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We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator
in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian
inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising
spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm
that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as
the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the
relationship between the quality of the original information retrieval and the amplitude of the transverse field
is somehow a “universal feature” in typical probabilistic information processing, viz., in image restoration,
error-correcting codes, and CDMA multiuser demodulation.
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I. INTRODUCTION

Quantum fluctuations by means of the transverse field have
been intensely investigated within the context of combinatorial
optimization problems, which induce tunneling instead of
thermal jumps between states [1–3]. The algorithm is called
quantum annealing (QA) or quantum adiabatic algorithm. QA
has been applied to various optimization problems by solving
the Schrödinger equation or carrying out quantum Monte Carlo
simulations on classical computers. However, what we call a
quantum annealer with current superconducting devices has
been launched by D-wave systems based in British Columbia
[4–6]. Taking into account these scientific and technological
advances, quantum fluctuations induced by transverse fields
could have the potential to provide us with several effective
tools for solving combinatorial optimization problems. It is
also interesting for us to consider the possible application of the
quantum fluctuations to probabilistic information processing
with developments in the research field of algorithms by
making use of quantum fluctuations. Restoration (decoding)
algorithms incorporating transverse fields have recently been
investigated in image restoration and Sourlas code, which have
both been described with infinite-range spin glass models. The
average-case performance of these systems has been analyzed
with statistical mechanics in the thermodynamic limit [7,8].

Infinite-range spin glass models have received a lot of
attention in recent years in terms of information processing,
due to adoption of the framework of Bayesian statistics. For
example, the Sherrington-Kirkpatrick (SK) model is closely
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linked to error-correcting codes or associative memories in
neural networks. The average-case performance of decoding
or retrieving has been analytically evaluated using the so-called
replica method [9–11]. The so-called hyperparameter in these
model systems that corresponds to a noise power in the poste-
rior can be regarded as “temperature” in the Gibbs-Boltzman
distribution within the context of statistical physics [12].

A typical example is the code-division multiple-access
(CDMA) system that has been recognized as a telecommuni-
cation technology that simultaneously enables communication
among a huge number of users. It has also been extensively
analyzed with the replica method [13,14]. The basic idea
behind the CDMA is to modulate the (original) digital signals
of multiusers. The digital signals are modulated by assigning
a distinct spreading code for each user. Then, the modulated
signals are transmitted through noisy channels. The maximizer
of the posterior marginals (MPM) estimate is utilized within
the context of Bayesian inference to simultaneously demodu-
late the original bit sequences of multiusers for a given set of
outputs from the noisy channels. It has been well known that
the MPM estimate enables us to construct an optimal demod-
ulator in the sense that the estimate minimizes the bit-error
rate on average. Optimal performance is actually achieved by
controlling the temperature so that it has the same value as
the noise power in the channel. The relationship between the
optimal temperature and the corresponding noise amplitude is
referred to as the Nishimori line [12]. For this reason, the MPM
estimate is often called finite temperature demodulation.

Quantum-mechanical fluctuations are regarded in the lit-
erature on physics, as a counterpart of thermal fluctuations.
With this remarkable correspondence in mind, it is naturally
expected that the MPM estimate can be extended by means
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of quantum fluctuations. Namely, the amplitude of quantum
fluctuations might be controlled to satisfy a similar relationship
to the Nishimori line to achieve the best possible demodulation.
In fact, quantum MPM (QMPM) has been proposed thus far
and performance has been investigated within the context of
image restoration and Sourlas code [7,8]. Obviously, one can
consider the “mixture” of these two distinct fluctuations. Then,
the problem that needs to be clarified is to explore the best
possible mixture to minimize the bit-error rate for decoding
on average. More naively, we should answer a question of
the following type, viz., “Which fluctuations give us a better
average-case performance for typical problems in probabilistic
information processing?” Thus far, we have confirmed that the
decoding performance of the MPM estimate incorporating the
transverse field can roughly achieve the same performance as
that of the optimal thermal MPM estimate, at least for image
restoration and Sourlas code.

We focus on CDMA multiuser demodulation under thermal
and quantum fluctuations as an example to analyze the average-
case performance in this research and examine the equivalence
between thermal and quantum fluctuations in the literature on
the optimal MPM estimate. We then compare performance
with that of image restoration and error-correcting codes
to clarify the central issue, viz., “universal feature” of the
equivalence between thermal and quantum fluctuations in
Bayesian MPM estimation. We should mention that the
demodulating process in the CDMA system is quite similar
to so-called compressed sensing (CS) [15–17]. CS and related
techniques have been developed to solve various types of
modern problems in engineering such as functional magnetic
resonance imaging (f-MRI) and image processing.

This paper is organized as follows. The next section intro-
duces the CDMA system and quantum-mechanical extension.
We then explain how we derive equations of states and the
average-case performance measurements by using the replica
method in Sec. III. Section IV presents our results. The last
section is a summary and contains concluding remarks.

II. FORMULATION

Let us consider a demodulation problem for a wireless
communication by N users communicating in fully
synchronous channels. Then, the received signal at the base
station is given by

yk = 1√
N

N∑
i=1

ηk
i ξi + εk, (1)

where ξi ∈ {−1,1} ,(i = 1, . . . ,N) is the original information
and ηk

i ∈ {−1,1} ,(k = 1, . . . ,K,i = 1, . . . ,N) is referred to
as the spreading code sequences for user i. The channel noise
εk is inevitably contained in the received signal information
(see Fig. 1). By using the following notations:

y = (y1,. . .,yK )T , ξ = (ξ1, . . . ,ξN )T , ε = (ε1,. . .,εK )T ,

(2)

H =

⎛
⎜⎜⎝

η1
1 η1

2 · · · η1
N

η2
1 η2

2 · · · η2
N· · · · · · · · · · · ·

ηK
1 ηK

2 · · · ηK
N

⎞
⎟⎟⎠ , (3)

FIG. 1. CDMA multiuser demodulation with quantum
fluctuations.

the received signal (1) can be rewritten as

y = 1√
N

Hξ + ε. (4)

The spreading code sequence is assigned to each users
randomly:

P (H) = 1

2NK
. (5)

Let us here discuss the meaning of the spreading code H. If one
does not contrive any ways to demodulate the signals of users,
the digital signals become mixed (interfere) with each signal,
and then one cannot demodulate the original information at
base station. We therefore divide the signal interval into K

chip intervals, where the interval is called pitch. Assigning
such a spreading code to each user preliminarily, a base station
catches the signal containing a noise. Thus, the problem is
to estimate the sequence, σ = (σ1, . . . ,σN ), which yields a
satisfactory candidate for the original bit sequence ξ from
the received sequence y. Then, the probability distribution of
received information is written as

P ( y|σ ) =
(√

β

2π

)K

exp

(
−β

2

∥∥∥∥ y − Hσ√
N

∥∥∥∥
2)

, (6)

where β = 1/T corresponds to inverse temperature in terms
of statistical mechanics assuming that channel noise is
generated from an additive white Gaussian. In other words,
the temperature corresponds to the controlled noise power.
If it approaches the true noise power, the performance of
demodulation is supposed to get better.

