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Adaptive Missing Texture Reconstruction Method
Based on Kernel Cross-Modal Factor Analysis

with a New Evaluation Criterion

Takahiro Ogawa1, Miki Haseyama2

Graduate School of Information Science and Technology, Hokkaido University, JAPAN

Abstract

This paper presents an adaptive missing texture reconstruction method based on

kernel cross-modal factor analysis (KCFA) with a new evaluation criterion. The

proposed method estimates the latent relationship between two areas, which cor-

respond to a missing area and its neighboring area, respectively, from known parts

within the target image and realizes reconstruction of the missing textures. In or-

der to obtain this relationship, KCFA is applied to each cluster containing similar

known textures, and the optimal cluster is used for reconstructing each target miss-

ing area. Specifically, a new criterion obtained by monitoring errors caused in the

latent space enables selection of the optimal cluster. Then each missing texture

is adaptively estimated by the optimal cluster’s latent relationship, which enables

accurate reconstruction of similar textures. In our method, the above criterion is

also used for estimating patch priority, which determines the reconstruction order

of missing areas within the target image. Since patches, whose textures are ac-
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curately modeled by our KCFA-based method, can be selected by using the new

criterion, it becomes feasible to perform successful reconstruction of the missing

areas. Experimental results show improvements of our KCFA-based reconstruc-

tion method over previously reported methods.

Keywords:

Image reconstruction, texture analysis, cross-modal factor analysis, kernel

method, priority estimation.

1. Introduction

Missing area reconstruction has been intensively studied in the field of image

processing since it can afford a number of fundamental applications. Many meth-

ods that focus on the reconstruction of important visual features such as struc-

tures and textures within target images have been proposed. Most of the methods

are broadly classified into two categories: missing structure reconstruction [1]–

[9] and missing texture reconstruction [10]–[22]. In addition, there have been

proposed reconstruction methods which adopt the combination use of the struc-

ture and texture reconstruction approaches [23]. The variational image inpainting

methods which can successfully reconstruct structure components in images have

been intensively studied in this research field. The variational image inpainting is

performed based on the continuity of the geometrical structure of images. Most

variational inpainting methods solve partial differential equations (PDEs). One of

the pioneering work was proposed by Masnou et al. [1]. Furthermore, Bertalmio

et al. proposed a representative image inpainting technique which is based on

PDEs [2], and they have also realized several important achievements [3, 4]. In

recent years, many improvement methods of the variational image inpainting have
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been reported [7, 8, 9]. Although these variational image inpainting methods en-

able successful reconstruction of the structure components, images also include

other different components, i.e., texture components, and alternative methods tend

to output better results. The remainder of this paper focuses on the reconstruction

of textures with discussion of its details.

It is well known that missing texture reconstruction is realized by several ap-

proaches such as exemplar-based methods [10]–[13] and multivariate analysis-

based methods [14]–[22]. A method based on texture synthesis was first proposed

by Efros et al. [10]. Based on their idea, an exemplar-based image inpainting

method was proposed by Criminisi et al. [11, 12], and it became a representative

method in this field. Recently, the exemplar-based approach has been improved

by many researchers, and several state-of-the-art methods have also been proposed

[13, 22]. Generally, the performance of exemplar-based methods tends to depend

on the number of training examples. A sufficient number of training examples is

necessary to accurately represent texture features within target images. Thus, if

sufficient training examples cannot be provided, it becomes difficult to model the

relationship between missing areas and other known areas in those methods.

Missing texture reconstruction methods using multivariate analysis have tra-

ditionally been proposed, and they are based on texture approximation using var-

ious methods such as principal component analysis (PCA), kernel PCA (KPCA)

[14]–[17] and sparse representation. Several reconstruction methods based on

sparse representation have recently been proposed [18]–[21], and a representa-

tive one was proposed by Mairal et al. [18]. Furthermore, sparse representation

can be combined with the exemplar-based approach [22]. Since the conventional

methods based on multivariate analysis represent textures by using their sub-
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spaces, more successful approximation can be expected compared to exemplar-

based methods. However, it should be noted that those methods generally assume

that arbitrary local textures within the target image are similar to each other; that

is, the target image contains almost one type of texture. Thus, if the target im-

age consists of various textures, the missing textures should be adaptively recon-

structed from only the same kinds of textures.

