium on Computing, Communication, Control, and Management, vol. 2,

Aug. 2009, pp. 415–418.

[40] B. H. Juang, “On the hidden markov model and dynamic timewarping for speech

recognition—-a unified view,”AT&T Technical journal, vol. 63, no. 7, pp. 1213–

1243, 1984.

[41] B. H. Juang, L. R. Rabiner, and J. G. Wilpon, “On the use ofbandpass lifer-

ing in speech recognition,”IEEE Transactions on Acoustics, Speech and Signal

Processing, vol. 35, no. 7, pp. 947–954, Jul. 1987.

[42] S. B. Junior, R. C. Guido, S.-H. Chen, L. S. Vieira, and F.L. Sanchez, “Improved

dynamic time warping based on the discrete wavelet transform,” in Proc. The 9th

IEEE International Symposium on Multimedia Workshops, Dec. 2007, pp. 256–

263.

89



[43] J. C. Junqua, B. Mak, and B. Reaves, “A robust algorithm for word boundary

detection in the presence of noise,”IEEE Transactions on Speech and Audio Pro-

cessing, vol. 2, no. 3, pp. 406–412, Jul. 1994.

[44] J.-C. Junqua and J. Haton,Robustness in Automatic Speech Recognition: Funda-

mentals and Applications, 1st ed. Kluwer Academic, 1995.

[45] D. Jurafsky and J. H. Martin,Speech and Language Processing. Prentice Hall

Inc., 1996.

[46] ——, Speech and Language Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech Recognition. Prentice Hall,

2009.

[47] K. Khankhavivone, N. Hayasaka, Y. Miyanaga, and K. Songwatana, “A low cost

running spectrum filter for speech recognition using modified frequency response

masking technique,”Journal of Signal Processing, vol. 11, no. 2, pp. 227–236,

May 2007.

[48] C. Kim and K. deok Seo, “Robust DTW-based recognition algorithm for hand-

held consumer devices,”IEEE Transactions on Consumer Electronics, vol. 51,

no. 2, pp. 699–709, May 2005.

[49] H. K. Kim, S. H. Choi, and H. S. Lee, “On approximating line spectral frequen-

cies to LPC cepstral coefficients,”IEEE Transactions on Speech and Audio Pro-

cessing, vol. 8, no. 2, pp. 195–199, Mar. 2000.

[50] D. H. Klatt and K. N. Stevens, “On the automatic recognition of continuous

speech: Implications from a spectrogram-reading experiment,” in Proc. IEEE

Trans. Audio Electroacoust., vol. AU-16, June 1973, pp. 210–217.

90



[51] S. Kwong, C. Chau, and W. Halang, “Genetic algorithm foroptimizing the non-

linear time alignment of automatic speech recognition systems,”IEEE Transac-

tions on Industrial Electronics, vol. 43, no. 5, pp. 559–566, Oct. 1996.

[52] Y.-K. Lau and C.-K. Chan, “Speech recognition based on zero crossing rate and

energy,”IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33,

no. 1, pp. 320–323, Feb. 1985.

[53] C. H. Lee, F. K. Soong, and K. K. Paliwal,Automatic Speech and Speaker Recog-

nition. Kluwer Academic Publisher, 1996.

[54] S. E. LeVinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the appli-

cation of the theory of probabilistic functions of a markov process to automatic

speech recognition,”Bell System Technical journal, vol. 62, no. 4, pp. 1035–1074,

1983.

[55] Z. Lu, B. Liu, and L. Shen, “Speech endpoint detection instrong noisy environ-

ment based on the Hilbert-Huang transform,” inProc. International Conference

on Mechatronics and Automation, Aug. 2009, pp. 4322–4326.

[56] T. Martin, “Practical applications of voice input to machines,”Proceedings of the

IEEE, vol. 64, no. 4, pp. 487–501, Apr. 1976.

[57] J. Ming, “Noise compensation for speech recognition with arbitrary additive

noise,”IEEE Transactions on Audio, Speech, and Language Processing, vol. 14,

no. 3, pp. 833–844, May 2006.

[58] D. Naik, “Pole-filtered cepstral mean subtraction,” inProc. International Confer-

ence on Acoustics, Speech, and Signal Processing, vol. 1, no. 1, May 1995, pp.

157–160.

91



[59] Y. Oh, J. Yoon, J. Park, M. Kim, and H. Kim, “A name recognition based call-

and-come service for home robots,”IEEE Transactions on Consumer Electronics,

vol. 54, no. 2, pp. 247–253, May 2008.

[60] N. Ohtsuki, Q. Zhu, and Y. Miyanaga, “The effect of the musical noise suppres-

sion in speech noise reduction using RSF,” inProc. International Symposium on

Communications and Information Technologies, vol. 2, Oct. 2004, pp. 663–667.