By using the Bayes formula,

P (A|B) = P (B|A)P (A)∑
A P (B|A)P (A)

, (7)

the posterior is described as a canonical distribution with
Hamiltonian H (σ ) as

P (σ | y) = exp [−βH (σ )]

Z
, (8)

Z = Tr
σ

exp[−βH (σ )], (9)

H (σ ) = 1

2N

∑
i,j

K∑
k=1

ηk
i η

k
jσiσj − 1√

N

N∑
i=1

K∑
k=1

ηk
i y

kσi, (10)
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where we use the condition in Eq. (6) and the priors:

P (σ ) = 1

2N
, (11)

which means that both the spreading code and the original
information follow uniform distributions. The Hamiltonian
(10) is exactly the same as the so-called “anti-Hopfield model”
with a random field on each neuron σi regarding σ as a neuronal
state. It should be noted that the problem of estimating y
from ξ is closely related to that of CS. The problem actually
becomes identical to CS with lp norm by assuming P (σi) ∝
exp(−β|σi |p) in the limit of β → ∞ instead of Eq. (11) as a
prior [17].

We next introduce the maximizer of the a posteriori
marginal (MPM) estimate, i.e., finite temperature demodula-
tion. We compare the two probabilities that σi takes, 1 or −1,
for a given y, viz, P (σi = ±1| y), to construct the estimate and
follow the decision of the “majority group.” Hence, the MPM
estimate for each bit is now given by

σ̃i = sgn [P (σi = 1| y) − P (σi = −1| y)] (12)

= sgn

[ ∑
σi=±1

σiP (σi | y)

]
(13)

= sgn〈σi〉β, (14)

where we defined the marginal:

P (σi | y) =
∑
σ 	=σi

P (σ | y), (15)

where 〈·〉 indicates the thermal average.
The maximum a posteriori (MAP) estimate, on the other

hand, corresponds to searching the ground state of (10).
Therefore, the MAP estimate can be recovered from the MPM
estimate in the zero temperature limit T = 0.

We introduce an overlap between original signal ξ and esti-
mated bit sgn〈σi〉β to investigate the average-case performance
of the demodulation, viz.

M( y,ξ |H) = 1

N

∑
i

ξisgn〈σi〉β. (16)

The above quantity is expected to be “self-averaging” in
the limit of N → ∞. This means that observables such as
M( y,ξ |H) for a given realization of the data set, y,ξ and H,
become identical to the average of itself over the distribution
of the Gaussian channel and spreading code, viz.,

lim
N→∞

M( y,ξ |H) = M(β)

≡
∑

H

Tr
ξ

∫
d yP (H)P (ξ )P ( y|ξ )ξisgn〈σi〉β

= [ξisgn〈σi〉β], (17)

where the brackets [·] stand for the average over the data
distribution P (H)P (ξ )P ( y|ξ ). Hence, M(β) is apparently a
suitable measurement for the average-case performance of the
CDMA system.

For evaluating the average-case performance by the overlap,
we need to know the information of true noise and true message
preliminary. Thus, we assume the probabilistic distribution of
them as prior.

We first assume that true noise ε in Eq. (1) follows an
additive Gaussian channel with mean zero and σ0 variance to
explicitly calculate the above M:

P (ε) =
⎛
⎝ 1√

2πσ 2
0

⎞
⎠

2

exp

(
− 1

2σ 2
0

‖ε‖2

)
(18)

=
⎛
⎝ 1√

2πσ 2
0

⎞
⎠

2

exp

(
− 1

2σ 2
0

∥∥∥∥ y − Hξ√
N

∥∥∥∥
2
)

. (19)

For simplicity, we also assume that the information symbols
are independent and identically distributed random variables:

P (ξ ) =
N∏

i=1

P (ξi) = 1

2N
. (20)

Hence, as the temperature in Eq. (6) corresponds to the control-
ling parameter of the communication channel in the literature
on the MPM estimate, optimal performance should be achieved
under the condition β = 1/T = β0 = 1/T0 = 1/σ 2

0 , which is
nothing but the so-called Nishimori temperature.

Although the above formulation is given for the CDMA
model based on Bayesian statistics, we will extend it to the
quantum-mechanical version by simply adding the transverse
field as

Ĥ = Ĥ0 + Ĥ1, (21)

Ĥ0 = 1

2N

∑
i,j

K∑
k=1

ηk
i η

k
j σ̂

z
i σ̂ z

j − 1√
N

N∑
i=1

K∑
k=1

ηk
i y

kσ̂ z
i , (22)

Ĥ1 = −�

N∑
i=1

σ̂ x
i , (23)

where σ̂ x
i and σ̂ z

i denote the x and y components of the
Pauli matrix, and H1 is the transverse field causing quantum
tunneling. The strength of the transverse field can be controlled
by �.

Let us consider a single-spin system to intuitively figure out
the quantum effect in the last equation. Denoting the eigen-
states of σ̂ z as |+〉 = (1,0)t and |−〉 = (0,1)t , the x component
of the Pauli matrix becomes σ̂ x = |+〉 〈−| + |−〉 〈+|. Taking
into account relation σ̂ x |±〉 = |∓〉, we find that up-state |+〉
transits to down-state |−〉 and vice versa. This means that
the transverse field induces the transitions between states
by means of tunneling. The Ising spins in the Hamiltonian
(10) are quantized as Pauli matrices in the framework (21).
The transverse field is introduced into the Hamiltonian as a
noncommutative term. Here, we should bear in mind that the
key point of the QMPM estimate is to generate an appropriate
ensemble that “imitates” the actual noise of the Gaussian
channel by making use of thermal and quantum fluctuations.

The estimated bit in terms of the QMPM estimate that
corresponds to (14) can be written as

σ̃i = sgn
[
Trs

(
σ̂ z

i ρ̂
)]

(24)

= sgn
(〈
σ̂ z

i

〉
β,�

)
, (25)
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where ρ̂ ≡ e−βĤ /Tre−βĤ . Consequently, the overlap for the
case of the quantum system (21) is evaluated as

M(β,�) =
∑

H

Tr
ξ

∫
d yP (H)P (ξ )P ( y|ξ )ξisgn

(〈
σ̂ z

i

〉
β,�

)
(26)

= [
ξisgn

(〈
σ̂ z

i

〉
β,�

)]
. (27)

Note that the overlap for QMPM depends on the strength of
thermal fluctuations controlled by the inverse temperature β,
and the amplitude of quantum fluctuations determined by the
strength of the transverse field �. The true noise power β0 =
1/σ 2

0 in P ( y|ξ ) is given in this study because of investigating
the demodulation performance, in particular, the overlap as a
function of β around the true value β0.

III. ANALYSIS

We derive saddle point equations that determine the
equilibrium state by using the standard replica method to
explicitly evaluate performance through the QMPM estimate.

