PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission

Kunimasa Saitoh,¹,* Takui Uematsu,¹ Nobutomo Hanzawa,² Yuhei Ishizaka,¹ Kohei Masumoto,¹ Taiti Sakamoto,² Takashi Matsui,² Kyozo Tsujikawa,² and Fumihiko Yamamoto²

¹Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
²NTT Access Network Service Systems Laboratories, NTT Corporation, 1-7-1 Hanabatake, Ibaraki 305-0805, Japan
*ksaitoh@ist.hokudai.ac.jp

Abstract: A PLC-based LP₁₁ mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP₁₁₁ₐ (LP₁₁₁₉) mode to LP₁₁₁₉ (LP₁₁₁₁) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP₁₁₁₁ mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP₁₁₁₁ mode to LP₁₁₁₉ mode over a wide wavelength range.

©2014 Optical Society of America

OCIS codes: (060.1810) Buffers, couplers, routers, switches, and multiplexers; (060.4510) Optical communications.

References and links

#212622 - $15.00 USD Received 22 May 2014; revised 25 Jun 2014; accepted 29 Jun 2014; published 30 Jul 2014 (C) 2014 OSA 11 August 2014 | Vol. 22, No. 16 | DOI:10.1364/OE.22.019117 | OPTICS EXPRESS 19117
1. Introduction

An expansion of the transmission capacity per fiber is needed because of the rapid growth of Internet traffic in the optical fiber network. Mode-division multiplexing (MDM) has attracted attention to obtain a much larger transmission capacity. The mode (de)multiplexer is an important component to realize MDM transmission. Various mode (de)multiplexers based on free-space optics [1–3], fiber coupler and a long-period fiber bragg grating (LPFBG) [4,5], photonic lantern [6], adiabatically-tapered fiber [7], and planar lightwave circuit (PLC) [8,9] have been demonstrated.

PLC-based mode (de)multiplexer has unique advantages including a low insertion loss, relatively low wavelength dependence, a small size, and high mass productivity due to the adoption of mature semiconductor manufacturing technologies such as photolithography and ion etching. The PLC-based mode (de)multiplexer is one of the promising mode (de)multiplexers for the purpose of mass production. We have proposed the PLC-based three-mode multiplexer which can multiplex and excite LP_{01}, LP_{11a}, and LP_{21} modes [10]. The PLC-based mode multiplexer which can excite LP_{11b} mode is required to realize a mode (de)multiplexer which can multiplex LP_{01}, LP_{11a}, LP_{11b}, and LP_{21} modes. However, the PLC-type mode multiplexer which can excite LP_{11b} mode has not been presented because it is difficult to excite electronic waveguide modes E_m ($m \geq 2$) like LP_{11b} mode in the same plane.

In this paper, we design and fabricate a PLC-based LP_{11} mode rotator for the excitation of LP_{11b} mode [11]. Numerical simulations show that converting LP_{11a} mode to LP_{11b} mode can be achieved with high conversion efficiency (more than 90%) over a wide wavelength range from 1450 nm to 1650 nm. Numerical simulations also show that the LP_{11} mode rotator can convert LP_{11b} mode to LP_{11a} mode, has little polarization dependence, and has a good fabrication tolerance. We finally fabricate the proposed LP_{11} mode rotator using silica-based PLC and confirm that the fabricated LP_{11} mode rotator can convert LP_{11a} mode to LP_{11b} mode over a wide wavelength range.

2. Principle and design

Figure 1 shows the structure of the PLC-based LP_{11} mode rotator. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide as shown in Fig. 1. The degree of the asymmetry can be controlled by changing the trench position t, the trench width s, and the trench depth d. By properly designing the trench parameters, two orthogonal LP_{11} modes whose optical axes are rotated by around 45° with respect to the x- and y-axes propagate in the waveguide with the trench as shown in Figs. 2(a) and 2(b), and the two orthogonal LP_{11} modes are equally excited and propagated with different propagation constants, β_1 and β_2, in the waveguide with the trench when LP_{11a} (LP_{11b}) mode is launched. By setting the length of the waveguide with the trench to a half beat-length, $\pi/(\beta_1 - \beta_2)$, LP_{11a} (LP_{11b}) mode is rotated into LP_{11b} (LP_{11a}) mode.
In this paper, we assume that the proposed mode rotator is based on silica-based PLC with a relative refractive index difference Δ between the core and cladding of 0.45% [10], and the waveguide width w and height h are respectively set to $w = 11.3$ μm and $h = 11.0$ μm in order to reduce the coupling loss between PLC waveguide and a two-mode fiber to be connected. One can choose other values for Δ, w, and h as you desire.

