Schedule-Dependent Cytotoxicity of Etoposide and Cyclophosphamide in P-Glycoprotein-Expressing Human Leukemic K-562 Cells

Yuki Tazawa,a Ippei Usukubo,a Kazuki Takada,a Yoh Takekuma,a Yoshihiro Shibayama,b and Mitsuru Sugawara*a,b

a Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University; and b Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University; Kita-ku, Sapporo 060–0812, Japan.

Combination chemotherapy is often used to treat cancer. Many studies have shown schedule-dependent effects between anticancer drugs. Our previous studies showed that K-562 cells pretreated with non-cytotoxic concentrations of 4-hydroperoxycyclophosphamide (4-HPC), which is a preactivated analog of cyclophosphamide (CY), enhanced the cytotoxicity of etoposide (VP-16). The appearance of cellular resistance to anticancer drugs is a major problem in cancer chemotherapy. P-Glycoprotein (P-gp) plays an important role in drug resistance, and VP-16 is a substrate for this efflux pump. In the present study, we demonstrated schedule-dependent cytotoxicity of VP-16 and CY in P-gp-overexpressed K-562/P-gp cells. Cytotoxicity of VP-16 was enhanced in K-562/P-gp cells that were pretreated with a non-cytotoxic concentration of 4-HPC compared to that of cells not treated with 4-HPC. 4-HPC arrested the cell cycle at S phase. Cells in S phase are more sensitive to VP-16. The results suggest that cell cycle arrest by 4-HPC pretreatment may be responsible for the enhanced cytotoxicity of VP-16. The findings in this study should lead to improvements in clinical combination chemotherapy.

Key words etoposide; P-glycoprotein; schedule; cyclophosphamide; cell cycle

Etoposide (VP-16) is an anticancer drug that is derived from podophyllotoxin. The cytotoxic mechanism of VP-16 inhibits DNA synthesis by forming a complex with topoisomerase II and DNA.19 Cells in S phase are most sensitive to VP-16, and the cytotoxicity is decreased rapidly as cells progressed to G1 through G2 and M.2,3) VP-16 has been used to treat a number of combination chemotherapies with multiple drugs. Many studies have shown schedule-dependent effects between anticancer drugs. Chresta et al. reported that pretreatment with arabinosyl cytosine (Ara-C) enhances cytotoxicity of VP-16 in a human lymphoblastoid cell line (CCRF-CEM),4) and Lorico et al. reported that pretreatment with methotrexate (MTX) increased cytotoxicity of VP-16 in a human histiocytic lymphoma cell line (U937).5) The combination of VP-16 and cyclophosphamide (CY) has been widely used for treatment of leukemias.6–9) We previously showed that pretreatment of K-562 cells with non-cytotoxic concentrations of 4-hydroperoxycyclophosphamide (4-HPC), which is a preactivated analog of CY, enhances the cytotoxicity of VP-16 via blocking by 4-HPC of the cell cycle at S phase, which is a specific phase for VP-16.10)

In clinical treatment, multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in patients with cancer. MDR has been associated with overexpression of P-glycoprotein (P-gp) in cancer cells.11,12) P-gp is a 170-kDa protein encoded by the MDR1 gene.13,14) P-gp belongs to the superfamily of ATP-binding cassette (ABC) transporters and actively effluxes various anticancer drugs. The substrates of P-gp include anthracyclins and epipodophyllotoxins (e.g., VP-16), which have been used in the treatment of a variety of malignancies, especially leukemia and lymphoma.15) A number of studies have shown that a lower complete remission (CR) rate in leukemia patients is associated with an increase in P-gp expression.16,17) There has been an accumulation of evidence showing that schedules of anticancer drugs affect the cytotoxicity not only VP-16 but also other anticancer drugs.5,5,10) However, the schedule for the optimal use of anticancer drugs in clinical treatment has still not been established. Moreover, the effect in P-gp-positive cells has not been investigated. In the present study, we investigated that schedule-dependent cytotoxicity of VP-16 and CY in P-gp-overexpressed K-562 cells. An understanding of the schedule-dependent cytotoxicity of VP-16 and CY may be useful for improving chemotherapy regimens.