We consider the limit, N,K → ∞, to analyze the multiuser
demodulation problem while retaining the ratio,

α = K

N
, (28)

of the order 1 object. We apply Suzuki-Trotter (ST) decompo-
sition [18],

exp(Ĥ0 + Ĥ1) = lim
P→∞

(eĤ0/P eĤ1/P )P , (29)

to the partition function, Z = Tr exp(−βĤ ), with Eq. (21)
to cast the problem as an equivalent classical spin system to
achieve our goal. As a result, the partition function Z and the
effective Hamiltonian Heff are given by

Z = lim
P→∞

(
1

2
sinh

2β�

P

)NP/2

Tr{σ (t)} exp (−Heff) , (30)

Heff = β

2NP

P∑
t=1

∑
i,j

K∑
k=1

ηk
i η

k
jσi(t)σj (t)

− β√
NP

P∑
t=1

N∑
i=1

K∑
k=1

ηk
i y

kσi(t)

− 1

2
ln

β�

P

P∑
t=1

N∑
i=1

σi(t)σi(t + 1), (31)

where P is called the Trotter number and t is the Trotter index.
The symbol Tr{σ (t)} denotes the trace over the σ (t) spins. With
attention to the above equation, the quantum system with the
transverse field is described as the classical system on the
space which has an extra dimension. The coupled term between
Trotter indices in Eq. (31) emerges because of manipulation
for diagonalization of the transverse field term �

∑
i σ̂

x [18].
Using the well-known replica method,

[ln Z] = lim
n→0

[Zn] − 1

n
, (32)

we calculate the averaged free energy density, [lnZ], in terms
of [Zn]. The replicated partition function is now written as

[Zn] =
∑

H

P (H)Tr
ξ
P (ξ )

∫ ∏
k

dykP (yk|ξ ) Tr
{σμ(t)}

exp

⎛
⎝−

∑
{σμ(t)}

Heff(σ
μ(t))

⎞
⎠ (33)

= 1

2N

1

2NK

∑
H

Tr
ξ

∫ ∏
k

dyk

(
β0

2π

)1/2

exp

(
−β0

2

(
yk − 1√

N

∑
i

ηk
i ξi

)2
)

× Tr
{σμ(t)}

exp

⎛
⎝− β

2NP

∑
t,μ

∑
i,j

∑
k

ηk
i η

k
jσ

μ

i (t)σμ

j (t) + β√
NP

∑
t,μ

∑
i

∑
k

ηk
i y

kσ
μ

i (t) + B
∑
t,μ

∑
i

σ
μ

i (t)σμ

i (t + 1)

⎞
⎠ ,

(34)

where B ≡ 1
2 ln coth β�

P
, {σμ(t)} = [σ 1(t), . . . ,σ n(t)], and t = 1, . . . ,P . The replica indices are denoted by μ. Introducing the

following order parameters:

Rμ(t) = 1

N

∑
i

ξiσ
μ

i (t), (35)

Qμν(t,t ′) = 1

N

∑
i

σ
μ

i (t)σ ν
i (t ′), (36)

Qμμ(t,t ′) = 1

N

∑
i

σ
μ

i (t)σμ

i (t ′), (37)

with Qμμ(t,t) = 1, the free energy density f is given by

− βf = α

2

{
−ln[1 − β(q − χ )] + β(1 + β0)

β0
+ β

[
2R − q − (

1 + β−1
0

)]
1 − β(q − χ )

+ β(χ − 1)

}
− R̂R

− χ̂χ + q̂q

2
+
∫

Dzln

(∫
Dw2 cosh

√
2 + β2�2

)
, (38)
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 = φ

β
= z

√
2χ̂ − q̂ + w

√
q̂ + R̂, (39)

under replica symmetry (RS) and static approximation (SA),
viz., Rμ(t) = R, Qμν(t,t ′) = q, and Qμμ(t,t ′) = χ (t 	= t ′) in
the limit of N → ∞. R̂, q̂, and χ̂ correspond to conjugate
Lagrange multipliers of R, q, and χ . The SA means that the
order parameter does not depend on the Trotter dimension [19].
For this manipulation, we can derive the free energy without
imaginary time by the standard replica method. The saddle
point equations are given by

R =
∫

Dw

∫
Dz

 sinh �

��
, (40)

q =
∫

Dw

(∫
Dz

 sinh �

��

)2

, (41)

χ =
∫

Dw

�

∫
Dz

(
β2�2 sinh �

�3
+ 2 cosh �

�2

)
, (42)

R̂ = αβ

1 + β(χ − q)
, (43)

q̂ = αβ2
(
1 + q − 2R + β−1

0

)
[1 + β(χ − q)]2

, (44)

2χ̂ − q̂ = αβ2(χ − q)

1 + β(χ − q)
, (45)

� =
√

2 + β2�2, (46)

� =
∫

Dz cosh �, (47)

where
∫

Du(·) = ∫∞
−∞ du(·)e−u2/2/

√
2π . Considering the

classical case of � = 0, we easily find that these equations
become identical to the classical version with χ = 1. The
detailed calculations to derive the free energy density (38)
are given in our Appendix. By comparing these expressions
and Eqs. (40) and (41), we immediately find that

∫
Dz sinh �

��

is closely related to 〈σ̂i〉β,� . Thus, the final form of the overlap
as a performance measurement is easily obtained as [8]

M(β,�) =
∫

Dw sgn

(∫
Dz

 sinh �

��

)
. (48)

It should be noted that the overlap for classical MPM is
recovered by setting � = 0 in the above expression (48).

IV. RESULTS

We evaluate the performance of demodulation with quan-
tum and thermal fluctuations by numerically solving Eqs. (40)–
(48) in the following.

A. Upper bound of overlap

We first derive the inequality for the overlap to clarify the
upper bound. The overlap in the classical case defined by
Eq. (17) can be written as follows:

M(β) = Tr
ξ

∫ ∏
k

dykCNK exp

(
−β0

2
(yk)2

)
exp

⎛
⎝− β0

2N

∑
i,j

ηk
i η

k
j ξiξj + β0√

N

∑
i

ξiηiy
k

⎞
⎠ ξisgn

(
Trσie

−βH

Tre−βH

)

�
∫ ∏

k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝− β0

2N

∑
i,j

ηk
i η

k
j ξiξj + β0√

N

∑
i

ξiηiy
k

⎞
⎠
∥∥∥∥∥∥
∥∥∥∥sgn

(
Trσie

−βH

Tre−βH

)∥∥∥∥

�
∫ ∏

k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝− β0

2N

∑
i,j

ηk
i η

k
j ξiξj + β0√

N

∑
i

ξiηiy
k

⎞
⎠
∥∥∥∥∥∥

≡ Mclassic
max . (49)

We should notice that factor CNK denotes 2−N2−NK
√

β0/2π from Eqs. (5) and (20). Mclassic
max means the upper bound in the

classical case. However, the overlap for the quantum case is given by

M(β,�) = Tr
ξ

∫ ∏
k

dykCNK exp

(
−β0

2
(yk)2

)
exp

⎛
⎝− β0

2N

∑
i,j

ηk
i η

k
j ξiξj + β0√

N

∑
i

ξiηiy
k

⎞
⎠ ξisgn

(
Trσ̂ z

i e−βĤ

Tre−βĤ

)

�
∫ ∏

k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝− β0

2N

∑
i,j

ηk
i η

k
j ξiξj + β0√

N

∑
i

ξiηiy
k

⎞
⎠
∥∥∥∥∥∥
∥∥∥∥∥sgn

(
Trσ̂ z

i e−βĤ

Tre−βĤ

)∥∥∥∥∥
�

∫ ∏
k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝− β0

2N

∑
i,j

ηk
i η

k
j ξiξj + β0√

N

∑
i

ξiηiy
k

⎞
⎠
∥∥∥∥∥∥

≡ Mclassic
max . (50)
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FIG. 2. (a) Dependence of overlap M on level of thermal fluctuations T for α = 2.0 and T0 = 1.0. (b) Dependence of overlap M on level
of quantum fluctuations � for α = 2.0 and T0 = 1.0.

