100 years Zoraptera – a phantom in insect evolution and the history of its investigation

Y. Mashimo, R. Machida, Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan
R. Dallai, M. Gottardo, Department of Life Sciences, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
Y. Yoshizawa, Systematic Entomology, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
F. Friedrich, Biozentrum Grindel und Zoologisches Museum Hamburg, Martin-Luther-King-Platz 3, Universität Hamburg, 20146 Hamburg, Germany
R.G. Beutel, B. Wipfler, Y. Matsumura, Institut für Spezielle Zoologie und Evolutionsbiologie, Erbertstr. 1, FSU Jena, 07743 Jena, Germany (rolf.beutel@uni-jena.de)

Zoraptera are a cryptic and enigmatic group of insects. The species diversity is lower than in almost all other groups of Hexapoda, but may be distinctly higher than presently known. Several new species were described from different regions recently. The systematic placement was discussed controversially since the group was discovered 100 years ago. Affinities with Isoptera and Psocoptera were discussed in earlier studies. A sistergroup relationship with Acercaria (Psocodea, Thysanoptera, Hemiptera) was proposed by W. Hennig, for the first time based on a strictly phylogenetic argumentation. More recent studies consistently suggest a
placement among the “lower neopteran orders” (Polyneoptera). Close affinities to
Dictyoptera were proposed and alternatively a sistergroup relationship with
Embioptera or with Embioptera + Phasmatodea (Eukinolabia), respectively. The
precise placement is still controversial and the intraordinal relationships are
largely unclear. Recent transcriptome analyses tentatively suggest a clade
Zoraptera + Dermaptera as sistergroup of all other polyneopteran orders.
The oldest fossils are from Cretaceous amber. An extinct genus from this era may
be the sistergroup of all the remaining zorapterans. The knowledge of the
morphology, development and features related to the reproductive system greatly
increased in recent years. The general body morphology is very uniform, whereas
the genitalia differ strongly between species. This is likely due to different kinds
of selection, i.e. sexual selection in the case of the genital organs. The mating
pattern also differs profoundly within the order. A unique external sperm transfer
occurs in *Zorotypus impolitus*. A species-level phylogeny and more investigations
of the reproductive system should have high priority.

Introduction

Zoraptera, also known as groundlice or angel insects (e.g., Grimaldi & Engel 2005), are a
cryptic, inconspicuous and still enigmatic group of insects. Weidner (1969) pessimistically
pointed out that they are in an evolutionary dead end and can only lead a wretched life
(“kümmelches Dasein”) in a very limited habitat. The systematic placement has been
controversial since the group was introduced as an order by Silvestri (1913) (e.g., Trautwein
et al. 2012) (see Table 1). Consequently the term “the Zoraptera problem” was coined by
Beutel & Weide (2005).
Zorapterans were characterized by Silvestri (1913) as „Insecta terrestria, parva, aptera, agila, praedantia“, which means „living in earth, small, apterous, agile and predacious insects“ (Weidner 1969). The scientific name given to the order („purely apterous ones“, Greek: zoros = pure, strong; aptera = apterous) is a misnomer as zorapterans are primarily winged (Caudell 1920) and small and poorly sclerotized besides. The wing dimorphism is one of few autapomorphies of the order, correlated with the presence or absence of compound eyes and ocelli, and the presence or absence of a distinct pigmentation, with distinctly darker alate specimens.

Zoraptera currently comprise 39 extant species and nine species are known as fossils (Engel 2008; Mashimo et al. 2013). They were considered as the least known insect order by Kristensen (1995). The fact that the situation has changed profoundly in recent years (see Fig. 1) stimulated us to present this review. The aims are to summarize the current knowledge, to point out remaining problems, and to illuminate the history of the investigation of this small group of cryptic insects.

1. Distribution, diversity and taxonomy

Zoraptera are largely restricted to tropical and subtropical regions. They live under bark or inside galleries made in rotting wood by other insects. Only Zorotypus hubbardi has expanded its range as far north as Indiana, Iowa and Illinois. This species might survive in colder regions by hiding in sawdust (Riegel 1963). Zoraptera have not been recorded from Australia, but Zorotypus novobritannicus was recently described from New Britain (Terry & Whiting 2012) and the group was also recorded from New Zealand and Easter Island (Weidner 1969; Choe 1989, 1992; Grimaldi & Engel 2005).

Silvestri (1913) introduced the order and described the genus and three species (in Latin). He collected the type species Zorotypus guineensis himself in Ghana („Costa d’Oro”), and specimens of Zorotypus ceylonicus (Sri Lanka) and Zorotypus javanicus (Java) were
provided by other entomologists. Eight new species from different parts of the world were described in the next 15 years (e.g., Karny 1922, 1927), and four species including the North American Z. hubbardi were introduced in a study also containing a key and a discussion of possible relationships of the order (Caudell 1918). A catalog of the Order published by Hubbard (1990) contained 29 extant species and one from the Eocene. Two new species were described by Chao & Chen (2000) and Engel (2000). A distributional checklist of zorapteran species was published in Engel & Grimaldi (2002) and an updated checklist of “World Zoraptera” by Rafael & Engel (2006). In the latter, 34 extant and six fossil species were listed, and the authors provided information on sexes, winged forms, and nymphs of each species. The most recent account is given in Mashimo et al. (2013). This study contains the descriptions of three new species from Peninsular Malaysia, bringing the number of extant zorapterans to 39. Zoraptera have been regarded as rare and one of the least diverse group of hexapods. However, apparently their diversity remains underexplored (Rafael & Engel 2006; Mashimo et al. 2013).

