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PHYSICS OF FLUIDS 26, 084109 (2014)

On the nonlinear development of shear layers in partially
vegetated channels

A. C. Limaa) and N. Izumi
Graduate School of Engineering, Hokkaido University, 060-8628 Sapporo, Japan

(Received 8 April 2014; accepted 11 August 2014; published online 29 August 2014)

A predictive theory is developed to investigate the nonlinear instability regime of
perturbed shear layers in open-channel flows with lateral vegetation. The turbulence
is characterized by two distinct scales: a sub-depth turbulence which is associated with
the bed shear stress and a large-scale turbulence associated with the large horizontal
eddies which develop in the shear layer. The sub-depth turbulence is modeled by
assuming a logarithmic vertical distribution of the velocity. Meanwhile, an analogous
model for the large-scale turbulence requires the estimation of the transverse velocity
profile in the nonlinear state because the growth of the large-scale disturbances
expands the shear layer and modifies the velocity distribution across the channel. The
nonlinear growth of the disturbances is limited, however, because solid boundaries in
the channel play stabilizing mechanisms which lock the amplitude of the large-scale
disturbances into a finite-equilibrium state, for which a corresponding transverse
velocity profile is determined. A weakly nonlinear stability analysis is performed and
the results are validated using experimental data from previous works. C© 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4893676]

I. INTRODUCTION

Vegetation located at one side of a channel produces velocity inflection and transverse shear,
resulting in a Kelvin-Helmholtz instability with large-scale horizontal vortices centered around the
edge of the vegetated array. These vortices have a strong influence on the velocity distribution and
the amount of discharge conveyed by a channel without overflow, and enhance the lateral exchange
of mass and momentum between the vegetated zone and the open channel.

Similar transverse shear flows are observed, for example, in composite channels,1, 2 in inflows
at channel junctions,3, 4 or in channels where the bottom roughness varies laterally.2 The shear
layer in the lateral velocity profile has been determined to be the major factor in the generation of
instabilities in these transverse shear flows.1 In addition, the degrees of influence of the bed-friction2

and gravity5, 6 also play important roles in the stability of these flows. The turbulence due to the bed
friction may either enhance or damp the transverse motions. For instance, the transverse shear flow
is stabilized if the transverse motions are suppressed by a sufficiently strong bed-friction effect.2

The gravity effect plays a stabilizing effect on the shear layer, though at large Froude numbers
a gravity instability independent of the shear layer is generated.5, 6 The stability characteristics of
open channel flows with transverse shear have been studied by means of a linear stability analysis
by a number of authors. Some of the major differences among these works can be regarded as
the use1, 2, 7, 8 or not4–6, 9, 10 of the inviscid flow assumption, and the use1, 2, 4, 7–9 or not5, 6, 10 of the
rigid-lid assumption. Under the inviscid flow assumption, the perturbation equations in these studies
are reduced to modified Rayleigh equations, while the formulations with turbulence viscosity lead
to modified Orr-Sommerfeld equations. The inviscid flow assumption is a reasonable simplification
for flows at large Reynolds numbers or flows where changes in the depth, roughness, or vegetation
density across the channel are gradual. The rigid-lid assumption, which does not take the relative

a)Electronic mail: adriano@eng.hokudai.ac.jp.
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importance of gravity into consideration, is a reasonable simplification for small Froude numbers.5

The linear stability analysis can successfully explain the effects of inertial and gravitational forces,
bed shear stress, and shear layer turbulent stress on the stability of transverse shear flows. However, it
reflects only the initial state of the growth of infinitesimally small disturbances, while the large-scale
vortices correspond to a developed state where nonlinear interactions can no longer be neglected.

The nonlinear interactions may result into an increase in the mixing effect. In order to gain
a qualitative understanding of the effect of nonlinear interactions, a nonlinear stability analysis of
flow in an open-channel partially covered with vegetation is performed in this study. We employ
the St. Venant shallow water equations with the Reynolds stress expressed by a kinematic eddy
viscosity representing turbulence with a length scale smaller than the flow depth. This is different
from previous models4, 5 where the Reynolds stress is modeled employing a kinematic eddy viscosity
which is affected by the lateral motions due to the shear layer.

Although the differential drag between the non-vegetated and vegetated zones excites the
instabilities, as the amplitude of the disturbances develops, the solid boundaries of the channel play
a stabilizing role in limiting the further growth of the amplitude. Accordingly, the bifurcation pattern
determined from the nonlinear stability analysis was typically supercritical, where the amplitude
of the perturbations grows to an upper bound derived from the Landau equation. In the case of
supercritical bifurcation, the lateral distribution of the velocity and the shear stress at the developed
state of the perturbations could be theoretically predicted, allowing the estimation of the kinematic
eddy viscosity corresponding to the large-scale turbulences. Experimental data from previous studies
support the present theory.

II. GOVERNING EQUATIONS OF FLUID MOTION

In this study, we focus on horizontal vortices generated in the shallow flow in a wide rectangular
open channel partially covered with emergent rigid vegetation, as depicted in Figure 1. The vegetation
is modeled by an array of regularly spaced cylinders with a uniform diameter installed only on one
side of the channel. The model of cylinders as vegetation employed herein has been widely used in
previous studies (e.g., Refs. 7, 8, 11–15). The horizontal length scale of the vortices is commonly
large compared with the scale of the flow depth. The generation of such thin vortices can be described
by the depth-averaged shallow water formulation. The momentum equations in the streamwise and
transverse directions (x̃ and ỹ) and the continuity equation are

∂Ũ

∂ t̃
+ Ũ

∂Ũ

∂ x̃
+ Ṽ

∂Ũ

∂ ỹ
= g̃S − g̃

∂ H̃

∂ x̃
− T̃ bx + D̃x

ρ̃ H̃
+ 1

ρ̃

(
∂ T̃ xx

∂ x̃
+ ∂ T̃ xy

∂ ỹ

)
, (1a)

∂ Ṽ

∂ t̃
+ Ũ

∂ Ṽ

∂ x̃
+ Ṽ

∂ Ṽ

∂ ỹ
= −g̃

∂ H̃

∂ ỹ
− T̃ by + D̃y

ρ̃ H̃
+ 1

ρ̃

(
∂ T̃ xy

∂ x̃
+ ∂ T̃ yy

∂ ỹ

)
, (1b)

∂ H̃

∂ t̃
+ ∂Ũ H̃

∂ x̃
+ ∂ ṼH̃

∂ ỹ
= 0, (1c)

(a)

(b)

FIG. 1. Conceptual diagram of the channel with vegetation. (a) The cross-sectional view, and (b) the plan view.
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FIG. 2. The plan view of an array of regularly spaced cylinders as a model of vegetation.

where t̃ is time, x̃ is the streamwise coordinate, ỹ is the lateral coordinate, the origin of which is taken
at the interface between the vegetated and non-vegetated zones, Ũ and Ṽ are the x̃ and ỹ components
of the flow velocity, respectively, H̃ is the flow depth, T̃bx and T̃by are the x̃ and ỹ components of
the bed shear stress, respectively, D̃x and D̃y are the x̃ and ỹ components of the drag force due
to vegetation, respectively, T̃i j (i, j = x, y) is the Reynolds stress tensor, ρ̃ is the density of water,
g̃ is the gravity acceleration, and S is the bed slope of the channel. The tilde denotes dimensional
variables and the overline denotes variables averaged over a short time scale corresponding with the
sub-depth scale turbulences. The overline is dropped afterwards for simplicity.

