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Abstract

Many serious accidents caused by drowsiness while driving or working with heavy

machinery have been reported in recent years. In many cases, such abnormal

drowsiness is caused by Sleep Apnea Syndrome (SAS), which, therefore, should be

recognized to be not only an individual disease but also a social problem. The

early detection and suitable treatment are urgently necessary, but SAS patients

very often have subjective symptoms of it. Accordingly, the number of the latent

SAS patients in Japan is estimated to be over 2 millions.

A polysomnography (PSG) is presently one of the most reliable and widely

used measuring methods to assess sleep apnea at hospital. It is a screening method

which directly measures the condition of sleep apnea and consists of about 10 kinds

of contact sensors such as EEG, EOG, airflow via nose and mouth, ECG, SpO2,

etc. The measured data of PSG is used for a medical technologist to estimate

an Apnea/Hypopnea Index (AHI, the average number of apnea/hypopnea events

per hour during sleep), which indicates the severity of sleep apnea. The AHI is

an objective index for SAS diagnosis, but the PSG requires the patients to sleep

in the hospital overnight. In addition, the severity is sometimes estimated to be

lower than in reality because of the daily variance and the first night effect. Since

the PSG is also time and energy consuming for measuring and analyzing data, a

different approach to SAS classification has been expected recently.

By the way, if Obstructive SAS (OSAS), which is known to be over 80% of

SAS, is only focused on, we can find two specific properties of OSAS in the upper

airway soft tissues. One is the enlargement of the upper airway soft tissues which
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directly causes the physical closure of the upper airway. The other is a vibration

(snoring) which occurs in the narrowed upper airway which the inspiratory airflow

rapidly passes through. Especially, loud snoring caused by open mouth during

sleep is a typical symptom of OSAS. Since one of the two or both features are

found in OSAS patients, it is necessary to analyze both those features for OSAS

classification. According to this, this study focuses on the morphological features

of the soft tissues in the upper airway MRIs and the acoustic properties of snoring

sounds, and proposes some technical methods for automatic OSAS classification.

This thesis is organized as follows.

In chapter 1, background and objectives of this study are described. The signif-

icance of classifying OSAS by using the upper airway MR images and the snoring

sounds is described, together with the brief explanation, the present situation, and

some drawbacks of standard screening methods for SAS. In addition, the related

studies are introduced.

In chapter 2, the upper airway MR images of OSAS patients are analyzed. The

tongue morphology in the saggital plane is quantified and the correlation coefficient

with AHI is calculated. As a result, the direction from the center of gravity in the

tongue region to the back of the tongue and to the hyoid bone are mostly correlated

with the severity of OSAS. This result is related to the medical criteria which have

been adopted for visual examination of oropharynx and X-ray images. Next, the

cross sectional area of the narrowest airway in the transverse plane is calculated

and the linear equation for predicting AHI is solved with multi-regression analysis

using the tongue morphology and the cross sectional area. The severe OSAS is

classified by thresholding the prediction value. Consequently, it is clarified that

the tongue morphology and the cross sectional area are useful for the purpose of

severe OSAS classification.

In chapter 3, oral snoring which is generally found in OSAS patients is focused

on and the difference between the acoustic properties of oral snoring sounds and

those of nasal ones are clarified. In order to record snoring sounds with oral

3



and nasal breath, this study used a method called simulated snoring, which has

been adopted in some physiological and medical studies. The simulated snores

are produced by an awake person who is asked on purpose to simulate snoring.

They are not completely equal to actual nocturnal snoring from acoustical point

of view, but much similarity has been reported in conventional studies. According

to the FFT amplitude spectra, the fundamental frequency of nasal snores tends to

be higher than that of oral ones, and do not have many harmonic components as

well. In oral snoring sounds, a formant-like intensity peak is found at around 1kHz,

whereas in nasal ones no such peak is found. Based on these acoustic properties,

the fundamental frequency and the maximum of the spectrum peak in a specific

band are calculated and used as feature values for k-Nearest Neighbor classification.

As a result, about 89% snoring sounds are correctly classified, but some snoring

sounds are not periodic and do not have a fundamental frequency. It is clarified

that these sounds are not correctly classified.

In chapter 4, the spectral shape up to 2kHz is adopted as the multi-dimensional

feature vectors of the snoring sounds and a Support Vector Machine (SVM) is used

for the classification. In order to find an appropriate choice of kernels, typical kernel

functions such as linear, polynomial, sigmoid, Gaussian, Laplacian are considered.

In addition, a chi-square kernel and Kullback-Leibler (KL) kernel, which are often

used for spectrum similarity, are also adopted. As a result, a classification accuracy

when using the KL kernel is the highest and about 5% is improved in comparison

with the method in chapter 3. Moreover, the result is fairly good from the point

of view of individual difference, reliability, and computational time.

Finally, chapter 5 describes the contribution of this thesis and the future works

by summarizing all the results and discussions in chapter 2, 3, and 4.
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Abstract (in Japanese)

近年，自動車の運転や重機作業の従事者が作業中に傾眠状態に陥り重大な事故に

つながった事例が数多く報告されており，その多くは睡眠時無呼吸症候群（Sleep

Apnea Syndrome; 以下 SAS）が原因の睡眠不足にあることが指摘されている．そ

のため，SASは個人疾患ではなく，社会問題として認識されるべきであり，早期発

見と適切な治療が急務であるが，SASは自覚することが難しいことから，潜在的

な患者は国内で 200万人に及ぶと推定されている．

現在，SASの検査方法として最も信頼性が高く，広く病院で用いられているゴー

ルド・スタンダードな手法は PSG（Polysomnography, 睡眠ポリグラフ）である．

PSGは，脳波，眼球運動（EOG），オトガイ筋電，鼻と口の気流，心電，血中酸

素飽和度（SpO2）など 10種類程度の接触型センサーを装着し，睡眠中に生じる無

呼吸の病態を直接計測する検査方法である．PSGによって獲得された計測データ

を用いて，SASの重症度を示すAHI（Apnea/Hypopnea Index, 1時間あたりの無

呼吸または低呼吸の回数）が計算され，治療のための客観的な指標として用いられ

る．しかし，PSGは検査入院を要することから患者の負担も大きく，日差変動もあ

ることから実際より軽症と診断される場合もある．また，PSGは大掛かりな検査

であり，取得したデータの分析にも手間がかかるため，PSGとは異なるアプロー

チから出来るだけ簡便に SASを識別できる検査手法に近年注目が集まっている．

一方，SASの約 8割以上を占める閉塞型 SAS（Obstructive SAS; 以下，OSAS）

に限定した場合，上気道軟部組織に関してOSAS特有の特徴が見られる．１つは

物理的に気道の閉塞が生じる上気道軟部組織の肥大であり，これはMR画像によ

り確認することができる．もう１つは，狭小化した気道に吸気が急速に流入する

ことによって生じる上気道軟部組織の振動（いびき）であり，特に開口を伴う大音
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量のいびきはOSAS固有の特徴として知られている．OSASはこれらの特徴が単

独または複合的に発現するため多面的な解析が必要と考える．そのため，本研究

では上気道MR画像における軟部組織の形態的特徴といびきの音響的特徴に着目

し，OSASを識別するための情報科学的手法を提案する．論文は以下の構成になっ

ている．

第 1章は序論であり，本研究の背景と目的を述べている．SASの概要およびSAS

の検査方法の現状と問題点について取り上げ，上気道MR画像といびき音に着目

してOSASを識別する必要性について述べている．また，関連研究について概説

し，本論文の位置づけを明らかにしている．

第 2章では，OSAS患者の上気道MR画像について着目した．矢状面図におけ

る舌領域の形態を定量化し重症度AHIとの相関係数を求めた．その結果，舌の形

態的な特徴としては，舌領域の中心から舌背方向と舌骨方向の長さがAHIと最も

相関が高いことが明らかになった．これは，従来から診断で用いられている定性的

な口咽頭視診の指標と，X線画像を用いた場合（セファログラム）の評価指標にそ

れぞれ対応することが分かった．さらに，横断面図における気道の最狭部断面積を

求め，舌部の特徴量にこの値を加えて重回帰分析を行い重症度AHIの予測式を求

めた．予測値のしきい値処理による重度OSASの識別能力について検証し，上気

道MR画像の矢状面図における舌領域の形態的特徴と横断面図における最狭気道

断面積を用いることの有用性について明らかにした．

第 3章では，OSAS患者に多く見られる口呼吸に伴ういびきに着目し，呼吸様

式（口呼吸，鼻呼吸）に伴う音響特性の相違について検証した．口呼吸のみの場合

と鼻呼吸のみの場合のいびき音を録音するため，医学生理学研究で従来から採用

されている模擬いびき（Simulated Snoring，いびきのかきまね）の方法を用いた．

尚，実際のいびきと模擬いびきの等価性については従来研究でも検証されており，

完全に等価とは必ずしも言えないが多くの類似性が指摘されている．FFTによる

振幅スペクトルを用いて検証したところ，鼻呼吸いびきは口呼吸いびきに比べ基

本周波数が高く，倍音成分が少ない比較的単純な波形であることが確認された．一

方で，口呼吸いびきにはフォルマント様の密度ピークが１ kHz付近にみられたが，

鼻呼吸いびきの場合には見られなかった．以上の音響特性に着目し，基本周波数と
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1kHz前後の帯域におけるスペクトルの最大値を特徴量として求め，k最近傍法を

用いて口呼吸いびきと鼻呼吸いびきの識別を行った．その結果，90％近くの識別

率を得たが，いびき音の中には基本周波数のピークが存在しない非周期波形も多

く，そのようないびき音は正しく識別されないことも判明した．

第 4章では，第 3章で明らかになった非周期波形のいびき音の識別も考慮し，振

幅スペクトル全体の概形を多次元の特徴ベクトルとして定義した．また，識別器

としてサポートベクタマシン（SVM）を用いることにした．SVMのカーネル関数

として，パターン識別で標準的に用いられるもの（線形，多項，Sigmoid，Gauss，

Laplace）に加え，スペクトルの類似度として近年その有効性が指摘されているカイ

二乗カーネルとKullback-Leibler（KL）カーネルも導入した．その結果，KLカー

ネルを用いた場合が最も識別率が高く，第 3章で提案した手法と比較して識別率が

5％近く向上した．また，SVMを用いた結果に関して，データの個人差，結果の

信頼性，計算時間について考察し，いずれの点においても良好な結果を得ることが

出来た．

第 5章は結論である．本研究で得られた結果についてまとめ，今後の課題につ

いて述べている．
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Chapter 1

Sleep Apnea Syndrome and Biomedical

Signals

1.1 Introduction

This chapter gives the background and objective for this thesis, including some

basic knowledge of Obstructive Sleep Apnea Syndrome (OSAS). Firstly, the def-

inition of Sleep Apnea Syndrome (SAS) and Apnea/Hypopnea Index (AHI), the

most commonly used severity scale, are explained in the former sections. Also,

the current state of the sleep apnea screening is introduced and some problems are

clarified from a medical and scientific point of view.

The later sections describe two biomedical signals related to OSAS, upper air-

way MR images and snoring sounds, and state the reason why these biomedical

data are necessary for SAS classification. In addition, conventional studies related

to image- and sound-based classification of SAS are surveyed in the later sections.

1.2 Social Background

Sleep Apnea Syndrome (SAS) has been focused on recently, as some of the serious

traffic accidents are caused by the daytime heavy sleepiness of the drivers. Such

sleepiness is one of the most serious problems in SAS, because SAS patients do
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1.2 Social Background

Figure 1.1: The Frequency of Traffic Accidents in Sleep Apnea Patients for Five
Years (n = 3.7 million, p < 0.01)[1]

not have a good sleep due to an unconscious awakening caused by apneas during

sleep. In Western countries, this was known well long ago. According to an article

published in Wake up America in 1990, the Three Miles Island nuclear accident

and the Space Shuttle Challenger accident are mentioned as the ones caused by

sleep disordered breathing including SAS.

Moreover, it has been reported that the frequency of traffic accidents caused by

moderate or severe sleep apnea is seven times higher than that caused by normal

drivers (figure 1.1)[1]. However, most people tend not to be conscious of their

apneas or even their abnormal sleepiness. Toga [2] examined the drivers being

aware of heavy sleepiness and whether they are taken sleep apnea or not. According

to Findley’s study[1], there should be many drivers being aware of heavy sleepiness,

but actually the number of the drivers is quite low. This indicates that only the

people who know SAS well are conscious of their abnormal sleepiness and many

people do not have much information about SAS. It is, therefore, quite important

to make the illness better known, and is desirable for apnea patients to perceive

their own symptoms as soon as possible.
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1.3 Sleep Apnea Syndrome (SAS)

Figure 1.2: Anatomic structure of the upper airway during OSAS (cited
from Wikimedia Commons, http://commons.wikimedia.org/ wiki/ File: Obstruc-
tion ventilation apnee sommeil.svg [3])

Loud snoring, a typical symptom of SAS, often becomes an annoying problem

for the family of SAS patients at home. Non of their families can even sleep in the

next room, to say nothing of the same bedroom. Also, SAS patients often doze

off in the office or the public facilities and snore loudly as well. Now, SAS is not

necessarily a personal problem but a social one, which annoys the other people and

often causes a serious accident. Therefore, it is quite important that you do know

your own sleep condition or perceive the occurrence of your sleep apneas.

1.3 Sleep Apnea Syndrome (SAS)

1.3.1 Definition of SAS and AHI

Guilleminault, et al, [4] firstly advocated the concept of SAS in 1970s. An apnea

is defined as the cessation of airflow through the nose and mouth for more than 10

seconds, and the SAS is defined as over 30 apnea events in 7 hours during sleep,

which are also found in non-REM sleep. In the case of severe patients, more than
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1.3 Sleep Apnea Syndrome (SAS)

1 minute cessation are often found. During apnea, the oxygen in the patient’s

body gradually decreases and the carbon dioxide increases on the other hand. So,

respiratory effort gradually increases.

After that, a hypopnea, more than 50% reduction in airflow, has also been

considered important. Today, more than 5 apnea or 10 apnea/hypopnea events per

hour are the criteria of SAS that have widely been adopted worldwide.

Thus, the number of apnea/hypopnea events per hour is used as an index of

sleep apnea severity called Apnea-Hypopnea Index (AHI). The American Academy

of Sleep Medicine (AASM) recommends grading sleep apnea as follows:

• Benign (AHI < 5)

• Mild (5 ≤ AHI < 15)

• Moderate (15 ≤ AHI < 30)

• Severe (AHI ≥ 30)

The AHI can precisely be estimated from polysomnography (PSG) and roughly

estimated from simple test. In the case of AHI>20 estimated from PSG or AHI> 40

from simple test, the nasal CPAP, the most representative ventilation therapy for

OSAS, is covered by insurance in Japan.

From a physiological point of view, there are three types of sleep apnea; Ob-

structive Sleep Apnea Syndrome(OSAS), Central Sleep Apnea Syndrome (CSAS),

and Mixed Sleep Apnea Syndrome (MSAS). But in many patients it is rate that

only one of the three types is found in the PSG results. In OSAS patients, for

instance, more obstructive apneas are recognized but a few central/mixed apneas

are also found during one night.

1.3.2 Obstructive Sleep Apnea Syndrome (OSAS)

Over 80 percent of SAS patients in Japan are categorized to Obstructive sleep apnea

syndrome (OSAS), the most common form of apnea[5]. It occurs when complete or
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1.3 Sleep Apnea Syndrome (SAS)

partial airway closure is emerged by the relaxation of muscles in our throat during

sleep. There is a tendency for those who have a narrowed throat caused by their

obesity or have a small jaw to be suffered from the disease. Snoring is a typical

symptom of OSAS. Since many Japanese have a small jaw, OSAS easily occurs in

non-obese people. The target of this study is limited to the OSAS.

The most common obstructive sleep apnea symptoms include:

• Daytime sleepiness or fatigue

• Dry mouth or sore throat upon awakening

• Headaches in the morning

• Trouble concentrating, forgetfulness, depression, or irritability

• Night sweats

• Restlessness during sleep

• Sexual dysfunction

• Snoring

• Sudden awakenings with a sensation of gasping or choking

• Difficulty getting up in the mornings

The repeated episodes of apneas lead to many times of unconscious awakening

and prevent from getting good sleep. This causes an Excessive Daytime Sleepiness

(EDS), which may interfere with your social life. It is known that the EDS leads

to a traffic accident.