Next, we choose design parameters related to the trench such as the trench position t, width s, and depth d. When t, d, and s are chosen to large values, the device length tends to be short because the difference of the propagation constants, β_1 and β_2, between two orthogonal LP$_{11}$ modes becomes larger. However, crosstalk to undesired modes such as LP$_{01}$ mode and undesired back reflections become higher when t, d, and s are chosen to large values due to the mode field mismatch at the boundary between the waveguides with and without the trench. Thus, t, d, and s should be chosen to small values in order to suppress the crosstalk to undesired modes. In this paper, we chose target parameters of $t = 2.0$ μm and $s = 1.5$ μm for easy fabrication. Figure 3(a) shows d dependence of the normalized overlap integral of LP$_{11a}$ mode with 1st and 2nd LP$_{11}$ modes shown in Fig. 2 at a wavelength of 1550 nm, where $t = 2.0$ μm and $s = 1.5$ μm. From Fig. 3(a), d should be chosen to $d = 5.4$ μm for the overlap of LP$_{11a}$ mode with the two orthogonal LP$_{11}$ modes shown in Fig. 2 to be equivalent. Figure 3(b) shows t dependence of the normalized overlap integral of LP$_{11a}$ mode with 1st and 2nd LP$_{11}$ modes at a wavelength of 1550 nm with $d = 5.4$ μm and $s = 1.5$ μm, and Fig. 3(c) shows s dependence of the normalized overlap integral of LP$_{11a}$ mode with 1st and 2nd LP$_{11}$ modes at a wavelength of 1550 nm with $d = 5.4$ μm and $t = 2.0$ μm. It can be seen that the normalized overlap integral of LP$_{11a}$ mode with 1st and 2nd LP$_{11}$ modes can be controlled by changing t, d, and s. Finally, the length of the mode rotator L is set to $L = 1.46$ mm, which equals the half beat-length of the two orthogonal LP$_{11}$ modes shown in Fig. 2. The designed parameters are
shown in Table 1. It has been numerically confirmed that the undesired back reflection at the boundary between the waveguides with and without the trench is lower than -30 dB when the designed parameters in Table 1 are used.

Figure 3 shows the calculated conversion efficiency as a function of the length of the proposed mode rotator for x- and y-polarization when (a) LP_{11a} mode or (b) LP_{11b} mode is input at a wavelength of 1550 nm. The inset images show the field distributions of LP_{11} mode.
in the mode rotator at each propagation length. Red and blue solid lines show the result for x-polarization. Green and cyan dashed lines show the result for y-polarization. We used the full-vector finite-element beam propagation method [12] for numerical simulations. From Fig. 4, we can see that LP$_{11a}$ (LP$_{11b}$) mode is converted into LP$_{11b}$ (LP$_{11a}$) when L equals 1.46 mm, and there is little polarization dependence because two lines for x- and y-polarization almost overlap each other. The polarization dependence in the PLC-based mode rotator with small index difference between core and cladding is negligibly small, however, it may become large if the core-cladding index difference increases.

Table 1. Design Parameters of the Proposed LP$_{11}$ Mode Rotator.

<table>
<thead>
<tr>
<th>Δ</th>
<th>w</th>
<th>h</th>
<th>L</th>
<th>t</th>
<th>d</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45%</td>
<td>11.3 μm</td>
<td>11.0 μm</td>
<td>1460 μm</td>
<td>2.0 μm</td>
<td>5.4 μm</td>
<td>1.5 μm</td>
</tr>
</tbody>
</table>

Fig. 4. Conversion efficiency as a function of the trench waveguide length for x- and y-polarization when (a) LP$_{11a}$ mode or (b) LP$_{11b}$ mode is input at a wavelength of 1550 nm. Inset images show field distributions of LP$_{11}$ mode in the LP$_{11}$ mode rotator. Red and blue solid lines show the results for x-polarization. Green and cyan dashed lines show the results for y-polarization. Two lines almost overlap each other owing to little polarization dependence. See Media 1.
3. Characteristics

Figure 5 shows the calculated wavelength dependence of the LP_{11} mode rotator when (a) LP_{11a} mode or (b) LP_{11b} mode is launched into the mode rotator with the design parameters shown in Table 1. From Fig. 5, the wavelength dependence of the conversion efficiency is negligible (more than 90% over a wavelength range from 1.45 \(\mu \text{m} \) to 1.65 \(\mu \text{m} \)), and the crosstalk to the input LP_{11} mode is less than \(-20\) dB over a wavelength range from 1.5 \(\mu \text{m} \) to 1.6 \(\mu \text{m} \) for both polarizations.