The drag force vector (D̃x , D̃y) is described by the expression

(D̃x , D̃y) =

⎧⎪⎨
⎪⎩

0 in the non-vegetated zone,

ρ̃CDã H̃

2
(Ũ 2 + Ṽ 2)1/2(Ũ , Ṽ ) in the vegetated zone,

(2)

where CD is the drag coefficient of vegetation, typically estimated to range from 1 to 2, and
ã = d̃/(2l̃x l̃y) is the parameter which describes the density of vegetation, where d̃ is the diameter of
the cylinders and l̃x and l̃y are the distances between two adjacent cylinders in the x̃ and ỹ directions,
respectively, as shown in Figure 2.

The bed shear stress is related to the flow velocity by means of the bed friction coefficient Cf,
such that

(T̃bx , T̃by) = ρ̃C f (Ũ 2 + Ṽ 2)1/2(Ũ , Ṽ ). (3)

Though the bed friction coefficient Cf is a weak function of the flow depth relative to the roughness
height, it is assumed to be constant and common in both the vegetated and non-vegetated zones for
simplicity.

With the use of Boussinesq’s kinematic eddy viscosity, the depth-averaged Reynolds stresses
are expressed by

T̃xx = 2ρ̃ν̃T
∂Ũ

∂ x̃
, T̃xy = ρ̃ν̃T

(
∂Ũ

∂ ỹ
+ ∂ Ṽ

∂ x̃

)
, T̃yy = 2ρ̃ν̃T

∂ Ṽ

∂ ỹ
, (4)

where ν̃T is the kinematic eddy viscosity. We assume that, in the base state before instability occurs,
the flow is already affected by turbulence, the length scale of which is smaller than the flow depth
(sub-depth scale turbulence). Where there is no influence of vegetation, the kinematic eddy viscosity
ν̃T should correspond to the sub-depth scale turbulence generated by the bottom friction. We employ
the logarithmic velocity distribution as a sub-depth scale turbulent velocity distribution due to the
bottom friction. The kinematic eddy viscosity then takes a parabolic form, which is depth-averaged
from the bottom to the water surface yielding

ν̃T = 1

6
κŨ f H̃∞, (5)

where Ũ f (=
√

T̃bx∞/ρ̃) and H̃∞ are the friction velocity and the flow depth in the region sufficiently
far from the vegetated zone (denoted by the subscript ∞), respectively, and κ is the Kármán constant
(= 0.4). We assume that the sub-depth scale turbulence is rather isotropic. Therefore, the above
formulation is expected to describe the Reynolds stresses also in the streamwise and lateral directions
at a sufficient distance from the vegetated zone.
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In the shear layer formed around the boundary between the two zones, and inside the vegetated
zone, the velocity and the shear velocity are reduced because of the Reynolds stress and the drag
force due to vegetation. In addition, the length scale of sub-depth scale vortices may be affected by
a typical length scale of vegetation such as the vegetation spacing. According to the experimental
results of Ikeda et al.,11 however, the depth-averaged kinematic eddy viscosity even in the shear layer
and the vegetated zone can be represented by (5). This may be attributed to the fact that the sum of
the resistant forces (the bed shear stress, the Reynolds stress and the vegetation drag force) remains
constant regardless of the reduction in the bed shear stress in the shear layer and the vegetated zone.
The kinematic eddy viscosity may be correlated to the total resistant force. Furthermore, since the
flow depth and the spacing of vegetation in the experiments carried out by Ikeda et al.11 are both in
the same range, the kinematic eddy viscosity in the vegetated zone may not be strongly affected by
vegetation. These assumptions and (5) are employed in this study as well.

Fischer et al.16 determined the transverse mixing coefficient εt
∼= 0.15Ũ f H̃ from an approxi-

mate average of experimental results in straight rectangular channels from various studies, stating
that the above result is likely to be correct for practical purposes in straight rectangular channels
with an error bound of ±50%. Based on Fischer et al.,16 Chen and Jirka,9 followed by Ghidaoui
and Kolyshkin5 and Prooijen and Uijttewaal4 have assumed values of kinematic eddy viscosity in
the range ν̃t = 0.15–0.20Ũ f H̃ for expressing the Reynolds stress corresponding to the small-scale
motions. This range of values of kinematic eddy viscosity is, however, affected by the transverse
mixing of the shear layer. On the other side, the eddy viscosity in (5) is estimated for the flow before
the transverse mixing due to the shear layer occurs. Thus, it assumes a value smaller than ν̃t = 0.15–
0.20Ũ f H̃ . By employing (5) in the formulation, a base flow consisting of the flow completely
undisturbed by the lateral motions due to the development of the shear layer can be derived.

At a sufficient distance from the boundary between the non-vegetated and vegetated zones in
the base state normal flow equilibrium condition, Ũ and H̃ are constant, and Ṽ vanishes. Thus, (1)
allows the solutions

Ũ∞ =
(

g̃ H̃∞S

C f

)1/2

, Ũ−∞ =
(

2g̃ H̃∞S

2C f + CDã H̃∞

)1/2

, (6)

where the subscript −∞ denotes the region sufficiently far from the non-vegetated zone. The
velocity and flow depth at a sufficient distance from the vegetated zone, Ũ∞ and H̃∞, are used
for normalization. The velocities and flow depth are then rendered dimensionless according to the
following expressions:

(Ũ , Ṽ ) = Ũ∞(U, V ), H̃ = H̃∞ H. (7)

The independent variables x̃ , ỹ, and t̃ are normalized with the use of the width of the non-vegetated
zone B̃, such that

(x̃, ỹ) = B̃(x, y), t̃ = B̃

Ũ∞
t. (8)

With the use of the above normalization, the governing equations (1) are rewritten in the form

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −F−2 ∂ H

∂x
+ β

(
1 − Tbx + Dx

H

)
+ ε

(
∂2U

∂x2
+ ∂2U

∂y2

)
, (9a)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −F−2 ∂ H

∂y
− β

Tby + Dy

H
+ ε

(
∂2V

∂x2
+ ∂2V

∂y2

)
, (9b)

∂ H

∂t
+ ∂UH

∂x
+ ∂VH

∂y
= 0, (9c)
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where (Tbx, Tby) and (Dx, Dy) are the normalized bed shear stress and vegetation drag vectors,
respectively, written in the form(

Tbx , Tby
) = (

U 2 + V 2
)1/2

(U, V ) , (9d)

(
Dx , Dy

) =
{

α
(
U 2 + V 2

)1/2
H (U, V ) if −Bv ≤ y ≤ 0,

0 if 0 ≤ y ≤ 1,
(9e)

where the range −Bv ≤ y ≤ 0 corresponds to the vegetated zone and the range 0 ≤ y ≤ 1 cor-
responds to the non-vegetated zone. The above normalized governing equations include the four
non-dimensional parameters β, ε, F, and α. The parameter β, which expresses the relative impor-
tance of the bed shear effect, is dependent on the aspect ratio of the non-vegetated zone B̃/H̃∞, and
the bottom friction coefficient Cf, such that

β = C f B̃

H̃∞
. (10)

The parameter ε is associated with the sub-depth kinematic eddy viscosity ν̃T , expressed by (5), in
the form

ε = ν̃T

Ũ∞ B̃
= C1/2

f H̃∞
15B̃

. (11)

The Froude number F is given by

F = Ũ∞√
g̃ H̃∞

=
(

S

C f

)1/2

. (12)

And the parameter α is related to the vegetation drag and density, and is defined by

α = CDã H̃∞
2C f

. (13)

It is assumed that the channel is sufficiently wide so that a shear layer does not reach the side
walls. Under this assumption, it follows that at the side walls, the transverse velocity V vanishes,
and the streamwise velocity U asymptotically approaches to constant slip velocities. The following
conditions therefore hold:

V = 0 at y = −Bv, 1, (14a)

∂U

∂y
= 0 at y = −Bv, 1. (14b)

Right at the boundary between the non-vegetated and vegetated zones, the velocities, flow depth
and shear stresses are continuous, such that

lim
y→+0

(
U, V, H,

∂U

∂y
,
∂V

∂y

)
= lim

y→−0

(
U, V, H,

∂U

∂y
,
∂V

∂y

)
. (15)

The above conditions are valid provided the vegetation is not sufficiently dense for stress jump
to take place at y = 0. Although there are five matching conditions in (15), if four of them are
imposed, the fifth condition is automatically satisfied. Thus, one of these conditions can be dropped
afterwards.