The medical treatment of OSAS is mainly a loss in weight if the patients are

overweight, but it is not rare that the patients are not completely recovered. The

apneas in slight patients are sometimes reduced when the patients lie on their side

during sleep. But for the severe patients and the moderate patients with hyper-

tension, cardiovascular disease, or diabetes, nCPAP (nasal Continuous Positive
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1.3 Sleep Apnea Syndrome (SAS)

Airway Pressure) is drastically effective, which requires patients to wear a nasal

mask through which the airflow in their throat is preserved during sleep with the

mechanical air pressure.

1.3.3 Central Sleep Apnea Syndrome (CSAS)

In contrast to OSAS, the upper airway is not obstructed in CSAS patients but the

apnea is caused by a functional abnormality of the respiratory center. Namely,

the brain does not order your muscles to breathe due to the abnormality. CSAS

may occur in general with OSAS, or alone. It is known that cardiac insufficiency

is complicated with CSAS.

The main symptom of central sleep apnea is temporary blockages of breathing

during sleep. Although snoring is a very strong symptom of obstructive sleep

apnea, snoring is usually not found with central sleep apnea. Symptoms may also

include:

• being very tired during the day

• waking up often during the night

• going to the bathroom often during the night

• having headaches in the early morning

• poor memory and difficulty concentrating

• mood problems

1.3.4 Mixed Sleep Apnea Syndrome (MSAS)

Mixed Sleep Apnea Syndrome (MSAS) is a condition characterized by symptoms

of both CSAS and OSAS. It often begins as central apnea and develops into the

obstructive type.
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1.4 Screening and Diagnosis of SAS

1.4 Screening and Diagnosis of SAS

1.4.1 Simple Screening Test

Firstly, a simple screening test, which can be used at home, is introduced in this

section. Basically, SAS screening is to measure the following three states of the

patients:

• breathing (airflow through the nose or mouth)

• respiratory effort (movement of the chest or abdomen)

• sleep condition (sleeping hours and quality)

Simple screening instruments on the market are generally composed of a nasal/oral

thermistor, a chest sensor, an abdomen sensor, and a pulse oximeter. The chest

and abdomen sensors measure the physical movement of the chest and abdomen

while breathing, which indicates the respiratory effort. The thermistor placed un-

der the nose measures the airflow while breathing. In this method, brain signal

indicating the sleep condition is not measured.

The pulse oximeter measures the oxygen saturation level in the blood. By

using the thermistors and chest/abdomen sensors, apnea events can be detected

correctly, but hypopnea events cannot. Thus, the screening results are not so

reliable in the case of mild or moderate SAS patients who have more hypopneas

than apneas. Likewise the pulse oximetry is not so reliable for mild or moderate

sleep apneas, because the blood oxygen saturation level is not so lessened. Since

the EEG signals are not recorded by simple screening, the sleeping hours are based

on the self-declaration of the patient.

By using the simple screening method, it is, therefore, easy to measure the

patient’s apneas at home, but mild/moderate sleep apneas are overlooked.
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1.4 Screening and Diagnosis of SAS

Figure 1.3: Pediatric polysomnography (cited from Wikimedia Commons, http://
en.wikipedia.org/ wiki/ Polysomnography mediaviewer/ File:Pediatric polysomno-
gram.jpg)

1.4.2 Polysomnography (PSG)

The PSG is a gold standard for screening SAS and has been used in many hospitals

dealing with SAS. The PSG consists of many different sensors as follows:

• EEG (Electroencephalogram; brain)

• EOG (Electrooculography; eye movements)

• EMG (Electromyogram; muscle activity or skeletal muscle activation)

• ECG (Electrocardiogram; heart rhythm)

• pulse oximetry (blood oxygen saturation)

• thermistor (nasal and oral airflow)

• sound probe (snoring sounds)

• chest and abdomen sensors (respiratory effort)
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1.4 Screening and Diagnosis of SAS

Figure 1.4: Screenshot of a PSG of a person in REM sleep (cited from Wikimedia
Common, http://commons.wikimedia.org/ wiki/ File:Sleep Stage REM.png[9])

• body position sensor (body position)

Some of the sensors are the same as the ones adopted in a simple screening,

but sleep condition can be evaluated by the EEG, EOG, and EMG placed on the

geniohyoid muscle. In addition, it is possible to evaluate the relation between the

deepness of the sleep and the apnea/hypopnea events.

The PSG is a general method, but some drawbacks have also been reported as

follows[6][7][8].

1. Time Consuming Tasks

In order to estimate AHI, sleeping hours must be estimated through EEG.

So, this method requires patients to sleep at hospital during screening and

therefore the large volumes of data are obtained. Every instrument has a

program that automatically estimates the deepness of the sleep and detects
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1.4 Screening and Diagnosis of SAS

apnea/hypopnea events, but the program is not reliable enough. So, it is

necessary for medical technologists to manually confirm and modify the result

of the program.

2. Many Contact Sensors

Many contact sensors must be attached on patients’ body and so the patients

often cannot sleep as deeply as usual. This does not lead to the deep muscle

relaxation usually found at home and may cause the underestimation of the

severity.

3. Daily Variance and First Night Effect

In sleep studies, a famous phenomenon has been reported by Arens, et al,

[10]. This so-called First Night Effect is that the first night of laboratory

sleep contains more awake periods and less Stage I-REM sleep. This effect

rapidly adapts out by the second night of sleep, but at hospital several times

PSG screening is rather unfavorable. This phenomenon may also cause the

underestimation of the severity.

Based on these drawbacks, other methods that can estimate the severity more

simply have recently been focused on.

1.4.3 Diagnosis

On account of the drawback called the First Night Effect, the medical specialist

often diagnoses SAS by using not only the AHI but the other criteria such as the

cephalometry measured from X-ray images, Modified Mallampati Grade estimated

by visual examination of the oropharynx. Especially, the enlargement of the upper

airway soft tissues are clearly identified on the MR images. The experienced med-

ical specialists can qualitatively estimate the severity of the OSAS patients by the

visual examination from the MR images of the upper airway. But the sufficient

experience is necessary for the estimation.
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1.5 Medical Images of Upper Airway Soft Tissues

On the other hand, snoring is a typical symptom of OSAS. Medical specialists

have not used these sounds for the diagnosis of OSAS so far, but it has been

known that the snoring sounds of OSAS patients have some peculiar properties.

From the middle of 1990s, some researchers have analyzed the snoring sounds of

OSAS patients to clarify the relation to AHI, but it was and is difficult to realize

such estimation from the acoustic properties of snoring sounds.

1.5 Medical Images of Upper Airway Soft Tissues

1.5.1 Image-based Diagnosis

Visual examination using the X-ray images or MRIs has naturally been adopted

so far, because in OSAS patients the enlargement of the upper airway soft tissues

is in common identified. Figure 1.5 shows an example of X-ray image and MRI

of the upper airway. But those medical images have their own advantages and

disadvantages for the diagnosis of OSAS, which are described in the following

sections.

1.5.2 Cephalogram

Cephalogram is a lateral X-ray image of the head. Prior to photographing, the

head is immobilized by the ear-rods, and is positioned so that the distance from

the head to the X-ray tube and to the film are determined to the constant. The

radiation always passes through the same position of the head. The usefulness of

cephalogram is to know the position of the hard tissues such as hyoid bone and

the upper/lower jawbone.

In this method, measurement points are firstly determined on the cephalogram,

and the distance and the angle among those points are measured. For the upper

airway X-ray image of OSAS patients, the position of the upper/lower jawbone

and the tongue are focused on so as to identify the narrowness of the airway.

For instance, the distance from the hyoid bone to the mandibullar plane (MP-
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Figure 1.5: An example of upper airway MR image in a male OSAS patient

H)(See figure 1.6) indicates the elongated tongue morphology often found in OSAS

patients.

According to conventional cephalometric studies[11][12][13][14][15][16][17][18],

the lower jaw of SAS patients tends to be small and positioned backward. Espe-

cially, this feature is often found in Japanese people. But since the soft tissues

are not clearly photographed in X-ray images, the determination of measurement

points requires much experience of image-based diagnosis.

1.5.3 Upper Airway MR Images

On the other hand, soft tissues are clearly recognized in MR images in comparison

with X-ray images. In addition, three-dimensional anatomical features can be

evaluated. Thus, many researchers have focused on some 3-dimensional features

of the pharyngeal/laryngeal organization to clarify the relation to the severity of

OSAS.

However, those conventional studies have only analyzed quite simple features:
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1.5 Medical Images of Upper Airway Soft Tissues

Figure 1.6: An example of craniofacial and soft-tissue parameters on cephalometric
radiographs[19]

the volume of the tongue and the capacity of the upper airway[20][21], the length

around the neck[22][23], fat volume[22] and etc[10]. It is quite easy to measure

those features from the upper airway MR images, but the acquisition of more

detailed features can be expected by the use of some image processing techniques.

1.5.4 Related Studies

In this section, conventional studies of image-based analysis are introduced. The

author gives notice here that the explanation of the conventional studies in this

section are cited respectively from the original papers.

Kitamura, et al[11], studied the usefulness of cephalometry and pharyngeal find-

ings in determining efficient primary diagnosis of OSAS. Persons with AHI ≥15 in

PSG were considered to indicate OSAS patients. They analyzed the correlation

between AHI and other parameters and conducted stepwise multiple regression

analysis to predict AHI, and studied the screening performance of prediction equa-

tions using a receiver operating characteristic (ROC) curve. Of the 8 cephalometric
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parameters examined, the length of the soft palate (PNS-P; p＝ 0.011) and the

distance from the mandibular plane to the hyoid bone (MP-H; p<0.001) correlated

significantly with AHI. Two indices of the pharyngeal finding and body mass index

(BMI) also significantly correlated with the AHI (MMP; p<0.001, tonsil size ; p＝

0.005, BMI ; p<0.001).

Yu, et al[13], evaluated the cephalometric features of OSAS patients and to elu-

cidate the relationship between cephalometric variables and severity of the apnea-

hypopnea index (AHI). According to their results, patients with OSAS in both

subgroups showed several significant cephalometric features compared with simple

snorers: (1) inferiorly positioned hyoid bone, (2) enlarged soft palate, and (3) re-

duced upper airway width at soft palate. Stepwise regression analysis showed that

anterior displacement of the hyoid bone and retroposition of the mandible were the

dominant overall determinants for AHI in patients with OSAS, and that narrowing

of the bony oropharynx and inferior displacement of the hyoid bone were dominant

determinants for AHI in nonobese patients.

Iida-Kondo[24], calculated the tongue volume/oral cavity volume ration (TV/OCV

ratio) in the oral cavity usingMRI for both OSAS patients and normal controls.

The subjects comprised 20 male patients with OSAS (AHI≥ 5.0, with a diagnosis

of OSAS) and 20 normal male adults (AHI<5.0, with no history of OSAS) as the

controls. They performed MRI to acquire T1- and T2-weighted images. They

estimated tongue volumes on the basis of the cross-sectional area of each image,

then using the tongue volume data, they calculated TV/OCV ratios. In the nor-

mal control group, mean (±SD) body mass index (BMI) was 21.68±1.73 and the

mean TV/OCV ratio was 86.98±3.16% , whereas these values were 25.0±15.94

and 90.56±2.14% , respectively, in the OSAS patient group. The TV/OCV ratio

of the OSAS patient group was significantly higher than that of the normal control

group (p< 0.01).

Yucel, et al[15], examined changes of the upper airway cross-sectional area in

each phase of respiration in different degrees of severity of OSAS with dynamic CT
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Table 1.1: Correlation between AHI and Morphologic Properties in Conventional
Studies

Feature Method Corr. Coef. p-value Literature
PNS-P Cephalogram 0.194 0.011 Kitamura, et al [2]

0.240 Yu, et al [4]
MP-H Cephalogram 0.449 < 0.001 Kitamura, et al [2]

0.310 < 0.01 Sakakibara, et al [5]
0.420 < 0.001 Yucel, et al [6]

TGL Cephalogram 0.320 < 0.01 Yu, et al [3]
0.213 < 0.05 Sakakibara, et al [5]

H-VL Cephalogram 0.430 < 0.01 Yu, et al [4]
0.425 < 0.001 Sakakibara, et al [5]

BMI Other 0.310 < 0.001 Kitamura, et al [2]
0.525 Sakakibara, et al [5]

MMP Visual Exam. 0.316 < 0.001 Kitamura, et al [2]
Tonsil Size Visual Exam. 0.212 0.005 Kitamura, et al [2]

and investigated whether these changes have any correlation with sleep apnea sever-

ity parameters, including PSG and cephalometry. Forty seven patients and twenty

four controlled subjects (habitual snorers) were studied. Cross-sectional area of the

airway at the level of oropharynx and hypopharynx were obtained in each phase of

quiet tidal breathing and at the end of both the forced inspiration and expiration.

Six standard cephalometric measurements were made on the lateral scout view.

All parameters were compared between controls and mild/moderate and severe

OSAS groups. As a result, patients with severe OSAS had significantly narrower

cross-sectional area at the level of uvula in expiration, more inferiorly positioned

hyoid bone, and thicker soft palate compared with patients with mild/moderate

OSAS (p < 0.05) and the control group (p < 0.05). In addition, severe OSAS

patients had bigger neck circumference than those in the control group (p < 0.05).

Sakakibara, et al[14] evaluated the cephalometric features in Japanese OSAS

patients. In their study, 48 cephalometric variables were measured in 37 healthy

males and 114 male OSAS patients. As a result, the non-obese OSAS patients

showed several cephalometric defects compared with their BMI-matched normal
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1.6 Snoring Sounds

Figure 1.7: The vibration of tissues during snoring with oral breath (left) and with
nasal breath (right)

controls: 1) decreased facial A-P distance at cranial base, maxilla and mandible

levels and decreased bony pharynx width; 2) enlarged tongue and inferior shift of

the tongue volume; 3) enlarged soft palate; 4) inferiorly positioned hyoid bone; and

5) decreased upper airway width at four different levels.

Moreover, the volume of the tongue and the airway capacity[20][21], fat volume[22],

and the length around the neck[22][23] have been analyzed quantitatively. In con-

ventional studies, the relation with AHI has also been discussed, but the more

detailed morphological features of the soft tissues have not yet been analyzed so

far.

1.6 Snoring Sounds

1.6.1 Sound-based Diagnosis

Snoring is one of the typical symptoms of OSAS, but they are not so much used for

the diagnosis. But some of the characteristics of snoring sounds in OSAS patients

have been empirically reported so far. The snoring of OSAS patients is known to be

very loud and accompanied by gasps or choking. The acoustic properties have not

been completely clarified quantitatively on account of its complicated mechanism.
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Since it is, however, easy to record snoring sounds with only a microphone and a

sound recorder, many researchers have explore the possibility for the use of medical

diagnosis.

1.6.2 Relation of Oral Snoring to OSAS

The sound signal mostly related to sleep apnea is a snoring sound. Snoring was

once regarded as an indication of good sleep, but recently it has been known to be

one of the symptoms which indicate sleep apnea syndrome [25].

However, benign persons often snore during sleep by the influence of muscle

relaxation caused by the alcohol, fatigue, and/or advanced age. Such kind of

snoring tends to be transient and not serious, but loud habitual snoring is a malign

signal of OSAS.

Snoring sounds are mainly composed of both the vibrational sounds of the

upper airway soft tissues (soft palate, uvula, tongue base, epiglottis, and tonsils)

and the noise passing through the narrowed airway (figure 1.7). So, snoring sounds

are a complex mixture of two or more vibration sounds and some noise. It depends

upon the vibration and fluid dynamics influenced by breathing route during sleep,

the degree of muscle relaxation, and a body position during sleep.

Oral snoring is a typical symptom of OSAS. Open mouth during sleep moves the

lower jaw downward and the tongue base tends to obstruct the airway. Therefore,

a person whose jaw is small, found in many Japanese people, tends to have OSAS

even though he/she is not stout. This cause is different from the enlargement

of the upper airway soft tissues. Thus, it is important to detect oral snoring to

classify OSAS occurring from another reason which cannot be identified from the

MR images.