Figure 6 shows the fabrication tolerance of the LP_{11} mode rotator when LP_{11a} mode is launched at a wavelength of 1550 nm. The conversion efficiency is insensitive to fabrication errors and the crosstalk to the input LP_{11} mode is less than \(-20\) dB when \(t \), \(d \), and \(s \) change by \(\pm 0.3 \mu \text{m} \), \(\pm 0.4 \mu \text{m} \), and \(\pm 0.1 \mu \text{m} \), respectively. The actual fluctuation through PLC fabrication will depend on a fabrication process and it is usually in the order of submicron.
Fig. 6. Fabrication tolerance to (a) trench position t, (b) trench depth d, (c) trench width s when LP$_{11a}$ mode is input at a wavelength of 1550 nm.
Fig. 7. Wavelength dependence of the normalized output power of LP\textsubscript{01}, LP\textsubscript{11a}, and LP\textsubscript{11b} modes for the case of the design parameters shown in Table 1 (t = 2.0 \mu m, d = 5.4 \mu m, and L = 1.46 mm) when (a) LP\textsubscript{01} mode, (b) LP\textsubscript{11a} mode, or (c) LP\textsubscript{11b} mode is launched.
Fig. 8. Wavelength dependence of the normalized output power for the case of $t = 1.0 \, \mu m$, $d = 4.3 \, \mu m$, and $L = 1.92 \, mm$ (the other parameters are not changed) when (a) LP$_{01}$ mode, (b) LP$_{11a}$ mode, or (c) LP$_{11b}$ mode is launched.
Fig. 9. Wavelength dependence of the normalized output power for the case of $t = 0 \, \mu m$, $d = 3.9 \, \mu m$, and $L = 2.99 \, mm$ (the other parameters are not changed) when (a) LP_{01} mode, (b) LP_{11a} mode, or (c) LP_{11b} mode is launched.
Next, we consider reducing the crosstalk to undesired modes such as LP\textsubscript{01} mode and the input LP\textsubscript{11} mode. Figure 7 shows the calculated wavelength dependence of the normalized output power of LP\textsubscript{01}, LP\textsubscript{11a}, and LP\textsubscript{11b} modes when (a) LP\textsubscript{01} mode, (b) LP\textsubscript{11a} mode, or (c) LP\textsubscript{11b} mode is launched into the mode rotator with the design parameters shown in Table 1. From Fig. 7(a), LP\textsubscript{01} mode is output (without polarization conversion) when LP\textsubscript{01} mode is input. This is because the optical axis for the LP\textsubscript{01} mode is not rotated by the small trench. As shown in Fig. 7, the crosstalk to the undesired modes is less than -16 dB over a wavelength range from 1.45 μm to 1.65 μm.

The crosstalk can be improved by making the parameters related to the trench smaller values. Figure 8 shows the calculated wavelength dependence of the normalized output power of LP\textsubscript{01}, LP\textsubscript{11a}, and LP\textsubscript{11b} modes for the case of $t = 1.0$ μm, $d = 4.3$ μm, and $L = 1.92$ mm (the other parameters are not changed) when (a) LP\textsubscript{01} mode, (b) LP\textsubscript{11a} mode, or (c) LP\textsubscript{11b} mode is launched. From Figs. 7 and 8, we can see that the crosstalk to the undesired modes is reduced from -16 dB to -18 dB when the trench parameters are set to be smaller values.

Figure 9 shows the calculated wavelength dependence of the normalized output power of LP\textsubscript{01}, LP\textsubscript{11a}, and LP\textsubscript{11b} modes for the case of $t = 0$ μm, $d = 3.9$ μm, and $L = 2.99$ mm (the other parameters are not changed) when (a) LP\textsubscript{01} mode, (b) LP\textsubscript{11a} mode, or (c) LP\textsubscript{11b} mode is launched. The crosstalk to the undesired modes is reduced from -16 dB to -23 dB when the trench parameters are set to be smaller values as shown in Figs. 7 and 9.