III. BASE STATE NORMAL FLOW

The base state flow field is set as the flow undisturbed by the horizontal vortices. The base
flow has only a streamwise component. It follows, therefore, that the time and space derivatives and

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.87.166.132 On: Fri, 28 Nov 2014 04:19:56



084109-6 A. C. Lima and N. Izumi Phys. Fluids 26, 084109 (2014)

the transverse velocity vanish and the flow depth is equal to unity under the base state normal flow
condition. Equation (9) is then reduced to

β
(
1 − U 2

0

) + ε
d2U0

dy2
= 0 if 0 ≤ y ≤ 1, (16a)

β
[
1 − U 2

0 (1 + α)
] + ε

d2U0

dy2
= 0 if −Bv ≤ y ≤ 0, (16b)

where U0 is the streamwise velocity in the base state, which is a function of only the transverse
coordinate y.

The normalization of (Ũ∞, Ũ−∞) leads to (1, φ), where φ is the ratio between the undisturbed
velocities in the vegetated and non-vegetated zones at a sufficient distance from their boundary,
related to the non-dimensional parameter α in the form

φ = Ũ−∞
Ũ∞

= 1

(1 + α)1/2 . (17)

The domain of φ is 0 < φ ≤ 1; φ approaches to 0 when the vegetation obstructs the flow completely
in the vegetated zone (α → ∞), and takes a value of unity when there is no vegetation (α = 0).

Solving (16) under conditions ((14b)–(15)), we obtain explicit analytical solutions for U0 in the
form

U0(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 tanh2

[(
β

2ε

)1/2

y + tanh−1

(
ψ + 2

3

)1/2
]

− 2 if 0 ≤ y ≤ 1,

3φ coth2

[
−

(
β

2εφ

)1/2

y + coth−1

(
ψ + 2φ

3φ

)1/2
]

− 2φ if −Bv ≤ y ≤ 0,

(18)
where ψ is the base flow velocity between the non-vegetated and vegetated zones (y = 0), related
with φ as

ψ =
(

2φ2

1 + φ

)1/3

. (19)

The streamwise velocity in the base state U0 is found to be expressed by hyperbolic-tangent
and hyperbolic-cotangent functions which are invariant in time and in the streamwise direction and
include four non-dimensional parameters, β, ε, ψ , and φ, where the latter two can be expressed as
functions of only α. A sample base state velocity profile is depicted in Figure 3. The velocities at the
far right and left correspond to Ũ∞ and Ũ−∞, respectively, and the value of U0 at the far left is φ.

0.4 0.2 0. 0.2 0.4 0.6 0.8 1.
0.

0.2

0.4

0.6

0.8

1.

y

U
0

FIG. 3. The lateral distribution of the base flow velocity U0 for the case β = 0.05, ε = 6 × 10−4, α = 10.
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IV. LINEAR STABILITY ANALYSIS

A temporal linear stability analysis is performed herein. A disturbance undulating in the stream-
wise direction is introduced to the base state flow. The streamwise and lateral velocities U and V ,
and the flow depth H are then expanded in the form

U (x, y, t) = U0 (y) + AU1(y)ei(kx−ωt), (20a)

V (x, y, t) = AV1(y)ei(kx−ωt), (20b)

H (x, y, t) = 1 + AH1(y)ei(kx−ωt), (20c)

where A, k, and ω are the amplitude, wavenumber, and angular frequency of the disturbance,
respectively. In the scheme of temporal linear stability analysis, k is real while ω is complex such
that ω = ωr + i, where ωr is the real angular frequency and  is the growth rate of the disturbance.

Substituting (20) into the governing equations (9), we obtain the following perturbed equations
in the non-vegetated zone:[

i (kU0 − ω) + k2ε + 2βU0 − ε
d2

dy2

]
U1 + dU0

dy
V1 + (

ik F−2 − βU 2
0

)
H1 = 0, (21a)

[
i (kU0 − ω) + k2ε + βU0 − ε

d2

dy2

]
V1 + F−2 dH1

dy
= 0, (21b)

ikU1 + dV1

dy
− i(ω − kU0)H1 = 0, (21c)

and the following perturbed equations in the vegetated zone,[
i (kU0 − ω) + k2ε + 2βU0 (1 + α) − ε

d2

dy2

]
U1 + dU0

dy
V1 + (

ik F−2 − βU 2
0

)
H1 = 0, (22a)

[
i (kU0 − ω) + k2ε + βU0 (1 + α) − ε

d2

dy2

]
V1 + F−2 dH1

dy
= 0, (22b)

ikU1 + dV1

dy
− i (ω − kU0) H1 = 0. (22c)

Since the amplitude of the perturbations A is assumed to be infinitesimally small in the scheme of
linear stability analysis, terms containing A2 were dropped from ((21)–(22)).

A numerical scheme is necessary to solve ((21)–(22)) under the corresponding expanded forms
of the boundary and matching conditions ((14)–(15)), as the equations obviously do not admit
analytical solutions. We employ a spectral collocation method with the Chebyshev polynomials. In
the non-vegetated zone (0 ≤ y ≤ 1), the variables U1, V1, and H1 are expanded in the form

U1 =
N∑

j=0

a j Tj (ξ ) , V1 =
N∑

j=0

a(N+1)+ j Tj (ξ ) , H1 =
N∑

j=0

a2(N+1)+ j Tj (ξ ) , (23)

and in the vegetated zone (−Bv ≤ y ≤ 0), they are expanded in the form

U1 =
N∑

j=0

a3(N+1)+ j Tj (γ ) , V1 =
N∑

j=0

a4(N+1)+ j Tj (γ ) , H1 =
N∑

j=0

a5(N+1)+ j Tj (γ ) , (24)

where aj (j = 0, 1, 2, . . . , 6N + 5) are the coefficients of the Chebyshev polynomials, and Tj(ξ ) and
Tj(γ ) are the Chebyshev polynomials in ξ and γ of degree j, respectively. The independent variables
ξ and γ both range from −1 to 1, and are related to y by the equations ξ = 2y − 1 (0 ≤ y ≤ 1) and
γ = 2y/Bv + 1 (−Bv ≤ y ≤ 0), respectively. The expansions (23) and (24) are substituted into the
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governing equations (21) and (22), respectively, and the resulting six equations are evaluated at the
Gauss-Lobatto points defined by

ξm = cos
mπ

N
, γm = cos

mπ

N
, (25)

where m = 0, 1, . . . , N. Therefore, the number of points where the governing equations are evaluated
is N + 1. We obtain a system of 6(N + 1) algebraic equations with 6(N + 1) unknown coefficients a0,
a1, a2, . . . , a6N + 5. Eight equations of the system are then replaced by the four boundary conditions
(14) and four of the matching conditions (15). The resulting linear algebraic system takes the form

M

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

...

a6N+5

⎤
⎥⎥⎥⎥⎥⎦ = 0, (26)

where M is a 6(N + 1) × 6(N + 1) matrix in which the elements are derived from the coefficients
of U1, V1, and H1 in the governing equations (21)–(22) and the boundary and matching conditions
(14)–(15). The condition for (26) to have a non-trivial solution is that M should be singular. Thus,

|M| = 0. (27)

The solution of the above equation takes the functional form

ω = ω (k, β, ε, α, Bv, F) . (28)

There are, therefore, six non-dimensional parameters k, β, ε, α, Bv , and F determining the growth
rate . We will take, however, the ratio of undisturbed velocities φ, which is a function of only α,
as the expanded parameter in the nonlinear stability analysis. Though α assumes values from 0 to
infinity, φ does not range across multiple orders of magnitude. The dependence of the growth rate
 on k and φ is studied in Figure 4. When  is positive, the perturbations grow as time progresses,
while when  is negative, the perturbations decay and vanish. The thick solid line in the figure
indicates neutral stability, on which  = 0 and the perturbations neither grow nor decay, and divides
the plane into stable ( < 0) and unstable regions ( > 0).