1.6.3 Simulated Snoring Sounds

Simulated snoring sounds are generated from awake persons who are asked to

breathe deeply enough to vibrate the soft palate, uvula and/or the other sot tissues
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1.6 Snoring Sounds

in their throat. Since this method is useful to control airflow through the nose and

mouth precisely, some of the medical researchers have dealt with this method to

analyze the relation between the respiratory route and the acoustic properties

of snoring sounds. Liistro and colleagues observed[26] a decrease in the sagittal

diameter of the oropharynx followed, during simulated snoring, by high-frequency

oscillations of soft palate and pharyngeal walls. They found that the pattern of

soft palate oscillations was different while snoring through the nose or mouth by

the use of simulated snoring technique. Moreover, Dalmasso, et al[27], Lofaso,

et al[28], Perez-Padilla, et al[33], and Beck, et al[29] have also adopted simulated

snoring for medical or physiological studies.

In this study, the simulated snoring technique is also used to obtain oral and

nasal snoring sounds. Then, the problem is whether the acoustic properties of

simulated snoring sounds are equivalent to those of the actual ones. The similarity

between them is discussed in the next subsection.

1.6.4 Similarities between Natural and Simulated Snoring

Figures 1.8 and 1.9 show the waveforms and the amplitude spectra of the sub-

sequences extracted from snoring episodes produced by breathing orally and by

breathing nasally. In the oral simulated snores, we can find an intensity peak at

over 1kHz. Such acoustic property is also found in the natural snores the sound

source of which is the tongue base[30], and the tongue base snoring is known to

occur with an open oral airway[31]. The same result is also reported by the other

researcher[32]. These conventional reports about the acoustic properties of natural

oral/oronasal snores are consistent with those of simulated oral snores we obtained.

In addition, Perez-Padilla et al indicated that the intensity peaks over 1kHz are

found in OSAS patients[33]. Since many OSAS patients tend to breathe orally

during sleep as is described in section 1, it is possible that such intensity peaks are

related to open mouth during snoring.

In the case of nasal simulated snores, we can find clearly periodic waveforms
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Figure 1.8: Waveforms and amplitude spectra of oral simulated snoring sounds

and the sound spectra which consist of lower frequency components below 500Hz.

Such acoustic property is also found in the natural snores the sound source of which

is the soft palate[30][31]. It has been reported that the palatal snoring occurs with

the oral airway closed[31], and the inspiratory nasal snores have a fundamental

peak with associated harmonic peaks[33]. These conventional reports about the

acoustic properties of natural nasal snores are consistent with those of simulated

nasal snores we obtained.

Based on these conventional studies, it is possible that the simulated snoring

sounds are similar (not necessarily equal) to the natural ones produced by snorers
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Figure 1.9: Waveforms and amplitude spectra of nasal simulated snoring sounds

during sleep. Moreover, simulated snoring has also been adopted in some medical

studies [26][34][35][28][29], and thus we decided to deal with simulated snoring

sounds in this paper.

1.6.5 Related Studies

In this section, conventional studies of snoring sound analysis are introduced. The

author gives notice here that the explanation of the conventional studies in this

section are cited respectively from the original papers.

Perez-Padilla, et al, [33] firstly demonstrated that apnea patients had residual
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energy at 1kHz whereas the nonapneic snorers did not. So, they said that the ratio

of power above 800Hz to power below 800Hz could be used to separate snorers

from OSAS patients.

Fiz, et al[36] studied patients with simple snoring and OSAS, analyzing the

acoustic properties of the snoring sounds. Spectral analysis of snoring sound

showed the existence of two different patterns. The first pattern was characterized

by the presence of a fundamental frequency and several harmonics. The second

pattern was characterized by a low frequency peak with the sound energy scat-

tered on a narrower band of frequencies, but without clearly identified harmonics.

The seven simple snorers and two of the 10 patients with OSAS (AHI=13 and 14,

respectively) showed the first pattern. The rest of the OSAS patients showed the

second pattern. The peak frequency of snoring was significantly lower in OSAS

patients, with all but one OSAS patient and only one simple snorer showing a peak

frequency below 150 Hz. Significant differences in the sound power spectrum of

snoring sound between subjects with simple snoring and obstructive sleep apnea

patients.

Herzog, et al[37], examined simulated snoring under conditions awake, recorded

the produced snoring sounds and compared those sounds with nocturnal snoring.

Snoring sounds were analyzed by FFT and the intensity peaks 1-5 were evalu-

ated. Rhythmic and non-rhythmic snoring events were distinguished depending on

present obstructive apneas. Clinical and PSG data were correlated with the results

of the frequency analysis of the snoring sounds. Simulated snoring sounds revealed

a low frequency of 200 Hz in intensity peaks 1 and 2 with an increase up to 3kHz in

peaks 3-5. Similar frequency patterns were detected in rhythmic nocturnal snoring.

Non-rhythmic snoring events revealed frequency patterns between 2kHz and 3kHz

in all intensity peaks. Simulated snoring resembles rhythmic nocturnal snoring

with low-frequency intensity peaks, whereas non-rhythmic snoring revealed high

frequencies. The examination during simulated snoring and frequency analysis of

snoring sounds might contribute in locating the pathogenesis of snoring.
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Hara, et al[38], determined whether the acoustic characteristics of snoring

sounds differed between simple snorers and patients with obstructive sleep ap-

nea syndrome (OSAS) by using a multidimensional voice program (MDVP) that

analyzes various aspects of voice. Natural overnight snoring was recorded from

each subject while they slept during PSG. For data analysis, four markers were

used: peak frequency, soft phonation index (SPI), noise to harmonics ratio (NHR),

and power ratio. As a result, the Mann-Whitney U test revealed significant differ-

ences between the SPI, NHR, and power ratio of simple snorers and patients with

OSAS. Simple snorers had a high SPI value. OSAS-related snorers demonstrated a

high NHR and low power ratio. MDVP can be used for snoring sound analysis as

a noninvasive examination of sleep-related breathing disorders for differential di-

agnosis. However, a suitable option that is rapid and has an easy-to-use interface

would be more advantageous for analyzing snoring sounds.

Sola-Soler, et al, [39] have showed significant differences in formant frequencies

variability between simple snorers and OSAS patients even when non-postapneic

snores were considered.

Ng, et al, [40] have also found quantitative differences in formant frequencies

between apneic and benign snorers by the use of a Linear Predictive Coding (LPC)

technique. Formant frequencies (F1, F2, and F3) were extracted from the LPC

spectrum for analysis. The accuracy of this approach was assessed using receiver

operating characteristic curves and notched box plots. As a result, quantitative

differences in formant frequencies between apneic and benign snores are found in

same- or both-gender snorers. Apneic snores exhibit higher formant frequencies

than benign snores, especially F1, which can be related to the pathology of OSAS.

This study yields a sensitivity of 88%, a specificity of 82%, and a threshold value

of F1 = 470 Hz that best differentiate apneic snorers from benign snorers (both

gender combined).

Emoto, et al, [6] proposed a novel approach to the diagnosis of OSAS based

on the formants of snoring sounds, extracted via a noise-robust linear prediction
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technique. The proposed method and existing LPC-based method are compared

via a measure, which indicates the standard deviation of first formant frequencies.

The performance of the proposed method was evaluated on a database of clinical

snoring sounds recorded overnight in the laboratory of a hospital sleep diagnostic

center. Compared with existing LPC-based method, they showed that the proposed

method can differentiate (sensitivity : 88.9%, specificity : 88.9%, AUC : 0.85)

between benign snoring (Apnea Hypopnea Index,AHI＝ 6.0± 3.2; 6188 episodes)

and apneic snoring ( AHI ＝ 40.7± 20.2; 14066 episodes)

As far as the author knows, the other researchers worldwide such as Dalmasso,

et al[27], Sola-Soler, et al[7], Abeyratne, et al[41], Osborne, et al[42], Osborne,

et al[42], and so on. Conventional studies related to snoring sounds have been

surveyed in detail by Pevernagie, et al [43] in 2009. According to the above-

mentioned representative studies, the acoustic properties of snoring sounds are

so various and complex that one cannot easily extract useful information about

the sleep apnea and still does not reach to a general conclusion of the acoustic

properties of OSAS-related snoring sounds.

1.7 Summary

SAS is not necessarily a personal problem but a social one, which annoys the other

people by their loud snoring and sometimes causes a serious accident. The patients

should receive a medical treatment in the earlier stage, but they cannot perceive

their own symptoms during sleep.

In the present state of SAS screening, sleep conditions of the patients are

recorded from EEG, ECG, SpO2, and the other contact sensors during sleep. They

must sleep at hospital overnight, and many contact sensors prevent them to sleep as

well as at home. This sometimes causes the underestimation of the severity. Thus,

other approaches to simpler screening for SAS have been focused on recently.

In the upper airway MR images, the enlargement of the upper airway soft
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tissues are clearly photographed and often used for visual examination of medical

specialists. The enlargement is mainly caused by obesity and directly obstructs

the upper airway. Indeed, it is known that the Body-Mass Index (BMI) is highly

related to the severity of OSAS[12]. Snoring is a vibration of the upper airway soft

tissues and generates a loud sound especially when oral breathing. Oral snoring

is a typical symptom of OSAS and the detection is quite important. Open mouth

during sleep moves the lower jaw downward. The tongue base also moves downward

in accompaniment with the jaw and obstructs the airway. Therefore, many of the

people whose jaw is small have OSAS even though they are not stout.

This study pays attention to these two biomedical signals which become dif-

ferent causes of OSAS respectively, and tries to extract the morphological and the

acoustic properties of these signals in OSAS patients.
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Chapter 2

Morphological Analysis of the Upper

Airway Soft Tissues in MR Images for

Classification of Severe OSAS

2.1 Introduction

PSG is a gold standard method for diagnosing SAS and is widely used in common.

As is described in chapter 1, It consists of tens of contact sensors such as EEG,

ECG, EMG, EOG, thermistor, pulse oximetry, and so on. The sensors should be

equipped on the patients body so as to estimate AHI, which is used for objective

index for the diagnosis and treatment. But PSG requires patients to stay in hospital

overnight, so in many cases they cannot sleep as deeply as usual and the severity

tends to be underestimated. Moreover, PSG is also influenced by the first night

effect[1] also introduced in chapter 1. In order to avoid this effect, it is better to

record the biosignals in the same hospital room for several consecutive nights, but

actually the several times of recording are done only when the obviously irregular

results are identified through the first night. Normally the PSG data recorded

through the first night are used for medical diagnosis.

On the other hand, a simple monitoring instrument is adoptable for home

monitoring. It is possible to begin a medical treatment without using the PSG
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2.1 Introduction

when the patient is clearly severe according to the home monitoring result. It

can be considered that this method is not influenced as much as PSG by the first

night effect because the patient is allowed to sleep at his/her home. But overnight

recording is also necessary and this method tends to underestimate the severity.

By the way, according to the MR images, it can be found that the upper airway

in OSA patients is narrower than those in benign persons. Especially, the enlarge-

ment of the upper airway soft tissues such as soft palate, uvula, tongue, and tonsils

are the main factors of airway obstruction. Morphological features of them have

been quantitatively analyzed so far by the use of cephalogram [2][3][4][5][6][7][8][9],

and MR images [10][11][12][13][14][15].

Cephalogram is the measurement of the human head by X-ray imaging and is

used to gauge the size and spacial relationships of the teeth, jaws, and cranium.

Recently, it has been reported that the distance from the mandibular plane to the

hyoid bone (MP-H) and the length of the soft palate (PNS-P) are highly correlated

with AHI. In X-ray images, hard tissues such as bones or cartilage can clearly be

recognized. However, since the soft tissues are not so clearly recognized in X-ray

images, much experience in image diagnosis is necessary to visually determine the

gaging points.

In the case of MR images, soft tissues are clearly recognized and three-dimensional

evaluation is also practicable. In conventional studies, the volume of the tongue and

the airway capacity[11][15], fat volume[13], and the length around the neck[13][14]

have been analyzed quantitatively. Arens, et al [12] evaluated the relation of the

length from the mandible bone to the clivus with AHI in a little more detail than

conventional studies, but the detailed morphological features of the soft tissues

have not sufficiently been analyzed so far.

This chapter analyzes quantitatively the tongue morphology and the cross sec-

tional area of the narrowest upper airway in the sagittal and cross sectional planes

of the upper airway MR images and discuss the relation between those features and

the severity of OSA. Also, the severe OSA is detected by thresholding the severity
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2.2 Subjects and Instrument

Table 2.1: Photographing conditions of the sagittal and transverse planes in the
upper airway MRIs

T1-weighted T1-weigted
Sagittal Plane Transverse Plane

TE 12 ms 12 ms
TR 450 ms 518 ms
Field of View 256×256 mm2 256×256 mm2

Slice Thickness 4.5 mm 5 mm
Slice Gap 0.5 mm 1 mm
Num. of Slices 20 25
Matrix 205×205 205×205

predicted with the linearly weighted image features obtained from multi-regression

analysis. The performance is evaluated based on the sensitivity, specificity, and

efficiency.

2.2 Subjects and Instrument

The subjects are 43 male OSAS patients (ages: 24-83, the median of the age: 52,

AHI: 3.9-90.3, the median of AHI: 30.4), who have received the medical treatment

at National Hospital Organization Hakodate Hospital. The upper airway MR

images are obtained from all of them.

The instrument is the InteraMaster R8 made by PHILIPS Co.Ltd., and the

magnetic field strength is 1.5T. The upper airway MR images analyzed here are

composed of T1-weighted sagittal and transverse planes (see figure 2.1) under the

conditions shown in table 2.1. While photographing, the subjects lie on their back

in bed and their head is completely stabilized. The examples of the sagittal planes

photographed from mild or severe patients are shown in figure 2.4.

The value of AHI is estimated from the result of PSG screening by medical

technologists in NHO Hakodate Hospital. In this study, the patients whose AHI is

greater than or equal to 30 is defined as severe SAS patients based on the AASM

(American Academy for Sleep Medicine) Severity Standard [3][16]. The AHIs of
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2.3 Feature Extraction Method

Figure 2.1: Sagittal and transverse planes of MR Images (cited from Wikimedia
Commons, http:// upload.wikimedia.org /wikipedia /commons /e /e1 /Human
anatomy planes.svg)

21 subjects are less than 30, while those of the other 22 subjects are greater than

or equal to 30.

Before conducting the analysis, the author had obtained the permission to use

the patients’ medical data for the purpose of this study at the Ethical Committee

at NHO Hakodate Hospital.

2.3 Feature Extraction Method

2.3.1 Tongue Region Segmentation

In order to evaluate the morphological features of the tongue region in the sagit-

tal plane, it is necessary to perform the segmentation of the tongue region. In
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Figure 2.2: Anatomic chart of the upper airway and the tongue region

conventional studies, segmentation of many organs has been performed in various

algorithms, such as brain[17][18], liver[19], and blood vessels[20][21]. But no meth-

ods of the tongue region segmentation have been proposed. Since conventional

methods for the other organs are based on the own characteristics, they cannot

necessarily be applied to the tongue segmentation. Thus, the author considered

it difficult to develop an automation technique for the tongue region segmentation

and for now decided to extract the tongue region manually one by one on the

OsiriX, a medical image processing software.

The tongue region in this study is defined as the region enclosed by the dotted

line in figure 2.2, which includes the tongue base and the geniohyoid muscle, and

does not include the epiglottis, hyoid bone, and mandible bone. This region can

easily be recognized.
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2.3 Feature Extraction Method

Figure 2.3: Selection of the cross-sectional MR image through the narrowest airway

2.3.2 Morphological Feature of the Tongue Region

The center of gravity of the whole extracted tongue region is firstly calculated.

From this point, straight lines are radially extended at the fixed angular intervals

of θ = π/24 radian, and the radius Li (i = 1, 2, · · · , 48) from the center to the

circumference of the tongue region is estimated (figure 2.5). Since the patients lie

on the bed while photographing, vertical direction in the image indicates the bed

surface and is defined as zero radian. In addition, Li(n) is defined as ith length of

nth subject. Such feature extraction method has widely been used in many pattern

recognition applications[22].