In this paper, we present a novel missing texture reconstruction method based

on kernel cross-modal factor analysis (KCFA) [24, 25]. The main contributions

of our method are threefold. First, the proposed method estimates the latent rela-

tionship between two areas, which respectively correspond to missing areas and

their neighboring areas, from other known parts within the target image by using

KCFA. Then this approach enables reconstruction of the missing areas based on

the obtained KCFA-based relationship. Secondly, the proposed method performs

clustering of known textures based on KCFA to realize reconstruction of missing

areas by using optimal clusters. In this approach, a new criterion, which is ob-

tained from errors caused in the KCFA-based latent space, is adopted to perform

the clustering and select the optimal cluster for the target missing areas. There-

fore, by monitoring this criterion, the reconstruction results by the optimal clus-

ters can be adaptively obtained as the final results. Thirdly, the proposed method

introduces a new priority estimation scheme based on the above criterion. The

determination of the order for reconstructing missing areas, i.e., “priority esti-

mation”, is an important problem. By using the derived priority, missing areas,

which can be successfully reconstructed by our KCFA-based method, are adap-

tively selected from the target image. Consequently, successful reconstruction of

the missing textures can be expected by using the proposed method. It should
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be noted that the proposed method shown in this paper is an improved version of

[26]. The biggest difference between these two methods is the use of the cluster-

ing scheme. In the proposed method, we newly perform the clustering of known

textures and the selection of the best matched cluster for the target missing areas,

which are realized by monitoring the new evaluation criterion, in the KCFA-based

reconstruction. Therefore, the proposed method is implemented in such a way that

images including several kinds of textures can be reconstructed successfully.

This paper is organized as follows. First, in Section 2, we explain the concept

of KCFA and its specific procedures. Next, a new missing texture reconstruction

method based on KCFA is presented in Section 3. Section 4 shows experimental

results in order to verify the performance of our method. Finally, concluding

remarks are presented in Section 5.

2. Kernel Cross-Modal Factor Analysis

In this section, we present an overview of KCFA [25] as a preliminary. Sup-

pose there is a pair of variables xi ∈ Rnx and yi ∈ Rny (i = 1, 2, · · · ,N; N being the

number of samples), KCFA tries to find two linear transformations that minimize

the distance between two projections in the feature space.

First, xi and yi are respectively mapped into the feature space via nonlin-

ear maps ϕx and ϕy [27] to obtain ϕx(xi) ∈ Rñx and ϕy(yi) ∈ Rñy . Then given

Ξx = [ϕx(x1), ϕx(x2), · · · , ϕx(xN)] and Ξy = [ϕy(y1), ϕy(y2), · · · , ϕy(yN)], KCFA

estimates two orthonormal matrices Û ∈ Rñx×d and V̂ ∈ Rñy×d as follows:{
Û, V̂

}
= min

U,V

∣∣∣∣∣∣U′ΞxH − V′ΞyH
∣∣∣∣∣∣2

F
, (1)

where || · ||F represents the Frobenius norm. The matrix H is an N × N centering
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matrix satisfying H′ = H and H2 = H and defined as follows:

H = I − 1
N

11′, (2)

where I is the N × N identity matrix, and 1 = [1, 1, · · · , 1]′ is an N × 1 vector. In

this paper, vector/matrix transpose is denoted by the superscript ′.

Note that in the above equation,∣∣∣∣∣∣U′ΞxH − V′ΞyH
∣∣∣∣∣∣2

F
=

∣∣∣∣∣∣HΞx
′U −HΞy

′V
∣∣∣∣∣∣2

F

= tr
(
HΞx

′ΞxH
)
+ tr

(
HΞy

′ΞyH
)

−2tr
(
HΞx

′UV′ΞyH
)
. (3)

is satisfied, where tr(·) represents the trace of a matrix. It should be noted that

tr (HΞx
′ΞxH) and tr

(
HΞy

′ΞyH
)

are constants, and Eq. (1) can be rewritten as

follows:{
Û, V̂

}
= max

U,V
tr

(
HΞx

′UV′ΞyH
)
. (4)

As shown in [24], the optimal matrices Û and V̂ can be obtained by performing

the following singular value decomposition:

ΞxHHΞy
′ = ÛΛ̂V̂′, (5)

where Λ̂ is an eigenvalue matrix. Unfortunately, since the columns of Ξx and Ξy

are high dimensional or infinite dimensional, we cannot directly solve the above

singular value decomposition. Therefore, by using “kernel trick” [25, 27], the

calculation of the orthonormal matrices Û and V̂ becomes feasible. The details

are shown below.