It has been demonstrated (e.g., Refs. 5–7) that  as a function of k commonly possesses a
characteristic wavenumber km associated with the maximum growth rate m, implying the selection
of a preferential wavelength at the linear level. This can be visualized in Figure 4, where  is
negative in the range of sufficiently small or large values of k, and reaches a maximum value between
them.

0
0.2

0.4
0.6

0 0.25 0.5 0.75 1.
0

2

4

6

8

10

12

14

Φ

k

FIG. 4. The contours of the perturbation growth rate  in the φ–k plane for the case β = 0.05, ε = 6 × 10−4, Bv = 0.55, F
= 0.5. The thick line indicates the neutral instability ( = 0).
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Furthermore, according to Figure 4, the flow is stable in the range of large φ. As φ decreases,
 increases with a slight increase in km, which peaks around the point (φ, k) ≈ (0.10, 6). In the
range of φ � 0.10,  abruptly decreases and km slightly decreases with decreasing φ. Additionally,
 becomes negative and the flow becomes stable again when φ is close to zero.

In the present analysis, we assume that the kinematic eddy viscosity in the vegetated zone is
represented by (5) since the typical length scale of vegetation is not significantly smaller than the
flow depth. When the vegetation density is sufficiently large, this assumption may no longer be
valid. However, it is natural that the flow becomes stable with decreasing φ since the vegetated zone
becomes like a cavity region when φ is sufficiently small, and the large-scale horizontal vortices
are damped by strong retardation effects. Therefore, the contours of  in the range of small φ in
Figure 4 are at least qualitatively correct.

V. WEAKLY NONLINEAR STABILITY ANALYSIS

The neutral state obtained from the linear stability analysis is deviated towards the unstable
region as

φ = φc − ζ 2, (29)

where φc denotes the critical values of φ which lie on the neutral instability curve in the φ-k plane.
According to Figure 4, the instability occurs if φ < φc with exception of the range of small φ. As
previously stated, the results in the range of small φ might not be quantitatively reliable. Therefore,
this range of neutral stability is not considered for expansion in the present analysis and the sign in
the expansion of φ in (29) is negative.

In the scheme of the present “weakly” nonlinear stability analysis, the time scale of the variation
of the amplitude A is much slower than the time scale of the variation of the wavelike part of the
disturbance. When φc is deviated towards the unstable region by the order of ζ 2, the linear growth
rate is expected to be of the same order, ζ 2, while the time scale of the variation of A should be of
the order17 (linear growth rate)−1, thus ζ−2. The expansion parameter ζ should be small enough to
provide that A varies slowly.

We employ a multiple-scale perturbation technique17 and define the slow time scale t1 as

t = t0, t1 = ζ 2t. (30)

From the above relation, the time derivative becomes

∂

∂t
= ∂

∂t0
+ ζ 2 ∂

∂t1
. (31)

While the asymptotic expansions in the linear stability analysis (20) are linearized with a small,
constant amplitude A, in the nonlinear stability analysis by the growth rate expansion method, the
amplitude A varies with the slow time t1, and the parameter ζ is employed for expansion. The
fundamental disturbance is deformed by the nonlinear interactions in the third or higher order of A.
We then expand the velocities and flow depth up to this order in the form

U (x, y, t) = U0,c(y) + ζ Û1(x, y, t) + ζ 2Û2(x, y, t) + ζ 3Û3(x, y, t), (32a)

V (x, y, t) = ζ V̂1(x, y, t) + ζ 2V̂2(x, y, t) + ζ 3V̂3(x, y, t), (32b)

H (x, y, t) = 1 + ζ Ĥ1(x, y, t) + ζ 2 Ĥ2(x, y, t) + ζ 3 Ĥ3(x, y, t), (32c)

where U0, c denotes the base flow velocity for φ = φc.

A. O(ζ )

Substituting (29)–(32) into (9), we obtain the following equations at O(ζ ):

GÛ1 + dU0,c

dy
V̂1 + J Ĥ1 = 0, (33a)
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K V̂1 + F−2 ∂ Ĥ1

∂y
= 0, (33b)

∂Û1

∂x
+ ∂ V̂1

∂y
+ P Ĥ1 = 0, (33c)

where the linear operators G, J, K, and P are given by the following expressions:

G =

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t0
+ U0,c

(
2β + ∂

∂x

)
− ε

(
∂2

∂x2
+ ∂2

∂y2

)
if 0 ≤ y ≤ 1,

∂

∂t0
+ U0,c

(
2β(1 + αc) + ∂

∂x

)
− ε

(
∂2

∂x2
+ ∂2

∂y2

)
if −Bv ≤ y ≤ 0,

(34a)

J = −βU 2
0,c + F−2 ∂

∂x
, (34b)

K =

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t0
+ U0,c

(
β + ∂

∂x

)
− ε

(
∂2

∂x2
+ ∂2

∂y2

)
if 0 ≤ y ≤ 1,

∂

∂t0
+ U0,c

(
β(1 + αc) + ∂

∂x

)
− ε

(
∂2

∂x2
+ ∂2

∂y2

)
if −Bv ≤ y ≤ 0,

(34c)

P = ∂

∂t0
+ U0,c

∂

∂x
, (34d)

where αc is the value of α corresponding to φc.
The fundamental perturbations at O(ζ ) are assumed to have a similar form to those employed

in the linear analysis, such that

Û1(x, y, t) = A(t1)U11(y)E + c.c., (35a)

V̂1(x, y, t) = A(t1)V11(y)E + c.c., (35b)

Ĥ1(x, y, t) = A(t1)H11(y)E + c.c., (35c)

where E = ei(kc x−ωct0), with kc and ωc being the wavenumber and angular frequency corresponding
to φc, respectively, and c.c. being the complex conjugate of the preceding term. Because ωc is
located on the neutral curve, its imaginary part is zero. Substituting the above expansions into (33),
we obtain the following equations composed of AE at O(ζ ):

G1U11 + dU0,c

dy
V11 + J1 H11 = 0, (36a)

K1V11 + F−2 dH11

dy
= 0, (36b)

L1U11 + dV11

dy
+ P1 H11 = 0. (36c)

In the above equations, the linear operators Gn, Jn, Kn, Ln, and Pn are given by the following
expressions:

Gn =

⎧⎪⎪⎨
⎪⎪⎩

ni
(
kcU0,c − ωc

) + 2βU0,c + ε(nkc)2 − ε
∂2

∂y2
if 0 ≤ y ≤ 1,

ni
(
kcU0,c − ωc

) + 2β(1 + αc)U0,c + ε(nkc)2 − ε
∂2

∂y2
if −Bv ≤ y ≤ 0,

(37a)