MATERIALS AND METHODS

Chemicals VP-16 was purchased from LKT Laboratories Inc. (St. Paul, MN, U.S.A.). It was dissolved in dimethyl sulfoxide (DMSO) (stock concentration: 20 mg/mL) and stored at −20°C. An activated analog of CY, 4-hydroperoxycyclophosphamide (4-HPC), was purchased from Toronto Research Chemicals Inc. (Ontario, Canada). Stock 4-HPC was stored at −80°C and diluted in cell culture medium immediately prior to use. Quinidine sulfate was purchased from AstraZenace Inc. (Osaka, Japan). WST-8 reagent, thymidine and RNase were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). NP-40 was purchased from Sigma-Aldrich (St. Louis, MO, U.S.A.). These agents were dissolved in phosphate buffered saline (PBS). All other chemicals were of the highest grade available.

Cell Culture The human chronic myelogenetic leukemia cell line K-562 was purchased from RIKEN (Ibaraki, Japan). K-562 and K-562/P-gp cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/mL), and streptomycin (100 µg/mL) at 37°C in a humidified atmosphere with 5% CO2 and 95% air.

Cytotoxicity Assay For combination chemotherapy, a...
suspension of exponentially growing cells (1×10^4 cells/well) was added to 96-well microplates. Cells were pretreated with a non-cytotoxic concentration of VP-16 or 4-HPC for 24 h prior to treatment with the other drug. The concentrations of VP-16 and 4-HPC for pretreatment were 1.0 µg/mL and 5 µg/mL respectively, and it was confirmed that these concentrations did not influence cell viability by the WST-8 assay as described previously. After exposure to the drugs, the cytotoxic effects of the drugs on K-562 and K-562/P-gp cells were determined by the WST-8 assay. The two schedules used are shown in Fig. 1. The absorbance of each well was measured at 450 nm with a microplate reader. Results were calculated as a percentage relative to untreated controls and plotted in logarithmic dose-effect curves, and EC_{50} was determined by using Origin® (version 9.0 J). A curve was fitted using the following equation:

\[Y = \frac{A_1 + A_2}{1 + (x + x_0)} + A_2, \]

where \(A_1 \) is the initial value, \(A_2 \) is the final value, \(x \) is the concentration, \(x_0 \) is the EC_{50} value, and \(P \) is power.

Cell Cycle Analysis The cell cycle was measured by flow cytometry. K-562 cells were incubated in culture medium containing 5 µg/mL 4-HPC for 24 h. The cells were washed with PBS, fixed in 90% cold EtOH, and then treated with staining buffer (final concentrations: 1 mg/mL RNase, 0.01% NP-40, 0.1% propidium iodide) for 20 min. Cell cycle distribution was determined using a FACScan flow cytometer (Becton Dickinson).

Cell Cycle Synchronization Cells were synchronized by a double thymidine block as described previously. Briefly, cells were incubated for 24 h in a medium containing 2 mM thymidine followed by incubation for 12 h in a thymidine-free medium. Synchronization of cells at the G1/S boundary was then achieved by further incubation for 14 h in a medium containing 2 mM thymidine. The thymidine block was released by washing the cells with PBS, followed by incubation in a fresh medium.

Uptake Studies K-562 and K-562/P-gp cells were suspended at 5×10^5 cells/mL in a transport buffer (25 mM Tris-N-(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic acid (HEPES), pH 7.5, 140 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl_2, 0.8 mM MgSO_4, 5 mM glucose), and 200 µL of the cell suspension was added to 1.5 mL microcentrifuge tubes. The cells were preincubated for 15 min at 37°C. After preincubation, 200 µL of transport buffer containing 25 µg/mL VP-16 was added and incubated for 60 min at 37°C. Uptake experiments were terminated after 60 min by adding 1 mL ice-cold transport buffer and centrifuged at 2100×g for 5 min at 4°C. The cells were washed twice with 1 mL ice-cold transport buffer and centrifuging at 2100×g for 5 min at 4°C. The cells pellets were resuspended in 200 µg phosphate buffer (10 mM Na_2HPO_4, 10 mM KH_2PO_4, pH 7.0) and disrupted by freezing at −80°C for 10 min. The disrupted cell suspension was divided for protein analysis and HPLC analysis. The HPLC system consisted of an L-7110 pump, L-7300 column oven, L-7420 UV-VIS detector, and D-2500 integrator (HITACHI, Tokyo, Japan). The column was an Inertsil ODS-4 (100 mm×2.1 mm i.d., 3 µm) (YOKOHAMARIKA CO., Yokohama, Japan). Fifty micro-liter of the sample and 50 µL of acetonitrile were added. After shaking the mixture vigorously, the sample was centrifuged at 21500×g for 10 min at 4°C. The injection volume of the sample was 15 µL. A mobile phase containing methanol–distilled water–acetonitrile (42.7:55:2.3, v/v/v) was used at a flow rate of 0.2 mL/min. The detector was monitored at 229 nm. The protein content was measured by the method of Lowry.