![Fabricated LP\textsubscript{11} mode rotator with silica-based PLC. All components are fabricated on a chip. Upper and lower waveguides do not have and have the trench, respectively.](image-url)
4. Fabrication

Figure 10 shows the fabricated LP_{11} mode rotator using silica-based PLC with the target structural parameters shown in Table 1. All components shown in Fig. 10 are fabricated on a chip. Figure 11 shows the experimental setup for the LP_{11} mode rotator. In the experiment, we observed near field patterns of output light through a waveguide with or without the trench when LP_{11a} mode is input. LP_{11a} mode should be output when LP_{11a} mode is input to the waveguide without the trench. On the other hand, rotated LP_{11} mode (ideally LP_{11b} mode) should be output when LP_{11a} mode is input to the waveguide with the trench. We used the PLC-based two-mode multiplexer [8] to excite LP_{11a} mode. Table 2 shows the near field patterns of output light through the waveguide with (the left column of Table 2) or without (the right column of Table 2) the trench when LP_{11a} mode is input at each wavelength. The reason of rotation of LP_{11} mode with the change of wavelength is because the optimum half beat-length for 90 degree rotation is depending on the wavelength. From Table 2, we can confirm that the fabricated LP_{11} mode rotator converts LP_{11a} mode to LP_{11b} mode over a wide wavelength range from 1460 nm to 1600 nm.

We can obtain PLC-based three-mode (de)multiplexer for LP_{01}, LP_{11a}, and LP_{11b} modes when we utilize the proposed LP_{11} mode rotator and the two-mode (de)multiplexer [8]. Figure 12 illustrates the schematic drawing of the PLC-based three-mode multiplexer that can multiplex and demultiplex LP_{01}, LP_{11a}, and LP_{11b} modes. The three-mode multiplexer consists of two PLC-based two-mode multiplexers [8] and the proposed LP_{11} mode rotator. Two-mode multiplexers are used for excitation of LP_{11a} mode. All components can be fabricated on a chip. LP_{11b}, LP_{01}, and LP_{11a} modes are output when LP_{01} modes are launched to port 1, port 2, and port 3, respectively.
Table 2. Near Field Patterns of Output Light Through the Fabricated Waveguide with (Left) or without (Right) a Trench when LP_{11a} Mode is Input at Each Wavelength

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>With a trench</th>
<th>Without a trench</th>
</tr>
</thead>
<tbody>
<tr>
<td>1460 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1480 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1520 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1540 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1550 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1560 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1580 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600 nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 12. Schematic drawing of PLC-based three-mode multiplexer that can multiplex and
demultiplex LP\textsubscript{01}, LP\textsubscript{11a}, LP\textsubscript{11b} modes. The three-mode multiplexer consists of two PLC-based
two-mode multiplexers and the proposed LP\textsubscript{11} mode rotator. Two-mode multiplexers are used
for excitation of LP\textsubscript{11a} mode.

5. Conclusion

We have designed and fabricated the PLC-based LP\textsubscript{11} mode rotator for the excitation of LP\textsubscript{11b}
mode. Numerical simulations showed that converting LP\textsubscript{11a} mode to LP\textsubscript{11b} mode could be
achieved with high conversion efficiency (more than 90\%) over a wide wavelength range
from 1450 nm to 1650 nm. Numerical simulations also showed that the LP\textsubscript{11} mode rotator
could convert LP\textsubscript{11b} mode to LP\textsubscript{11a} mode, had little polarization dependence, and had a good
fabrication tolerance. It was clarified that the crosstalk to the undesired modes could be
suppressed by making the trench smaller. We finally fabricated the proposed LP\textsubscript{11} mode
rotator using silica-based PLC and confirmed that the fabricated LP\textsubscript{11} mode rotator can
convert LP\textsubscript{11a} mode to LP\textsubscript{11b} mode over a wide wavelength range. We can realize the PLC-
based three-mode (de)multiplexer for LP\textsubscript{01}, LP\textsubscript{11a}, and LP\textsubscript{11b} modes when we utilize the
proposed LP\textsubscript{11} mode rotator and the two-mode (de)multiplexer [8].