Jn = nikc F−2 − βU 2
0,c, (37b)
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Kn =

⎧⎪⎪⎨
⎪⎪⎩

ni
(
kcU0,c − ωc

) + βU0,c + ε(nkc)2 − ε
∂2

∂y2
if 0 ≤ y ≤ 1,

ni
(
kcU0,c − ωc

) + β(1 + αc)U0,c + ε(nkc)2 − ε
∂2

∂y2
if −Bv ≤ y ≤ 0,

(37c)

Ln = nikc, (37d)

Pn = −ni(ωc − kcU0,c). (37e)

Equations (36) are solved by expanding U11, V11, and H11 using the Chebyshev polynomials
as in ((23)–(24)). The expansions are evaluated at the Gauss-Lobatto points defined by (25) and
a system of 6(N + 1) algebraic equations with 6(N + 1) unknown coefficients is obtained. Eight
equations are then replaced by the four boundary and four of the matching conditions ((14)–(15))
correspondingly expanded. The resulting algebraic linear system takes the following form:

M11

⎡
⎢⎢⎢⎢⎢⎣

a11,0

a11,1

...

a11,6N+5

⎤
⎥⎥⎥⎥⎥⎦ = 0, (38)

where M11 is M with α, k, and ω replaced by αc, kc, and ωc, respectively, and a11, 0, a11, 1, . . . ,
a11, 6N + 5 are the unknown coefficients from the expansions using the Chebyshev polynomials. These
coefficients are determined from the solution of (38).

B. O(ζ 2)

Substituting (29)–(32) and the solutions at O(ζ ) into (9), we obtain the following equations at
O(ζ 2):

GÛ2 + dU0,c

dy
V̂2 + J Ĥ2 = A2 E2 I (1)

22 + c.c. + AA∗ I (1)
20 + I00, (39a)

K V̂2 + F−2 ∂ Ĥ2

∂y
= A2 E2 I (2)

22 + c.c. + AA∗ I (2)
20 , (39b)

∂Û2

∂x
+ ∂ V̂2

∂y
+ P Ĥ2 = A2 E2 I (3)

22 + c.c. + AA∗ I (3)
20 , (39c)

where the asterisk denotes the complex conjugate of the term itself and I ( j)
20 , I ( j)

22 (j = 1, 2, 3) and I00

are terms composed of the solutions at O(1) and O(ζ ) and their derivatives. The terms I ( j)
20 and I ( j)

22
(j = 1, 2, 3) are shown in the Appendix, and I00 is given by

I00 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ y ≤ 1,

−2 (1 + αc)1/2

(
β + ε

d2U0,c

dy2

)
if −Bv ≤ y ≤ 0.

(40a)

At O(ζ 2), the fundamental perturbations are assumed to have the form:

Û2(x, y, t) = A2(t1)U22(y)E2 + c.c. + A(t1)A∗(t1)U20(y) + U00(y), (41a)

V̂2(x, y, t) = A2(t1)V22(y)E2 + c.c. + A(t1)A∗(t1)V20(y), (41b)

Ĥ2(x, y, t) = A2(t1)H22(y)E2 + c.c. + A(t1)A∗(t1)H20(y). (41c)
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The base flow velocity at y = −Bv is φc at the neutral state. However, because the actual
velocity at y = −Bv is φc − ζ 2, the corrective term U00(y) was introduced in (41a).

Substituting (41) into (39) and dropping terms containing A or A* yields

G0U00 = I00. (42)

Again from the substitution of (41) into (39), we have the following equations composed of terms
with A2E2:

G2U22 + dU0,c

dy
V22 + J2 H22 = I (1)

22 , (43a)

K2V22 + F−2 dH22

dy
= I (2)

22 , (43b)

L2U22 + dV22

dy
+ P2 H22 = I (3)

22 , (43c)

and the following equations composed of terms with AA*:

G0U20 + dU0,c

dy
V20 + J0 H20 = I (1)

20 , (44a)

K0V20 + F−2 dH20

dy
= I (2)

20 , (44b)

dV20

dy
= I (3)

20 . (44c)

We solve equations (44b) and (44c) analytically under conditions (14a)–(15), from where we
determine V20 and H20.

In order to solve (42), (43), and (44a) under the boundary and matching conditions (14)–(15),
we expand U00, U22, V22, H22, and U20 employing the Chebyshev polynomials as in (23)–(24).
By evaluating the corresponding expanded equations and boundary and matching conditions at the
Gauss-Lobatto points defined as in (25), we obtain the algebraic systems

M00

⎡
⎢⎢⎢⎢⎢⎣

a00,0

a00,1

...

a00,2N+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f00,0

f00,1

...

f00,2N+1

⎤
⎥⎥⎥⎥⎥⎦ , (45a)

M22

⎡
⎢⎢⎢⎢⎢⎣

a22,0

a22,1

...

a22,6N+5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f22,0

f22,1

...

f22,6N+5

⎤
⎥⎥⎥⎥⎥⎦ , (45b)

M00

⎡
⎢⎢⎢⎢⎢⎣

a20,0

a20,1

...

a20,2N+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f20,0

f20,1

...

f20,2N+1

⎤
⎥⎥⎥⎥⎥⎦ , (45c)

where M00 is the 2(N + 1) × 2(N + 1) matrix of the coefficients of a00, 0, a00, 1, . . . , a00, 2N + 1 in
the linear system (45a), or a20, 0, a20, 1, . . . , a20, 2N + 1 in the linear system (45c), and M22 is the 6(N
+ 1) × 6(N + 1) matrix of the coefficients a22, 0, a22, 1, . . . , a22, 6N + 5. The terms on the right-side
column vectors in (45a)–(45c) correspond to I00, I ( j)

22 (j = 1, 2, 3) and I (1)
20 , respectively, or to the

right side of the expanded boundary and matching conditions. The unknown coefficients a00, 0, a00, 1,
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. . . , a00, 2N + 1, a22, 0, a22, 1, . . . , a22, 6N + 5 and a20, 0, a20, 1, . . . , a20, 2N + 1 are determined from the
solution of the above systems.

C. O(ζ 3)

Substituting (29)–(32) and the solutions at O(1), O(ζ ), and O(ζ 2) into (9), we obtain the
following equations at O(ζ 3):

GÛ3 + dU0,c

dy
V̂3 + J Ĥ3 = A3 E3 I (1)

33 + c.c. +
[

A2 A∗ I (1)
31 + AI (2)

31 + dA

dt1
I (3)
31

]
E + c.c., (46a)

K V̂3 + F−2 ∂ Ĥ3

∂y
= A3 E3 I (2)

33 + c.c. +
[

A2 A∗ I (4)
31 + AI (5)

31 + dA

dt1
I (6)
31

]
E + c.c., (46b)

∂Û3

∂x
+ ∂ V̂3

∂y
+ P Ĥ3 = A3 E3 I (3)

33 + c.c. +
[

A2 A∗ I (7)
31 + AI (8)

31 + dA

dt1
I (9)
31

]
E + c.c.. (46c)

Here I (i)
31 (i = 1, . . . , 9) and I ( j)

33 (j = 1, 2, 3) are nonlinear terms composed of the solutions
at O(1), O(ζ ), and O(ζ 2) and their derivatives. At O(ζ 3), the perturbations are assumed to have the
form

Û3(x, y, t) = A3(t1)U33(y)E3 + c.c. + U31(y, t1)E + c.c., (47a)

