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Vortex States of the Eu Model for Sr2RuO4

Takafumi Kita
Division of Physics, Hokkaido University, Sapporo 060-0810, Japan

(Received 15 April 1999)

Based on the Ginzburg-Landau functional of Eu symmetry presented by Agterberg, vortex states of
Sr2RuO4 are studied in detail over Hc1 & H # Hc2 by using the Landau-level expansion method. For
the field in the basal plane, it is found that (i) the second superconducting transition should be present
irrespective of the field direction, (ii) below this transition, a characteristic double-peak structure may
develop in the magnetic-field distribution, and (iii) a third transition may occur between two different
vortex states. It is also found that, when the field is along the c axis, the square vortex lattice may
deform through a second-order transition into a rectangular one as the field is lowered from Hc2.

PACS numbers: 74.60.Ec, 74.20.De, 74.25.Dw

Active studies have been performed on superconduct-
ing Sr2RuO4 [1] where another unconventional pairing
may be realized [2]. A possible candidate for its sym-
metry is the Eu model with twofold degeneracy [3], as
indicated by various experiments [4–10]. However, fur-
ther experiments seem to be required before establishing
its validity for Sr2RuO4. In this respect, the vortex states
may provide clear and indisputable tests for the p-wave
hypothesis. The present paper provides a detailed theo-
retical description of them which will be helpful towards
that purpose. Clarifying the basic features of the two-
component model, which has not been performed com-
pletely, will also be useful for the experiments of UPt3.

The vortex states of the Eu model for Sr2RuO4
have been studied theoretically in a series of papers by
Agterberg et al. [11–13]. Based on a two-component
Ginzburg-Landau (GL) functional and following essen-
tially Abrikosov’s method [14] which is effective near
the upper (Hc2) and lower (Hc1) critical fields, they
have provided several important predictions. Especially
noteworthy among them are the existence of the second
transition for H � c similar to that observed in UPt3
[15,16], several orbital-dependent phenomena helpful
in identifying which band is mainly relevant, and sta-
bilization of the square vortex lattice for H k c. An
observation of the square lattice has been reported by
Riseman et al. [17].

With these results, this paper focuses on the following:
(i) The properties of the intermediate fields, in particular,
those below the second transition for H � c, remain

to be clarified. We will treat the whole range Hc1 #

H # Hc2 in a unified way, describe possible changes
of experimentally detectable properties as a function of
the field strength, and draw characteristic features in low
fields. (ii) Only the cases where the field is along the
high-symmetry axes have been considered. Thus it is still
not clear whether or not the second transition for H � c
persists for arbitrary field directions in the ab plane,
because the term jh1j

2jh2j
2 in the GL functional [see

Eq. (1) below] generally causes the first- and third-order
mixing. We will study those general cases to establish
the existence of the second transition. (iii) Agterberg
introduced several assumptions in the parameters used
to minimize the free energy. We will perform the
minimization without such assumptions.

The goals (i)–(iii) may seem rather formidable, but
they can be achieved with the Landau-level expansion
method [18]. When applied to the s-wave pairing, it
successfully reproduced the properties of the whole re-
gion Hc1 & H # Hc2 quite efficiently for an arbitrary k.
Compared with the direct minimization procedure in real
space [19], the method has a couple of advantages that
(i) it is far more efficient and (ii) one can enumerate pos-
sible second-order transitions rather easily, hence enabling
us to establish the phase diagram of various multi-order-
parameter systems. This is the first time where it is ap-
plied to a multi-order-parameter system so that this paper
also has some methodological importance.

The GL free-energy density adopted by Agterberg is
given by [11]

f � 2jhj2 1
1
2
jhj4 1

g

2
�h 3 h��2 1 �3g 2 1� jh1j

2jh2j
2
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#
h 1 h2, (1)

where the same notations are used here. This simplified
free energy has the advantage that there are only two
parameters in it whose values can be extracted from

experiments, i.e., k1 � Hc2�
p

2 Hc and n � 123g

11g , the
latter being related to the Hc2 anisotropy in the ab plane
as Hc2�a��Hc2�a 1 b� �

12n

11n [11]. The value k1 � 31
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�1.2� for H � c (H k c) will be used throughout [20],
whereas n is left as a parameter. A recent observation of
the Hc2 anisotropy suggests that n is positive and �0.01
[21].

