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Entropy and spin susceptibility of swave type-Il superconductors nearH .,

Takafumi Kita
Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
(Received 25 November 2003; revised manuscript received 9 February 2004; published 12 April 2004

A theoretical study is performed on the entrdfyand the spin susceptibilitys near the upper critical field
H., for sswave type-Il superconductors with arbitrary impurity concentrations. The changes of these quantities
throughH ., may be expressed &S(T,B) —S(T,0)]/[ S(T) —S(T,0)]=1—ag(1—B/H.,)~(B/H)“s, for
example, wherd is the average flux density ar®)} denotes entropy in the normal state. It is found that the
slopesas anda, atT=0 are identical, connected directly with the zero-energy density of states, and vary from
1.72 in the dirty limit to 0.5-0.6 in the clean limit. This mean-free-path dependeneg afide, at T=0 is
quantitatively the same as that of the slapgT=0) for the flux-flow resistivity studied previously. The result
suggests thab(B) and y{B) nearT=0 are convex downwarupward in the dirty (clean limit, deviating
substantially from the linear behavierB/H,. The specific-heat jump &i., also shows fairly large mean-
free-path dependence.

DOI: 10.1103/PhysRevB.69.144507 PACS nuniger74.25.0p, 74.25:q
. INTRODUCTION dependence witkv<1 is a general feature of cleanwave
] ] superconductors, as suggested by Ranfirez.
This paper considers the changes of the ent@&mnd the Following the preceding works on the Maki parametérs
spin susceptibilityys throughH,, for classics-wave type-Il  and the flux-flow resistivity> which will be referred to as |

superconductors. These quantities were calculated by'Maki and 11, respectively, | here present a detailed studBgand
in the dirty limit for superconducting alloys nearly 40 years y nearH,, at all temperatures. | thereby hope to clarify the
ago. However, detailed studies on clean systems are stﬁi and mean-free-path f) dependence ofs and @, . Cal-
missing even forswave superconductors. Writing these cyjations are performed for both two- and three-dimensional
quantities as isotropic systems to see the dependencergfand a, on
N detailed Fermi-surface structures. | also calculate the
S(T.B)=(T.0 =1— — i ~ i ° specific-heat jump &, for various values ok andl,.. To
l1-as , (13 S :
Si(T)=S{T,0 He2/ \Hez my knowledge, this kind of a systematic study has not been
performed even for classgwave superconductors.
Xs(T,B)=x«T,0) - B} [ B |% (1b) Unlike the convention, | adopt the average flux denBity
YT —xdT.0 % Heo/ \Hep) in the bulk as an independent variable instead of the external
) ) o field H. An advantage for it is that the irrelevant regibh
the slopesas and a, will be obtained quantitatively for ar- < s automatically removed from the discussion on the
bitrary impurity concentrations. The results neag, will  fie|q dependence. This distinction betweandH becomes
also be useful for getting an |nS|_gh§ into the behaylors OVefmportant for lowx materials wheréi <H,, occupies a sub-
0<B=<H,. Indegd,a>1 (a<1) indicates overall field de-  giantial part of BH<H_,. Any experiment on th& depen-
pendence which is convex downwagpward, as seen from  gence should be accompanied by a careful measurement on

Eq. (D). _ _ the magnetization, especially for lowmaterials such as Nb
It seems to have been widely accepted that various physisng v

cal quantities of classis-wave type-Il superconductors fol- Section Il provides the formulation, Sec. Il presents nu-

low the linear field dependence with=1 at low tempera-  merical results, and Sec. IV summarizes the paper. The main

tures. A theoretical basis for it is the density of states for &ynaytic results are tabulated in Table | for an easy reference.
single vortex calculated by Caroli, de Gennes, and put k=1 throughout.