Statistical Analysis Data are presented as means with S.D. Student’s t-test was used to determine the significance of differences between two group means. Statistical significance among means of more than two groups was evaluated using ANOVA followed by the Tukey-Krammer test. Statistical significance was defined as p<0.05.

RESULTS

Function of P-gp in K-562/P-gp Cells Firstly, we investigated VP-16 uptake by K-562 and K-562/P-gp cells for 60 min (Fig. 2). The uptake of VP-16 for 60 min by K-562/P-gp cells was significantly decreased compared with that by K-562
cells (control). On the other hand, the decrease in uptake was recovered to the control level by preincubation with the P-gp inhibitor quinidine.

Effect of P-gp on Cytotoxicity of VP-16 The cytotoxicity of VP-16 in K-562/P-gp cells was decreased compared with that in K-562 cells (control), and the decrease in cytotoxicity was recovered to the control level by preincubation with quinidine (Fig. 3). We confirmed that 20 µg/mL quinidine did not influence cell viability (Fig. 4).

Schedule-Depended Cytotoxicity of VP-16 and 4-HPC in K-562/P-gp Cells K-562/P-gp cells were pretreated with a low concentration (1 µg/mL) of VP-16 for 24h and then treated continuously with 4-HPC (1–20 µg/mL) for 24h. The logarithmic dose–effect curves and EC50 values showed no differences compared with those in the VP-16-untreated group (mean EC50 values: 11.1 µg/mL vs. 10.1 µg/mL) (Fig. 5 schedule B, Table 1B). On the other hand, cells pretreated with a low concentration (5 µg/mL) of 4-HPC for 24h and then treated continuously with VP-16 (0.5–100 µg/mL) for 24h showed reduced viability compared with that of cells in the 4-HPC-untreated group. EC50 values could not be determined because EC50 was not less than 50% (Fig. 5 schedule A, Table 1A).

Cell Cycle Progression after Drug Exposure K-562/P-gp cells were treated with 5 µg/mL 4-HPC for 24h. Following 4-HPC treatment, cell cycle progression was blocked at S phase (Fig. 6).

Effect of Cell Cycle Progression on VP-16 Uptake by K-562/P-gp Cells To clarify cell cycle-specific VP-16 uptake, we investigated VP-16 uptake by K-562/P-gp cells that were synchronized by a double thymidine block. After release of the block, cells were allowed to progress through the cell cycle and collected at every one or two hours. The degree of synchronization was confirmed by flow cytometry analysis. Cells were in G1, S and G2/M phases at 1h, at 6h and 10h after removing thymidine, respectively (Fig. 7). We previously reported that K-562 cells were in S, G2/M and G1 phases at 0–6h, at 6–8h from 8h after thymidine release, respectively. Based on these results, to investigate VP-16 uptake in different phases of the cell cycle. There was no significant difference between each fraction and non-synchronized cells (control) in the rate of VP-16 uptake (Fig. 8).