We sketch the method to find the minimum for an arbi-
trary field strength [18]. Let us fix the mean flux den-
sity B � �B sinu cosw, B sinu sinw, B cosu� rather than
the external field H, and express h � B 1 eh where the
spatial average of eh vanishes by definition. We then
transform24 x

y
z

35 �

24 cosu cosw 2 sinw sinu cosw
cosu sinw cosw sinu sinw

2 sinu 0 cosu

35 24 x0�L
y0L
z0

35 ,

(2)
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2 2 sin f

2

sin f

2 cosf

2

# "
cosf0 sinf0

2i sinf0 i cosf0

#
h0�r0� ,

(3)

where f, f0, and L are conveniently chosen as
f � tan21�2g tan2w��1 2 g��, f0 � tan21�L2 cosu�,
and L � ��1 1 g 2 f����1 1 g 2 f� cos2u 1

2k5 sin2u�	1�4 with f � ��1 2 g�2 cos22w 1

4g2 sin22w�1�2. Assuming uniformity along the z0

direction, we then expand h0�r0� and eh �r0� as

h0�r0� �
p

V
X
Nq

cNqcNq�r0� , (4)

eh�r0� � bz0 X
Kfi0

ehK exp�iK ? r0� , (5)

where V is the system volume, cNq denotes an eigenstate
of the magnetic translation group in the flux density B
with the Landau-level index N and the magnetic Bloch
vector q, and K is the reciprocal lattice vector of the
vortex lattice. The explicit expression of cNq�r0� for the
spacial case where one of the unit vectors of the vortex
lattice, a2, lies along the y0 axis is given by

cNq�r0� �
Nf�2X

n�2Nf�211
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with N
2

f the number of flux quanta in the system, lc denoting 1
p

2
of the magnetic length, and a1x0 (a1y0) the x0 ( y0)

component of another unit vector a1 [18]. We also consider a clockwise rotation of a1 and a2 around the z0 axis by
the angle w

0
L. Substituting Eqs. (2)–(5) into Eq. (1) and integrating over the volume, we obtain the free energy per unit

volume as

F��cNq	, �ehK	, B, r, q , w0
L� �

1
V

Z
f�h0�r0�, eh�r0�, B� d3r 0, (6)

where r � ja1j�ja2j and q � cos21 a1?a2

ja1j ja2j
. This F is

a desired functional which can be minimized rather
easily using one of the standard minimization algorithms
[22]. Because of the periodicity of the vortex lattice,
we have to perform the integration only over a unit
cell. The external field H is then determined through
the thermodynamic relation (H �

1
2

≠F
≠B in the present

units). In numerical calculations we have cut the series
in Eqs. (4) and (5) at some Nc and jKcj, respectively,
thereby obtaining a variational estimate of the free energy.
The convergence can be checked by increasing Nc and
jKcj. The choice Nc � 12 and Kc � �the third smallest�
has been checked to provide correct identification of the
free-energy minimum with the relative accuracy of 1026

for B�Hc2 * 0.1. Though not presented here, preliminary
calculations reveal that the method is also effective for
u fi 0, p

2 .
The functional F has another advantage that one

may enumerate possible transitions in the vortex states
of multi-order-parameter systems. Much attention has
been focused on this subject in connection with the
observed phase diagram of superconducting UPt3 [23].
No complete analysis has appeared yet, however, and
the use of F will be quite helpful for that purpose.

The features of the s-wave lattice can be summarized
as follows [18]: (a) a single q in Eq. (4) suffices to
describe it with a choice of q corresponding to the broken
translational symmetry of the lattice; (b) the hexagonal
(square) lattice is made up of N � 6n (4n) Landau
levels (n: integer) [18,24]; (c) more general structures
can be described with N � 2n levels, odd N’s never
mixing up since those bases have finite amplitude at
the core sites; (d) the expansion coefficients cNq can be
chosen real for the hexagonal and square lattices. With
these results on the conventional lattice, the following
second-order transitions are possible in multicomponent
systems: (i) deformation of the hexagonal or square
lattice which accompanies entry of new N’s as well
as complex numbers in the expansion coefficients; (ii)
mixing of another wave number q2 satisfying q2 2 q1 �
K�2 [23,25]; (iii) entry of odd N’s. Though not complete,
this consideration will be sufficient below.

We now present the results for H � c. Figure 1 shows
the transition lines for H k a (u �

p

2 ; w � 0) as a
function of the anisotropy parameter n; the one given
as a function of g �

12n

31n has qualitatively the same
structure, with g � 0 and 1 corresponding to n � 1 and
21, respectively. As already pointed out by Agterberg
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FIG. 1. Transition lines for H k a as a function of the
anisotropy parameter n. The closed (open) circles denote the
zeros of h1 (h2). The inset plots the angle w

0
L at the I $ II

transition as a function of n.