Matricon>* However, few quantitative calculations have

been carried out sosfar on the explicit field dependence. Re- Il. FORMULATION
cently, Ichiokaet al> performed a numerical study on the . _
density of states of clean two-dimensiosakave supercon- A. Entropy and Pauli paramagnetism

ductors withx>1 at T=0.5T.. They found the exponent  As pefore!*!°| consider theswave pairing with an iso-

a=0.67 for the overall field dependence of the Zero-energy{ropic Fermi surface and-wave impurity Scattering in an
density of states. Also, experiments on fhéinear specific-  external magnetic fielH|z. The formulation proceeds in
heat coefficienty(B) for clean \4Si° NbSe,”® and  exactly the same way for both the three-dimensional system
CeRLﬁll show marked Upward deviations from the linear be-and the two-dimensional system p|aced in ﬁ}ep|ane per-

haviory,B/H,. Even early experiments op(B) for clean  pendicular toH. The vector potential in the bulk can be
V and Nb indicate similar deviation4;'® although not rec- \yritten ad6-2

ognized explicitly in those days due to the absence of a o
theory on clean systems. These results indicate that the field A(r)=Bxy+A(r), (2
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TABLE I. Main analytic results for the entrof, the spin susceptibilitys, dH.,/d T, and the specific-
heat jumpAC atH,, together with relevant quantities.

0=B=Hy, B=H., B=H., T—0 B=H.,, T—0, ~—0
S Eq. (7) Eq. (149 or (19 Eq. (263 Eq. (379
Xs Eq. (10) Eq. (14b Eq. (26b) Eq. (37b
dHg, /dT Eq. (20) Eq. (34)
AC Eqg. (2D
Ao Eq. (139 Eq. (36)
T Egs.(13b) and(22) Eq. (30)
At PIoH Eq. (17)
ot Pl e, Eq. (18)

whereB is the average flux density produced jointly by the respect tof T, A*, andA lead to the Eilenberger equation for
external current and the supercurrent inside the sample, athhe self-consistency equation far(r), and the Maxwell

A gxpr_esses th~e spatially varying part of the magnetic f|eldequation forA, respectively.
satisfying [V XA dr=0. The expression of the entrog$ is obtained from Eq(4)

| first write down the expressions for the entropy and theby the thermodynamic relatiors;=S,— 9F/aT. Consider-
magnetization in the presence of Pauli paramagnetism. This

effect can be included in the Eilenberger equatiofsr the 9 the stationarity with respect fpA, andA, we only have
quasiclassical Green's function§ f', and g by the to differentiate F with respect to the explicit temperature

replacemerit—2 dependence. We thereby obtain

p .on N(O
en—e,=e,—iugz- (VXA), 3 S=S,— ¥j dr
whereeg,=(2n+1)7T is the Matsubara energy angs is

[AOP=7T 2 (I(en ken)

the Bohr magneton. Choosirgjas an independent variable -

and measuring the energy from the normal state at the same —2aT _E en{g—sgn(en)) |, (7)
temperaturer in zero field, the corresponding Eilenberger’s e

free-energy function& is given by whereS,=272N(0)VT/3 with V the volume of the system.

In contrast, the expression of the external fieldmay be

VXA)2 T i i ia- is-Rai '
F:J' dr|( ) Xn(VxA)2+N(O)|A(r)|2InT— derived by applying the Doria-Gubernatis-Rainer scaling to
Cc

8w 2 Eq. (4).2° The details are given in Appendix A of I, and we
obtain
o [lAmP?
+a7TN(0) >, [——U(Sn,kp,r)) : 4 1 ~
n==e | |enl H=—47Mp+B+ — | dr(VxA)

BV
Here y,= ZMEN(O) is the normal-state spin susceptibility .
with N(0) the density of states per one spin and per unit m*TN(0) fTve of —fve- o+ 7
volume at the Fermi leveld is the pair potentialkg is the + BV n;_w dr{# g+sgre,)
Fermi wave vector, ang- - -) denotes the Fermi-surface av-
erage with(1)=1. The quantityl is defined by* L 8m?TN(0) ug
j— 78