Thus, the optimal demodulating performance of the MPM estimate in the presence of quantum fluctuations is the same as that in
the thermal fluctuations. We can confirm that overlap is maximum at the Nishimori temperature, T0 = 1/β0, as

Mclassic
max = Tr

ξ

∫ ∏
k

dykCNK exp

(
−β0

2
(yk − 1√

N

∑
i

ηk
i ξi)

2

)
ξi

Trξξi exp
(
− β0

2N

∑
i,j ηk

i η
k
j ξiξj + β0√

N

∑
i ξiηiy

k
)

∥∥∥Trξξi exp
(
− β0

2N

∑
i,j ηk

i η
k
j ξiξj + β0√

N

∑
i ξiηiyk

)∥∥∥
= Tr

ξ

∫ ∏
k

dykCNK exp

⎛
⎝−β0

2

(
yk − 1√

N

∑
i

ηk
i ξi

)2
⎞
⎠ ξisgn〈ξi〉β0 = M(β0). (51)

The inequality means that the optimal demodulating perfor-
mance through the MPM estimate incorporating the transverse
field cannot exceed the optimal one in the classical case.
However, we must mention that as the �,T dependence of
demodulating performance on the QMPM estimate could
not be clarified with the above argument, we next need to
numerically solve the saddle point equations (40)–(48) to make
the issue clearer.

B. Behavior around peak

Figure 2 plots the dependence of overlap M on T and � for
the case of α = 2.0 and T0 = 1.0. We find that the overlap has
a single peak at T = T0 = 1.0 for the case without transverse
field � = 0 as is well known [see Fig. 2(a)]. This means
that the optimal performance in demodulation is achieved at
some temperature T = T0 that corresponds to the true variance
in the Gaussian channel described as Eq. (19). Also note that
the overlap appropriately exhibits a peak that is obtained by
controlling the strength of the quantum fluctuation, �. The
height of the peak seems to be the same as that of the CMPM
estimate. These results are consistent with those in our previous
studies [7,8].

We next investigate the overlap from the viewpoint of the
�-T diagram in Fig. 3(a). The gradation indicates the values
of the overlap and the solid line represents the peaks of the

overlap, Mtop. We can observe that Mtop exists in some range
of temperature below the Nishimori temperature T = T0. We
should keep in mind that the numerical solution to the overlap
in the quite low temperature region (T < 0.05) cannot be
obtained within reliable precision due to limitations in our
computational resources. We can see the dependence of Mtop

on � that is indicated by the solid line in Fig. 3(b) for
α = 2.0 and T0 = 1.0. We find that the peak of overlap Mtop

decreases monotonically from 0.7824 to 0.7816. Therefore,
we must conclude that quantum fluctuations worsen optimal
performance slightly for large �. Obviously, the results are
consistent with our argument using the inequalities (49)–(51).

C. Dependence of demodulating performance on chip ratio

The dependence of overlap on α is plotted in Figs. 4(a)
(T0 = 1.0,T = 1.0) and (b) (T0 = 0.08,T = 0.08) for various
� values. As the temperature is set to the Nishimori temper-
ature for both cases, the overlap has a peak at � = 0 as we
noted in the previous section. Since parameter α means the
chip ratio, we naturally assumed that overlap would increase
as α increased. We find that the slope of increase in the overlap
for the quantum case is much gentler than that for the classical
case.

When the variance of the Gaussian channel T0 is very small,
the first-order phase transition takes place around α � 0.6 for
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FIG. 3. (a) Value of overlap on �-T plane for T0 = 1.0 and α = 2.0. Solid line indicates location of peak in overlap. (b) Dependence of
Mtop on � corresponding to solid line in panel (a).

� = 0. In contrast, we find that for relatively large quantum
fluctuations, � = 0.5, the overlap continuously converges to
unity. These results imply that quantum fluctuations never
improve the average-case performance of MPM estimate for
any choice of the chip ratio α.

We confirm that two possible solutions coexist at low
temperature [see the inset of Fig. 4(b)], which lead to a sort of
hysteresis phenomenon. Such a bistable region obtained under
the RS and SA ansatz disappears as � increases. The spinodal
lines in (α,�) space are plotted in Fig. 5. The distinction
between the solid and dashed lines comes from the dependence
of � on α1 (solid) or α2(dashed). As can be shown in Fig. 5(a)
T0 = T = 0.08, the region of α in which solutions coexist
is maximum at � = 0. However, there is also a coexistence

region for solutions to T0 = 0.08 and T = 0.05 with slightly
different shapes from those of T0 = T = 0.08. The coexistence
region gradually narrows for the both cases as � increases, and
the region eventually disappears. Similar behavior has been
found in (α,T ) space when T0 is fixed for the classical case,
i.e., � = 0 [20].

D. Improvable region for demodulating performance

The previous section explained our investigation into the
average-case performance of the demodulation by means of
the QMPM estimate. We focused on the location of the peak
of the overlap. Here, we will discuss the conditions under
which the performance of the QMPM estimate is better than
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FIG. 4. Overlap M vs chip ratio α. (a) Results for T0 = 1.0 and T = T0. (b) Results for T0 = 0.08 and T = T0. Bistable solutions coexist
for � = 0 in region α1 < α < α2.
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FIG. 5. (a) Spinodal line at T0 = T = 0.08. (b) Spinodal line at T0 = 0.08 and T = 0.05. Solid line represents �(α1) and dotted line
represents �(α2).

that of CMPM. This is a slightly different viewpoint from
optimality in the overlap.

To quantify the degree of improvement achieved by
quantum fluctuations, we introduce the following quantity:

�M(�,�) = M(�,�) − M(0,�), (52)

i.e., the difference between the overlaps at � = {T0,T ,α} ∈
R with and without the quantum fluctuations. The quality
of quantum demodulation is better than that of classical
demodulation for �M(�,�) > 0. It should be noted that the
overlap is maximized at � = 0 for T = T0, viz, �M(�,�0) <

0 for �0 = {T0,T = T0,α} ∈ R and � > 0. �M is always
less than zero for the case of T > T0, as we mentioned in the
previous section. For these reasons, we define a region where

-0.002
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0
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0.004
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α=5.0
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FIG. 6. Difference between overlaps with and without transverse
field for T0 = 1.0 and T = 0.5. Closed circles labeled A, B, C, and
D denote points at which �M = 0 holds.

�M > 0 an improvable region, whereas the region specified
by �M < 0 is referred to as a worsened region for T < T0.