Precisely, the bending angle of the subject’s head while photographing is slightly

various in subject and this affects the definition of θ direction. It is desirable that

this direction should be revised by the bending angle of the head when the subject

lies on bed. But since there are not any quantitative and objective methods to

measure the bending angle from the MR images, the author thought that such

revision is difficult under the present conditions. However, the photographed im-

ages are obtained from the patients whose head is completely stabilized guided by
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the radiological technologists for medical diagnosis. Accordingly, it is considered

that the patients’ body positions when photographing are sufficiently common for

objective evaluation.

2.3.3 Sectional Area of the Narrowest Upper Airway

Next, the author focused on the cross sectional plane of the MRI to evaluate the

narrowness of the upper airway. It is expected to obtain useful features for airway

obstruction caused by the enlargement of tonsils, which cannot be evaluated using

the sagittal plane. The MR images are not the ones taken from the OSA patients

during sleep, but it is known that the airway narrowing can also be found in

awake OSA patients[23]. Many cross sectional planes are taken from the top of

the patient’s head, but we adopted the image whose sectional area is the narrowest

compared with the other slices (figure 2.3).

The narrowest cross sectional area in the upper airway is evaluated by the

number of image pixels. As same as the tongue region segmentation, the author

painted the sectional area of the upper airway in green color manually using a

mouse on the image processing software OsiriX. The green pixels are automatically

counted by a computer program on the statistical software R, and in this study the

number of counted pixels (S(n)) is defined as the sectional area of the narrowest

airway from the MR image of n-th subject. So, S(n) is not an actual area whose

unit is cm2 but the number of pixels in the image whose unit is ”pixels”.

2.4 Evaluation Method

2.4.1 Correlation Coefficient with Apnea/Hypopnea Index

The quantified morphological features estimated from the upper airway MRIs are

evaluated by calculating the correlation coefficient, R, (Pearson’s correlation) with

Apnea/Hypopnea Index (AHI). Let X(n) be one of the morphological features

estimated from the nth subject, and AHI(n) is the value of AHI estimated from
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Figure 2.4: Upper airway MRIs of the subjects from benign to severe OSA
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Figure 2.5: Directions whose correlation coefficients are greater than 0.5

PSG screening of the nth subject. The correlation coefficient, R, is calculated by

R =

∑N
n=1(AHI(n)− AHI)(X(n)−X)√∑N

n=1(AHI(n)− AHI)2
√∑N

n=1(X(n)−X)2
(2.1)

where X and AHI are, respectively, calculated by

X =
1

N

N∑

n=1

X(n) (2.2)

AHI =
1

N

N∑

n=1

AHI(n) (2.3)

where N is the number of subjects (N = 43).

2.4.2 Classification of the Severe OSAS using Multi-Regression Anal-

ysis

The severity of OSA is predicted by the use of multi-regression analysis on the

tongue morphology and the narrowness of the upper airway. Let the explanatory
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variables be Yi, and the predicted severity is calculated by

AHI′ =
∑

i

wiYi + w0 (2.4)

where AHI′ is a prediction value of the severity. Notice that the explanatory

variables Yi are selected from the feature values highly correlated with AHI. Then,

the severe OSA is detected as follows:

If AHI′ > θ then the patient is evaluated as Severe else Non-severe

In this study, the threshold θ is set to 30, a criterion of severe SAS defined

by American Association of Sleep Medicine (AASM). Finally, the detection results

are compared with the judgement from the actual AHI values, and evaluated using

three values: sensitivity, specificity, and efficiency. Each measures are calculated

as follows:

Sensitivity =
TP

TP + FN
(2.5)

Specificity =
TN

FP + TN
(2.6)

Efficiency =
TP + TN

TP + FP + FN + TN
(2.7)

where TP, FN are the number of severe subjects classified to the severe and the

non-severe category, and FP, TN are the number of non-severe subjects classified

to the severe and the non-severe category (see table 2.2).

Namely, if the sensitivity is high, many severe patients are correctly classified

to the severe category, while if the specificity is high, many non-severe patients are

correctly classified to the non-severe category. Also, if the efficiency is high, many

of both severe and non-severe patients are correctly classified to the respective

category.

53



2.4 Evaluation Method

Table 2.2: Contingency table made by comparing the classification results and the
actual severity

Classification Results Actual Severity
Severe (Positive) Non-Severe (Negative)

Severe (Positive) True Positive (TP ) False Positive (FP )
Non-Severe (Negative) False Negative (FN) True Negative (TN)

2.4.3 Comparison with the Other Features in Conventional Studies

As is described in section 2.1, some morphological and volumetric features of the

oropharyngeal tissues have been focused on to clear the relation with sleep apnea.

Although the detailed morphological features of the soft tissues have not sufficiently

been analyzed so far, it is necessary to compare those features with the method in

this chapter.

Table 2.3 shows the overview of morphological and volumetric features ana-

lyzed in conventional studies. Since a technical method to determine the region

of interest (ROI) has not been described in many papers, it should be noticed

that conventional methods are not sufficiently objective. Because some of the soft

tissues are not clearly photographed in MR images very often and there are indi-

vidual differences in morphological features, a precise definition to determine the

ROI should be needed. So, in order to compare with those conventional features,

a detailed method to determine the ROI is firstly defined in this subsection.

Some of the conventional features should be omitted for some reasons. Since

the abdominal circumference cannot be estimated from the upper airway MRI, it

is left out from the comparison targets. In addition, some features around the

Mandibular plane proposed in [24] are excluded because this method is so complex

and troublesome that it could not be useful to realize an automatic classification

method. In order to estimate the tongue and soft palate volume, it is necessary to

precisely determine the ROIs of the tongue and soft palate in transverse planes.

But in some slices the boundary of them are not clearly recognized, so the objective
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Figure 2.6: Procedure to determine the neck circumference

evaluation cannot be done without the sufficient anatomical knowledge. According

to this, comparison targets in this section are (1).tongue area in sagittal plane,

(2).tongue circumference in sagittal plane, (3).upper airway volume, and (4).neck

circumference.

The tongue circumference and tongue area in sagittal plane are easy to be

determined at hand according to the method in section 2.3.1.

The neck circumference is determined by slight complex procedures. Firstly, in

sagittal plane, the boundary from the jaw to the Adam’s apple and that around

the nape of the neck are respectively marked with green and red using a mouse

on the screen. Next, all distances between a point on the red line to the one on
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Figure 2.7: Procedure to determine the transverse planes for tongue volume esti-
mation

the green line are calculated, and the shortest distance is determined. Then, the

cross sectional plane of the neck along with the line with the shortest distance is

obtained using a medical imaging software, OsiriX. Finally, the circumference of

the cross sectional plane is calculated.

The airway volume is estimated based on transverse planes. Firstly, the trans-

verse plane which comes contact with the back of the tongue is determined. Sim-

ilarly, the one which crosses the root of the epiglottis is also determined. All

transverse planes from the first plane to the last one are used to estimate the

airway volume. In each plane, the cross sectional area of the airway is manually

painted out. Since the hollow is photographed in a black or darker color and the

surrounding tissues are in much lighter gray, there is no problem about such man-

ual coloring for objective evaluation. Finally, these colored regions in transverse

planes are reconstructed in 3D images using the OsiriX. The volume is automati-

cally calculated by this software.
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Table 2.3: Overview of the oropharyngeal features having been focused on in con-
ventional studies

Features Literature
Tongue Area in SP B. L. Herrmann, et al, Eur. J. Endocrinol., 151, 2004
Tongue Circum. in SP B. L. Herrmann, Eur. J. Endocrinol., 151, 2004
Tongue Volume R. J. Scwab, et al, AJRCCM, 2003
Soft Palate Volume M. Okubo, et al, Sleep, 2006
Abdominal Circum. V. Hoffstein, Eur. Respir. J., 5, 1992
Upper Airway Volume C. Iida-Kondo, et al, J. Med. Dent. Sci., 53, 2006

R. J. Schwab, et al, AJRCCM, 2003
Neck Circumference V. Hoffstein, et al, Eur. Respir. J., 5, 1992
Features around the MP M. Okubo, et al, Sleep, 2006

SP: Sagittal Plane, MP: Mandibular Plane, Circum.: Circumference

2.5 Results

Figure 2.8 shows the correlation coefficients of L1−L48 with AHI. The correlation

value is over 0.5 if i = 3, 4 and i = 24, 25, · · · , 28. Each of these directions are,

respectively, called A (i = 3, 4) and B (i = 24, 25, · · · , 28). In the region A, the

maximum correlation is R = 0.526(p < 0.001) when i = 3, while in the region B

the maximum correlation is R = 0.601(p < 0.001) when i = 26.

Also, the correlation of the sectional area of the upper airway (S) with the

severity AHI is calculated to R = −0.354(p = 0.02 < 0.05). In table 2.4, the mean

and standard deviation of the feature values (L3, L26, S) in the mild to moderate

OSA patients (AHI < 30) and in the severe patients (AHI ≥ 30). According to

this result, the values of L3 and L26 in the severe patients are relatively higher,

and S tends to be lower than those of the other patients.

Table 2.6 shows the average, standard deviation, and correlation coefficient

with AHI. In conventional features (upper four), the correlation coefficients with

the severity are relatively good, since more than 0.4 value can be obtained. But

in the case of L3 and L26 the coefficients are still better. These features are also
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based on the tongue morphology, but the conventional methods are based on the

volumetric features. Thus, it becomes clear that the tongue morphology has a

more important role to estimate the severity of sleep apnea than the volumetric

feature of the tongue. Since P-value of all features except for airway volume are

less than 0.05, these correlation with AHI are sufficiently significant. Unexpectedly,

the airway volume has no relation to the severity of OSAS at all.

Next, the most correlated features L3, L26 and S are adopted as the explanatory

variables as the multi-regression equation in equation 2.4, and the author obtained

the prediction equation as follows:

(1) Using only morphological features of the tongue region (L3, L26) as explanatory

variables (Y1, Y2)

AHI′ = 0.192× L3 + 1.511× L26 − 93.866 (R2 = 0.375)

(2) Using only cross sectional areas of the upper airway (S) as an explanatory

variable (Y1)

AHI′ = −0.093× S + 46.987 (R2 = 0.125)

(3) Using both features (L3, L26, S) as explanatory varaiables (Y1, Y2, Y3)

AHI′ = −0.052× L3 + 1.593× L26 − 0.045× S − 94.117

(R2 = 0.398)

The specificity, sensitivity, and efficiency of three multi-regression equations are

shown in table 2.5. The sensitivity of the no.2 equation is higher than that of no.1

equation and the specificity and efficiency of no.3 equation are the best among

them.
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Figure 2.8: Correlation coefficients of Li (i = 1, 2, · · · , 48) with AHI (Left) and
relationship between F5 and AHI (Right)

2.6 Discussion

2.6.1 Correlation with the Severity

The directions with which the correlation coefficients are over 0.5 can be separated

into region A and B.

The region A (L24, L27) is considered to indicate an enlargement of the back

of the tongue, which is also known to be typical in OSA patients[3]. Under the

present situation, a visual examination of the oral cavity is the most common

method of assessing the enlargement. But according to table 2.7, MMP (modified

Mallampati grade), which is determined by the visual examination of the oral

cavity (See figure 2.10), is not so much correlated with AHI (R = 0.316) as our

feature is (R = 0.611). This is because the inferior positioning of the soft palate
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Table 2.4: The mean and standard deviation of feature values in patients with
AHI<30 (from benign to moderate) and with AHI≥ 30 (serious)

Features AHI< 30 AHI≥ 30
Tongue (L3) [pixels] 96.06 (±9.11) 103.51 (±9.61)
Tongue (L26) [pixels] 86.21 (±6.79) 92.56 (±8.48)
SA (S) [pixels] 124.33 (±107.99) 53.14 (±40.94)

Table 2.5: Sensitivity, specificity, and efficiency of multi-regression equations with
the cut-off AHI determined to 30

Equ. Sensitivity Specificity Efficiency
(1) 0.864 0.429 0.651
(2) 0.955 0.238 0.605
(3) 0.909 0.524 0.721

is categorized to one of the four grades by the visual examination qualitatively,

while in our method the inferior positioning can be evaluated more precisely and

quantitatively than MMP’s four grades.

The region B (L5, L6) is nearly diagonal to the region A (L24−L28) and slightly

toward the airway. According to figure 2.2, the hyoid bone exists in this direction.

Kitamura [2] and Yucel [6] indicated that the lower positioning of the hyoid bone

is associated with OSA using cephalometric techniques. The inferior positioning

makes the tongue elongated.

In addition, since cephalometry does not provide any information of the tongue

enlargement, our method has an advantage in comparison with conventional meth-

ods. Table 2.7 shows some morphological features of the soft tissue in the upper

airway (but BMI is not) and the correlation coefficients with AHI, which have been

reported in conventional studies[2][4][5][6]. Naturally, it is difficult to simply com-

pare these results with each other, because the number of subjects and subjects’

AHI are different among these reports. But, in so far as this table indicates, we can

say that our result is far better than the other features (R = 0.611) and significant
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2.6 Discussion

Table 2.6: Average, standard deviation, and correlation coefficient with AHI of the
proposed and the conventional features both estimated from the upper airway MR
images

Feature AHI<30 AHI≥30 Corr. Coeff. P-value
TA in SP [pixels] 168389(±14670) 174547(±21950) 0.441 0.01
TC in SP [pixels] 441(±21) 454(±20) 0.446 <0.01
Neck Circum. [cm] 41.6(±2.5) 44.1(±4.8) 0.482 <0.01
Airway Vol. [cm3] 6.82(±2.73) 7.60(±3.05) 0.098 0.58
L3 [pixels] 96.1(±9.1) 103.5(±9.6) 0.526 <0.01
L26 [pixels] 86.2(±6.8) 92.6(±8.5) 0.611 <0.01
S [pixels] 124.3(±108.0) 53.1(±40.9) -0.354 0.02

TA: Tongue Area, SP: Sagittal Plane, TC: Tongue Circumference

as well (p < 0.001).

2.6.2 Classification Ability of the Severe OSAS

In the case of equation (1) using only the tongue features, the sensitivity is 0.86

at most, but the specificity is 0.43. Otherwise, the sensitivity reaches 0.955 in the

case of equation (2) using the cross sectional area, but the sensitivity is relatively

low: 0.238. Accordingly, the false positive ratio tends to be high when using the

cross sectional area. In table 2.4, the standard deviation of the cross sectional

area in patients with AHI<30 is higher than that in patients with AHI≥30. Many

of severe OSAS patients generally tend to have narrower airway and the results

here also support it, but it is also found that the eight moderate patients have also

narrower airway. This is the reason why the sensitivity becomes low using equation

(2).

Also, the sensitivity and specificity of equation (3) are relatively better than

those of equation (1) and (2). In this study, the cross sectional area is estimated

from the transverse plane around the uvula. This area becomes narrower due to

the enlargement of the tongue, soft palate, and tonsils. Especially, tonsils cannot

be photographed in the sagittal plane. This is because the sensitivity becomes
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2.6 Discussion

Figure 2.9: Directions whose correlation is higher than 0.5 (region A and B) and
the corresponding regions in MR images of moderate and severe OSAS patients.

Figure 2.10: Modified Mallampati Grade; Class I (soft palate, uvula, faces, pillars
visible), Class II (soft palate, uvula, faces visible), Class III (soft palate, base of
uvula visible), Class IV (only hard palate visible), (cited from Wikimedia Com-
mons, http:// commons.wikimedia.org/ wiki/ File:Mallampati.svg)
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2.7 Conclusion

Table 2.7: Correlation between AHI and Morphologic Properties in Conventional
Studies

Feature Method Corr. Coef. p-value Literature
PNS-P Cephalogram 0.194 0.011 Kitamura, et al [2]

0.240 Yu, et al [4]
MP-H Cephalogram 0.449 < 0.001 Kitamura, et al [2]

0.310 < 0.01 Sakakibara, et al [5]
0.420 < 0.001 Yucel, et al [6]

TGL Cephalogram 0.320 < 0.01 Yu, et al [4]
0.213 < 0.05 Sakakibara, et al [5]

H-VL Cephalogram 0.430 < 0.01 Yu, et al [4]
0.425 < 0.001 Sakakibara, et al [5]

BMI Other 0.310 < 0.001 Kitamura, et al [2]
0.525 Sakakibara, et al [5]

MMP Visual Exam. 0.316 < 0.001 Kitamura, et al [2]
Tonsil Size Visual Exam. 0.212 0.005 Kitamura, et al [2]
Tongue Area in SP 2D MRI 0.441 < 0.01 Herrman, et al [25]
Tongue Circum. 0.446 < 0.01 Herrman, et al [25]
Neck Circum. 0.482 < 0.01 Hoffstein, et al[26]
Airway Vol. 3D MRI 0.098 0.58 Iida-Kondo, et al[10]
L3 2D MRI 0.526 < 0.001 This study
L26 0.611 < 0.001 This study
SA -0.354 0.02 This study

better by using the cross sectional area estimated from the transverse plane.