In taxonomic studies the shape of the basal antennomeres, the chaetotaxy of the ventral metafemoral surface, the shape of the cerci, and the male genitalia are traditionally recognized as useful to define species. The male genitalia are highly variable and potentially suitable for classifying the group. It has been noted that closely related species with very similar external features can be clearly discriminated based on male genital structures (Paulian 1949, 1951; Hwang 1974, 1976; New, 1978; Rafael & Engel 2006; Rafael et al. 2008; Mashimo et al. 2013). Some species were described based solely on immature or female specimens (e.g., Silvestri 1913; Caudell 1923, 1927; New 1995), or the information on the male genitalia was insufficient (e.g., Choe 1989; Zompro 2005; Rafael & Engel 2006; Terry & Whiting 2012). In future taxonomic studies, a detailed investigation of both sexes or at least the male genitalia should be obligatory for an unambiguous circumscription of species (Mashimo et al. 2013).
2. Morphology

The illustrations provided by Silvestri (1913) were of high standard, displaying external and internal features, including the setation, the mouthparts, endoskeletal and pretarsal structures, and also internal organs such as the central nervous system, digestive tract, tracheal system and excretory organs (six free Malpighian tubules). A series of comparative studies were carried out by G.C. Crampton. They covered head structures, the neck region, the thorax, the wings, and wing base sclerites of Zoraptera and other groups of insects (Crampton 1918, 1920, 1921, 1926, 1927). Gurney (1938) provided more morphological information, mainly based on the North American species *Z. hubbardi*. Like Silvestri (1913) and Crampton (e.g., 1918, 1927) he used simple dissection techniques and light microscopy. He described and illustrated external body parts but also male and female internal genital organs, the digestive tract, Malpighian tubules and even eggs. Delamare-Deboutteville (1947) compared alate and wingless exemplars. The thoracic skeletomuscular system was described for the first time by Rasnitsyn (1998). The availability of only one damaged wingless exemplar and the application of simple preparation techniques led to incomplete and not fully satisfying results. Weidner (1970) summarized the available information in the "Handbuch der Zoologie" series.

In the 21st century the study of Zoraptera accelerated. Beutel & Weide (2005) provided the first complete study of head structures (*Z. hubbardi*) using semithin microtome sections and SEM. Friedrich & Beutel (2008) described the thoracic anatomy of alate and wingless specimens of the same species and emphasized the highly conserved condition of the skeletomuscular apparatus, presumably close to the neopteran groundplan. Based on the results of this study the authors proposed a new consistent and extendable nomenclature for the thoracic muscle system of neopteran insects (Friedrich & Beutel 2008). Wing base structures of *Z. caudelli* were investigated by Yoshizawa (2007, 2011a). A computer-based 3D reconstruction of the male postabdomen of *Z. hubbardi* was presented by Hünefeld.
(2007), based on microtome sections. Structures of the male postabdomen were described by Bolivar y Pieltain (1940), Hwang (1974), New (1978), Rafael & Engel (2006) and others. They are extremely variable, probably related to different mating patterns (e.g., Dallai et al. 2013).

Recently different aspects of Zoraptera were investigated by a collaborative group including entomologists from Japan (University of Tsukuba), Italy (University of Siena), and Germany (Friedrich-Schiller-Universität Jena), mainly specialized on development (R. Machida), ultrastructure (R. Dallai) and the skeletomuscular system (R.G. Beutel), respectively. Combined with collecting efforts in Malaysia (R. Machida and coworkers) and Ecuador (Y. Matsumura) (Fig. 2), several studies focused on the genital region were presented, using a broad array of techniques including transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), and micro computed tomography (µCT) (Fig. 3). One result was the marked discrepancy between a far-reaching uniformity of the group in the general body morphology and conspicuous differences in the male genital structures (Dallai et al. 2011, 2012a, b; Y. Matsumura, pers. comm.).

Zorapteran eggs were described in earlier studies for several species (Caudell 1920; Gurney 1938; Silvestri 1946). SEM micrographs of eggs of Zorotypus gurneyi and Zorotypus barberi (Panama) were shown in Choe (1989). Mashimo et al. (2011) described eggs of Z. caudelli (Malaysia) with different approaches including TEM. The whitish egg is 0.6 mm long and 0.3 mm wide, the two-layered chorion shows a honeycomb pattern, and an operculum or a hatching line are missing. A pair of micropyles is present at the equator on the dorsal side, similar to the condition found in eggs of Timema (Phasmatodea) (Mashimo et al. 2011).

Spermatozoa were already observed by Silvestri (1913). The spermatogenesis and sperm ultrastructure was investigated by Dallai et al. (2011) using transmission electron microscopy. A common feature of Zoraptera is the great length of the spermatozoa. An
unusual feature of *Z. caudelli* is a disconnection of sub-tubules A and B at the level of microtubule doublets 1 and 6 of the mature sperm cells (Dallai et al. 2011), whereas disproportionately large mitochondrial derivatives are characteristic for *Z. hubbaridi* (Dallai et al. 2012b). Character combinations found in different species suggest that spermatozoa do not evolve as a unit, but that like in other body regions components can be modified independently from each other. A derived feature, dense laminae radiating in a cartwheel array between neighboring centriolar triplets, is shared with Phasmatodea and Embioptera. An apomorphy shared with Phasmatodea is the presence of 17 protofilaments in the tubular wall of the outer accessory microtubules (Dallai et al. 2011, 2012b; Gottardo et al. 2012).