[61] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-time Signal Process-

ing, 2nd ed. Prentice-Hall Inc., 1998.

[62] K. K. Paliwal, Automatic speech and speaker recognition: advanced topics,

1st ed. Springer, 1996.

[63] C. Panagiotakis and G. Tziritas, “A speech/music discriminator based on RMS

and zero-crossings,”IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 155–

166, Feb. 2005.

[64] R. Pieraccini, “Pattern compression in isolated word recognition,”Signal Pro-

cessing, vol. 7, no. 1, pp. 1–15, Sep. 1984.

[65] P. Pujol, D. Macho, and C. Nadeu, “On real-time mean-and-variance normaliza-

tion of speech recognition features,” inProc. IEEE International Conference on

Acoustics, Speech and Signal Processing, vol. 1, May 2006, pp. I773–I776.

[66] L. Rabiner and S. Levinson, “Isolated and connected word recognition–theory

and selected applications,”IEEE Transactions on Communications, vol. 29, no. 5,

pp. 621–659, May 1981.

[67] L. R. Rabiner, “A tutorial on hidden markov models and sclected applications in

speech recognition,”Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

92



[68] L. R. Rabiner and M. R. Sambur, “An algorithm for determining the endpoints

for isolated utterances,”The Bell System Technical Journal, vol. 54, no. 2, pp.

297–315, 1975.

[69] L. R. Rabiner and R. W. Schafer, “Introduction to digital speech processing,”

Foundations and Trends in Signal Processing, vol. 1, no. 1-2, pp. 1–194, 2007.

[70] L. Rabiner and B.-H. Juang,Fundamentals of speech recognition, 1st ed. Upper

Saddle River, New Jersey, USA: Prentice Hall PTR, 1993.

[71] L. R. Rabiner and R. W. Schafer,Theory and Application of Digital Speech Pro-

cessing. Prentice-Hall Inc., 2009.

[72] L. Rabiner, “Applications of voice processing to telecommunications,”Proceed-

ings of the IEEE, vol. 82, no. 2, pp. 199–228, Feb. 1994.

[73] L. Rabiner and R.W.Schafer,Digital Processing of Speech Signals, 1st ed. Upper

Saddle River, Prentice HallUSA: Rainbow-Bridge Book Company PTR, 1978.

[74] M. Rahim, B.-H. Juang, W. Chou, and E. Buhrke, “Effectiveness of linear predic-

tion characteristics of the speech wave for automatic speaker identification and

verification,” Journal of the Acoustical Society of America, vol. 55, no. 6, pp.

1304–1312, 1974.

[75] ——, “Signal conditioning techniques for robust speechrecognition,”IEEE Sig-

nal Processing Letters, vol. 3, no. 4, pp. 107–109, Apr. 1996.

[76] B. Raj, V. Parikh, and R. Stern, “The effects of background music on speech

recognition accuracy,” inProc. IEEE International Conference on Acoustics,

Speech, and Signal Processing, vol. 2, no. 2, Apr 1997, pp. 851–854.

93



[77] M. Rashwan and M. Fahmy, “New technique for speaker-independent isolated-

word recognition,”IEEE Proceedings-F on Communications, Radar and Signal

Processing, vol. 135, no. 3, pp. 251–257, Jun. 1988.

[78] H. Sakoe, “Two-level DP-matching–A dynamic programming-based pattern

matching algorithm for connected word recognition,”IEEE Transactions on

Acoustics, Speech and Signal Processing, vol. 27, no. 6, pp. 588–595, 1979.

[79] H. Sakoe and S. Chiba, “A similarity evaluation of speech patterns by dynamic

programming,”Dig. 1970 Nat. Meeting, Inst. Electron. Comm. Eng., p. 136, Jul.

1970.

[80] ——, “Comparative study of DP-pattern matching techniques for speech recog-

nition,” Tech. Group Meeting Speech, Acoust. Soc., pp. S73–22, Dec. 1973.

[81] ——, “Dynamic programming algorithm optimization for spoken word recogni-

tion,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 26,

no. 1, pp. 43–49, Feb. 1978.

[82] S. Seneff, “Real-time harmonic pitch detector,”IEEE Transactions on Acoustics,

Speech and Signal Processing, vol. 26, no. 4, pp. 358–365, Aug. 1978.

[83] N. Shabtai, Y. Zigel, and B. Rafaely, “The effect of GMM order and CMS on

speaker recognition with reverberant speech,” inProc. Hands-Free Speech Com-

munication and Microphone Arrays, May 2008, pp. 144–147.

[84] O. Viikki and K. Laurila, “Noise robust HMM-based speech recognition using

segmental cepstral feature vector normalization,” inProc. Robust Speech Recog-

nition for Unkown Communication Channels Pont-à-Mousson, Apr. 1997, pp.
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