V̂3(x, y, t) = A3(t1)V33(y)E3 + c.c. + V31(y, t1)E + c.c., (47b)

Ĥ3(x, y, t) = A3(t1)H33(y)E3 + c.c. + H31(y, t1)E + c.c.. (47c)

Substituting the above expansions into (46), we have the following equations composed of terms
containing E (excluding E3):

G1U31 + dU0

dy
V31 + J1 H31 = A2 A∗ I (1)

31 + AI (2)
31 + dA

dt1
I (3)
31 , (48a)

K1V31 + F−2 ∂ H31

∂y
= A2 A∗ I (4)

31 + AI (5)
31 + dA

dt1
I (6)
31 , (48b)

L1U31 + ∂V31

∂y
+ P1 H31 = A2 A∗ I (7)

31 + AI (8)
31 + dA

dt1
I (9)
31 . (48c)

The expansions of U31, V31, and H31 employ the Chebyshev polynomials as in (23)–(24), with the
difference that the coefficients in the Chebyshev polynomials herein are functions of the amplitude
A and its derivative with respect to t1. The resulting equations are evaluated at the Gauss-Lobatto
points as in (25), and a linear system is obtained from (48) with eight equations replaced by the
conditions expressed in (14)–(15) such that

M11

⎡
⎢⎢⎢⎢⎢⎣

a31,0(t1)

a31,1(t1)

...

a31,6N+5(t1)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f31,0(t1)

f31,1(t1)

...

f31,6N+5(t1)

⎤
⎥⎥⎥⎥⎥⎦ , (49)

where f31, i (i = 1, . . . , 6N + 5) are nonhomogeneous terms corresponding to the right-hand side
terms of (48) and its corresponding boundary and matching conditions.

Because M11 is a singular matrix, a solvability condition has to be satisfied for (49) to have
a solution. This condition is that the determinant of M11 with one of its columns replaced by the
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right-hand side column vector should vanish. The resulting linear algebraic system reduces to the
Landau equation of the form

d A

dt1
= η0 A + η1|A|2 A, (50)

where η0 is the linear growth rate of the amplitude and η1 is the first Landau constant. The Landau
constant is sensitively dependent on the normalization of the eigenfunctions at the order O(ζ ).
Herein, we employ the condition U11 = 1 + i at y = 0.

The signs of the real parts of η0 and η1 determine the bifurcation pattern. In the case of Re(η0)
> 0 and Re(η1) < 0, we have supercritical bifurcation, where a steady state with an equilibrium
amplitude Ae is reached as t1 → ∞. From (50), we have

|Ae| =
√

−Re(η0)

Re(η1)
. (51)

VI. RESULTS AND DISCUSSION

A. Bifurcation pattern

Table I presents the linear growth rate of the amplitude, η0, and the first Landau constant, η1,
for the cases Bv = 0.55, F = 0.5 and varying β and ε. In all cases, the expansion expressed in (29)
is performed taking the maximum φc in the φ–k plane, which is denoted as φc, max hereafter. In the
range of typical, moderate values of the parameters β and ε, the real part of η0 is found to be positive
and the real part of η1 is found to be negative, which corresponds to supercritical bifurcation. In the
range of large β, the effect of the bottom friction inhibits the effect of the lateral velocity gradient,
as has been shown by Chu et al.2 Therefore, the increase in β stabilizes the flow and diminishes the
unstable region in the φ–k plane and the value of φc, max. In the range of large ε, the dissipation of
energy caused by small-scale turbulence suppresses the effect of the transverse mixing. In the range

TABLE I. Parameters on the neutral curve in the φ–k plane and the real and imaginary parts of η0 and η1 for the case
Bv = 0.55, F = 0.5 and multiple values of β and ε.

β ε φc, max kc Re(η0) Im(η0) Re(η1) Im(η1)

10−2.0 10−4.5 0.985 6.48 1.45 3.24 − 7930 − 47.6
10−2.0 10−4.0 0.973 3.92 0.789 1.95 − 2970 179

10−1.5 10−4.5 0.974 11.3 2.54 5.66 − 8040 − 126
10−1.5 10−4.0 0.953 6.50 1.44 3.25 − 2560 − 63.2
10−1.5 10−3.5 0.913 3.98 0.805 2.04 − 949 − 7.56

10−1.0 10−4.5 0.950 20.7 4.62 10.4 − 7430 − 226
10−1.0 10−4.0 0.916 11.5 2.54 5.75 − 2520 − 126
10−1.0 10−3.5 0.849 6.64 1.41 3.33 − 816 − 74.5
10−1.0 10−3.0 0.707 4.18 0.785 2.12 − 290 − 41.6
10−1.0 10−2.5 Stable for any φ

10−0.5 10−4.5 0.909 36.9 8.04 18.5 − 6960 − 261
10−0.5 10−4.0 0.839 21.2 4.56 10.6 − 2370 − 216
10−0.5 10−3.5 0.718 12.1 2.40 6.05 − 780 − 148
10−0.5 10−3.0 0.343 7.82 0.405 3.74 − 189 − 108
10−0.5 10−2.5 Stable for any φ

100 10−4.5 0.831 59.1 11.9 28.6 − 5580 357
100 10−4.0 0.713 38.1 7.37 19.1 − 2310 − 362
100 10−3.5 0.352 24.5 1.48 11.7 − 614 − 327
100 10−3.0 Stable for any φ
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of very small ε, the flow approaches the inviscid case. The unstable region completely disappears
for any φ if β and ε are sufficiently large. For combined small β (�10−2.0–10−1.5) and large ε

(�10−3.5–10−3.0) the results may not be reliable because the shear layer may be affected by the zero
disturbance condition at the walls.

As expressed in (28), although the width of the vegetated zone Bv and the Froude number F
also influence the growth rate , these two parameters were kept constant in the results presented
in Table I. The growth rate  is almost independent of Bv except when Bv is sufficiently small and
the displacement of water is suppressed. Concerning F, it has been demonstrated that φc, max does
not vary significantly with small and moderate values of F.10 For large F the flow becomes unstable
to gravity and there is no maximum threshold φc, max dividing the φ-k plane into a stable and an
unstable region.

B. Application to experimental data

The predictive theory developed herein is validated by means of a comparison with results of
the laboratory experiments of Ikeda et al.11 and White and Nepf,8, 14 where large-scale horizontal
vortices were generated in a channel featuring an array of regularly spaced cylinders installed on
one of its sides, which is the same setup assumed in the present analysis. Major hydraulic variables
of the experimental runs are listed in Table II. The values of φ presented correspond to the ratio of
undisturbed velocities observed in the experiments, while φc, max refers to the maximum φ on the
neutral curve in the φ-k plane.

In all experimental runs, the vortices evolved to an equilibrium size and periodicity as the
flow developed, indicating the occurrence of supercritical bifurcation. Accordingly, it is predicted
that Re(η0) > 0 and Re(η1) < 0 for most cases presented in Table II, with the exception of runs
II, III, and XI. These three runs have small β and relatively large ε in common, and therefore
the analysis may not be applicable, as mentioned in Sec. VI A. In all experiments, however, the
channel width exceeds the shear layer and regions of constant velocity are observed outside the shear
layer.

1. Mean velocity distribution

The perturbations in the nonlinear state reach a fixed frequency in the experiments. This causes
the waves to fall into the reach of a weakly nonlinear description, thus with zero growth rate of

TABLE II. Hydraulic parameters from the experiments of Ikeda et al.11 (runs 1–5) and White and Nepf8, 14 (runs I–XI).