3. The phylogenetic position of Zoraptera (Figs 4, 5)

3.1. Pre-Hennigian approaches

When Silvestri (1913) described the first zorapteran species and introduced the family Zorotypidae he assumed that they must be close relatives ("collocate vicino") of roaches ("Blattoidei") and Isoptera. He listed several differences separating Zoraptera from these polynoeopteran groups, such as for instance the presence of a bundle of setae on the left mandible. He also mentioned similarities with Dermaptera, but explicitly referred to them as superficial. After Silvestri, affinities (not necessarily in a phylogenetic sense) with Isoptera were emphasized by Caudell (1918) and the "distinguished albeit eccentric" G.C. Crampton (1920) (Grimaldi & Engel 2005). Potential arguments for a closer relationship included a general resemblance in the habitus, certain structural details of the thorax and abdomen, colonial habits, and dehiscent wings. While recognizing these similarities, Crampton (1920) clearly pointed out affinities with the acercarian orders, for which he hypothesized an origin from "Prothorthopteroid ancestors in the common Prothorthopteran-Protoblattid stem". He explicitly suggested a very close relationship with Psocoptera ("Corrodentia"). A possible
relationship with Pscoptera was also discussed in Gurney (1938), concluding that “affinities with Corrodentia are more noticeable than those with orthopteroid insects”.

Weidner (1969) suggested “strong thoracic synapomorphies” of Zoraptera + Isoptera, but did not uphold this view in his Handbuch der Zoologie volume (Weidner 1970) where he explicitly rejected superficial arguments for such a hypothesis and emphasized the difficulty of placing Zoraptera. He rather vaguely referred to the order as a specialized, “today obsolete (“verkümmert”) branch of Blattodea” (including roaches and termites).

3.2. Hennig’s interpretation and follow up studies

W. Hennig revolutionized insect systematics with his classical work “Die Stammesgeschichte der Insekten” (Hennig 1969). In an earlier study he rather vaguely suggested monophyletic Paraneoptera¹ (Zoraptera + Acercaria [= Psocodea, Thysanoptera and Hemiptera]) with Zoraptera basal and definitely outside of Pscoptera (Hennig 1953). A similar hypothesis was proposed in a little-known study by Wille (1960: Fig. 1), who addressed Zoraptera as “the most primitive group of the hemipteroids [= Acercaria], at the base of their evolutionary branch and close to the orthopteroids”. Hennig (1969) indicated a single “certain derived feature” supporting Paraneoptera, the greatly condensed condition of the abdominal ganglionic chain, with two separate ganglionic masses in zorapterans, and only one in the remaining groups (Hennig 1953, 1969). He considered the reduced number of three tarsomeres (groundplan) as an additional potential synapomorphy, but it is apparent that losses of tarsal segments occurred in many groups. The hypotheses suggested by Hennig (1953, 1969) and Wille (1960), were tentatively followed by Kristensen (e.g., 1975), Willmann (2005), and Beutel & Weide (2005). The presence of only six Malpighian tubules (four in Acercaria), a cercus composed of only one segment or entirely missing (Acercaria), a

¹ The term Paraneoptera is presently often used for a group that does not include Zoraptera (e.g., Grimaldi & Engel 2005)
fork of the cubitus posterior (areola postica) (Willmann 2005), a strengthened cibarial sucking
pump, and a blade-like lacinia lacking mesally directed spines (Beutel & Weide 2005) were
considered as additional arguments. The last feature is likely an autapomorphy of Zorotypus
hubbardi, the species examined by Beutel & Weide (2005). A largely unmodified lacinia is
present in other species (e.g., Silvestri 1913). The strongly developed cibarial dilator is a
rather unspecific feature which has also developed in other groups of insects (e.g.,
Antliophora; Beutel & Baum 2008). In his later review studies, Kristensen (e.g., 1995)
questioned Hennig’s Paraneoptera concept and treated acercarian and polyneopteran affinities
of Zoraptera as competing working hypotheses.

Similarities of the antennae of Zoraptera and Isoptera (chemoreceptors, tactile setae,
Johnston’s organ) were described by Slifer & Sekhon (1978). However, it is evident that these
features have evolved independently given the strong support for a subordinate placement of
Isoptera within Blattodea (e.g., Deitz et al. 2003; Lo 2003; Klass 2009). A sistergroup
relationship with Embioptera was first proposed by Minet & Bourgoin (1986), who suggested
an entire series of potential synapomorphies including a reduced wing venation (groundplan),
a hypertrophied metafemur and metathoracic tibial depressor, moniliform antennae, fusion of
tarsomeres, loss of the arolium, reduction of the ovipositor, and gregarious habits. Even
though some of these features are rather unspecific modifications or reductions, a close
relationship with Embioptera gained further support by Engel & Grimaldi (2000) and

In a study on the zorapteran wing venation Kukalová-Peck & Peck (1993) addressed the
intraordinal relationships and also the placement of the order within neopteran insects. Based
on an informal analysis of wing characters they suggested that Zoraptera “probably diverged
from the Blattoneoptera (= Grylloblattodea, †Protelytroptera, Dermaptera and Dictyoptera),
almost certainly before the (†Protelytroptera + Dermaptera) line, and much before the
(Isoptera + (Blattodea + Mantodea)) line”. The hypothesis was illustrated with a phylogenetic
tree (Kukalová-Peck & Peck 1993: Fig. 23) showing Zoraptera as the second branch of
Blattoneoptera after Grylloblattodea.