. f dr(g)z-(VXA), (8
Ty +(F)fT =
4t

=A* t Tog—
|=ATTHATTF 22,[g—sgr(en) ]+ where M= x,B denotes the normal-state magnetization
+ + due to Pauli paramagnetism. We thus arrive at the expression
" 9(g)-1  flvedf—fvp *f (5)  Of the magnetization from Pauli paramagnetism as

s 2[g+sgen)]

where 7 is the relaxation time in the second-Born approxi- M =M p—i ZWL(O)'“B E f dr(g)i-(VxA).
mation, vg is the Fermi velocity, and denotes BV n=-—o
9
2e
9=V —i %A. (6) When Pauli paramagnetism is negligible compared with
the orbital diamagnetism by supercurrent, we can take the
The quasiclassical Green's functiofsand g are con- limit ug—0 in Egs.(7) and(9) and retain only the leading-

nected by g=(1—-ff"¥?sgnf,) with f'(e,,kg,r)  order terms. This procedure yields— e, for Eqg. (7). On
=f*(—¢,,kg,r). The functional derivatives of E@4) with  the other hand, Eq9) is transformed by noting E¢3) into
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- #(g) [VXA\2
MSP—Mn{l‘vn_J 70

2
. (10 S_q- 345

Sh 27°T?

1-aT > (T
n=—owx

If the zero-field expressiog=sn/\/eznnL|A|2 is substituted D)
into Eq. (10) with VXA=Bz, the terms in the square +77Tn:2_m |8n|% (DR (43
bracket reduce to the Yosida functiéh.
ot
B. Expressions nearH ., v P14 TrTAO 2 z (=N —f(l) sgre,).
| now consider the cases where Pauli paramagnetism is " (14b)

small and provide explicit expressions to E¢#g). and (10)

nearH,. From now on | adopt the units used previoddfy ~ Except Aj=H,—B, all the quantities in Eqs(14a and
where the energy, the length, and the magnetic field are me&14b) are to be evaluated &t.,.

sured by the zero-temperature energy gd4p) atH=0, the It is possible to give an alternative convenient expression
coherence IengtEo fivg/A(0) with ve the Fermi velocity, to Eq.(143. To this end, we make use of the equation for
andBo= ¢o/27 &5 with ¢o=hc/2e the flux quantum, respec- Hc. Obtained as Eq(33) of I:

tively, with A=1. "
First, f, g, andA are expanded up to the second order in InE+7TT 2 [G(l)(s ))_i —0. (15)
A(r) as ne [V 0T e
f=f0) Differentiating Eq.(15) with respect tdT yields
_ a(f“’) o(fMy _dH
g_(l_%f(l)Tf(l))sgr(S ), . 7 (1) 0 c2 _
n 1+ wT; Py + o0t Ghs | aT
A=K tH 1o

1
Substituting them into Eq¢7) and(10) and using the Eilen- 1he quantitya(f§")/dH., has been calculated as E481)
berger equations fof ™ and V1 to remove terms with and(32) of I:
Vg- d, we obtain

o(f{H N+1 )~
< >—2 (—pN*t O TP sing). 17)
S, 3 , T . . IHe, 8H.,
—:1—Tf dr| |A(r)| —72 (FOTA+FDA*)
Sh 2m TV n A similar procedure leads to the analytic expressions for
(M oe,, and ot (Pl oe, in Eq. (14b) as
+aTY |sn|<f(1”f(1)>}, (129 " "
" a(F) e
== (—DMTD)sore,), (182
N
Mep T ot @1 ot den
o1t — > Jdr f<1>+f<1>T sgr(ep).
M 2V 7en af(l) KS a(f( ’)
(12h = KNTG Sosarte) o, (18D
Further,A(r) andf®) nearH., can be expanded in the basis
functionsyyq(r) of the vortex lattice & whereKN' is defined by Eq(25) of I. Using Egs.(16) and