We have plotted �M as a function of � for T0 = 1.0 and
T = 0.5 with various values of α in Fig. 6. We find that �M

has a peak in some range of � and it eventually drops to
a negative value. Demodulation achieves the best possible
performance for a given set of T and T0 at some specific value
of � for which �M has a peak. We should note that �M = 0
determines the border of � between improvable and worsened
regions. We have marked the locations in which �M = 0 is
satisfied for α = 0.2, 0.7, 2.0, and 0.5 with respective points
labeled A, B, C, and D. The � for �M = 0 is not a monotonic
function of α because we clearly find that the inequality
�D < �C < �A < �B holds. This implies the existence of a
suitable α to improve demodulating performance. Also note
that the peaked value of �M decreases as α increases because
both M(�,�) and M(0,�) converge to unity.

We will next investigate the critical �(T ) at which the
improvable and worsened regions are clearly separated. The
results are plotted in Figs. 7(a) and 7(b). The dashed lines were
obtained under the conditions �M(�,�) = 0. We find that
the improvable region is extended up to the low temperature
region in Fig. 7(a). Interestingly, the critical line (the �-α
curve) that separates improvable and worsened regions has a
nonmonotonic shape with a single maximum at some finite
α value. This means that there is a suitable chip ratio α to
improve demodulation performance.

V. SUMMARY AND CONCLUDING REMARKS

We investigated the average-case performance of a
Bayesian CDMA multiuser detector that was extended by
means of quantum fluctuations. The following three items
summarize what we learned from this study.

1. Quantum fluctuations controlled by the transverse field
could not improve the optimal performance of CMPM. To
make matters worse, the MPM estimate that incorporated
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FIG. 7. Improvable regions in T -� (left) and �-α (right) planes for T0 = 1.0. Dashed lines indicate border at which �M = 0 holds for
α = 2.0 (a) and T = 0.5 (b).

the transverse field (QMPM estimate) never exhibited the
same optimal performance as the conventional MPM estimate
(CMPM estimate) even within the strictest sense. This con-
clusion was supported by a mathematically rigorous argument
using inequality on the overlap.

2. There was an improvable region below the Nishimori
temperature obtained by using the transverse field. Thus,
the transverse field actually improved performance for some
choices of nonoptimal parameters although optimal perfor-
mance with the transverse field could not be improved.

3. Increasing the chip ratio improved performance. The
overlap actually eventually reached unity for both cases with
and without the transverse field.

We should examine other problems, viz., image restoration
and Sourlas code even though the performance of each was
already extensively investigated [7,8], to figure out what the
universal properties of the transverse field were within the
context of the MPM estimate in probabilistic information
processing. The following discusses what is common or
different behavior in these models.

1. Image restoration

Let us consider the process to restore a black and white
image from degraded pixels τ = {τi} (i = 1, . . . ,N ) = ξ + ε

for original image ξ = {ξi} ,(ξi = ±1, i = 1, . . . ,N). Then,
we accept the following two assumptions for the Markov
random field (MRF) prior and Gaussian noise:

P (ξ ) ∝ exp

⎛
⎝βs

∑
〈i,j〉

ξiξj

⎞
⎠ , (53)

P (τ |ξ ) ∝ exp

{
− 1

2a2
τ

∑
i

(τi − τ0ξi)
2

}
, (54)

where βs = 1/Ts denotes the “true” smoothness among pixels
and a−2

τ is the true variance. The posterior distribution of
estimated pixels is given for estimate σ instead of true pixels
ξ as

P (σ |τ ) ∝ exp[−βH IR(σ )], (55)

H IR
0 (σ ) = −

∑
i,j

σiσj − he

∑
i

τiσi, (56)

where β = 1/T stands for the inverse temperature that
corresponds to estimated smoothness and he is the estimated
noise power. The overlap is a measurement of restoration and
it reads

M(β,he) = Tr
ξ

∫
dτP (ξ )P (τ |ξ )ξisgn〈σi〉β,h. (57)

The overlap is maximized under the Nishimori condition as

M(β,he) � M

(
βs,

τ0

βsa2
τ

)
. (58)

Note that he corresponds to h/β in the conventional notation
[7,21].

2. Sourlas code

Sourlas code is now recognized in the community of physics
as error-correcting codes that are described as a spin glass
model with p-body interactions [10]. The basic idea of error-
correcting codes is to add redundancy to the original messages
so that receivers can recover the original message from a noisy
redundant message. An original message is encoded as p-
product bits J 0

i1...ip = ξi1 . . . ξip and then the received message

can be represented as J = J0 + ε. The original message ξ is
generated from a uniform distribution, i.e.,

P (ξ ) = 1

2N
, (59)
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and the sender transmits all possible combinations NCp of
the products of p components in the N -dimensional vector ξ

through a Gaussian channel:

P ( J |ξ ) ∝ exp

⎧⎨
⎩−DNp

J 2

∑
i1<···<ip

(
Ji1...ip − J0

DNp

ξi1 . . . ξip

)⎫⎬
⎭ ,

(60)

where DNp = Np−1/p!. The sum
∑

i1<···<ip runs over all
possible combinations of p spins out of N spins. The posterior
of the estimated sequence leads to

P (σ |J) ∝ exp
(−βH EC

0

)
, (61)

H EC
0 = −

∑
i1<···<ip

σi1 . . . σip, (62)

for the uniform prior P (σ ) = 1/2N . The overlap is defined by

M(β) = Tr
ξ

∫
d JP ( J |ξ )P ( J)ξisgn〈σi〉β. (63)

As is the case in image restoration, the overlap is maximized
at the Nishimori temperature as

M(β) � M

(
2J0

J 2

)
. (64)

As we saw in Sec. II, we can easily extend the system to the
quantum version as

H (σ̂ ) = H0(σ̂ z) − �
∑

i

σ̂ x
i . (65)

The explicit representations of the overlaps in image restora-
tion and Sourlas code have been obtained in previous studies
[7,8].

We have presented the value of overlap in the �-T diagram
with gradation in Fig. 8 (upper two panels) and the critical
line on which improvable and worsened regions are separated
in Fig. 8 (lower two panels). The solid lines in the upper two
panels indicate the lines on which overlap is maximized. A
peak appears in the overlap and then the location of the peak
is roughly the same as that in the results for the classical
case. However, detailed investigations revealed that the value
of the peak itself for the quantum case was slightly lower
than that of the classical decoding for Sourlas code and
the CDMA multiuser demodulator. It should be noted that
�MAB(= MA − MB) is 0.0003 for Sourlas code, where MA
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FIG. 8. Upper two panels indicate value of overlap as a function of controlled parameters, temperature, and strength of transverse field
for image restoration (left) and Sourlas code (right). Overlap is maximum on solid lines. Lower two panels indicate improvable and worsened
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and MB represent overlap at points A and B in the upper panels
of Fig. 8. The peak of the overlap for image restoration, on
the other hand, does not change within the accuracy of our
numerical calculations, i.e., �MAB is smaller than 10−5 in our
calculations.

The dashed lines in the lower two panels of Fig. 8 indicate
the border lines on which �M = 0 holds. Hence, the �M

defined by Eq. (52) is regarded as a “barometer” to check
whether decoding with the transverse field is improved in
comparison with that in the classical case. We confirmed from
these results that the properties of the QMPM estimate follow
remarks 1 and 2 that were previously mentioned.