A sistergroup relationship with Holometabola (“Scarabaeiformes”) was suggested by
Rasnitsyn (1998) based on the alleged presence of a precursor of the medial mesocoxal
articulation in Z. hubbardi. As pointed out above (2. Morphology), the morphological data
were insufficient. Moreover, the phylogenetic argumentation was based on an ad hoc
interpretation of a single vague character. Rasnitsyn (1998) provisionally placed Zoraptera in
an otherwise extinct superorder Caloneurida, supposedly subordinate to a “Cohors
Cimicoformes” (= Acercaria). He hypothesized Caloneurida “to be ancestral to other
cimicoform superorders as well as to the Cohors Scarabaeiformia” (= Holometabola). This
taxonomic treatment of Zoraptera is not compatible with the suggested phylogenetic position
as sistergroup of Holometabola.

Kusnetsova et al. (2002) examined the karyotype (2n = 38, 36 + neo-XY) and genital
structures of Z. hubbardi. Based on the presence of panoistic ovaries and holokinetic
chromosomes they rather vaguely suggested that Zoraptera may “represent a group of
Polyneoptera nearest to the origin of Paraneoptera”.

Zompro (2005) suggested a position of Zoraptera in “Orthopteromorpha”, supposedly
comprising the polyneopteran orders excluding Plecoptera, Embioptera and Phasmatodea.
This placement was based on elongate coxae and eggs without a strongly sclerotized egg
capsule and also lacking an operculum. However, a stringent character discussion and
analytical approach were lacking. Furthermore, the coxae of Zoraptera are not elongated (e.g.,
Friedrich & Beutel 2008) and the condition of the egg is obviously plesiomorphic (Mashimo
et al. 2011).

A character system previously not explored with respect to the position of Zoraptera is
the antennal heart and associated structures. The hitherto unknown antennal pulsatile organ of
Zoraptera is characterized by a t-shaped configuration of muscles (pers. obs. B. Wipfler), with
a fairly broad transverse muscle attached to the head capsule on both sides (assigned as "Mxy" in Beutel & Weide 2005) and a narrower vertical muscle. Such a configuration occurs in several groups of Polyneoptera but is completely unknown in Acercaria. This feature clearly supports a placement of Zoraptera among the polynoeptner lineages.

Recent detailed morphological studies related to the reproduction suggested a sistergroup relationship of Zoraptera with Embioptera or Eukinolabia (Embioptera + Phasmatodea), by Mashimo et al. (2011, in press) based on the egg structure and development of egg tooth and by Dallai et al. (2011, 2012) based on the spermatozoan structures, i.e. 17 protofilaments comprising accessory tubules of axonemes and L-shaped electron-dense lamellae accompanying microtubular triplets in the centriole adjunct.

3.3. Cladistic approaches

The first morphology-based formal cladistics analysis including all hexapod orders were presented by Wheeler et al. (2001) and Beutel & Gorb (2001). Wheeler et al. (2001) was primarily based on molecular data but also presented an independent morphological analysis based on a matrix with 275 characters. The analysis of the morphological data yielded a sistergroup relationship between Acercaria and Zoraptera in agreement with Hennig (1969). Zoraptera were placed as sistergroup of Eumetabola (Acercaria + Holometabola) in the study of Beutel & Gorb (2001), which had a main focus on the evolution of attachment structures. The same result was obtained in a series of studies on the head morphology (Wipfler et al. 2011; Blanke et al. 2012; 2013; Wipfler 2012). However, it was pointed out by the authors that the unit Zoraptera + Eumetabola was not supported by convincing synapomorphies. In a follow-up study Beutel & Gorb (2006; expanded morphological data set, Mantophasmation included) retrieved Zoraptera as sister to Acercaria, essentially supported by the potential synapomorphies listed above (e.g., blade-like lacinia, condensed abdominal ganglionic chain).
Cladistic analyses of characters of the wing articulation (Yoshizawa 2007, 2011a) yielded a sistergroup relationship Zoraptera + Embioptera, like in Minet & Bourgoin (1986). This was also supported when additional characters from Beutel & Gorb (2001, 2006) were added to the matrix. The fusion between the first axillary sclerite and the posterior notal wing process was emphasized as a potential synapomorphy, as this modification also involves a modification of the wing hinge, which is extremely conservative throughout the winged insects (Yoshizawa & Ninomiya 2007; Ninomiya & Yoshizawa 2009).

3.4. Molecular phylogenetic and phylogenomic approach

Wheeler et al. (2001; 18S, 28S, morphology) and Terry & Whiting (2005; 18S, 28S, Histone 3, morphology) analyzed the relationships of the entire Hexapoda or of the polyneopteran orders, respectively. Very different placements of Zoraptera order resulted from separate analyses of 18S and 28S rRNA in Wheeler et al. (2001: Figs 13, 14) (see Table 1), and analyses of both genes combined suggested an unlikely unit comprising Zoraptera, Trichoptera and Lepidoptera. Terry & Whiting (2005) placed Zoraptera as sistergroup of Dermaptera and referred to this possible clade as Haplocecata. The analytical methods used in both studies (POY) have been criticized (Kjer et al. 2007; Ogden & Rosenberg 2007; Yoshizawa 2010). A contaminant of a dermapteran sequence in the zorapteran dataset (Yoshizawa 2010, 2011b) suggests that the clade Zoraptera + Dermaptera may be artificial. Yoshizawa & Johnson (2005; 18S rRNA) aligned their data using a secondary structure model. Maximum likelihood and Bayesian analyses retrieved Zoraptera as sister to Dictyoptera. However, very unusual molecular evolutionary trends observed in Zoraptera (e.g., extremely accelerated substitution rates and modifications of secondary structures) made the placement of the order highly unstable. Wang et al. (2013; 28S rRNA) also employed secondary structure-based alignments and obtained the same result for Zoraptera. However, for both 18S and 28S rRNA an extreme acceleration of the substitution rate and modification
of secondary structures is evident in Zoraptera, making the results unstable. Wang et al. (2013) identified unique features of the secondary structure of 28S rRNA shared by Zoraptera and Dictyoptera.