A(r)=VAgioq(r), (139 (18a in Eq. (148, we obtain

. S_, dHo 3A5 i (T (en)) 19
f0(en ke, =WAG 2 T2, 0) eNoynq(r), Sh dT 27 o= dHe
N=0
(13b) with

where @, ¢) are the polar angles of with sin#—1 in two a<f(1)>
dimensionsN denotes the Landau level, agds an arbitrary 1-#T E G En
chosen magnetic Bloch vector characterizing the broken dHe, _ _ n=-= &n (20)
translational symmetry of the flux-line lattice and specifying daT , )
the core locationd' The coefficientsA, and () are both T &, Hy,

real for the relevant hexagonal lattice. Substituting these ex-
pressions into Eqg12g and(12b) and using the orthonor- Equation(20) also enables us to calculate the specific-heat
mality of q(r) ande'N¢, we obtain jump atH,,. Indeed, it is given in conventional unitslas
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T (dch)z 1
: (21

AC=—
dT | (263-1)Ba
wherek, is the Maki parametéf?and 8,=1.16.

Equationg14) and(21) with Egs.(17), (18), and(20) are
the main analytic results of the paper. The quantitigs

TP, andx, have been obtained in I. The explicit expression

for T is given by

Rl?l sgn(en)
1—(KQ)sgr(en)/27’

TP= (22

whereKN' may be calculated efficiently by the procedure in

Sec. IIF of I, with a change of definition af, as

sgniey). (23

- 1
En= |8n|+z_

C. Analytic results at T=0

Now it will be shown that Eqs(14a and(14b) reduce to
an identical expression at=0 for arbitrary impurity con-
centrations, which has the physical meaning of the zero-

energy density of states.

Let us start from Eq(1489 wheree,,>0 ande,<0 yield
the same contribution. Using this fact and E§8a, it is
transformed into

a<"f‘él>>>
den ||

(24

S 3A5

Sh 27°T?

1-27T > ((f‘gl>>+sn
n=0

The summation oven for T—0 may be performed by using
the Euler-Maclaurin formula and the asymptotic property

T (e —eyt (en—).2 For example,

2@T Eo Ggl)(sn))% JOO (?gl)(e)> de+ WT(?gl)( wT))
n= T

- o (amy
~ Jj<~fgl><s>>ds+?aw».
We thereby obtain -
- T 22 o, (269

Equation(14b) may be transformed similarly as

Mep o P P(en) TH0AG
=1-7TA2D, —————~ + 202FW ).
an ™ OnZO (98ﬁ 2 < 0 ( )>
(26b)

PHYSICAL REVIEW B 69, 144507 (2004

Thus, S;/S,=Mgp/Mpp, or equivalently,as=a, at T=0
for arbitrary impurity concentrations.

Equations(26a and (26b) have a simple physical mean-
ing. Indeed, noting Eq911), (13b), and (183, we find an
alternative expression &=0:

Ss_Mep 1
S Mpp V
which is nothing but the normalized density of states: at
=0. Thus, the entropy and the spin susceptibilityf at0 are
both determined by the zero-energy density of states.
The coefficient ofA3xH.,—B have been obtained in I.
Also, T§V'(0) in Egs. (268 and (26b) may be calculated
efficiently from Eq.(22) by using the analytic expressidh

~A o~ 2 [» ; 2
Kg(sn,ﬁ):\[;fo ET;Z/BZe X2 x, (28
n

with B=H,sin@/2\/2. Hence, Eqs(26a and (26b) at T
=0 can be evaluated easily.

f<9(8n=0,kp,r)>dr, (27)

D. Analytic results in the dirty limit

| here summarize analytic results in the dirty limit

—0. First, the key quantitiek, are calculated by choosing
Ne=1 in the procedure in Sec. IIF of I. The results are
given by

0=~ ) 1==~5 -
sﬁ+,82 sﬁ—i—ﬁz

(29

SinceB? is of the order of 14, as shown below(K$) may be
approximated as (KQ)~(1/e,— B%/e3)~e,/(2+(B?)).
Using this(K3) in Eq. (22) and retaining only the leading-
order contributions, we obtain

1 71y 27BSgr(en)
S S O AL
|8n|+27<ﬁ2> |8n|+27'<32>
Notice thaff{®) is smaller tharf{" by \/7. Substitution of