Given two Gram matrices

Kx = Ξx
′Ξx, (6)
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Ky = Ξy
′Ξy, (7)

we focus on the following eigenvalue decomposition problem:(
HKxHHKyH

)
E = LE, (8)

where E and L are respectively eigenvector and eigenvalue matrices. From Eqs.

(6) and (7),(
HΞx

′ΞxHHΞy
′ΞyH

)
E = LE. (9)

Furthermore, by multiplying both sides by ΞyH,

ΞyH
(
HΞx

′ΞxHHΞy
′ΞyH

)
E = ΞyHEL. (10)

Then (
ΞxHHΞy

′
)′ (
ΞxHHΞy

′
)
ΞyHE = ΞyHEL. (11)

The above equation means that the eigenvector matrix of
(
ΞxHHΞy

′
)′ (
ΞxHHΞy

′
)

corresponds to ΞyHE but is not the same since the norm of its columns is not one.

Therefore, we use a diagonal matrix D satisfying(
ΞyHED

)′ (
ΞyHED

)
= D

(
E′HKyHE

)
D

= I. (12)

Then the eigenvalue matrix of
(
ΞxHHΞy

′
)′ (
ΞxHHΞy

′
)

is denoted as P2. Thus,

Eq. (11) can be rewritten as follows:(
ΞxHHΞy

′
)′ (
ΞxHHΞy

′
)
ΞyHED = ΞyHEDP2. (13)

Note that from Eq. (5),(
ΞxHHΞy

′
)′ (
ΞxHHΞy

′
)

V̂ = V̂Λ̂2 (14)
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is satisfied. Therefore, from Eqs. (13) and (14),

V̂ = ΞyHED, (15)

Λ̂ = P. (16)

Furthermore, from Eq. (5), (15) and (16),

Û = ΞxHKyHEDP−1. (17)

In this way, KCFA can estimate the optimal orthonormal matrices Û and V̂ which

optimize Eq. (1).

3. KCFA-Based Missing Texture Reconstruction

In this section, a KCFA-based missing texture reconstruction method is pre-

sented. In Fig. 1, an outline of the proposed method is shown. From a target

image, we clip a patch f (w × h pixels) including missing areas and reconstruct

its missing textures from textures in the other known areas. For the following ex-

planations, two areas for which the intensities are known and unknown within the

target patch f , are denoted as Ω̄ andΩ, respectively. Furthermore, we respectively

denote vectors for which elements are intensities within Ω̄ and Ω as x(∈ RNΩ̄) and

y(∈ RNΩ), where NΩ̄ and NΩ are the numbers of pixels within Ω̄ and Ω, respec-

tively. In the proposed method, we estimate the relationship between two areas

corresponding to Ω̄ and Ω from known parts within the target image. This means

that the proposed method calculates the orthonormal matrices as shown in the pre-

vious section in order to realize the reconstruction of the missing area Ω within

the target patch f .
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Note that in the target image, there are many known patches for which the

textures are different from that of the target patch f . Such patches should not

affect the reconstruction of the target patch f . Therefore, the proposed method

applies KCFA to each cluster of patches containing the same kind of texture, and

the optimal cluster is adaptively utilized for the reconstruction of the target patch

f . In order to realize this scheme, clustering of the known patches within the

target image must be performed before reconstruction of the target patch f . Thus,

we firstly show the KCFA-based clustering algorithm of the known patches within

the target image in 3.1. The adaptive reconstruction algorithm of the target patch

f based on KCFA is shown in 3.2. Furthermore, the priority estimation algorithm,

which is necessary to determine the order of reconstruction in the target image, is

presented in 3.3.