Misof et al. (2007; 18S rRNA) specifically addressed problems caused by character interdependence by employing secondary structure information and a Bayesian approach. A partly robust tree was obtained based on a hexapod consensus secondary structure model and mixed DNA/RNA substitution models. Zoraptera were placed as sistergroup of Dermaptera + Plecoptera, but with very low Bayesian support (0.45). This underlines that the frequently used 18S rRNA is apparently insufficient to fully resolve supraordinal insect interrelationships.

Ishiwata et al. (2011; DPD1, RPB1, RPB2) retrieved Polyneoptera incl. Zoraptera with good support, and a sistergroup relationship Zoraptera + Dictyoptera in some of the trees with low support. Consequently, Zoraptera were shown in an unresolved polyneopteran polytomy in a summary tree (Ishiwata et al. 2011).

Simon et al. (2012) placed Zoraptera as sister to all other polyneopteran terminals in a preliminary phylogenomic study. The support values were extremely low and several orders (Embioptera, Phasmatodea, Mantophasmatodea, Grylloblattodea) were not included. In a follow-up study (Letsch & Simon 2013) Embioptera and Phasmatodea were added. The analyses also supported a sistergroup relationship between Zoraptera and the remaining polyneopteran lineages. Recent unpublished results from the 1KITE project (ca. 100 hexapod terminals representing all orders) suggest a sistergroup relationship between a unit Zoraptera + Dermaptera (confirming the Haplocercata s. Terry & Whiting 2005) and a clade comprising all other polyneopteran orders. However, this pattern is not strongly supported statistically.

4. Intraordinal phylogeny
Kukalová-Peck & Peck (1993) suggested a classification based on an informal evaluation of wing characters. They recognized two families of Zoraptera and several genera. A new genus Formosozoros (from Taiwan) was described by Chao & Chen (2000). However, like the genera introduced by Kukalová-Peck & Peck (1993) it was not considered as valid in recent studies, and all extant species are currently classified into a single genus Zorotypus (e.g., Engel & Grimaldi 2002; Grimaldi & Engel 2005).

No molecular approach explicitly addressing the intraordinal phylogeny has been made to date. Yoshizawa & Johnson (2005; 18S rRNA) included four representatives of Zoraptera in their study (Old World and New World samples) and Yoshizawa (2010, 2011b; 18S rRNA) six. A deep divergence between the Old World and New World species was demonstrated. This is seemingly in conflict with evidence from male genitalia. The New World Zorotypus snyderi shares an elongated and coiled intromittent organ with the Old World species (Gurney 1938; Dallai et al. 2011; Mashimo et al. 2013), but molecular data suggest that it is closely related with Z. hubbardi (also New World) which lacks this unusual structure. Therefore it is conceivable that the coil was present in the groundplan of Zoraptera (or a large subgroup) and was secondarily lost in the majority of species. It cannot be fully excluded that it was acquired independently in several lineages, but independent gain of such a complex structure appears less likely.

5. Fossils

Grimaldi & Engel (2005) suggested a possible origin of Zoraptera in the lower Mesozoic. The first described extinct species was an apterous female of †Zorotypus palaeus from Dominican amber (Middle Miocene; Poinar 1988; Iturralde-Vincent & MacPhee 1996). The first winged specimen was described by Engel & Grimaldi (2000) from the same formation. Four species were identified in Burmese Cretaceous amber (Engel & Grimaldi, 2002). Three of them were very similar to extant zorapterans and consequently assigned to the genus Zorotypus. A basal
position of two of them (†Zorotypus anathothorax, †Zorotypus nascimbenei) was tentatively
suggested by Engel (2003), and both were placed in a subgenus †Octozoros based on a
reduced number of eight antennomeres and the presence of jugate setae along a part of the
posterior forewing border (Engel, 2003). One of the four species was placed in a separate
genus †Xenozorotypus (Engel & Grimaldi, 2002) and considered as sister to all other
zorapterans. †Palaeospinosus hudae was described from Jordanian amber by Kaddumi (2005),
but the genus has been synonymized with Zorotypus (Engel 2008).