Eq. (30) into Eq.(15) leads to the equation fdt ., obtained
by Maki*® and de Gennés

=

(30

IN(T/T)+ (1/2) — p(x) =0, (31
wherey is the digamma function, andis defined by
1 o(B% 1 7He
X=§+ 7T _§+477Td’ (32

with d=2,3 the dimension of the system. As shown by
Maki,?® Eq. (31) can be solved neaf=0 by using the
asymptotic expression af(x) as

d 2
chw; 1—§(WT)2}. (33

ThusB2xH.,~ 71, as assumed at the beginning. Differen-
tiating Eq.(31) with respect tal, we obtain

144507-4
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that Eqs(14) and(21) are also valid together with Eq&l7),

dHCZ HCZ 47TTd (34) ~(1)
P I e B 183, and(20), wherefy’ is now given b
dT T Tchw,(X) ( a) ( ) N g y
; 1 d
Finally, x, and[Aq(B)]? are calculated from Eq$34b) and FO_Z )1 2 Rl o =0
= d - ~
d\/—l!f[ ) T, +—(K{sing")Ky sing |, (40)
Ko — —= Ko, (395 47,01 N
2y (%) V2 _
with
o (HeomB)ig  4mTdT 0 (Heo—B)Hears 1 d
T2k 1)Ba+ L TP (X)  (Hoke—1)Bat1’ Df[l— S-(Ko)sgren) || 1- 4—H<Kisin20’>sgr(en)
(36)
where g is defined byko= ¢o/27E3H(0) with H(0) the + i(kg sing')2. (41)
thermodynamic critical field aT=0. Equation(35) agrees 877y
with the result by Caroli, Cyrot, and de Genrifs. In addition, Eq.(18b) is to be replaced by
Now, let us substitute Eq.30) into Egs.(14b) and (19
and use Eq(33). We thereby obtain a’f(l) D) K9 a(f‘”)
Te =~ 2 KNI+ 5 sorten)—
5_ 4 WHe 3746 Tlonz @ n
_— + ~ ~
Sh dT 8#%T%d w0 = o (379 Kysing (fsing’)
47_1 °gr(8n/ aSn 1 (42)
Mp A2 T—0 3 h
=1+ S P(x) — 1-2A8 (37p  Wwnere
|\/lnP 8w 2

_ (M sing’)
Thus, M /M p and Si/S,, are the same af=0, in agree- _
ment with Eq.(27); they are both determined by the zero- den
energy density of states. Equati¢87b) is the result first yith
obtained by Mak?. Also, the expression&ZAg for the nor-

=—% (—DNEPDPsarte,),  (43)

malized zero-energy density of stategat0 agrees with the ~1)_ 1 1 -, -1 .
result for the local density of states by de Genh®ks. =51 | 1~ 5 (Ko)sgrien) Ky sindsgnien)
Equation (36) tells us thatAZ=(1—B/H)B,* as T .
—0 for k,>1. We hence find from Eqg1), (379, and Lm0 a0
(37b) that the initial slopes af =0 for x,>1 are given by * 27<K15m0 YK (44)
ag=a,=2/Bp=1.72. (38 Finally, the analytic results in the dirty limit are the same

as those given in Sec. 11D with a replacementroby the

The results suggest the overall field dependenc®; ahd y transport lifetimer, defined through

at T=0 which is convex downward. Notice that the flux-
flow resistivity p; at T=0 also has the same initial slope 1 1 1

a,=1.72 in the dirty limit"™>*"3*These results strongly sug- —=——— (49
gest that the density of statessat0 is mainly relevant to

the physical properties of the vortex stateTat 0. .
F. Numerical procedures

E. The case withp-wave impurity scattering | have adopted the same parameters as | and Il to express
If the p-wave impurity scattering is relevant, the follow- different impurity concentrations:
ing additional terms appear on the right-hand side of(&g. el =12aTory, ly/l=7lT. (46)
f|2.<|2ffT>+<f|2'>.|2fT g|2.<|2'g> Numerical calculations of Eq$14) and(21) with Egs.(17),
d a7, +d 2 (39  (18), and(20) have been performed for each set of param-

eters by restricting every summation over the Matsubara fre-
where (K'g)=(K'g(e,.kL.r)), for example, 7, is the duencies to those satisfyirjg,|<e.. Choosinge.=200 is
~ 0,
p-wave relaxation time, an#l is the unit vector alongg. sufficient to obtain an accuracy 6f0.1% for Eqs(140) and