Run β ε(× 10−4) F φ φc, max kc Re(η0) Re(η1)

1 0.061 5.19 0.51 0.303 0.846 4.27 0.880 − 542
2 0.061 5.19 0.77 0.303 0.845 4.27 0.875 − 542
3 0.079 4.48 0.74 0.356 0.838 5.07 1.06 − 593
4 0.164 3.00 0.62 0.462 0.810 8.71 1.82 − 842
5 0.038 6.88 0.48 0.243 0.852 3.16 0.541 − 1040
I 0.058 3.99 0.22 0.124 0.869 4.71 0.982 − 721
II 0.023 4.73 0.21 0.078 0.900 3.05 − 10.8 451
III 0.023 7.31 0.21 0.079 0.861 2.65 0.389 248
IV 0.064 4.02 0.22 0.075 0.862 4.94 1.03 − 705
V 0.061 2.82 0.05 0.079 0.890 5.57 1.19 − 963
VI 0.043 2.86 0.16 0.065 0.905 4.78 1.01 − 998
VII 0.055 3.73 0.21 0.024 0.877 4.76 0.994 − 769
VIII 0.126 4.29 0.08 0.034 0.799 6.54 1.36 − 606
IX 0.089 4.95 0.11 0.033 0.818 5.25 1.08 − 558
X 0.066 5.22 0.34 0.030 0.837 4.50 0.924 − 567
XI 0.032 8.70 0.19 0.018 0.827 2.83 0.169 116
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FIG. 5. Transverse profiles of the base state velocity U0 and mean velocity U for run 3 of Ikeda et al.11

perturbations, and implies that the flow reaches a developed condition for which there is a steady mean
velocity. The mean velocity is different from the base flow velocity because of the interaction between
the base flow and the disturbance. Under the condition of supercritical bifurcation, it is possible
to derive the mean velocity profile corresponding to the fully developed state of perturbations.
Figure 5 depicts the base state velocity U0 and the mean velocity at the equilibrium U as functions
of the lateral coordinate y, for run 3 of Ikeda et al.11 The overbar denotes the mean at the nonlinear
equilibrium state. The mean velocity U is equal to U0, c + ζ 2(|Ae|2U20 + U00), which corresponds
to the long time or long x-length average of the streamwise velocity U. The nonlinear development
of the perturbations increases the shear layer width, resulting in the milder gradient of U visualized
in Figure 5. The increase of the shear layer width is mainly at the vegetated zone due to the increase
of momentum penetration into this zone. The velocity inflection point is located at y = 0 for both
U0 and U .

Comparisons between the mean velocity transverse profile theoretically determined herein and
measurements of Ikeda et al.11 and White and Nepf14 are presented in Figure 6. The agreement with
the experimental runs of Ikeda et al.11 (Figures 6(a)–6(c)) is reasonably good, with the position and
magnitude of the velocity gradient along the shear layer well reproduced. Meanwhile the predicted
gradient is steeper around the boundary between the non-vegetated and vegetated zones, similar to
the experiments.
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FIG. 6. Lateral distribution of time-averaged velocity for runs 1, 4, and 5 of Ikeda et al.11 and run I of White and Nepf.14

The solid lines indicate the predictions.
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In Figure 6(d), the location of the mixing layer predicted in the analysis is shifted towards
the vegetated zone compared to the observed mixing layer. In addition, the predicted gradient is
milder in the vegetated zone and steeper in the non-vegetated zone than those in the observed data.
This is because the very high density of the vegetated array in Run I suppresses the exchange of
momentum between the non-vegetated and vegetated zones. Since we assume that the length scale
of the vegetation spacing is not sufficiently smaller than the flow depth, the present model may
present discrepancies with the experiments of White and Nepf,14 where the vegetation density is
significantly large, as shown by small values of ratio of undisturbed velocities φ of runs I–XI in
Table II.

The velocity reduction in the boundary layer at the vicinity of the side walls, clearly visualized
in Figures 6(a)–6(b) at the far field in the non-vegetated zone, was not predicted because of the slip
condition (14b).

2. Lateral friction velocity

In analogy with the friction velocity corresponding to the bottom shear stress in the far field
in the non-vegetated zone defined in Sec. II, a lateral friction velocity can be defined taking the
maximum lateral Reynolds stress into consideration, which takes place near the interface between
the non-vegetated and vegetated zones (ỹ = 0), such that

Ũ 2
f M = −

(
Ũ ′Ṽ ′

)
max

, (52)

where Ũ ′ and Ṽ ′ are the fluctuations of Ũ and Ṽ . The negative sign is introduced because Ũ ′ and
Ṽ ′ are anticorrelated around ỹ = 0.

Figure 7 presents the profile of −Ũ ′Ṽ ′ along the transverse direction ỹ for run 3 of Ikeda
et al.11 For moderate densities of the array, as in the case depicted in Figure 7, the curve is
approximately symmetrical to the vertical axis. As expected, the curve peaks near ỹ = 0, where
the phase difference between the fluctuating terms Ũ ′ and Ṽ ′ approaches π rad and the momentum
exchange is maximized. Far from y = 0, not only the magnitude of the velocity fluctuations decay,
but also the phase difference between Ũ ′ and Ṽ ′ is reduced. In the case of Figure 7, the phase
difference reaches π /2 rad at ỹ ≈ ±8 cm.

In the experiments of White and Nepf,14 because of the dense arrays, the observed gradient

of the transverse distribution of −Ũ ′Ṽ ′ in the vegetated zone is significantly steeper than in the
non-vegetated zone. It follows that the shear layer is mostly located in the non-vegetated zone.
The Reynolds stress is maximized 1-2 cm from the array edge in the vegetated zone. Although the
transverse distribution of the Reynolds stress of their experiments is not perfectly well reproduced
by the present model, the peak value of the distribution could be well estimated. A comparison
between observed and predicted friction velocities Ũ f M corresponding to runs I, IV–X14 is depicted
in Figure 8.
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FIG. 7. Predicted distribution of −Ũ ′Ṽ ′ for run 3 of Ikeda et al.11
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3. Large-scale kinematic eddy viscosity

The Boussinesq eddy viscosity concept is employed to determine the increased lateral kinematic
eddy viscosity at the nonlinear equilibrium state, ν̃T M , such that

− ρŨ ′Ṽ ′ = ρν̃T M
dŨ

dỹ
. (53)

The sub-depth scale and the large-scale kinematic eddy viscosities, ν̃T and ν̃T M , respectively, are
normalized in the form

(νT , νT M ) = (ν̃T , ν̃T M )

Ũ f H̃∞
, (54)

where νT = 0.067 according to (5).
Figure 9 depicts transverse profiles of the large-scale kinematic eddy viscosity νTM at the region

of transverse mixing for the experimental runs of Ikeda et al.11 The continuous lines correspond to
νTM determined from (53) and (54), which hereafter will be denoted as ν

(1)
T M . The values of ν

(1)
T M vary

along the transverse direction y and decay far from y = 0 as −Ũ ′Ṽ ′ decays. The bend when y = 0
results from the discontinuity of d2U/dy2 when y = 0. At the shear layer, ν(1)

T M is significantly larger
than the undisturbed eddy viscosity νT, which is coherent with the assumption that the development
of large-scale motions increases the kinematic eddy viscosity. Moreover, ν

(1)
T M at the vicinity of the

boundary between the two zones ranges from 0.15 to 0.20, which has been employed by Prooijen
and Uijttewaal4, 18 and Ghidaoui and Kolyshkin5 to model the turbulence in mixing layers.