6. General biology

Zorapterans are omnivorous scavengers and feed on fungal hyphae and spores and on very
small arthropods like mites and collembolans (Choe 1992; Grimaldi & Engel 2005). They are
usually found in colonies under bark of decaying logs. As social behavior has not been
reported yet and is probably missing in all species, zorapterans should be referred to as
gregarious. The individuals spend much time grooming various body parts (Valentin 1986). In
Zorotypus barberi some parts that cannot be reached are groomed by conspecifics (Choe
1992). Some species emit a slight but characteristic odor, reminiscent of a fragrance produced
by the osmeterium of some swallowtail butterfly (Shetlar 1978; pers. obs. Y. Mashimo). Little
is known about the life cycle of Zoraptera. The length of the nymphal period is about 1-2
months and adult lifespan is a few months, as reported by Gurney (1938) and Shetlar (1978).
While Shetlar (1974) estimated five nymphal instars by measuring morphological features,
Riegel & Eytalis (1974) suggested four instars based on different head widths. However,
these descriptions are insufficient and the conclusions largely speculative. The specific wing
dimorphism, a potential autapomorphy of the order, is also insufficiently investigated.
According to observations mentioned in a review by Choe (1992) crowding and heredity
seem to affect the production of the winged morphs. However, relevant details are unknown.
Further intensive observations and investigations of the biology of Zoraptera are required.
7. Embryonic development

The embryonic development of Zoraptera was described recently by Mashimo et al. (in press). The embryo is formed by a fusion of paired blastoderm regions with higher cellular density extends along the egg surface. After reaching its full length, it migrates into the yolk and finally moves to take its position on the ventral surface of the egg accompanied by a reversion of its anteroposterior axis. These embryological features are widely known in Polyneoptera, and strongly suggest a placement of Zoraptera in this lineage (Mashimo et al. in press).

8. Mating behavior

Several studies on the mating behaviour were carried out by Choe (1994a, b, 1995, 1997), focused on the precopulatory courtship and copulation of Z. gurneyi and Z. barberi from Panama. The two sympatric species display a distinctly different mating behaviour. In Z. gurneyi a linear dominance hierarchy is established by mutual antennation and females were fertilized only once with very few exceptions. Dominant males performed 72% of the copulations, while the others were able to mate only occasionally. Z. barberi males lack this hierarchy. They are characterized by a highly unusual courtship ritual including nuptial feeding on a secretion of a cephalic gland (Choe 1997).

The mating behaviour of several Asian species was documented by Dallai et al. (2013) (Fig. 3). Mating sequences were recorded for many hours and observations were compared to earlier findings of Choe (1994a, b, 1995, 1997). An unusual case of external sperm transfer was described for Z. impolitus, a feature unknown in other pterygote insects. The high variability not only of the genital structures but also of the mating behaviour and reproductive strategies was underlined by Dallai et al. (2013).

9. Discussion
Despite of their small size, inconspicuous appearance, cryptic habits and very low diversity it would be misleading to consider Zoraptera as “unsuccessful” in their evolution. An origin in the early Mesozoic was suggested by Grimaldi & Engel (2005). Considering a possible placement as sistergroup of a large polyneopteran subunit (possibly together with Dermaptera), an origin in the Carboniferous appears likely. In any case the group has survived for a period of at least 200 Mya. Very small size and cryptic habits, which have prevented discovery by insect collectors until the early 20th century, may have contributed to the long survival. Recently collected and described species from different regions (e.g., Mashimo et al. 2013) indicate that the true diversity of the order is likely distinctly higher than known at present.

The morphological investigation of the group mainly profited from three factors. The availability of innovative techniques greatly facilitated detailed anatomical and ultrastructural studies (Fig. 1; e.g., Friedrich & Beutel 2008; Dallai et al. 2012a, b). The coordinated effort of researchers with different specialized skills also led to a markedly improved knowledge of the group. Moreover, improved collecting and fixation yielded more and better conserved material for anatomical investigations.

Unlike in Strepsiptera (“the Strepsiptera problem”; e.g., Kristensen 1991, 1995; Beutel & Pohl 2006; Beutel et al. 2011) the systematic position of Zoraptera is not obscured by numerous autapomorphies, but rather by many preserved plesiomorphic features, combined with far-reaching reductions in some body regions (e.g., attachment structures, ovipositor). Friedrich & Beutel (2008) showed that the thoracic skeleto-muscular system of winged morphs is probably close to the groundplan of Neoptera. Whereas Strepsiptera have been recently placed as the sistergroup of Coleoptera with strong support (Niehuis et al. 2012; Pohl & Beutel 2013), the “Zoraptera problem” is still not completely resolved. Widely divergent placements were suggested for Zoraptera (Figs 4, 5) and Strepsiptera and in both cases early attempts were impeded by the lack of a sound phylogenetic
That the spectrum of proposed positions is somewhat narrower in the case of Zoraptera may be partly due to its later discovery, about 120 years after the description of the first strepsipteran species (Rossius 1793; see Pohl & Beutel 2013). The placement of Zoraptera as close relatives of termites (e.g., Weidner 1969) was based on superficial similarities (see Weidner 1970) and an insufficient character evaluation. The structural affinities with Psocoptera emphasized by Crampton (e.g., 1921) and others are either plesiomorphic, superficial, or due to homoplasy. The placement of barklice (paraphyletic with respect to Liposcelididae) within a clade Psocodea is undisputed (e.g., Yoshizawa & Saigusa 2001; Yoshizawa & Johnson 2006, 2010; Friedemann et al. in press).

The sistergroup relationship with Holometabola suggested by Rasnitsyn (1998) was based on an insufficient evaluation of very incomplete morphological data. A clade Zoraptera + Eumetabola (Beutel & Gorb 2001) is an artifact mainly caused by parallel reductions (e.g., ocelli in immature stages, number of Malpighian tubules).