. . (21), whereass ;=20 000(4000 is required for Eq(149 in
mgvgi?i\é%r’aiqasé?\;e(g)’ and(10) remain unchanged ondds the dirty (clean limit. Summations over Landau levels have

The corresponding calculations neHr, may be per- been truncated &= N, where | pul’RN _1 in the calcu-
formed as described in Appendix A of I. It thereby follows lation of KN": see Sec. IIF of | for the details. Enough
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0.6 0.8 1.0

0.5 : : : :
04 06 08 10

7T

C

b

FIG. 1. Slopega) asand(b) a, nearH, as a function ofl/T,
for different impurity concentrations witkl=3, I,/1=1.0, and
KGL=50.

convergence has been obtained by choodihg=4, 40,

100, 200, 1500, and 4000 f@g/I,=50, 1.0, 0.5, 0.1, and
0.05, respectively. Finally, integrations owehave been per-
formed by Simpson’s formula withN.,+1 integration
points for O< < /2.

Ill. RESULTS

Figure 1 shows temperature dependencergfand a,
defined by Eqgs(1a) and (1b), respectively, for different im-
purity concentrations parametrized by Eg6). They have
been calculated in three dimensions fQil=1.0 andkg
=50, wherexg, is the Ginzburg-Landau parametdAll the
curves start from the same valug=a,=0.862 atT=T,

and develop differences among different impurity concentra- 5

tions at lower temperatures. The equality=«, holds at

T=0, as shown by Eq27), and the value decreases from

1.72 in the dirty limit to around 0.6 fofz/l1,=0.1. Accord-
ing to Eq. (27), this variation in the slope afi=0 can be

attributed to the mean-free-path dependence of the zero- =

energy density of stateNy(0,B). In particular,Ng(0,B) in
the dirty (clean limit decreases more rapidigmildly) than
the linear behavioN(0)B/H., nearH.,. From this result,

we expect the overall field dependence of the entropy and the

spin susceptibility alf=0 which is convex downwar¢up-
ward) in the dirty (clean limit, as seen from Eq(1).

The difference betweens and «, at finite temperatures

is small, as expected froms= «, holding atT=0 andT,.
In particular, the curves ofs and «, in the dirty limit de-
pend neither on the dimensions rigrl. However, the de-

PHYSICAL REVIEW B 69, 144507 (2004

2.0

KL= 350

1.5¢

3
e~
S —d=3,0 =1
Y — d=3,1,/1=2]
P —— =21 /=1
== ——d=2,1J1=2
0.5 L= ' : :
0.1 1 10 100

E-’E/ltr

FIG. 2. Slopea(T=0)=ag(T=0)=«a,(T=0) as a function of
&elly for d=2,3,1,/1=1,2, andkg =50.

pendence develops gradually as the mean free path becomes
longer.

Figure 2 shows the slope=as=a, atT=0 as a func-
tion of &g/l for different combinations of dimensions and
impurity scatterings. The four curves start from the same
value 1.72 in the dirty limit, and decrease gradually through
unity towards 0.5-0.6 in the clean limit. However, we ob-
serve only small dependence @T=0) ond andl/l. We
thus realize that the zero-energy density of states is mainly
determined by the mean free path, and may not depend much
on the Fermi-surface structures nor the details of the impu-
rity scattering.

For comparison, Fig. 3 presents the slapgfor the flux-
flow resistivity p; calculated previously for the same pa-
rameters as in Fig. 1. At finite temperatures in the dirty limit,
@, is much larger thamrg and «, , indicating a steeper de-
crease ops just belowH,. However, the difference is seen
to diminish as the temperature is reduced, and it has been
checked numerically thats= «, = a/, holds atT=0 for ar-
bitrary impurity concentrations. This fact suggests thaat
T=0 is also determined by the zero-energy density of states.