3.1. Texture Clustering Algorithm

In this subsection, KCFA-based clustering of known patches within the target

image as preprocessing for reconstruction of the target patch f is described. First,

we clip known patches fi (i = 1, 2, · · · ,N) whose size is w × h pixels from the

target image, where N is the number of clipped known patches. Next, the vectors

xi(∈ RNΩ̄) and yi(∈ RNΩ), which correspond to x and y, respectively, are calculated

for each known patch fi. Furthermore, the proposed method maps xi and yi into

the feature space via nonlinear maps ϕx and ϕy to obtain ϕx(xi) and ϕy(yi).

From ϕx(xi) and ϕy(yi) (i = 1, 2, · · · ,N), the proposed method performs their

clustering that minimizes the following criterion:

J =
K∑

k=1

Jk, (18)

Jk =
∣∣∣∣∣∣Ûk′Ξk

xHk − V̂k′Ξk
yHk

∣∣∣∣∣∣2
F
, (19)
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where K is the number of clusters. Furthermore,

Ξk
x = [ϕx(xk

1), ϕx(xk
2), · · · , ϕx(xk

Nk)], (20)

Ξk
y = [ϕy(yk

1), ϕy(yk
2), · · · , ϕy(yk

Nk)], (21)

and the vectors xk
j and yk

j ( j = 1, 2, · · · ,Nk) represent xi and yi (i = 1, 2, · · · ,N)

assigned to cluster k. The value Nk is the number of elements belonging to cluster

k. The matrix Hk is the Nk × Nk centering matrix defined in the same way as

Eq. (2). Then Ûk and V̂k are orthonormal matrices obtained by applying KCFA

to ϕx(xk
j) and ϕy(yk

j) ( j = 1, 2, · · · ,Nk). The details of their calculation are shown

below.

By using KCFA [25], the proposed method calculates the two orthonormal

matrices Ûk and V̂k minimizing the following criterion:{
Ûk, V̂k

}
= min

Uk ,Vk

∣∣∣∣∣∣Uk′Ξk
xHk − Vk′Ξk

yHk
∣∣∣∣∣∣2

F
, (22)

where its overview is shown in Fig. 2. Furthermore, as shown in the previous

section, the above problem can be rewritten as{
Ûk, V̂k

}
= max

Uk ,Vk
tr

(
HkΞk

x
′UkVk′Ξk

yHk
)
. (23)

Then Ûk and V̂k satisfy the following singular value decomposition:

Ξk
xHkHkΞk

y
′
= ÛkΛ̂kV̂k′. (24)

The optimal solution of the above equation can be obtained as shown in the pre-

vious section. Specifically,

V̂k = Ξk
yTk

V, (25)
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where

Tk
V = HkEkDk. (26)

Note that Ek is the eigenvector matrix of the following eigenvalue problem:(
HkKk

xHkHkKk
yHk

)
Ek = LkEk, (27)

where Lk is the eigenvalue matrix, and Kk
x and Kk

y are the Gram matrices respec-

tively defined as

Kk
x = Ξ

k
x
′
Ξk

x, (28)

Kk
y = Ξ

k
y
′
Ξk

y. (29)

In addition, Dk in Eq. (26) is a diagonal matrix satisfying(
Ξk

yHkEkDk
)′ (
Ξk

yHkEkDk
)
= Dk

(
Ek′HkKk

yHkEk
)

Dk

= Ik, (30)

where Ik is the Nk × Nk identity matrix. Then, from Eqs. (24) and (25),

Ûk = Ξk
xTk

U, (31)

where

Tk
U = HkKk

yTk
VΛ̂

k−1
. (32)

In the above equations, the eigenvalue matrix Λ̂k satisfies

Λ̂k = Pk, (33)
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and the eigenvalue matrix Pk can be obtained by the following eigenvalue prob-

lem:(
Ξk

xHkHkΞk
y
′)′ (
Ξk

xHkHkΞk
y
′)
Ξk

yHkEkDk = Ξk
yHkEkDkPk2

, (34)

where Ξk
yHkEkDk becomes the eigenvector matrix.