Table 1. EC50 Values of Combination Chemotherapy on K-562/P-gp Cells

<table>
<thead>
<tr>
<th></th>
<th>EC50 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Low-concentration 4-HPC→VP-16</td>
<td></td>
</tr>
<tr>
<td>Low-concentration 4-HPC free</td>
<td>N.D</td>
</tr>
<tr>
<td>5.0 µg/mL</td>
<td>N.D</td>
</tr>
<tr>
<td>B: Low-concentration VP-16→4-HPC</td>
<td></td>
</tr>
<tr>
<td>Low-concentration VP-16 free</td>
<td>10.1±0.52</td>
</tr>
<tr>
<td>1.0 µg/mL</td>
<td>11.1±0.30</td>
</tr>
</tbody>
</table>

Cell viability was assessed by WST-8 assay. Each value is the mean±S.D. of 3 measurements.
Some previous clinical studies have suggested that the combination chemotherapy of VP-16 and CY is effective and safe for adult patients with hematological malignancies. However, the optimal schedule for drug administration to achieve the best therapeutic efficacy is still uncertain. In clinical chemotherapy, overexpression of P-gp is often an obstacle of treatment. Therefore, we investigated the schedule-dependent cytotoxicity of VP-16 and CY in K-562/P-gp cells.

First, we confirmed that MDR-1 mRNA was expressed in K-562/P-gp cells but not in K-562 cells (data not shown). Up-
take of VP-16 by K-562/P-gp cells was significantly decreased compared with that by K-562 cells, and the decrease in uptake was recovered to the control level by the P-gp inhibitor quinidine (Fig. 2). We also investigated the effect of P-gp expression on cytotoxicity of VP-16. The cytotoxicity of VP-16 in K-562/P-gp cells was decreased compared with that in K-562 cells, and the decrease in cytotoxicity was recovered to the control level by quinidine (Fig. 3). These results indicate that K-562/P-gp cells actively transport VP-16 out of cells.

P-gp is highly expressed in many clinically resistant cancer cells. Previous clinical trials have shown that several drugs including verapamil and cyclosporine inhibit P-gp and modulate MDR. However, few of these MDR modulators achieve clinical success. Therefore, strategies for overcoming resistance to anticancer drugs are important.

We focused on the schedule of anticancer drugs and investigated the effect of cell cycle arrest on cytotoxicity of VP-16. For combination chemotherapy, we showed that pretreatment with a non-cytotoxic concentration of 4-HPC enhanced the cytotoxicity of VP-16. On the other hand, pretreatment with a non-cytotoxic concentration of VP-16 did not influence the cytotoxicity of 4-HPC (Fig. 5, Table 1). The cell cycle progression of cells treated with 4-HPC was blocked at S phase, which is a specific phase for VP-16 (Fig. 6). Differences in cellular topoisomerase II levels have been reported in relation to different phases of the cell cycle. Cells that are actively synthesizing DNA are more sensitive to topoisomerase II inhibitors. Lorico et al. reported that pretreatment of U937...
cells with a low concentration of MTX increased the proportion of cells in S phase and the levels of topoisomerase II in cells and subsequently increased DNA breakage and cytotoxicity of VP-16.\(^1\) We also investigated whether the function of P-gp is cell cycle-dependent. K-562 and K-562/P-gp cells were synchronized in G1, S and G2/M phases by a double thymidine block (Fig. 7). For each cell cycle, VP-16 uptake was not affected by the cell cycle (Fig. 8). These results suggest that 4-HPC enhances the cytotoxicity of VP-16 due to cell cycle arrest at specific phases of VP-16. In our study, we demonstrated that pretreatment of K-562/P-gp cells with a non-toxic concentration of 4-HPC increased the cytotoxicity of VP-16. The enhanced cytotoxicity of VP-16 occurs at a clinically relevant concentration.\(^24\)–\(^26\)

In conclusion, we demonstrated schedule-dependent cytotoxicity between VP-16 and 4-HPC in vivo. The results indicate that pretreatment of cells with 4-HPC enhances cytotoxicity of VP-16 by blocking the cell cycle at S phase, which is a specific phase for VP-16. This schedule may affect the therapeutic outcome. Moreover, cell cycle progression drug exposure may influence the cytotoxicity of cell cycle dependent anticancer drugs. However, these data are cell line-specific and limited in vitro. Further clinical studies are needed to establish the schedule of VP-16 and CY administration.

Acknowledgments This study was supported in part by JSPS KAKENHI Grant Number 25460203 and Japan Research Foundation for Clinical Pharmacology. K-562/P-gp cells were kindly provided by Dr. Tatsuhiko Furukawa, Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan and by Yoshikazu Sugimoto, Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan.

REFERENCES