Next, we examine the dependence of the slopes on the
Ginzburg-Landau parameteafs, . Figure 4 shows the same
curves as in Fig. 1 near the type-l-type-Il boundarygf
=1. Each curve is shifted upwards from the corresponding
one in Fig. 1 forkg =50, but the quantitative difference is

d=3 i L
L rty limig
4r 1 /1=10 y
Ko =50
3l G
2/
1E Eg/l=025
00 02 04 06 08 10
TIT,

c

FIG. 3. Slopea, for the flux-flow resistivity neaH., as a
function of T/T for different impurity concentrations, witd= 3,
ltl‘/l = 10, andKGL: 50
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d=3
I/1=10

Kg=1

1.5

dirty limit

5]
1.0
£/l = 0.1
0.5 ' ' ' '
00 02 04 06 08 10
T,

FIG. 4. Slopeag as a function ofT/T. for different impurity
concentrations witld=3, |,/1=1.0, and«xg =1.

rather small. This is also the case foy. Thus, the slopeag
and a, defined in terms oB do not have largec«;_ depen-
dence.

Finally, Fig. 5 plots the specific-heat jumpC over T at
H., as a function ofT/T, for different impurity concentra-
tions withd=3, I;/I=1, andkg =50. It is normalized by
the corresponding quantity at=T, and H=0, i.e,
AC(T.)/T.=1.43 in the weak-coupling model. The curves
change gradually from almo&i-linear overall temperature
dependence in the dirty limit t82 dependence in the clean
limit, and approach zero asT? at lowest temperaturés.
Although the ratio neaf is strongly dependent org, as?

AC(Te)/Ten  2k3,

Tt AC(TOITe (262 ~1)Ba’

(47)

the basic features mentioned above are common among di

ferent values ofkg, , d=2,3, andl,/I=1,2.

IV. SUMMARY

The entropy and the spin susceptibility nddg, have
been calculated fos-wave type-1l superconductors with ar-
bitrary impurity concentrations. The results have been ex
pressed conveniently with respect to the initial slopggnd
a, defined by Eq(1). The main conclusions are summarized
as follows: (i) as=a, holds both aff=0 andT=T,. (ii)
ag=a,=0.862 aflT =T, for all impurity concentrationgiii )

At T=0, the slopex decreases from 1.72 in the dirty limit to
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5. I/1=10
; ; KgL= 50
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FIG. 5. Specific-heat jump divided by at H.,, normalized by
the corresponding quantity 8=T, and H=0, as a function of
T/T, with d=3, I,/I=1, andkg =50. The curves are fofg/l;,
=, 10, 1, 0.25, and 0.1 from the top to the bottom.

0.5-0.6 in the clean limit. This change is due completely to
the mean-free-path dependence of the zero-energy density of
states. The fact also suggests variation of the overall field
dependence alT=0 from convex downward in the dirty
limit to upward in the clean limit(iv) The slopes have only
small dependence on the dimensions and the details of the
impurity scattering(v) The slopea, for the flux-flow resis-
tivity p, which has been calculated previouSiyglso shows

a complete numerical agreementTat 0 with as and «, .

This fact indicates that the zero-energy density of states is
also responsible fops at T=0.

The T-linear specific-heat coefficieng(B) observed in
clean materials 3 presents curves withk<<1, which is in a
qualitative agreement with the present calculation. On the
other hand,y,(B) for dirty sample&' follows the well-

ccepted linear field dependene®/H ., and apparently in
ontradiction with the present result in the dirty limit. How-
ever, it should be noted that a careful experimeon p;
shows field dependence netr=0 which is convex down-
ward, and experimentally obtained, agrees quantitatively
with the dirty-limit theory'®>3**?Detailed experiments on the
mean-free-path dependence{B) and p;(B) are desired
to remove these discrepancies.
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