The hypothesized sistergroup relationship between Zoraptera and Acercaria (Hennig 1953, 1969; Wille 1960; Kristensen 1975; Willmann 2003, 2005; Beutel & Weide 2005; Beutel & Gorb 2006) is presently largely refuted (Figs 4, 5). Most characters suggesting monophyletic Paraneoptera (incl. Zoraptera) are reductions (e.g., number of tarsomeres, cercomeres, and abdominal ganglia) and polynopteran affinities (e.g., Yoshizawa 2007, 2011a; Ishiwata et al. 2011) imply that these structural modifications evolved independently.

A placement of Zoraptera within Polyneoptera is gaining more and more support (Fig. 5). However, the monophyly of this unit is not sufficiently supported yet (e.g., Whitfield & Kjer 2008; Trautwein et al. 2012) and the precise placement of Zoraptera is still controversial. A close relationship with Dictyoptera (Boudreaux 1979; Wheeler et al. 2001: p. 148 [“based on the discussion”]; Yoshizawa & Johnson 2005; Wang et al. 2013) is a possible option, but convincing synapomorphies are missing. Boudreaux’ (1979) arguments were not based on a formal character analyses and the features are unspecific or widespread in Insecta (e.g.,
“backwardly directed hind coxae”). The conclusion presented by Wheeler et al. (2001) in a summary tree is weakened by conflicting results obtained with the different data sets (morphology, 18S rRNA, 28S rRNA, 18S + 28S rRNA) (see Table 1). It is conceivable that the results based on molecular data were negatively affected by the use of POY (e.g., Yoshizawa 2010, 2011b). Kukalová-Peck & Peck (1993) provided useful data, but the hypothesized placement of Zoraptera in a clade Blattoneoptera is weakened by the lack of a formal analysis and the exclusive use of wing characters. Wing base characters and morphological features linked to reproduction suggest a placement as sistergroup Embioptera (Yoshizawa 2007, 2011a) or Eukinolabia (Embioptera + Phasmatodea) (Mashimo et al. 2011, in press; egg and embryonic development; Dallai et al. 2011, 2012b; spermatozoa), respectively. Results of single gene analyses of single genes did not yield congruent results yet (e.g., Yoshizawa & Johnson 2005; Misof et al. 2007). Likewise, presently available transcriptome-based studies are not fully convincing. The basal placement within Polyneoptera suggested by Simon et al. (2012) and Letsch & Simon (2013) is weakened by the incomplete ordinal taxon sampling. As the pattern in the recent 1KITE-tree ((Zoraptera + Dermaptera) + (remaining Polyneoptera) is not is not strongly supported statistically, the precise placement of Zoraptera remains a challenge.

Despite a considerable progress in zorapteran studies it is apparent that important problems remain to be solved, not only concerning the systematic position. To understand the phenomenon of different forms of selective pressure shaping different body parts (natural selection [ecological]/sexual selection) detailed information on genital structures of more species is required. Moreover, a species level phylogeny based on morphological and molecular data should have high priority in future studies. A solid intrordinal phylogeny is an essential basis for reconstructing the evolution of the group and to understand evolutionary processes.
It is probably safe to assume that zorapterans will remain one of the smallest hexapod orders and only few entomologists would address them as attractive insects. Nevertheless the group is intriguing in different aspects, phylogenetically, as a model case in evolutionary biology, and as cryptic survivors with a hidden diversity still to explore.

Acknowledgements
We thank G. Brehm for allowing YoM to join his field survey in Ecuador.

References

6 Central Branch, Entomological Society of America 29: 106–107.
7 Rossius, P. (1793) Observation de M. Rossi sur un nouveau genre d’Insecte, voisins
9 Shetlar, D.J. (1974) The biology, morphology, and taxonomy of Zorotypus hubbardi
11 Shetlar, D.J. (1978) Biological observations on Zorotypus hubbardi Caudell (Zoraptera).
13 Silvestri, F. (1913) Descrizione di un nuovo ordine di insetti. Bollettino del Laboratorio di
16 Bollettino del Laboratorio di Entomologia Agraria, Portici 7: 1–12.
18 the source of incongruence using new transcriptomic data. Genome Biology and
21 hubbardi (Insecta, Zoraptera). Notulae Natural. Academy of Natural Sciences of
22 Philadelphia 453: 1–8
24 Terry, M.D. & Whiting, M.F. (2005) Mantophasmatodea and phylogeny of the lower

Table 1. Systematic placements of Zoraptera with different approaches and character sets.