We also note that the maximum average-case performance
with the transverse field cannot exceed the classical one
because the classical channel and classical bits were only
considered. If the channel noise and original bit sequences
are chosen as the quantum-mechanical process and qubits
respectively, the QMPM estimate would be effective because
one can tune the hyperparameters so as to make the posterior
identical to the corresponding true distribution.

Although we drew these conclusions from our limited
applications of the transverse field, some issues still remain that
need to be resolved. We actually used several approximations,
replica symmetries (RSs), and static approximations (SAs)
in our analysis. As these approximations may be naturally
expected to be broken in the low temperature region, we
should draw a so-called de Almeida-Thouless (AT) line [22],
and we should also discuss the validity of SA. Although the
validity of SA has been partially investigated in the quantum
random energy model [23], it has not yet been investigated
for Ising spin glass in a transverse field. It is generally very
difficult to carry out numerical calculations involving very

low temperatures with reliable numerical accuracy, and pure
quantum demodulation, which is defined as QMPM without
any thermal fluctuations, is also very difficult to address. Apart
from these perspectives, compressed sensing (CS) is now
becoming a hot topic as an effective technique to understand
signals from some observable data in various engineering
fields, as we stated in Sec. I. Obviously, our formulation using
the transverse field could be applied to CS and this should be
addressed in future studies.

ACKNOWLEDGMENTS

This work was partially supported by Grants-in-Aid for
Scientific Research (Grants No. 2512009, No. 25330283, No.
2512001313, and No. 2533027803) and that by the Japan
Society for the Promotion of Science (JSPS) Fellows (Grant
No. 12J06501) from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.

APPENDIX: DERIVATION OF FREE ENERGY

We derive the explicit expression for free energy (38) in this
Appendix. We first introduce the following transformation:

uk
0 = 1√

N

N∑
i=1

ηk
i ξi, uk

μ(t) = 1√
N

N∑
i=1

ηk
i σ

μ

i (t), (A1)

where k stands for the spreading code index, μ denotes the
replica index, t represents the Trotter index, and i is the spatial
index. Then, we write the partition function (34) in terms of
the Fourier transform as

[Zn] = 1

2N

1

2NK

∑
H

∑
{σ k (s)}

Tr
ξ

Tr
{σμ(t)}

∫ ∏
k

duk
0dûk

0

2π
exp

[
iûk

0

(
uk

0 − 1√
N

∑
i

ηk
i ξi

)]

=
∏
k

∏
μ,t

duk
μ(t)dûk

μ(t)

2π
exp

[
iûk

μ(t)

(
uk

μ(t) − 1√
N

∑
i

ηk
i σ

μ

i (t)

)]∏
k

dyk

(
β0

2π

)1/2

exp

(
−β0

2

(
yk − uk

0

)2
)

× exp

[
− β

P

∑
μ,t

∑
k

(
1

2

[
uk

μ(t)
]2 − ykuk

μ(t)

)]
exp

(
B
∑
μ,t

∑
i

σ
μ

i (t)σμ

i (t + 1)

)
. (A2)

Here, we carry out the sum of H in the above expression as

Lξ ≡ 1

2NK

∑
H

∏
k

exp

(
− iûk

0√
N

∑
i

ηk
i ξi

)∏
μ,t

∏
k

exp

(
− iûk

μ(t)√
N

∑
i

ηk
i σ

μ

i (t)

)
(A3)

=
∏
i,k

1

2

∑
ηk

i

exp

{
− iηk

i√
N

(
ûk

0ξi +
∑
μ,t

ûk
μ(t)σμ

i (t)

)}
(A4)

=
∏
i,k

cos

{
1√
N

(
ûk

0ξi +
∑
μ,t

ûk
μ(t)σμ

i (t)

)}
(A5)
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�
∏
i,k

exp

⎧⎨
⎩− 1

2N

(
ûk

0ξi +
∑
μ,t

ûk
μ(t)σμ

i (t)

)2
⎫⎬
⎭ (A6)

=
∏
i,k

exp

⎧⎨
⎩− 1

2N

(
ûk

0

)2 − 1

2N

∑
μ

(∑
t

ûk
μ(t)σμ

i (t)

)2

− 1

N

∑
μ<ν

∑
t,t ′

ûk
μ(t)ûk

ν(t ′)σμ

i (t)σ ν
i (t ′) − 1

N
ûk

0ξi

∑
μ,t

ûk
μ(t)σμ

i (t)

}
.

(A7)

By introducing the order parameters defined by (35)–(37), we have

Lξ =
∫ ∏

μ,t

dRμ(t)δ

(
Rμ(t) − 1

N

∑
i

ξiσ
μ

i (t)

) ∏
μ,t,t ′

dQμμ(t,t ′)δ

(
Qμμ(t,t ′) − 1

N

∑
i

σ
μ

i (t)σμ

i (t ′)

)

×
∏

μ<ν,t,t ′
dQμν(t,t ′)δ

(
Qμν(t,t ′) − 1

N

∑
i

σ
μ

i (t)σ ν
i (t ′)

)
exp

{
−1

2

∑
k

(
ûk

0

)2

− 1

2

∑
μ,k

∑
t,t ′

ûk
μ(t)ûk

μ(t ′)Qμμ(t,t ′) −
∑
μ<ν

∑
t,t ′,k

ûk
μ(t)ûk

ν(t ′)Qμν(t,t ′) −
∑

k

ûk
0

∑
μ,t

ûk
μ(t)Rμ(t)

⎫⎬
⎭ . (A8)

From the above calculations, we rewrite the partition function (A2) as

[Zn] =
∫ (∏

μ,t

NidR̂μ(t)dRμ(t)

2π

)⎛
⎝∏

μ,t,t ′

NidQ̂μμ(t,t ′)dQμμ(t,t ′)
2π

⎞
⎠
⎛
⎝ ∏

μ<ν,t,t ′

NidQ̂μν(t,t ′)dQμν(t,t ′)
2π

⎞
⎠ eN(g1+g2+g3), (A9)

eNg1 =
∫ (∏

k

duk
0dûk

0

2π

)⎛
⎝∏

k,μ,t

duk
μ(t)dûk

μ(t)

2π

⎞
⎠[∏

k

dyk

(
β0

2π

)1/2
]

exp

{
−β0

2

∑
k

(
yk − uk

0

)2

−
∑

k

ûk
0

∑
μ,t

ûk
μ(t)Rμ(t) − 1

2

∑
μ,k

∑
t,t ′

ûk
μ(t)ûk

μ(t ′)Qμμ(t,t ′) −
∑
μ<ν

∑
t,t ′,k

ûk
μ(t)ûk

ν(t ′)Qμν(t,t ′)

− 1

2

∑
k

(
ûk

0

)2 + i
∑

k

uk
0û

k
0 + i

∑
k,μ,t

uk
μ(t)ûk

μ(t) − β

2P

∑
μ,t,k

{[
uk

μ(t)
]2 − 2uk

μ(t)yk
}⎫⎬⎭ , (A10)

eNg2 = Tr
ξ
P (ξ ) Tr

{σμ(t)}
exp

⎧⎨
⎩ 1

P

∑
μ,t

R̂μ(t)
∑

i

ξiσ
μ

i (t) + 1

P 2

∑
μ,t,t ′

Q̂μμ(t,t ′)
∑

i

σ
μ

i (t)σμ

i (t ′)