2.7 Conclusion

The direction to the back of tongue from the center of gravity is the most correlated

with AHI. In addition, the diagonal direction to the hyoid bone is also correlated.

The length of these two directions are useful information about the severity of

sleep apnea, and the correlation coefficient with the severity is higher than the

other morphological features proposed in conventional studies. Thus, it is useful

to focus on our proposed features to evaluate the severity of sleep apnea.

Multi-regression analysis using those tongue morphological features and the
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2.7 Conclusion

cross sectional area in the narrowest upper airway has been done to predict the

severity of OSAS. By theresholding the predicted severity, severe OSAS can be

detected with 0.909 sensitivity and 0.524 specificity.

In the future, the other morphological features such as soft palate, epiglottis, or

tonsils should be focused on to boost up the sensitivity. Moreover, 3-dimensional

morphological features of the soft tissue are also promising to obtain useful infor-

mation about the severity of OSA.

This study was supported in part by the Grant-in-Aid for General Research

Program from the Akiyama Life Science Foundation.
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Chapter 3

Acoustic Analysis and Classification of

Oral and Nasal Snoring Sounds

3.1 Introduction

In this chapter, the author proposes a novel method to classify oral/nasal snores

using the acoustic properties of snoring sounds: fundamental frequency and the

maximum of the amplitude spectrum in a specific band. The purpose of this

classification is to develop a home medical device which detects an irregular oral-

related snoring automatically at bedside.

Snoring was once regarded as an indication of good sleep, but recently it has

been known to be one of the symptoms which indicate sleep disordered breathing

such as sleep apnea syndrome [1]. Under normal circumstances, breathing during

sleep is primarily nasal rather than oral[2], but numerous investigations have shown

that loud habitual snoring is due to nasal obstruction[3][4], and nasal obstruction

alters airflow dynamics and leads to oral breathing during sleep[5]. Since oral

breathing tends to make the upper airway more collapsible[6], loud snoring caused

by oral breathing is found in many sleep apnea/hypopnea patients. Thus, it is

important to detect oral snoring during sleep in the earlier stage in consideration

of the medical treatment, but we cannot know whether our own snoring is irregular

or not.
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3.1 Introduction

Many medical researchers have analyzed snoring sounds so far in an attempt to

clarify the difference between the acoustic properties of snoring sounds in patients

with and without Obstructive Sleep Apnea Syndrome (OSAS)[7][8][9][10][11][12][13].

Perez-Padilla, et al, [7] firstly demonstrated that apnea patients had residual

energy at 1kHz whereas the nonapneic snorers did not. So, they said that the ratio

of power above 800Hz to power below 800Hz could be used to separate snorers from

OSAS patients. Fiz, et al, [8] found the presence of a fundamental frequency and

several harmonics in snoring sounds of many simple snorers and a low frequency

peak with the second energy scattered on a narrower band and without clearly

identified harmonics in those of OSAS patients.

On the other hand, Herzog, et al, [9] showed that patients with primary snoring

revealed peak intensities between 100 and 300 Hz, whereas OSAS patients showed

peak intensities above 1kHz. The PSG and BMI correlated with peak intensity of

the power spectrum. Hara, et al, [10] have reported that the sound spectrum of

the simple snorers shows a single peak at a lower frequency, whereas the snores of

OSAS patients show multiple power peaks of various amplitudes.

Some researchers have focused on the formant analysis generally adopted in

speech recognition technique. Sola-Soler, et al, [11] have showed significant differ-

ences in formant frequencies variability between simple snorers and OSAS patients

even when non-postapneic snores were considered. Ng, et al, [12] have also found

quantitative differences in formant frequencies between apneic and benign snorers

by the use of a Linear Predictive Coding (LPC) technique. Apneic snorers exhibit

higher formant frequencies than benign snorers, especially F1, which can be related

to the pathology of OSAS. Emoto, et al, [13] focused on the standard deviation of

the estimated formant frequencies (F1) in snoring episodes over 6 hours, which is

relatively higher in OSAS patients than in simple (benign) snorers.

These studies have analyzed snoring sounds of simple snorers and those of ap-

nea patients using FFT or LPC techniques, but their results are quite various.

Thus, many researchers have still tried to clarify quantitative differences between
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3.2 Acquisition of Classification Targets

acoustic properties of benign snores and those of apneic ones. The author’s ap-

proach, which is somewhat different, is to classify snoring sounds into nasal or oral.

This classification can be applied to the automatic detection of oral snoring sounds

which indicate the possibility of OSAS occurrence for normal persons. Although

open mouth and the corresponding loud snoring are highly related to OSAS, few

researchers have focused on the acoustic properties of oral and nasal snoring sounds

and their classification. Dalmasso, et al[14], reported that the shape of cross sec-

tional area in the upper airway are very similar during oral snoring and during

oronasal snoring. But the shape of cross sectional area and its relative values can

change during nasal snoring, but they always remain remarkably different from

the other two (mouth and oronasal routes). Liistro, et al[15], reported that the

frequency of airflow and supraglottic pressure oscillations were less during mouth

than during nasal simulated snoring. These studies are informative, but no con-

crete technical methods have been established to classify oral and nasal snoring

sounds.

In this chapter, the author firstly analyzes the acoustic properties of simulated

snoring sounds with oral and nasal breath and proposes a concrete method for

their classification.

3.2 Acquisition of Classification Targets

3.2.1 Apparatus, Subjects, and Simulated Snoring

A portable linear PCM (Pulse Code Modulation) sound recorder, Olympus LS-10,

is used to record snoring sounds. Sampling frequency and quantization rate are set

to 44.1 kHz and 16 bit respectively. Snoring sounds are recorded from 15 subjects

shown in table 3.1 and the recording time is about 30 seconds per person and per

breath. Before recording, we explained the objective of this study and obtained

the informed consent from all subjects.

While recording, the subjects are asked to simulate snoring by breathing deeply
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3.2 Acquisition of Classification Targets

Table 3.1: Detail of all subjects and the obtained snoring episodes and subsequences
in this study

Subject Age # of episodes # of subseq. Apnea/Benign
A 32 n:9, o:9 n:69, o:66 Benign
B 55 n:8, o:9 n:110, o:109 Benign
C 63 n:7, o:8 n:47, o:80 Apnea
D 52 n:6, o:8 n:21, o:43 Apnea
E 21 n:8, o:8 n:156, o:128 Apnea
F 35 n:0, o:9 n:0, o:101 Benign
G 46 n:8, o:8 n:94, o:131 Apnea
H 40 n:9, o:9 n:95, o:161 Benign
I 67 n:9, o:9 n:122, o:81 Benign
J 63 n:9, o:9 n:90, o:127 Benign
K 62 n:11, o:8 n:57, o:39 Apnea
L 56 n:9, o:8 n:99, o:98 Benign
M 43 n:8, o:7 n:47, o:120 Benign
N 38 n:8, o:9 n:48, o:55 Benign
O 22 n:9, o:7 n:52, o:45 Benign

enough to vibrate the soft palate in their throat. While producing oral snores, the

subjects’ nostrils are completely closed with their fingers, and on the other hand

they are asked to let their mouth completely closed while producing nasal snores.

Such snoring, called simulated snoring in common, is not the one generated from

a person during sleep, but it has traditionally been adopted in some medical or

physiological studies[15][16][17][18][19]. Similarities between simulated and natural

(nocturnal) snoring are described in chapter 1 from the bibliographical point of

view.

3.2.2 Definition of Snoring and Extraction of Snoring Episodes

First of all, a snoring sound produced with each inhalation (called a snoring

episode) should be cut out one by one from the recorded sounds (figure 3.2), but

in many cases the recorded sound contains non-snoring sounds (such as exhalation

noise) as well. In order to distinguish snoring episodes from exhalation noises, the
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3.2 Acquisition of Classification Targets

Figure 3.1: A portable linear PCM recorder for recording snoring sounds (Olympus
LS-11)

definition of snoring sounds should be considered.

According to some medical researchers[20][21], snoring is defined as the sound

of pharyngeal vibration triggered by airflow turbulence across a narrowed upper

airway. From a technical point of view, Abeyratne et al,[22] proposed a paradigm to

solve the issue of defining a snore, and figured out that sounds perceived as snores

by humans are characterized by repetitively released packets of energy, which are

responsible for creating the vibratory sound particular to snores and which define

the pitch of snoring.

However, such vibration dynamics is complex and the acoustic properties are

quite various [19], because they depend highly on the anatomical site of snor-

ing, such as soft palate, tongue, epiglottis, tonsils, and the mixture of them [23].

Therefore, it is not easy to cut out the snoring episodes automatically[13]. In fact,

many automatic extraction methods of snoring episodes have been proposed so

far[24][25][26][27]. For instance, Cavusoglu, et al, [24] have tried to classify snores

and non-snores according to their sub-band energy distributions in the frequency

domain. Karunajeewa, et al, [25] have focused on more various features - number

73



3.2 Acquisition of Classification Targets

Figure 3.2: An extraction method of episodes and subsequences of snoring sounds
from a recorded sound.
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3.2 Acquisition of Classification Targets

Figure 3.3: An example of the harmonic product spectrum calculated with r = 4.

of zero crossings, energy of the signal, normalized autocorrelation coefficient at

1 ms delay and the first predictor coefficient of LPC analysis - so as to classify

snoring, breath, and silence. Accordingly, no decisive methods have been proposed

yet and we did not apply any automatic methods that have been proposed so far

and decided to cut out the sound at each inhalation/exhalation (called candidates

in this paper) manually from the recorded sounds.

On the other hand, ordinary people can empirically distinguish snoring sounds

from simple breathing noises[13]. So, the author asked three persons to judge

whether the candidates are snoring episodes or not. Only the candidates three

persons judged to be snores are adopted as snoring episodes in this paper. This

procedure is the same as the one used in the reference[13].
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3.3 Classification Method

3.2.3 Subsequence Extraction

Since the acoustic properties of snoring sounds are nonstationarily changing as time

passes even in a snoring episode[14][28], the author extracted short-time subse-

quences from all episodes by sliding the window across the episode. This technique

is commonly used in speech recognition. The windows prepared for extracting

subsequences are 0.2 seconds in length and shifted 0.1 seconds. The ith extracted

subsequence is expressed as si(t), and in order to remove the effect of the micro-

phone position si(t) is normalized to E[si(t)] = 0 and E[si(t)2] = 1 where E[·] is

an expectation operator. As a result, 1384 oral and 1107 nasal subsequences are

obtained from all subjects, and they are used as the classification targets.

3.3 Classification Method

3.3.1 Feature Extraction

Fundamental Frequency

Figures 3.4 and 3.5 show some examples of subsequences si(t) and their FFT

amplitude spectra expressed as |Si(f)|. We annotated on the upper right in the

spectrum panels who and what episodes the subsequences are obtained from. For

instance, ”Subj-A, n4” indicates that the subsequence is extracted from the 4th

nasal episodes of subject A. According to these figures, it seems easy to find out

qualitatively some differences between the acoustic properties of oral snores and

those of nasal ones.

Liistro, et al [15] found by observing the pharynx with cineradiography that

during nasal snoring the uvula presents vibrations of relatively high frequency,

whereas the whole soft palate vibrates with a lower frequency during oral snoring.

Since this acoustic property is also found in our observed data shown in figures

3.4 and 3.5, the author adopts the fundamental frequency of snoring sounds as

the first acoustic property for the classification. Many pitch detection algorithms
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have been proposed so far, but the author used in this paper Harmonic Product

Spectrum (HPS) method[29]. This method is useful for the vibrational sounds that

have a unique fundamental frequency and its harmonics. Since such properties are

also found in lower frequency domain (less than about 500Hz) in figures 3.4 and 3.5,

the HPS method is suitable to estimate the fundamental frequency of the snoring

sounds.

The HPS of the amplitude spectrum of the ith subsequence is defined as:

Hi(f) =
r∏

m=1

|Si(mf)| (3.1)

where r is the number of harmonic peaks, |Si(mf)| is the amplitude spectrum,

and m is a scaling parameter. Figure 3.3 shows an example of HPS calculation

when r is set to four. In this case, the HPS is calculated byHi(f) = |Si(f)|·|Si(2f)|·

|Si(3f)| · |Si(4f)|. Namely, if the fundamental frequency is 80Hz, the HPS has the

most prominent peak at 80Hz because the harmonic peaks are also found at 160Hz,

240Hz, and 180Hz in the amplitude spectrum. In this paper, the amplitude spectra

of snoring sounds are low-pass filtered in advance with a cut-off frequency 500 Hz,

because the vibration components lie in the frequency domain less than about 500-

600 Hz [30][23]. As a result, Hi(f) has a single prominent peak at the fundamental

frequency, because only the peak at the fundamental frequency is enhanced by

multiplying the down-sampled amplitude spectra (figure 3.3). Accordingly, we can

obtain the fundamental frequency fb by using the following criterion:

Hi(fb) = max Hi(f) (3.2)

But there is a variety of the number of harmonic peaks in the snore spectra. It

is important to adjust the parameter r to the suitable value. But even if r is not

determined to the correct number of harmonics, Hi(fb) is sufficiently enhanced by

multiplying the down-sampled amplitude spectra.
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Figure 3.4: Subsequences of oral snoring and their amplitude spectra.

The Maximum of the Amplitude Spectrum in a Specific Band

According to figures 3.4 and 3.5, there are some intensity peaks in a specific band

over 1kHz, whereas no such peaks exist in nasal snoring sounds. Agrawal, et al, [23]

have reported that such peaks over 1kHz indicate the tongue base snoring, caused

by the turbulence which occurs when the airflow passes through the narrowed upper

airway, by observing the pharynx with nasendoscopy, and in the case of soft palate

snoring the spectral components are found in less than 500Hz. They also found the

mixture of snoring sounds produced at the tongue base and those at the soft palate,

which are similar to the results of oral snores in this chapter. In addition, according
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Figure 3.5: Subsequences of nasal snoring and their amplitude spectra.

to the fact that open mouth tends to make the upper airway more collapsible[1],

it is natural that the tongue base snores occur with oral breathing. Therefore, we

considered such intensity peaks as a useful property to discriminate oral snores from

nasal ones, and calculated the maximum of the amplitude spectrum in a specific

band as follows:

M = max
f1≤f≤f2

|Si(f)| (3.3)

Namely, the maximum of the amplitude spectrum is obtained in a specific band

which is greater than or equal to f1 Hz and less than or equal to f2 Hz. In this
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case, it is necessary to adjust f1 and f2 to the suitable values so as to realize the

best performance.

A Criterion for the Parameter Adjustment

A combination of two acoustic properties (M, fb) is defined as the 2-dimensional

feature vector expressed with xi = (xi1, xi2) = (M, fb) where M and fb are esti-

mated from the ith subsequence. But it is necessary to adjust some parameters, r

in Eq.(3.1) and f1, f2 in Eq.(3.3). In this paper, the ratio of within-class variance

and between-class variance (called the variance ratio[31][32]) is used for an eval-

uation criterion for parameter adjustment. For a two-class problem, the variance

ratio is defined as

γ =
(m1 +m2)2

σ2
1 + σ2

2

(3.4)

where mj is the mean of and σj is the standard deviation of the feature values,

and j = 1, 2 indicates the class label (oral/nasal) respectively. If the data belonged

to the same class are not widely scattered (i.e. σi is lower) and those belonged

to the different class exist as far as possible from each other (i.e. |m1 − m2| is

higher ), the variance ratio becomes higher. The higher variance ratio means it

possible to discriminate oral from nasal snores easier in the feature space. Thus,

these parameters are determined to the values with which the variance ratio is the

maximum.