<table>
<thead>
<tr>
<th>Systematic approach/ Study</th>
<th>Characters</th>
<th>Systematic placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Hennigian concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silvestri (1913)</td>
<td>morphology</td>
<td>closely related with roaches and termites (Blattodea)</td>
</tr>
<tr>
<td>Caudell (1918)</td>
<td>morphology</td>
<td>affinities with Isoptera</td>
</tr>
<tr>
<td>Crampton (1920, 1921, 1926)</td>
<td>different morphological character systems</td>
<td>affinities with Psocoptera ("Corrodentia")</td>
</tr>
<tr>
<td>Weber (1933)</td>
<td>morphology</td>
<td>tentatively in a superorder Blattoidea (Mantodea, Zoraptera, Blattaria, Isoptera)</td>
</tr>
<tr>
<td>Gurney (1938)</td>
<td>morphology</td>
<td>affinities with Psocoptera ("Corrodentia")</td>
</tr>
<tr>
<td>Hennigian concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hennig (1953)</td>
<td>morphological characters</td>
<td>tentatively as basal lineage of Paraneoptera, outside of Psocoptera</td>
</tr>
<tr>
<td>Hennig (1969)</td>
<td>morphological characters, abdominal ganglionic chain, number of tarsomeres</td>
<td>sistergroup of Acercaria (Paraneoptera concept)</td>
</tr>
<tr>
<td>Weidner (1969)</td>
<td>mainly thoracic characters</td>
<td>tentatively as sistergroup of Isoptera</td>
</tr>
<tr>
<td>Weidner (1970)</td>
<td>mainly thoracic characters</td>
<td>obsolete branch of Blattodea</td>
</tr>
<tr>
<td>Kristensen (1975)</td>
<td>different morphological</td>
<td>Paraneoptera concept as</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Characters</td>
<td>Phylogenetic Relations</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Boudreaux (1979)</td>
<td>wing venation, metacoxae</td>
<td>sistergroup of Dictyoptera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(„Cursorida = Zorapterida + Blattarida“)</td>
</tr>
<tr>
<td>Minet et Bourgoin (1986)</td>
<td>wing venation, thoracic and abdominal morphology</td>
<td>sistergroup of Embioptera</td>
</tr>
<tr>
<td>Kristensen (1995)</td>
<td>different morphological characters</td>
<td>either acercarian or polyneopteran affinities</td>
</tr>
<tr>
<td>Kukalová-Peck & Peck (1997)</td>
<td>wing base and venation</td>
<td>sistergroup of †Protelytroptera, Dermaptera and Dictyoptera (Blattonoeoptera excl. Grylloblattodea)</td>
</tr>
<tr>
<td>Kusnetsova et al. (2002)</td>
<td>chromosome structure and genitalia</td>
<td>“in Polyneoptera close to the origin of Paraneoptera”</td>
</tr>
<tr>
<td>Zompro (2005)</td>
<td>morphology and egg structure</td>
<td>“Orthopteromorpha” (=Polyneoptera excl. Plecoptera, Embioptera and Phasmatodea)</td>
</tr>
<tr>
<td>Dallai et al. (2011)</td>
<td>sperm ultrastructure</td>
<td>In a clade with Embioptera and Phasmatodea</td>
</tr>
<tr>
<td>Mashimo et al. (2011, in press)</td>
<td>egg structure and development</td>
<td>In a clade with Embioptera and Phasmatodea</td>
</tr>
<tr>
<td>Cladistic approach based on morphology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Kukalová-Peck & Peck (1993)</td>
<td>wing base and venation</td>
<td>sistergroup of †Protelytroptera, Dermaptera and Dictyoptera (Blattoneoptera)</td>
</tr>
<tr>
<td>Wheeler et al. (2001)</td>
<td>morphological matrix with 275 characters, extracted from literature</td>
<td>sistergroup of Acercaria</td>
</tr>
<tr>
<td>Beutel & Gorb (2001)</td>
<td>characters of adults and larvae including attachment structures</td>
<td>sistergroup of Eumetabola (Acercaria + Holometabola)</td>
</tr>
<tr>
<td>Beutel & Gorb (2006)</td>
<td>characters of adults and larvae including attachment structures, Mantophasmatodea and some developmental features added</td>
<td>sistergroup of Acercaria</td>
</tr>
<tr>
<td>Yoshizawa (2011)</td>
<td>wing base</td>
<td>Embioptera</td>
</tr>
<tr>
<td>Single gene analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheeler et al. (2001)</td>
<td>18S rRNA (analyzed with POY)</td>
<td>Sistergroup of Psocodea</td>
</tr>
<tr>
<td>Wheeler et al. (2001)</td>
<td>28S rRNA (POY)</td>
<td>sistergroup of a clade comprising all pterygote</td>
</tr>
<tr>
<td>Authors</td>
<td>Methodology</td>
<td>Result</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Yoshizawa & Johnson</td>
<td>18S rRNA</td>
<td>sistergroup of Dictyoptera</td>
</tr>
<tr>
<td>Misof et al. (2007)</td>
<td>18S rRNA, special focus on character interdependence</td>
<td>sistergroup of Plecoptera + Dermaptera</td>
</tr>
<tr>
<td>Ishiwata et al. (2011)</td>
<td>3 nuclear protein-coding genes</td>
<td>In Polyneoptera, possibly sistergroup of Dictyoptera</td>
</tr>
<tr>
<td>Wang et al. (2013)</td>
<td>28S rRNA</td>
<td>Dictyoptera</td>
</tr>
<tr>
<td>Phylogenomic approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simon et al. (2012)</td>
<td>Transcriptomes, Embioptera, Phasmstodea, Gryllloblattodea, and Mantophasmatodea not included</td>
<td>sistergroup of remaining polyneopteran terminals with low support</td>
</tr>
<tr>
<td>Letsch & Simon (2013)</td>
<td>Transcriptomes,</td>
<td>sistergroup of remaining</td>
</tr>
<tr>
<td>Grylloblattodea and Mantophasmatodea not included</td>
<td>polyneopteran terminals</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Histogram showing number of publications on Zoraptera under different aspects.

Fig. 2. Collecting site of different *Zorotypus* species in Ecuador, Zamora-Chinchipe, Copalinga Lodge Reserve Rainforest, with nymph (lower right).

Fig. 3. Copula of *Zorotypus caudelli*, volume render of μ-Ct image stacks.

Fig. 4. Cladograms showing different placements of Zoraptera.

Fig. 5. Cladograms from recent studies showing different placements of Zoraptera.