+ 1

P 2

∑
μ<ν,t,t ′

Q̂μν(t,t ′)
∑

i

σ
μ

i (t)σ ν
i (t ′) + B

∑
t,μ

∑
i

σ
μ

i (t)σμ

i (t + 1)

⎫⎬
⎭ , (A11)

eNg3 = exp

⎧⎨
⎩−N

P

∑
μ,t

R̂μ(t)Rμ(t) − N

P 2

∑
μ,t,t ′

Q̂μμ(t,t ′)Qμμ(t,t ′) − N

P 2

∑
μ<ν,t,t ′

Q̂μν(t,t ′)Qμν(t,t ′)

⎫⎬
⎭ . (A12)

In the following, we calculate eNg1 ,eNg2 , and eNg3 , and then derive the free energy of the CDMA model with the transverse field.
By integrating uk

0 and ûk
0 in Eq. (A10), eNg1 can be expressed as

eNg1 =
∫ ⎛

⎝∏
k,μ,t

duk
μ(t)dûk

μ(t)

2π

⎞
⎠(∏

k

dyk 1

2π

√
2β0π

1 + β0

)
exp

⎧⎨
⎩−1

2

∑
μ,k

∑
t,t ′

ûk
μ(t)ûk

μ(t ′)Qμμ(t,t ′)

−
∑
μ<ν

∑
t,t ′,k

ûk
μ(t)ûk

ν(t ′)Qμν(t,t ′) + i
∑
k,μ,t

uk
μ(t)ûk

μ(t) − β

2P

∑
μ,t,k

{[
uk

μ(t)
]2 − 2uk

μ(t)yk
}

− β0

2(1 + β0)

∑
k

(yk)2 − iβ0

1 + β0

∑
k

yk
∑
μ,t

ûk
μ(t)Rμ(t) + β0

2(1 + β0)

∑
k

(∑
μ,t

ûk
μ(t)Rμ(t)

)2
⎫⎬
⎭ . (A13)
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The integration over yk in the above equation can be carried out as

∫ (∏
k

dyk

)
exp

⎛
⎝ β

P

∑
μ,k,t

uk
μ(t)yk − β0

2(1 + β0)

∑
k

(yk)2 − iβ0

1 + β0

∑
k

yk
∑
μ,t

ûk
μ(t)Rμ(t)

⎞
⎠

=
∫ ∏

k

dyk exp

[
− β0

2(1 + β0)
(yk)2 +

(
β

P

∑
μ,t

uk
μ(t) − iβ0

1 + β0

∑
μ,t

ûk
μ(t)Rμ(t)

)
yk

]
(A14)

=
∏
k

√
2(1 + β0)π

β0
exp

⎡
⎣1 + β0

2β0

(
β

P

∑
μ,t

uk
μ(t) − iβ0

1 + β0

∑
μ,t

ûk
μ(t)Rμ(t)

)2
⎤
⎦ (A15)

=
∏
k

√
2(1 + β0)π

β0
exp

⎧⎨
⎩β2(1 + β0)

2β0P 2

(∑
μ,t

uk
μ(t)

)2

− iβ

P

(∑
μ,t

uk
μ(t)

)(∑
μ,t

ûk
μ(t)Rμ(t)

)
− β0

2(1 + β0)

(∑
μ,t

ûk
μ(t)Rμ(t)

)2
⎫⎬
⎭ .

(A16)

The integration over uk
μ(t) can be carried out independently for each k as

∏
k

∫ (∏
μ,t

duk
μ(t)

)
exp

⎧⎨
⎩i

∑
μ,t

uk
μ(t)ûk

μ(t) − β

2P

∑
μ,t

[
uk

μ(t)
]2 + β2(1 + β0)

2β0P 2

(∑
μ,t

uk
μ(t)

)2

− iβ

P

(∑
μ,t

uk
μ(t)

)(∑
μ,t

ûk
μ(t)Rμ(t)

)}
(A17)

=
∏
k

∫
Da

(∏
μ,t

duk
μ(t)

)
exp

{
aβ

P

√
1 + β0

β0

∑
μ,t

uk
μ(t) + i

∑
μ,t

uk
μ(t)ûk

μ(t) − β

2P

∑
μ,t

[
uk

μ(t)
]2

− iβ

P

(∑
μ,t

uk
μ(t)

)(∑
μ,t

ûk
μ(t)Rμ(t)

)}
(A18)

=
∏
k

∫
Da

∏
μ,t

√
2Pπ

β
exp

⎧⎨
⎩ P

2β

(
aβ

P

√
1 + β0

β0
+ iûk

μ(t) − iβ

P

∑
ν,t ′

ûk
ν(t ′)Rν(t ′)

)2
⎫⎬
⎭ (A19)

=
∏
k

∫
Da

∏
μ,t

√
2Pπ

β
exp

⎧⎨
⎩a2β(1 + β0)

2Pβ0
− P

2β

[
ûk

μ(t)
]2 − β

2P

(∑
ν,t ′

ûk
ν(t ′)Rν(t ′)

)2

+ ia

√
1 + β0

β0
ûk

μ(t) +
(∑

ν,t ′
ûk

ν(t ′)Rν(t ′)

)
ûk

μ(t) − iaβ

P

√
1 + β0

β0

(∑
ν,t ′

ûk
ν(t ′)Rν(t ′)

)}
, (A20)

when we apply Hubbard-Stratonovich transformation,

exp

(
x2

2

)
=
∫

Daeax,

(
Da = dae−a2/2

√
2π

)
, (A21)

to the term [uk
μ(t)]2 in Eq. (A17).

Here, we assume replica symmetry (RS) and static approximation (SA) [24]:

Rμ(t) = R, Qμν(t,t ′) = q, Qμμ(t,t ′) = χ (t 	= t ′), (A22)

R̂μ(t) = R̂, Q̂μν(t,t ′) = q̂, Q̂μμ(t,t ′) = χ̂ . (A23)

Note that the following relation exits for Qμμ(t,t) = 1 under RS and SA:∑
k,μ

∑
t,t ′

ûk
μ(t)ûk

μ(t ′)Qμμ(t,t ′) → χ
∑
k,μ

∑
t,t ′

ûk
μ(t)ûk

μ(t ′) − (χ − 1)
∑
k,μ,t

[
ûk

μ(t)
]2

. (A24)

012126-13



OTSUBO, INOUE, NAGATA, AND OKADA PHYSICAL REVIEW E 90, 012126 (2014)

By using the Hubbard-Stratonovich transformation on (
∑

μ

∑
t )

2 and
∑

μ(
∑

t )
2 and bearing in mind the order of the product of

indices, k, μ, and t , we have

eNg1 =
∏
k

∫
Da

∫
Db

∏
μ

∫
Dc

∏
t

dûk
μ(t)

2π

√
2Pπ

β
exp

[
a2β(1 + β0)

2Pβ0
− P − β(χ − 1)

2β

[
ûk

μ(t)
]2

+
{

ai

√
1 + β0

β0
(1 − nβR) + b

√
2R − q − nβR2 + c

√
q − χ

}
ûk

μ(t)

]
(A25)