3.3.2 Classification

In this paper, we adopt k-Nearest Neighbor (kNN) classification method, which

assigns the class label which is the most frequent among the k reference data closest

to the input whose class is unknown. Though the kNN method is conceptually quite

simple and the parameter is only one (k; the number of neighbors), it is easy to

obtain a nonlinear classification boundary.

Many classification methods have been proposed so far, such as Neural Net-
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works, Decision Tree, Support Vector Machines, and so on[33][32]. But for adopting

them it is necessary to adjust many hyper parameters in advance and sometimes it

causes the classification boundary too complex and therefore the classification rate

decreases in test examples[31]. In this paper, we focused mainly on the concrete

method to extract the acoustic properties of breathing route during snoring for

the purpose of oral snore detection. Accordingly, as for the classifier, we decided

to adopt the simplest method, kNN classifier, which is available without adjusting

many hyper parameters. Naturally, it cannot be denied that the other methods are

more superior than the kNN method, and, therefore, the performance comparison

is necessary for selecting the most suitable classifier. This is analyzed in the next

chapter.

3.4 Performance Evaluation

3.4.1 m-fold Cross Validation Test

The classification performance is evaluated using the m-fold cross validation (m-

fold CV) test defined as the following procedure:

1. Divide all data xi(i = 1, 2, · · · , N) into m groups G1, G2, · · · , Gm.

2. Set j ← 1

3. Adopt Gj as a set of test data and the other data assigned to the remainder

sets Gj′ ̸=j as reference data for k-NN classification.

4. Calculate the classification rate rj of the data belonged to Gj by the use of

kNN method.

5. Set j ← j + 1 and go to step 3 while j < m.

6. Calculate the classification rate of all data with R =
∑m

j=1 |Gj|rj/N where

|Gj| is the number of data allocated to Gj.
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In this paper, m is set to 10 because 10-fold CV test has been widely used in pattern

recognition studies[31]. But, three more different ways of dividing all the data into

groups are considered in the next section in order to evaluate the usefulness of our

method more objectively.

3.4.2 Leave-One-Out Test

Next the author tried to use as many reference data as possible, so we assigned only

one datum to the group Gj. Namely, the number of groups is equal to the number

of all data. The other procedures are the same as m-fold CV. This evaluation test

is called Leave-One-Out (LOO) test in common and has also been adopted in many

studies.

3.4.3 Leave-Episode-Out Test

On further consideration, it is possible that one subsequence may be quite similar

to the ones extracted from the same episode. Even if they do not overlap each

other, the subsequences extracted from the same episode may be generated from

the same vibration dynamics provoked by the same inhalation. Thus, in step 1,

the author defined the number of groups as the number of episodes and assigned

the data extracted from the same episode into the same group. This evaluation

method is in this study called Leave-Episode-Out (LEO) test.

3.4.4 Leave-Subject-Out Test

An individual difference may be what the author must consider the most in this

study. It is not deniable that the difference between the subjects is larger than

the difference between their breathing routes. But this cannot be evaluated using

10-fold CV, LOO, or LEO test. Accordingly, the author assigned the data obtained

from the same subject into the same group, and therefore the number of groups is

the same as the number of subjects. The other procedure is the same as m-fold

CV. This evaluation method is called Leave-Subject-Out (LSO) test in this study.

82
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Figure 3.6: The variance ratio of the fundamental frequency calculated with the
number of multiplication, r, being set to 1 to 6

3.5 Results and Discussion

3.5.1 Optimal Value of r and its Relation to the Acoustic Properties

Firstly, the variance ratio of the fundamental frequency is calculated when the

number of multiplication (r) for the HPS method is adjusted to from 1 to 6 respec-

tively. Figure 3.6 shows that the highest ratio is obtained with r = 3, but when r is

set to the value greater than or less than 3, the ratio becomes lower. This is caused

by two types of waveforms generally found in snoring sounds, simple-waveform and

complex-waveform [19].

In the frequency domain, complex-waveform snores are characterized by mul-

tiple, equally-spaced peaks of power (comb-like spectrum). Otherwise, simple-

waveform snores have only 1-3 peaks and in many cases the first or the second peak

is the most prominent, so the waveform in the time domain looks quasi-sinusoidal.

An example of the incorrect estimation of the fundamental frequency is shown

in figure 3.7, where the maximum peak does not lie at the fundamental frequency
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Figure 3.7: Two examples of incorrect estimation of the fundamental frequency
when r is determined to less than 3 (right) and greater than 3 (left)
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Figure 3.8: Contour plots of classification rate obtained from various f1 and ∆f
under the LSO test

with r = 1, 2 in the left panels and with r = 4 in the right panels.

In the case of left panels, the reason is that the peak at the third harmonic

frequency is the highest in the amplitude spectrum. Many complex-waveform

snores do not have a single dominant peak, but two or more peaks which have

almost the same power (just like comb). Thus, it is not rare that the two-times

multiplication (r = 2) does not sufficiently enhance the peak at the fundamental

frequency for the complex-waveform snores. In the case of right panels, on the other

hand, since simple-waveform snores have only three peaks at most, four or more

times multiplication is too much and lessens the peak of the fundamental frequency

by multiplying the non-peak value at the fourth harmonic frequency. Thus, a slight

protuberance occurred at a half of the fundamental frequency (visually recognizable

in the panel of r = 3 at around 30-40Hz) becomes unfavorably competitive and

the highest peak no longer exist at the fundamental frequency when r = 4.
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3.5.2 Optimal Value of f1 and ∆f and its Relation to the Acoustic

Properties

Next, the most suitable value of the other two parameters (f1,∆f) are estimated

by maximizing the variance ratio, but ∆f is used as f2 = f1+∆f in Eq.(3.3). The

left panel in figure 3.8 is a contour map of the variance ratio when f1 is set to from

400 Hz up to 1kHz and ∆f from 10 Hz up to 1.2kHz. The maximum is obtained

when f1 and ∆f are 700 Hz and 720 Hz respectively. This result indicates that

the intensity peak found in oral snores ranges from 700 Hz to 1420 Hz. Compared

with figures 3.4, it is quite natural to understand that this range can lead to the

best value to extract the innate properties of oral snores.

From a review of the literature, the author discusses what kind of phenomenon

such intensity peak reflects. According to Agrawal and coworkers’ report[23], the

site of snoring is the soft tissues in the upper airway such as the soft palate, tongue

base, epiglottis, and tonsils. But in many cases the main site is the soft palate

and/or the tongue base [30][34]. Agrawal [23] also demonstrated that in the case

of tongue base snores an intensity peak is found in a specific band over 1 kHz while

the palatal snores consist of lower frequency components (less than 500 Hz). The

similar results are also reported by other researchers[30][35].

In comparison with the results in this chapter, oral snoring sounds do not have

only lower frequency components below 500 Hz, but include higher frequency com-

ponents at around 1kHz as well. From this and from a review of the literature, oral

snoring sounds are regarded as a mixture of the palatal snoring (lower frequency)

and the tongue base snoring (higher frequency).

3.5.3 Optimal Value of k and Classification Results

In this section, the number of neighbors (k) for the kNN classifier is adjusted under

the four cross validation evaluation. Figure 3.9 shows the classification rate when

k is set to from 1 to 50 with 2 steps. The classification rate is largely converged to
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Figure 3.9: Classification rates with the number of neighbors, k, set to 1 to 50 with
2 steps under the four cross-validation tests .

0.92 with k > 7 under the 10-CV, LOO, and LEO evaluations. In the case of LSO

test, the classification rate reaches 0.88 when k is set to 7, but gradually increases

up to 0.89 when k=19. This indicates that there is a little individual difference in

the acoustic properties of snoring sounds. But we can obtain a good performance;

the classification rate is 0.89 at least if the parameters are suitably adjusted.

Figure 3.10 shows scatter plots in the feature space where oral and nasal subse-

quences are represented with blue and red points respectively. Oral snores are more

widely scattered than nasal ones, but they are well separated from each other ex-

cept a few outliers. In general, if the number of neighbors (k) is set to lower value,

the classification boundary is so complex that it cannot correctly discriminate some

test data around the classification boundary. From figure 3.10, it is obvious that

the boundary becomes smoother if k is set to 19 compared with k = 7. As a result,

the better performance is obtained with k = 19 at least under every evaluation.

Table 3.2 shows the detail result of the classification with k = 19, where the
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Figure 3.10: Scatter plots of nasal (red) and oral (blue) snoring sounds and the
classification boundary estimated by kNN classifier with k = 1, 5, 7, 13, 19, and 23
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Table 3.2: Classification rate with the optimal parameters (r = 3, f1 = 700, f2 =
1420, k = 19) under the four different evaluation methods

Test Classification Rate
Nasal (% ) Oral (% ) Total (% )

10-fold CV 1014/1107 (91.60%) 1289/1384 (93.14%) 2303/2491 (92.45%)
LOO 1015/1107 (91.69%) 1283/1384 (92.70%) 2298/2491 (92.25%)
LEO 1012/1107 (91.42%) 1281/1384 (92.56%) 2293/2491 (92.05%)
LSO 964/1107 (87.08%) 1268/1384 (91.62%) 2232/2491 (89.60%)

rates are about 92% in total under the three evaluation tests except the LSO.

Under the LSO test the rate is about 3% lower than that under the other tests.

In general, if the number of data is large enough to achieve the objective high

performance, the classification rates are almost the same under every evaluation

test[31]. Thus, the number of our data is not so small that we cannot evaluate

our method objectively, but, in consideration of the individual difference, it is not

so large that we can achieve (completely) objective results. So, it is necessary to

obtain more data from more subjects in the future.

3.5.4 Classification Results of Oronasal Simulated Snoring

Finally, we show and discuss the classification result if the kNN classifier receives

oronasal snoring sounds as the input data. Oronasal snoring sounds are obtained

from the same subjects in table 3.1, who are asked to simulate snoring by breathing

both orally and nasally with open mouth and without closing the nostrils. Since

oronasal snoring seems to be found more generally than (complete) oral or nasal

snoring, it is necessary to discuss what results are obtained if such snoring sounds

are given to our proposed method.

Figure 3.11 shows some examples of waveforms and the amplitude spectra of

oronasal snores. The second panel from the top is similar to the nasal snores in

figure 3.5, whereas the other panels are similar to the oral snores in figure 3.4. In

addition, figure 3.12 shows scatter plots of oronasal snores on the 2-dimensional
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Figure 3.11: Waveforms and amplitude spectra of oronasal simulated snores

feature space. Compared with figure 3.10, the distribution largely overlaps both

oral and nasal distribution. Thus, we can find that two acoustic properties of

oronasal snores include both those of oral snores and those of nasal ones, and there

are no peculiar properties of oronasal snores.

In contrast with oral and nasal snores, it is difficult for subjects to precisely

control the airflow while breathing, namely, difficult to equally divide the airflow

into oral and nasal cavity while oronasal breathing, because of nasal congestion

and/or breathing habit which depend on the subject. Accordingly, in consideration

of individual difference, we analyzed the classification result of oronasal snores in
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Figure 3.12: Scatter plots of oronasal simulated snores on the 2-dimensional feature
space

every subject under the LSO test (shown in table 3.3). Except for subject J, the

majority of oronasal snores are classified into oral class, while a small number of

oronasal ones into nasal class. The rate of oral class is about 81.2% in average.

Therefore, the acoustic properties of oronasal snores include mainly those of

oral ones. Dalmasso, et al, described that the shape of cross sectional area in the

upper airway are very similar during oral snoring and during free snoring (oronasal

route)[14]. This report supports our results. As a result, our method can detect

open mouth during snoring whether the nostrils are closed or not, because oronasal

snores are also produced by open mouth. According to the fact that open mouth

is related to sleep apnea as is described in section 1, our method is also applicable

to oronasal snores.
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Table 3.3: Classification results of oronasal simulated snores

Subjects # of Subseq. Oral (%) Nasal (%) Majority
A 32 31 (96.9%) 1 (3.1%) Oral
B 102 88 (86.3%) 14 (13.7%) Oral
C 60 60 (100%) 0 (0.0%) Oral
D 55 53 (96.7%) 2 (3.3%) Oral
E 65 35 (53.8%) 30 (46.2%) Oral
F 82 82 (100%) 0 (0.0%) Oral
G 120 90 (75.0%) 30 (25.0%) Oral
H 117 111 (94.9%) 6 (5.1%) Oral
I 51 51 (100%) 0 (0.0%) Oral
J 105 24 (22.9%) 81 (77.1%) Nasal
K 65 51 (78.5%) 14 (21.5%) Oral
L 85 76 (89.4%) 9 (10.6%) Oral
M 110 100 (90.9%) 10 (9.1%) Oral
L 80 70 (87.5%) 10 (12.5%) Oral
O 100 76 (76.0%) 24 (24.0%) Oral

Total 1229 998(81.2%) 231(18.8%) –

3.6 Conclusion

From the acoustic properties of snoring sounds, nasal snores consist of lower fre-

quency components less than 500 Hz, whereas oral snores have both the lower

frequency components and the intensity peak at around 1kHz. And it is found

that the fundamental frequency of oral snores tends to be lower than that of nasal

ones. In this paper, we focused on the difference of these acoustic properties to

classify oral/nasal snoring sounds. We adopted the HPS method to find the fun-

damental frequency and calculated the maximum of the amplitude spectra in a

specific band, which is greater than 700 Hz and less than 1420 Hz. As a result,

oral and nasal snores can be successfully classified with good accuracy, 89% at least,

using two acoustic properties we focused on and the kNN classification method.

Moreover, we clarified what kind of phenomena the acoustic properties we ob-

tained reflect from the medical and physiological literature and demonstrated that

the majority of oronasal snoring sounds are classified into oral class by the use of
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our method. This means that our method can detect open mouth during snoring,

which is known to be related to OSAS, whether the nostrils are closed or not.

There are still some problems to develop a home medical device which can

detect oral snoring with only a microphone. In the future, we will deal with the

following problems.

1. More data should be collected for objective evaluation and should be com-

pared with natural snoring sounds.

2. It is necessary to compare kNN with the other classification methods to find

the best method for classifying oral/nasal snoring.

3. All snore episodes were cut out manually from the recorded data in this

paper, but this procedure must be done automatically.

This study was supported in part by the Graint-in-Aid for Regional R&D

Proposal-Based Program from Northern Advancement Center for Science and Tech-

nology of Hokkaido Japan.
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Chapter 4

Spectral Classification of Oral and Nasal

Snoring Sounds using a Support Vector

Machine

4.1 Introduction

Under normal circumstances, breathing during sleep is primarily nasal rather

than oral [1], but numerous investigations have shown that loud habitual snor-

ing is due to nasal obstruction, which can have an influence on sleep disordered

breathing[2][3]. Since oral breathing tends to make the upper airway more col-

lapsible [4], such snoring caused by oral breathing is found in many sleep ap-

nea/hypopnea patients and it should be detected in the earlier stage. But un-

fortunately we cannot know our own sleep condition or snoring. Thus, a simple

technical method that can detect oral snoring makes it possible to develop a home

monitoring device in a bedroom.

In conventional studies, the acoustic properties of snoring sounds have been

analyzed so far for the purpose of discriminating apnea patients from simple

snorers[5][6][7], of differentiating palatal from non-palatal snoring for medical surgery[8][9],

and of detecting snoring episodes from overnight sleep sounds contaminated with

non-snore artifacts[10][11]. A few researchers have focused on the difference be-
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Figure 4.1: Simple chart of the snoring sites and the airflow while oral and nasal
breath

tween oral and nasal snoring. Dalmasso, et al, [12] reported that the shape of

cross sectional area in the upper airway is very different during oral snoring and

during nasal snoring. Liistro, et al, [13] demonstrated using cineradiography that

in the case of simulated snoring through the nose, the soft palate is in close con-

tact with the back tongue and the uvula alone presents high-frequency oscillations,

whereas in the case of through the mouth the whole soft palate oscillates at high

frequency. These studies are informative, but they have not focused on a concrete

method to classify oral and nasal snores automatically for the development of a

home monitoring device.

In chapter 3, the author has tried to classify oral and nasal snoring using k-

Nearest Neighbor method based on two acoustic properties (fundamental frequency

and the maximum of the amplitude spectrum in a specific band) , and demonstrated

that about 89% of snores are successfully classified[14][15].