The eddy viscosities determined by Ikeda et al.11 by fitting measurements of their experiments
to their proposed averaged velocity solution are denoted by ν

(2)
T M and depicted by the dashed lines

in Figure 9. For runs 2, 3, and 4, ν
(1)
T M and ν

(2)
T M agree reasonably well, while, in runs 1 and 5, ν

(1)
T M is

significantly underestimated compared with ν
(2)
T M .

Ikeda et al.11 proposed an empirical expression where the kinematic eddy viscosity is a function
only of the bottom friction coefficient Cf and the ratio of undisturbed velocities φ. This eddy
viscosity is denoted as ν

(3)
T M and is represented by the dotted lines in Figure 9. Similarly to ν

(1)
T M ,

ν
(3)
T M is also significantly smaller than ν

(2)
T M for runs 1 and 5. Therefore, ν

(2)
T M might be overestimated

for these runs. Additionally, because F is the only parameter which differs among runs 1 and 2 (see
Table II) and this difference is relatively not significant, νTM for runs 1 and 2 is expected to be
similar, contrarily to their corresponding ν

(2)
T M .
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FIG. 9. Large-scale kinematic eddy viscosity at the shear layer for runs 1–5 of Ikeda et al.:11 ν
(1)
T M : prediction from the

present study; ν
(2)
T M : method described in Ikeda et al.11 where measurements are fitted to a theoretical model; and ν

(3)
T M :

empirical relation from Ikeda et al.11

4. Periodic fluctuations

Prior to the nonlinear development of the instabilities, when linear mechanisms dominate
the transverse mixing in a free shear layer, the Strouhal number for the most amplified wave,
St = f̃m θ̃/Ũa , takes the nearly constant value of 0.032 for any hyperbolic tangent base flow
profile,19 where f̃m is the natural frequency of the maximum instability, Ũa is the average of
the far field velocities (= (Ũ∞ + Ũ−∞)/2)), and θ̃ is the momentum thickness of the undisturbed
flow.

In analogy, we determined the Strouhal number based on the frequency for maximum instability
obtained from the linear stability analysis, and the momentum thickness of the base-state flow velocity
in (18) for the experimental runs listed in Table II. Results were within the range of St from 0.034
to 0.042. Because the development of the perturbations reduce St, the slight overestimation of our
results may be because the base flow velocity in (18) is set completely free of the transverse motions
of the shear layer, while the hyperbolic-tangent velocity profile for which St ≈ 0.032 may have
effects of such transverse motions.

As the flow develops and the nonlinear interactions become important, the Strouhal number of
the most amplified wave in a free shear layer drops significantly below the neutral value of 0.032.19 In
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FIG. 10. Calculated time fluctuation of the streamwise and transverse velocities Ũ and Ṽ and the flow depth H̃ at y = −0.6
cm for run X of White and Nepf.8

the partially vegetated channel of the experiments, however, the reduction of the Strouhal number is
not so significant. Specifically in the experimental runs of White and Nepf,8, 14 the Strouhal numbers
of the dominant frequency at the developed state of perturbations agree with those of the linear
results8 probably because of the high density of the vegetated arrays.

Figure 10 presents the time variation of the velocity components Ũ and Ṽ and the flow depth
H̃ near the edge of the vegetated array (ỹ = −0.6 cm) for run X of White and Nepf.8 The frequency
of the cycle is determined from the Strouhal number of the most amplified wave in the linear state,
and the momentum thickness of the developed flow determined herein to be 4.9 cm (the measured
value is 4.4 cm). The period of the oscillations is determined herein as 9.14 s, which is close to the
observed value of approximately 8.6 s.

VII. CONCLUSIONS

A nonlinear stability analysis of shallow open-channel flow covered with vegetation on one of its
sides is performed with the use of the St. Venant shallow water equations. The nonlinear development
of the instabilities excited by the velocity difference between the rapid flow in the open channel and
the slow flow in the vegetated zone is found to be characterized by supercritical bifurcation in the
typical range of the concerning hydraulic parameters, with the exceptions of the small bed friction
parameter and the large sub-depth eddy viscosity parameter. The nonlinear analysis is performed by
deriving a perturbed state with a slowly varying amplitude.

The Reynolds stress, expressed with the use of Boussinesq’s kinematic eddy viscosity, is included
in the formulation in order to describe the velocity gradient around the interface between the main
channel and the vegetated zone. While previous estimations of the kinematic eddy viscosity in shear
layers in parallel shear flows have relied on experiments, herein it is estimated theoretically from
the prediction of the velocity fluctuations in the finite-amplitude equilibrium state. The increase
of the kinematic eddy viscosity captured by the present model is found to be coherent with the
values of kinematic eddy viscosity adopted in formulations of parallel shear flows in previous
works.

The distortion of the undisturbed base flow velocity profile by the nonlinear development of
the perturbations is predicted, along with the maximum shear stress at the shear layer. Since the
rigid-lid assumption is not employed, the model accounts not only for the velocity fluctuations, but
also for the fluctuations of the free-surface. The theoretical results are found to be coherent with
experimental results from previous studies, though there are discrepancies which can be credited
(1) to the limitation of the nonlinear analysis to the vicinity of the neutral curve, (2) to the large
vegetation density in some experimental runs, and (3) to the relatively small bed friction parameter
and large sub-depth eddy viscosity parameter of some experimental runs, for which the model does
not capture the observed steady state of the amplitude development.
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APPENDIX: TERMS I(1)
20 , I (2)

20 , I (3)
20 , I (1)

22 , I (2)
22 , I (3)

22

I (1)
20 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2βU0,cU11 H∗

11 − V ∗
11

dU11

dy

)
+ c.c. − β

(
2H11 H∗

11U 2
0,c + 2U11U ∗

11 + V11V ∗
11

)
if 0 ≤ y ≤ 1,

1

1 + αc

(
2βU0,cU11 H∗

11 − V ∗
11

dU11

dy

)
+ c.c. − β

(
2H11 H∗

11U 2
0,c

1 + αc
+ 2U11U ∗

11 + V11V ∗
11

)

if − Bv ≤ y ≤ 0,

(A1a)

I (2)
20 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
βU0,cV11 H∗

11 − V11
dV ∗

11

dy
− βU11V ∗

11

)
+ c.c + ikcU11V ∗

11 − c.c.

if 0 ≤ y ≤ 1,

[
1

1 + αc

(
βU0,cV11 H∗

11 − V11
dV ∗

11

dy

)
− βU11V ∗

11

]
+ c.c + ikcU11V ∗

11

1 + αc
− c.c.

if − Bv ≤ y ≤ 0,

(A1b)

I (3)
20 = −

[(
V11

dH∗
11

dy
+ H11

dV ∗
11

dy

)
+ c.c.

]
, (A1c)

I (1)
22 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2βU0,cU11 H11 − V11
dU11

dy
− βU 2

0,c H 2
11 − ikcU 2

11 − βU 2
11 − β

2
V 2

11

if 0 ≤ y ≤ 1,

1

1 + αc

(
2βU0,cU11 H11 − V11

dU11

dy
− βU 2

0,c H 2
11 − ikcU 2

11

)
− βU 2

11 − β

2
V 2

11

if − Bv ≤ y ≤ 0,

(A1d)

I (2)
22 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βU0,cV11 H11 − V11
dV11

dy
− ikcU11V11 − βU11V11

if 0 ≤ y ≤ 1,

1

1 + αc

(
βU0,cV11 H11 − V11

dV11

dy
− ikcU11V11

)
− βU11V11

if − Bv ≤ y ≤ 0,

(A1e)

I (3)
22 = −2ikcU11 H11 − V11

dH11

dy
− H11

dV11

dy
. (A1f)
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