[11], there are three possible vortex states: the high-field
region I where a hexagonal lattice is stable with h2 � 0;
the region II where h2 becomes finite with q2 2 q1 equal
to half the unit vector b1 of the reciprocal lattice, i.e.,
the vortex lattice is coreless with jhj finite everywhere;
the region III where a deformed conventional lattice
with h2 fi 0 is stable. In addition, Fig. 1 includes the
following new results: (i) a full minimization with respect
to w

0
L clarifies that the I $ II transition is continuous

as a function of n (see the inset); (ii) high-precision
calculations in the low-field region reveal that, as the field
is lowered, the coreless state II is replaced via a first-
order transition by the state III with cores. The reason
for (ii) can be realized by looking at the variation of
lz � �h 3 h�� ? bz�2ijh1j jh2j which is proportional to
the magnitude of the orbital angular momentum along
z. As seen in Fig. 2 calculated for n � 0.077 (g � 0.3)
and B�Hc2 � 0.25, one of the bulk states lz � 61 is
alternately realized in II, and there necessarily exist lines
of “defects” where lz vanishes. Compared with III where
jhj vanishes at points, the state II is thus energetically
unfavorable at low fields. It can however be stabilized at
intermediate fields by making jhj more uniform. Figure 3
plots jh�r�j for n � 0.077, showing how the differences
between II and III develop as B�Hc2 is decreased. In
fact, only a deformation of the lattice occurs in III,
whereas a layered structure also shows up in II with jh�r�j
becoming more and more uniform. This rather drastic
change in II can be detected by measuring the magnetic-
field distribution P�h� � 1

V

R
d�h 2 hx�r�� d3r . As seen

in Fig. 4, the single peak at B�Hc2 � 0.45 splits and

FIG. 2. Spatial variation of lz � �h 3 h�� ? bz�2ijh1j jh2j in
the state II for n � 0.077 and B�Hc2 � 0.25. The regions
with lz 
 61 correspond to the “bulk” state. See Fig. 3 for
the corresponding jh�r�j.

one of them moves towards the high-field end, which
originates from the development of a ridge in hx�r� along
a valley of jh�r�j. The observation of it by NMR or mSR
experiments will form a direct evidence for the state II
as well as for the presence of multiorder parameters. It
is also quite interesting to perform the experiments in
UPt3 where a lattice distortion has already been detected
[26]. We finally point out that the second-order transition
between I $ II or I $ III is present for an arbitrary field
direction in the basal plane. A glance on the functional
(1) may lead to the conclusion that the transition I $ III

FIG. 3. A comparison of jh�r�j between the states II and
III with n � 0.077 and B�Hc2 � 0.45, 0.25. The amplitude
jh�r�j is finite everywhere in the state II, which is brought
about at the expense of the variation in lz ; see Fig. 2.
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FIG. 4. The magnetic-field distribution P�h� in the state II for
B�Hc2 � 0.45, 0.35, 0.25, and 0.15. A characteristic double-
peak structure develops as the field is decreased.

disappears for a low-symmetry direction, since the term
jh1j

2jh2j
2 yields those like h

0
1h

0�
2 jh

0
1j

2. However, it does
persist as the transition (i) classified in the preceding
paragraph. The hexagonal lattice has been checked to be
stable in the high-field region, and the phase diagram for
a small jnj is qualitatively similar to Fig. 1.

We finally present the results for H k c. Figure 5
shows the vortex lattice structure as a function of jnj
and B for k1 � 1.2. The square lattice is stabilized
near Hc2 for small values of jnj, confirming Agterberg’s
result through a perturbation expansion with respect to n

(k1 � 1.2 corresponds Agterberg’s k � 0.66 for n � 0)
[12]. As the field is decreased, however, the lattice
deforms into a rectangular one for jnj & 0.17, followed
by a further transition into the square and/or a distorted
(i.e., r fi 1; q fi

p

3 , p

2 ) lattice for jnj & 0.1. The same
calculation for k1 � 2.6 reveals that all of the phase
boundaries move rightward, with the distorted, square,
and rectangular regions extending over 0 # B�Hc2 #

1 for jnj & 0.004, 0.02 & jnj & 0.09, and 0.23 & jnj,
respectively. With k1 and jnj small, the free energies

FIG. 5. The vortex-lattice phase diagram for H k c as a
function of jnj and B�Hc2 for k1 � 1.2. The angle w

0
L is p

4
and 0 for n . 0 and n , 0, respectively.

of these lattices are not much different from one another,
as suggested by Agterberg’s n-k diagram near Hc2 [12],
and the present calculation reveals that there may also be
field-dependent transformations among them. Although
Riseman et al. [17] have reported an observation of the
square lattice, there may exist field-dependent distortion
in the diffraction pattern. A detailed experiment on the
field dependence may be worth carrying out.

The author is grateful to M. Sigrist for several useful
conversations and to D. F. Agterberg for valuable com-
ments on the original manuscript. Numerical calculations
were performed on an Origin 2000 in “Hierarchical mat-
ter analyzing system” at the Division of Physics, Graduate
School of Science, Hokkaido University.
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