In this paper, the author adopt a Support Vector Machine, which is one of the

most powerful method for pattern classification. Especially, some of the kernel

functions (chi-square and Kullback-Leibler) have recently been known to be effec-

tive for the classification of histogram-based feature vectors [16][17]. Moreover,

Ishigaki, et al, [18] have dealt with the KL kernel as a similarity measure between

frequency spectra and have numerically demonstrated the effectiveness. They also
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4.2 Data Acquisition and Preprocessing

applied the SVM with KL kernel to the early fault diagnosis of LP gas pressure

regulator based on the spectral features. Accordingly, it can be expected that

the SVM-based spectral classification technique outperforms our previous method

reported in the ref.[15].

In order to use SVMs in general, some problem-specific parameters should be

determined in advance, but SVMs have not yet been applied to the classification

of oral and nasal snoring sounds. In this paper, the author adopts seven ker-

nel functions (linear, polynomial, sigmoid, Gaussian, Laplacian, chi-square, and

Kullback-Leibler) for SVM-based spectral classification of snoring sounds and ex-

amine the classification results with various values of the parameters so as to make

the best choice of the kernel and to find the best values of the parameters.

4.2 Data Acquisition and Preprocessing

4.2.1 Data Acquisition

Snoring sounds the author analyzes in this paper are recorded with a portable

linear PCM recorder (Olympus LS-10) with 44.1kHz sampling frequency and 16bit

quantization rate. Fifteen subjects (10 benign snorers, 5 apnea patients) are asked

to simulate snoring by inhaling deeply enough to produce a snoring sound in their

throat with two types of breath; oral and nasal.

While producing oral snoring, subjects’ nostrils are completely closed with their

fingers, whereas they are asked to close their mouth while snoring nasally. Before

recording, the author firstly explained the objective of this study to subjects and

obtained the informed consent from all of them.

4.2.2 Similarity between simulated and actual snoring sounds

In this section, the author summarizes the discussion about the similarity between

simulated and actual snoring sounds reported in our previous paper[15].

In the oral simulated snores, the author can find an intensity peak at over 1kHz
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4.2 Data Acquisition and Preprocessing

(figure 4), which is also found in the actual snores the site of which is known to

be the tongue base[19]. The tongue base snoring tends to occur with an open oral

airway[8][20]. These conventional reports about the acoustic properties of actual

oral snores are consistent with those of simulated oral snores the author obtained.

In addition, Herzog, et al, have reported that simulated oral snoring sounds are

equivalent to the actual (nocturnal) ones according to the peaks of power spectrum

[21],[22].

In the case of nasal simulated snores, the author can find clearly periodic wave-

forms and the sound spectra which consist of lower frequency components below

500Hz. Such acoustic property is also found in the natural snores the sound source

of which is the soft palate[8][19]. It has been reported that the palatal snoring

occurs with the oral airway closed[8], and the inspiratory nasal snores have a fun-

damental peak with associated harmonic peaks[23]. These conventional reports

about the acoustic properties of natural nasal snores are consistent with those of

simulated nasal snores the author obtained.

Based on these literature findings, it is possible that the simulated snoring

sounds are similar (not necessarily equal) to the natural ones produced by snorers

during sleep. Moreover, there are several merits in adopting simulated snoring:

(1) most subjects were unwilling to allow us to record their actual snoring sounds

during sleep, and (2) simulated snoring has also been adopted in medical studies

[13], [21], [22], [24]. Therefore, the author decided to deal with simulated snoring

sounds in this paper.

4.2.3 Episode Selection and Subsequence Extraction

Snoring sounds produced by each inhalation (called episodes) are cut out one by

one manually, as is also done in ref. [25]. Although a snoring sound is defined as the

sound of pharyngeal vibration triggered by airflow turbulence across a narrowed

upper airway[26][27], some episodes sound like simple sleep noises (wheeze sounds)

rather than snoring sounds (vibrational sounds). It is necessary to discriminate
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Figure 4.2: The waveforms and amplitude spectra of nasal snoring sounds

snoring sounds from simple wheeze sounds.

We can easily discriminate these sounds by listening them, but it is difficult

to realize the automatic techniques [25]. So, the author thought that the manual

discrimination would be more reliable. In addition, the author decided to use

the episodes that all three persons can recognize as snores for more objective

evaluation. The episodes that one or two persons rejected are not adopted as

snoring episodes. This method is also adopted in ref.[25].

Since within the episode the snoring dynamics is gradually or suddenly changing
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Figure 4.3: The waveforms and amplitude spectra of oral snoring sounds

as time passes[12][24], the author also cut out the short-time subsequences whose

length is 0.2 seconds from the episode at every after 0.1 seconds. As a result, the

author obtained 1107 nasal, and 1384 oral subsequences from all recorded data and

those are defined as our classification targets. The obtained subsequences are the

same as the ones used in our previous work[15].
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Figure 4.4: Discrete amplitude spectra and elements of the feature vector.
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4.3 Feature Extraction Method

Firstly, all subsequences are transformed to the frequency spectra using Fast Fourier

Transform (FFT) with Hanning window function. According to the digital signal

processing theory, the FFT amplitude spectrum is a set of discrete spectral values

at every 5Hz (the inverse of the subsequence length; 0.2 seconds) in the frequency

domain. Since it has been reported that snoring sounds mainly consist of lower

2kHz components[8], the spectra are low-pass filtered with 2kHz cut off frequency.

Figures 4.2 and 4.3 show, respectively, representative subsequences and the

amplitude spectra of oral and nasal snores recorded from different subjects respec-

tively. Each spectrum is composed of d(= 2000/5 = 400) discrete points. The

difference between oral and nasal snores is clearly recognizable; nasal snores are

composed of lower frequency components below 500Hz whereas oral ones are com-

posed of not only lower frequency components but also the intensity peak above

500Hz.

According to Quinn, et al, [8] lower frequency components indicate the vibration

of soft palate, while the higher frequency components indicate the airflow noise

which occurs around the tongue base (see figure 4.6). Since open mouth tends to

make the upper airway around the tongue base more collapsible[28], oral snoring

may consist of both the soft palate vibration and the tongue base noise as well.

This is a biomechanical rationale for using the spectral properties to classify oral

and nasal snoring sounds. But the original spectra have too many data points to

represent the spectral form, so it is necessary to reduce some redundancy in these

spectra.

In this paper, the amplitude spectrum is averaged over ∆f Hz band shown

in figure 4.4. The averaged spectrum is defined as c-dimensional feature vector,

xi = (xi1, xi2, · · · , xic) where c = 2000/∆f is the number of spectrum division and

xij is the averaged value of the amplitude spectrum from j ·∆f Hz to (j + 1) ·∆f

Hz. Naturally the value of c should be determined to the suitable value to obtain
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a high performance.

4.4 Classification Method

4.4.1 Support Vector Machine

A Support Vector Machine (SVM) is a nonlinear two-class classifier that determines

the unique hyper-plane by maximizing the distance from it to the nearest data point

on each class.

Let xi and yi ∈ {+1,−1} be the feature vector of the ith subsequence and its

class label (+1 and -1 mean ”oral” and ”nasal” respectively), the dual form of this

optimization problem turned out to be a quadratic convex programming as follows,

maximize
n∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjK(xi,xj) (4.1)

subject to 0 ≤ αi ≤ C (4.2)
n∑

i=1

αiyi = 0 (4.3)

where αi is a Lagrange multiplier, and K(xi,xj) is a kernel function that means

the dot-product in high-dimensional Hilbert space, and C is the penalty factor.

In this study, the kernlab package in R, a statistical software, was used to train

the SVM, which is implemented by SMO (Sequential Minimum Optimization)

algorithm, one of the simplest and the most effective techniques[29]. The optimal

classification function is determined as follows:

y(x) = sign
(∑

i∈S

α∗
i yiK(xi,x)− b∗

)
(4.4)

where S is a set of the indices of support vectors, α∗
i is a solution of the op-

timization problem, and b∗ is the bias parameter that can be determined by the

optimal solution.
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4.4.2 Kernel Functions

Many kernel functions have been proposed so far, and the author firstly decided to

adopt five representative kernel functions: linear, polynomial, sigmoid, Gaussian,

and Laplacian. Moreover, based on the feature vectors described in section 3,

the author also adopted the chi-square (χ2) kernel and the Kullback-Leibler (KL)

kernel. All kernel functions adopted here are as follows:

The χ2 kernel is firstly introduced by Chapelle[16], et al, for the purpose of

histogram-based image classification. They demonstrated that this kernel function

is especially useful for histogram-based feature vectors and leads to a better re-

sult in comparison with Euclidean distance based kernels (namely, Gaussian and

Laplacian).

The KL kernel is relatively novel and firstly introduced by Moreno, et al [17],

for multimedia applications. This kernel function is based on the KL divergence,

a measure of dissimilarity between two probability density functions. Ishigaki, et

al, [18] applied it to the SVM-based spectral classification for early fault diagnosis

of the LP gas pressure regulator and demonstrated that the SVM with KL kernel

is the best among 6 kernel functions (polynomial, Gaussian, Laplacian, sublinear,

χ2, and KL). They also reported that the KL kernel is especially robust for the

shift of the spectral peak position in the frequency domain.

As for KL kernel, a symmetric version of KL divergence, which satisfies the

axiom of distance, is generally adopted in conventional studies[17][18], so the author

also used this type of KL kernel in this paper. In order to use these kernel functions,

the best parameters should be selected under some restrictions to satisfy Mercer’s

condition and to avoid some numerical problems.

4.4.3 A Criterion for Finding the Best Parameters

In the literature of the application of SVMs, the optimal value of C is determined

to the value ranging in one decade steps from 0.01 to 100 in refs.[30][31]. So, the
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Table 4.1: Kernel functions for the SVM used in this study

Kernel Name Definition Parameters
Linear K(x,y) = xTy none
Polynomial K(x,y) = (xTy + c)d c, d
Sigmoid K(x,y) = tanh(βxTy + c) β, c
Gaussian K(x,y) = exp(−β||x− y||2) β
Laplacian K(x,y) = exp(−β||x− y||) β
χ2 K(x,y) = exp(−β ·D(x,y)) β

D(x,y) =
d∑

i=1

(xi − yi)2

xi + yi
β

Kullback-Leibler K(x,y) = exp(−β · I(x||y)) β

I(x||y) =
d∑

i=1

(xi − yi) log
xi

yi
β

author also sets C-parameter to this range. But if C = 0.01 or C = 100 is the best,

the author additionally investigates more results when C = 0.001 or C = 10000.

The parameters of polynomial kernel (c, d) should be adjusted to positive values

so as to satisfy Mercer’s condition and d is theoretically a positive integer. But

it took a very long time to solve the optimization problem when the author sets

d ≥ 8, so the author adjusted this value to be less than 8.

The parameter of β except for sigmoid kernel should also be set to a positive

value so that a kernel matrix is positive definite. Thus, the author roughly deter-

mines β to the value ranging in one decade steps from very low (10−10) to very

high (1010) at first. After that, the range in which the classification rate (calcu-

lated under the LSO test described in the next section) becomes greater than 0.7

is specified and the parameters are reset to the value from this range in 0.1 decade

steps. The parameter of c for polynomial kernel are also determined based on the

above criterion. The concrete range where the classification rate is greater than

0.7 is shown in table 2.

In the case of sigmoid kernel, the likelihood of obtaining a kernel matrix that is

not positive definite is much higher if c is negative[32]. Meanwhile it is also known
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4.4 Classification Method

Table 4.2: The concrete values of kernel specific parameters for obtaining the best
classification accuracy under the LSO test when ∆f is determined to 500.

Kernel Parameter range for adjustment Optimal
Linear C = 0.01, 0.1, 1, 10, 100 C = 10
Polynom. c = 10−5, 10−4.9, 10−4.8, · · · , 102 c = 100.2

d = 1, 2, 3, 4, 5, 6, 7 d = 3
C = 0.01, 0.1, 1, 10, 100 C = 1

Sigmoid c = 10−10, 10−9.9, 10−9.8, · · · , 100 c = 10−4.8

β = 10−4, 10−3.9, 10−3.8, · · · , 10−0.1, 100 β = 10−1.8

C = 0.01, 0.1, 1, 10, 100 C = 10
Gauss β = 10−4, 10−3.9, 10−3.8, · · · , 102 β = 10−0.4

C = 0.01, 0.1, 1, 10, 100 C = 0.1
Laplace β = 10−6, 10−5.9, 10−5.8, · · · , 101 β = 100.1

C = 0.01, 0.1, 1, 10, 100 C = 0.1
χ2 β = 10−5, 10−4.9, 10−4.8, · · · , 100 β = 10−2.1

C = 0.01, 0.1, 1, 10, 100 C = 1
KL β = 10−4, 10−3.9, 10−3.8, · · · , 102 β = 10−0.1

C = 0.01, 0.1, 1, 10, 100 C = 1

that β > 0 and c < 0 are better choice in many cases [33]. So, the author decided

to adjust these values to from very low negative (−1010) to very high positive (1010)

at first. After that, the author precisely resets these values to the range, shown in

table 2, in which the classification rate becomes greater than 0.7.

4.4.4 Comparison with the Other Classifiers

In this chapter, SVM is adopted to classify the spectral properties of snoring sounds

with various kernel functions, but it does not guarantee the best method for the

spectral classification. For the purpose of performance comparison, the other clas-

sifiers such as k-Nearest Neighbor method (k-NN), Multilayer Perceptron (MLP),

Learning Vector Quantization (LVQ) are also adopted to classify oral and nasal

snoring sounds.

In the same way as the SVM, classifier-specific parameters have to be adjusted

to a suitable value so as to obtain the best classification performance. Those
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Table 4.3: Four classifiers adopted to discriminate oral and nasal snoring sounds
for comparison

Classifier Specific parameters Representation
k-NN the number of neighbors k
MLP the number of neurons in the hidden layer Nh

LVQ the number of code-book vectors Nc

parameters are listed on table 4.3. For comparison, the classifiers adopted here are

quite general and have been widely used traditionally in various field[34][35][36].

k-Nearest Neighbor method

In the case of k-NN method, the number of neighbors (k) is adjusted to from 1

to 20 by 2 steps shown in table 4.3, and the author used Euclid distance as the

dissimilarity between two feature vectors. In this method, the classification result

is the majority class among the k nearest training data closest to the input. This

method is also adopted in section 3.

Multilayer Perceptron

The structure of MLP is three layers (input, hidden, and output). Since it receives

4-dimensional feature vectors as the input, the number of neurons in input layer is

four. Similarly, there is the only one neuron in the output layer whose output is 1

(if oral) or 0 (if nasal). The number of neurons in hidden layer, Nh, is adjusted to

from 1 to 20 shown in table 4.3. The connection weights are updated with Back-

Propagation (BP) learning. The classification rate is averaged over 20 iterations

with different initial weight values.

Learning Vector Quantization

In the case of LVQ, there are various LVQ algorithms such as LVQ1, LVQ2, LVQ3,

and OLVQ1, which are somewhat different from each other. In this study, the au-
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thor adopted LVQ1 algorithm. The number of codebook vectors,Nc , are adjusted

to from 10 to 800 by 20 steps (see table 4.3).

4.5 Performance Evaluation Methods

4.5.1 10-fold Cross Validation Test

In this paper, the author evaluates our method by calculating the ratio of correctly

classified data with 10-fold Cross Validation test as follows:

1. Divide all data randomly into10 groups expressed by G1, G2, · · · , G10

2. j ← 1

3. ∀x ∈ Gj are used as test data, while the data belonged to the remainder

groups, ∀x ∈ Gi ̸=j, are used as training data.

4. Solve the optimization problem expressed by eqs.4.1 and 4.3.

5. The SVM with the optimized parameters classifies the test data into ”oral”

or ”nasal” categories.

6. The ratio of correctly classified test data, Rj, is calculated.

7. j ← j + 1 and go to step 3 while j ≤ 10

8. The classification accuracy of all data is calculated byR =
∑10

j=1 |Gj|Rj/
∑

j |Gj|.

This method is generally used in order to evaluate the classification results in

many problems[36]. In this paper, the classification accuracy is averaged over 20

iterations with different random values.