=
∏
k

∫
Da

∫
Db exp

(
na2β(1 + β0)

2β0

)∏
μ

∫
Dc

∏
t

1

2π

√
2Pπ

β

√
2βπ

P − β(χ − 1)

× exp

⎧⎨
⎩ β

2P

(
ai

√
1 + β0

β0
(1 − nβR) + b

√
2R − q − nβR2 + c

√
q − χ

)2
⎫⎬
⎭ . (A26)

Here, we introduce the following replacements to simplify the above equation:

A ≡ i

√
1 + β0

β0
(1 − nβR), (A27)

B ≡
√

2R − q − nβR2, (A28)

C ≡ √
q − χ, (A29)

Xab ≡ Aa + Bb. (A30)

The coefficient under the condition that P → ∞ can be transformed as

∏
t

√
P

P − β(χ − 1)
�
∏

t

{
1 + β

2P
(χ − 1)

}
(A31)

�
∏

t

exp ln

{
1 + β

2P
(χ − 1)

}
(A32)

� exp

(
β

2
(χ − 1)

)
. (A33)

Then, we carry out integrations over a, b, and c as

eNg1 =
∏
k

∫
Da

∫
Db exp

(
na2β(1 + β0)

2β0
+ nβ

2
(χ − 1)

)∏
μ

∫
Dc exp

(
β

2
(Xab + Cc)2

)

=
∏
k

exp

(
nβ

2
(χ − 1)

)(
1

1 − βC2

)n/2 ∫
Da

∫
Db exp

{
nβ

2

(
1 + β0

β0
a2 + X2

ab

1 − βC2

)}

�
∏
k

exp

(
nβ

2
(χ − 1)

)(
1

1 − βC2

)n/2 ∫
Da

∫
Db

{
1 + nβ

2

(
1 + β0

β0
a2 + X2

ab

1 − βC2

)}

=
∏
k

exp

(
nβ

2
(χ − 1)

)(
1

1 − βC2

)n/2 {
1 + βn

2

(
1 + β0

β0
+ A2 + B2

1 − βC2

)}

=
∏
k

exp

(
nβ

2
(χ − 1)

)(
1

1 − βC2

)n/2
{

1 + βn

2

(
1 + β0

β0
+ 2R − q − (

1 + β−1
0

)
1 − β(q − χ )

)
+ O(n2)

}

�
∏
k

exp

[
n

2

{
−ln[1 − β(q − χ )] + β(1 + β0)

β0
+ β

[
2R − q − (

1 + β−1
0

)]
1 − β(q − χ )

+ β(χ − 1)

}]
.

For α ≡ K/N , we derive the final expression of g1 as

g1

n
� α

2

{
−ln[1 − β(q − χ )] + β(1 + β0)

β0
+ β

[
2R − q − (

1 + β−1
0

)]
1 − β(q − χ )

+ β(χ − 1)

}
. (A34)
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We next calculate eNg2 under RS and SA conditions as

eNg2 = Tr
ξ
P (ξ ) Tr

{σμ(t)}
exp

⎧⎨
⎩ R̂

P

∑
μ,t

∑
i

ξiσ
μ

i (t) + χ̂

P 2

∑
μ,t,t ′

∑
i

σ
μ

i (t)σμ

i (t ′)

+ q̂

2P 2

∑
i

(∑
μ,t

σ
μ

i (t)

)2

− q̂

2P 2

∑
i

∑
μ

(∑
t

σ
μ

i (t)

)2

+ B
∑
t,μ

∑
i

σ
μ

i (t)σμ

i (t + 1)

⎫⎬
⎭ (A35)

= 1

2N
Tr
ξ

Tr
{σμ(t)}

∏
i

∫
Dw exp

(
w

√
q̂

P

∑
μ,t

σ
μ

i (t)

)∏
μ

∫
Dz exp

(
z
√

2χ̂ − q̂

P

∑
t

σ
μ

i (t)

)

× exp

{
R̂

P

∑
t

∑
i

ξiσ
μ

i (t) + B
∑

t

σ
μ

i (t)σμ

i (t + 1)

}
(A36)

=
∏

i

1

2
Tr
ξi

∫
Dw exp

(
w

√
q̂

P

∑
μ,t

σ
μ

i (t)

)∏
μ

∫
Dz exp

(
z
√

2χ̂ − q̂

P

∑
t

σ
μ

i (t)

)

× Tr
σ

μ

i (t)
exp

{
R̂

P

∑
t

∑
i

ξiσ
μ

i (t) + B
∑

t

σ
μ

i (t)σμ

i (t + 1)

}
(A37)

=
∏

i

1

2
Tr
ξi

∫
Dw

∏
μ

∫
Dz Tr

σ
μ

i (t)
exp

{
z
√

2χ̂ − q̂ + w
√

q̂ + R̂ξi

P

∑
t

σ
μ

i (t) + B
∑

t

σ
μ

i (t)σμ

i (t + 1)

}
. (A38)

By applying ST decomposition to the above equation, we can take a spin trace as

eNg2 →
∏

i

1

2
Tr
ξi

∫
Dw

∏
μ

∫
DzTr exp

{
(z
√

2χ̂ − q̂ + w
√

q̂ + R̂ξi)σ̂
z
i + β�σ̂ x

i

}
(A39)

=
∏

i

1

2
Tr
ξi

∫
Dw

∏
μ

∫
Dz2 cosh

√
(ξi)2 + β2�2 (A40)

=
∏

i

1

2
Tr
ξi

∫
Dw

(∫
Dz2 cosh

√
(ξi)2 + β2�2

)n

(A41)

�
∏

i

∫
Dw

(∫
Dz2 cosh

√
2 + β2�2

)n

(A42)

� exp N ln

{
1 + n

∫
Dzln

(∫
Dw2 cosh

√
2 + β2�2

)}
(A43)

= exp Nn

∫
Dzln

(∫
Dw2 cosh

√
2 + β2�2

)
, (A44)

where

(ξi) = z
√

2χ̂ − q̂ + w
√

q̂ + R̂ξi . (A45)

Therefore, we obtain

g2

n
�
∫

Dzln

(∫
Dw2 cosh

√
2 + β2�2

)
, (A46)

 = w
√

2χ̂ − q̂ + z
√

q̂ + R̂. (A47)

We finally calculate eNg3 under RS and SA conditions as

eNg3 � exp

{
nN

(
−R̂R − χ̂χ + q̂q

2

)}
.

Thus, we obtain the following form:

g3

n
� −R̂R − χ̂χ + q̂q

2
. (A48)
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From Eqs. (A34), (A46), and (A48), we obtain the free energy density as

− βf = g1

n
+ g2

n
+ g3

n
(A49)

= α

2

{
−ln[1 − β(q − χ )] + β(1 + β0)

β0
+ β

[
2R − q − (

1 + β−1
0

)]
1 − β(q − χ )

+ β(χ − 1)

}
− R̂R

− χ̂χ + q̂q

2
+
∫

Dzln

(∫
Dw2 cosh

√
2 + β2�2

)
, (A50)

 = φ

β
= w

√
2χ̂ − q̂ + z

√
q̂ + R̂. (A51)

Considering the classical limits � = 0 and χ = 1, the classical free energy is recovered.
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