4.5.2 Leave-Subject-Out Test

The Leave-Subject-Out (LSO) test was also used in our previous works[14][15] so as

to evaluate the effect of the individual difference to the classification performance.

In this test, all subsequences obtained from the same subject are allocated to the

same group in step 1. Namely, the number of groups is equal to the number of

subjects. The other procedure is the same as 10-fold CV test.
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If the individual difference is higher than the difference between oral and nasal

snore data, the classification result calculated with this test may become lower

than that with 10-fold CV test.

4.6 Results and Discussion

4.6.1 The Optimal Parameter of ∆f and the Best Choice of Kernels

In order to find the optimal value of ∆f , the author used SVM with five kernel

functions respectively under the LSO test. Figure 4.5 shows classification accuracy

of oral and nasal snoring sounds against the coarse width of frequency (∆f). The

classification accuracy at every ∆f shows the best result obtained with the SVM

when the parameters are determined to the range shown in table 4.7.

At every ∆f Hz, the accuracy of KL kernel is relatively higher than those of

the other kernels, especially when ∆f is lower. The highest classification accuracy

is obtained at ∆f = 500Hz in every kernel, so it is found out that the optimal

dimension of feature vector is four, and the KL kernel is the best among our

adopted five kernel functions.

Table 4.5 shows the classification accuracy in more detail when the parameters

are determined to the optimal values shown in table 4.7 and ∆f is 500Hz. From

this result, there are no clear difference among five kernels under the 10-fold CV

test (around 96%). But, in the case of LSO test, all kernel functions achieve good

results (above 93% at least), and the KL kernel achieves the best result (95.74%).

As far as the author considers from these results, KL kernel seems to be the best

choice. But the accuracy with KL kernel is only 0.8% higher than that with χ2

kernel, so the author cannot necessarily advocate that the KL kernel is better than

χ2 kernel. In addition, since the classification accuracy with Gaussian kernel is

0.02% higher than that with Laplacian kernel, it is natural to consider that these

results are almost the same. The polynomial kernel may give the worst accuracy

among them, but it is above 93% and only 0.45% lower than the Laplacian kernel.
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Table 4.4: Classification accuracies of SVMs with five different kernels respectively
under the 10-fold CV and LSO test when ∆f is determined to 500.

Kernel Classification Accuracy
Nasal (%) Oral (%) Total (%)

Linear 93.59± 0.07% 92.63± 0.09% 93.06± 0.06%
Polynom. 96.95± 0.09% 96.45± 0.11% 96.67± 0.09%
Sigmoid 96.92± 0.15% 96.75± 0.10% 96.82± 0.09%
Gauss 96.17± 0.08% 96.75± 0.05% 96.49± 0.04%
Laplace 96.11± 0.09% 96.88± 0.06% 96.53± 0.05%
χ2 97.10± 0.15% 96.80± 0.18% 96.93± 0.12%
KL 96.72± 0.08% 96.68± 0.06% 96.70± 0.05%

Table 4.5: Classification accuracies of SVMs with five different kernels respectively
under the 10-fold CV and LSO test when ∆f is determined to 500.

Kernel Classification Accuracy
Nasal (%) Oral (%) Total (%)

Linear 1026/1107 (92.68%) 1236/1384 (89.30%) 2262/2491 (90.81%)
Polynom. 1046/1107 (94.49%) 1284/1384 (92.77%) 2330/2491 (93.54%)
Sigmoid 1048/1107 (94.67%) 1285/1384 (92.85%) 2333/2491 (93.66%)
Gauss 1054/1107 (95.21%) 1290/1384 (93.21%) 2344/2491 (94.10%)
Laplace 1051/1107 (94.94%) 1290/1384 (93.21%) 2341/2491 (93.98%)
χ2 1064/1107 (96.12%) 1301/1384 (94.00%) 2365/2491 (94.94%)
KL 1067/1107 (96.39%) 1318/1384 (95.23%) 2385/2491 (95.74%)

In summary, the KL kernel is the best choice if ∆f is set to below 500Hz. But,

in the case of ∆f = 500Hz, there are no clear differences among the classification

accuracies obtained with five kernel functions, and at least over 93% of snore

subsequences are correctly classified by the use of any kernel functions under the

LSO test.

4.6.2 Individual Differences and Reliability

If there are significant individual differences in our data and the number of subjects

is relatively not enough as well, the classification rate under the LSO test becomes

much lower than that under the 10-fold CV test. So, the comparison between these
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Figure 4.5: Classification rate against various ∆f parameter estimated with SVM

tests indicates whether our results are reliable or not.

From table 3, the classification results under the LSO test are about 1-3%

lower than the other. There seem to be slight individual differences in our data,

but the results are fairly objective and the performance is sufficiently good: at

least over 90% under the LSO test. Many subjects are in general preferable for

objective evaluation, but, as far as the author investigates the classification results,

15 subjects are fairly enough to obtain the objective results. In fact, the number

of subjects in some much-cited papers[5][7][8][19][25][23] is in the range from 10 to

20.

4.6.3 Comparison with Our Conventional Method

Finally, the author compares our results with the conventional method which has

been proposed by the authors[15]. In our conventional method, two acoustic prop-

erties of snoring sounds are firstly extracted: fundamental frequency (fb) and the
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Figure 4.6: The average of feature values on each dimension when∆f is determined
to 500.

maximum of the amplitude spectrum (M) in a specific band from 700Hz to 1.4kHz.

After that, 2-dimensional feature vectors composed of fb and M are made for all

data, and the classification accuracy is calculated using k-Nearest Neighbor method

under the10-fold CV test and the LSO tests. Table 4.6 shows the classification ac-

curacy which has been reported in ref.[15]. Compared with the table 4.5, the best

classification accuracy in this paper is about 5% higher than that reported in our

previous study. So, the author analyzes the data that are miss-classified with the

conventional method, but correctly classified with our method in this paper.

Figure 4.7 shows the waveforms and the amplitude spectra of such data. Ac-

cording to these panels, they are not periodic waveforms and there are no clear
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Figure 4.7: The waveforms and amplitude spectra of non-vibrational sounds in oral
(upper two) and nasal (lower two) snoring

prominent peaks in the lower frequency domain as well. They are derived from the

turbulence noise that occurs when the airflow pressure is not enough to generate the

palatal vibration. From the biomechanism of snoring, these snores are so-called un-

voiced sounds, whereas the vibrational snores voiced sounds [25]. The fundamental

frequency of unvoiced sounds are not determined and becomes meaningless by the

use of Harmonic Product Spectrum (HPS), a method for fundamental frequency

estimation, which is adopted in our previous work.

However, by the use of our method in this paper, these unvoiced snores can
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4.6 Results and Discussion

Table 4.6: Classification accuracy estimated with the conventional method in our
previous work[15]

Test Classification Accuracy
Nasal (%) Oral (%) Total (%)

10-fold CV 1014/1107 (91.60%) 1289/1384 (93.14%) 2303/2491 (92.45%)
LSO 964/1107 (87.08%) 1268/1384 (91.62%) 2232/2491 (89.60%)

also be classified correctly, because snoring sounds through nose do not have any

frequency components above 500Hz even if they are not periodic, and the most com-

ponents are intensively concentrated in the lower frequency domain below 500Hz.

In addition, unvoiced oral snores do not have any lower frequency components be-

low 500Hz, but have higher ones above 700Hz. Namely, the rough spectrum below

2kHz is sufficiently effective for such classification.

4.6.4 Miss-classified Spectral Features

The SVM seems to be powerful for the purpose of classifying oral and nasal snor-

ing sounds, since over 95% classification rate can be obtained at most under the

LSO test. But there are still some spectral features that cannot be classified cor-

rectly. Figure 4.8 shows the representative miss-classified data that the author

investigated.

In these spectra, the author can find some irregular peaks on the frequency

domain. In the upper two panels that show the miss-classified oral snoring sounds,

the spectral components are concentrated on the lower frequency domain which

are similar to the nasal snoring sounds shown in figure 4.2. The author can find

some peaks in the range above 500 Hz, but compared with the lower frequency

components they are not prominent enough to be recognized as oral snores.

In the case of the miss-classified nasal snoring sounds shown in the lower two

panels, the spectral components are almost equally distributed. These waveforms

are not classified to nasal snoring sounds, because the lower frequency components
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Figure 4.8: The waveforms and amplitude spectra of miss-classified oral (upper
two) and nasal (lower two) snoring sounds

below 500Hz are dominant over the spectral properties of nasal snoring sounds.

4.6.5 Computational Time

In this experiment, the author used the kernlab, a package for kernel-based machine

learning methods in R. All programs are executed on the R software installed on

the Apple’s Mac mini with 2.4 GHz Core2Duo CPU and 4GB memory. Except for

the polynomial kernel with higher degree greater than 2, it takes 0.94 seconds on

average to solve the optimization problem defined as eqs.1 and 2. This package is

implemented with the Sequential Minimum Optimization (SMO) algorithm.
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Table 4.7: Specific parameters of classification methods

Classifier Parameter range for adjustment optimal
k-NN k = 1, 3, 5, · · · , 37, 39 k = 11
MLP Nh = 1, 2, 3, · · · , 19, 20 Nh = 4
LVQ Nc = 100, 120, 140, · · · , 780, 800 Nc = 260

But if once the optimization problem defined as eqs.1 and 2 is solved in advance,

the computational effort is only required to calculate the classification result using

eq.3. For our 2491 spectral data, it takes about 25 seconds to make the feature

vectors by following the feature extraction method in section 3 (executed by inter-

preter) and 80 milliseconds on average to calculate the classification results using

eq.3 (executed in native code). If the feature extraction process is implemented in

native code, the computational time for feature extraction is drastically decreased.

In any case, the computational time can be estimated at less than 10 milliseconds

(= (25 seconds + 80 milliseconds) / 2491 subsequences) at most.

Actually, the computation time depends highly on the hardware performance.

But this result is efficient enough for consideration of real-time processing if our

method is run on the home medical device equipped with an equivalent performance

CPU, because the next subsequence comes every 0.1 seconds. This is long enough

to finish calculating the classification result of the current subsequence.

4.6.6 Comparison with Other Classifiers

Classification performance is evaluated under leave-subject-out (LSO) test. Figure

4.12 shows the classification rate when using four classifiers as well as SVMs with

three kernels. In the case of MLP and LVQ, classification rate is averaged over 20

iterations with different initial weights. Since the results are not so much different

from each other, every classifier can be adopted for the purpose of oral and nasal

snore classification. But, the results of SVM-based classification are relatively

better than the other classification methods. In addition, the results of LVQ and
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Figure 4.11: Recognition rate when using LVQ with various numbers of codebook
vectors

k-NN are slightly higher than those of CART and MLP.

The result of MLP is pretty surprisingly worse than those of the other methods

except for CART. When using MLP, there are some annoying problems which may

trap in a local minimum. Indeed, the author found that the total classification

rate of MLP sometimes reached over 92%, but in many cases it could not be over

92%.

Similarly, the initial setting of LVQ is generally done at random, which leads to

the convergence to one of the local minima. Even if the parameters are determined

to the optimal value shown in table 4.7, it is not necessarily guaranteed that the best

unique solution will be found. Therefore, in the case of MLP or LVQ, some trials

should be done with different initial weights so as to obtain a good performance.

In the case of kNN method, the classification performance is relatively good.

The input feature vector is compared with all of the reference data (with class

labels) stored in advance in this method. This means that the computational cost

becomes exponentially higher as the number of reference data is increasing. In this
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Figure 4.12: Recognition rate of all classifiers under the LSO test

experiment, the total number of subsequences is 2491 obtained from 16 subjects,

but the problem of computational cost will be given rise to if more and more data

are used for this classification.

From those points of view, it is said that the SVM is the best choice according

to the following reasons:

1. The optimal classification boundary can uniquely be determined.

2. Once the optimal solution is determined, the classification result is easily

obtained by only calculating eq.4.4

3. With KL kernel, the classification performance can reach the best compared

with other methods, including other kernels.
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4.7 Conclusion

In this paper, the author adopted an SVM with seven kernel functions (linear,

polynomial, sigmoid, Gaussian, Laplacian, χ2, and KL) for classifying oral and

nasal snoring sounds. The author can obtain around 96% classification accuracy

under the 10-fold CV test and at least over 93% under the LSO test using every

kernel function. The best accuracy reaches over 95% by the use of KL kernel under

the LSO test, but there is not so much difference among seven kernel functions.

Compared with our previous work, the classification accuracy is improved at the

rate of about 5% by the use of our method.

As for computational time, SVM-based classification process has to be com-

pleted within 0.1 seconds. Even in our computation environment (Mac mini with

Core2Duo CPU, 4MB memory, and implemented in R code), the classification has

been finished within 10 milliseconds. Naturally, the computational time does not

necessarily depend on the CPU performance but on the other factors as well. But

our method is efficient enough to realize a real-time processing if the computer’s

performance is almost the same as our computer.

Compared with the other classification methods, the SVM with any kernel

functions are a bit better than the other methods in the point of classification rate

estimated under the LSO test. Moreover, the optimal classification boundary of

SVM can uniquely be calculated whereas that of the MLP or LVQ cannot. In

addition, the computational cost is exponentially increasing with the number of

training data for kNN method.

Future works are listed bellow:

1. It is necessary to extract only snoring sounds from the recorded data con-

taminated with the other artifacts such as ambulance, dog’s barks, taking

while sleeping, linen noise, and so on.

2. The quantitative relation between the number of oral snores and the severity

of OSAS should be clarified.
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3. A method that can estimate the severity using the frequency of oral snores

should be developed.
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Chapter 5

Conclusion

5.1 Contributions of this Thesis

This thesis analyzed the upper airway MR images where the enlargement of the

upper airway soft tissues is identified, and the snoring sounds which occur when

the inhalation airflow passes through the narrowed upper airway, so as to realize

the automatic classification of OSAS.

Firstly, the upper airway MR images of OSAS patients are focused on and the

usefulness of the morphological feature of the tongue region and the cross sectional

area of the narrowest upper airway is indicated for the classification of severe OSAS.

Concretely, it is clarified that the directions from the center of tongue region to

the back of the tongue and to the hyoid bone are the most correlated features with

AHI. As a result of classifying the severe OSAS using multi-regression analysis

with those features, the true positive ratio is 0.909 and the false positive ratio is

0.476. Those features have an advantage for us to be able to evaluate OSAS more

simply and more objectively than traditional methods such as visual examination

of the oropharynx and X-ray image based cephalogram.

Next, the author focused on oral snoring found in many OSAS patients, pointed

out the difference between the acoustic properties of oral snores and those of nasal

ones based on the FFT amplitude spectra, and clarified the relation to the physi-

ological mechanism of breathing from the bibliographical point of view. By using
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those acoustic properties, about 90% of oral snoring sounds are successfully classi-

fied with k-Nearest Neighbor method. But there are some non-vibrational sounds

which do not have a fundamental frequency, and those data cannot be classified to

the correct category.

According to the acoustic properties of miss-classified data, the entire spectral

shape below 2kHz is adopted as a multi-dimensional feature vector instead. As a

result of using a SVM, the classification accuracy of oral snoring sounds is about

5% improved compared with the previous result. The result is discussed in the

context of individual difference, reliability, computational time, and comparison

with other classifiers and the good result is obtained in every point.

Based on the above result, the author quantified the morphological properties

of the tongue region, the cross sectional area of the narrowest airway in the MR

images, and the acoustic properties of oral snoring sounds which are typical symp-

toms of OSAS. In addition, he proposed the classification method and indicated

the usefulness of the proposed method.

5.2 Future Works

In future works, some pre-processing before feature extraction is done manually

in this study, and thus it should be improved to be automatic. Moreover, the

enlargement of the soft palate or the uvula are also useful for OSAS classification.

It is expected that the classification accuracy will further be improved if a concrete

method to quantify the enlargement is also proposed.

As for snoring sounds, it is necessary to clarify actual snoring sounds in detail.

Although Herzog and colleagues indicated that the acoustic properties of simulated

snores are not so different from those of actual ones, this difference should be

analyzed in more detail.

A hybrid method which combines image-based classification and sound-based

classification will probably become a powerful technique compared with the meth-
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ods proposed respectively in each chapter.
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