By using Eqs. (25) and (31), Eq. (19) is rewritten as follows:

Jk =
∣∣∣∣∣∣Tk

U
′
Ξk

x
′
Ξk

xHk − Tk
V
′
Ξk

y
′
Ξk

yHk
∣∣∣∣∣∣2

F

=
∣∣∣∣∣∣Tk

U
′Kk

xHk − Tk
V
′Kk

yHk
∣∣∣∣∣∣2

F
. (35)

Then, by minimizing Eq. (18) which is the sum of the above equation for all

clusters, clustering of the known patches fi (i = 1, 2, · · · ,N) becomes feasible.

Specifically, for each patch, we assign it to the cluster minimizing the errors in the

latent space and recalculate Ûk and V̂k from the elements belonging to cluster k

(k = 1, 2, · · · ,K). By iterating these procedures, the final results of clustering and

Ûk and V̂k can be obtained.

The KCFA can provide the latent relationship that minimizes the errors be-

tween the pairs of multi-variates. As shown in the above explanation, the pro-

posed method calculates the orthonormal projection matrices Ûk and V̂k for each

cluster k and performs the assignment of known patches fi (i = 1, 2, · · · ,N). Note

that from Eq. (22), the differences between the projection results of ϕx(xk
j) and

ϕy(yk
j) ( j = 1, 2, · · · ,Nk) become minimum in the same cluster. Therefore, clus-

tering that can provide the optimal relationship for each cluster becomes feasible

in the proposed KCFA-based method. In [26], the clustering of known textures is

not adopted, and only one pair of Ûk and V̂k is derived. On the other hand, the

proposed method newly adopts the clustering for obtaining Ûk and V̂k for each

cluster k, i.e., each kind of texture. Therefore, if the optimal pair of Ûk and V̂k
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can be used for the reconstruction of the target patch f , i.e., if the selection of the

optimal cluster becomes feasible, adaptive reconstruction of each texture can be

expected.

3.2. Texture Reconstruction Algorithm

In this section, we present an algorithm for reconstructing the missing area

Ω within the target patch f from the clustering results obtained in the previous

subsection. For each cluster k, we can obtain the orthonormal matrices Ûk and V̂k.

Based on the obtained matrices, the proposed method performs reconstruction of

the missing area Ω within the target patch f . Specifically, as shown in the lower

part of Fig. 2, the estimation result ϕy(ŷk) of the unknown vector ϕy(y) by the kth

cluster is obtained as follows:

ϕy(ŷk) = V̂kÛk′
(
ϕx(x) − ϕ̄k

x

)
+ ϕ̄

k
y, (36)

where

ϕ̄
k
x =

1
NkΞ

k
x1k, (37)

ϕ̄
k
y =

1
NkΞ

k
y1k, (38)

and 1k = [1, 1, · · · , 1]′ is an Nk × 1 vector. Furthermore, from Eqs. (25) and (31),

Eq. (36) can be rewritten as follows:

ϕy(ŷk) = Ξk
yTk

VTk
U
′
Ξk

x
′
(
ϕx(x) − 1

NkΞ
k
x1k

)
+

1
NkΞ

k
y1k

= Ξk
y

{
TkΞk

x
′
(
ϕx(x) − 1

NkΞ
k
x1k

)
+

1
Nk 1k

}
= Ξk

y

{
TkΞk

x
′
ϕx(x) − 1

Nk

(
TkKk

x − Ik
)

1k

}
, (39)
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where

Tk = Tk
VTk

U
′
. (40)

Then, from Eq. (39), we can obtain the estimation result ŷk of the intensities

within the missing area Ω. Note that the calculation of ŷk in the input space from

ϕy(ŷk) in the feature space is possible when ϕy is invertible. However, for many

cases, e.g. the Gaussian kernel, the feature space obtained by the nonlinear map

becomes high dimensional or infinite dimensional. In such cases, we have to solve

the pre-image problem for estimating the corresponding vector in the input space

by using some previously reported methods [28].

By calculating Eq. (39), the missing intensities in Ω can be estimated from

cluster k. In the proposed method, the orthonormal matrices Ûk and V̂k minimize

the errors in the latent space of cluster k. Therefore, if we can assign the target

patch f containing the missing area Ω to the optimal cluster kopt, the proposed

method accurately estimates the unknown vector y from the known vector ϕx(x) in

Eq. (39). In order to achieve this assignment, the proposed method focuses on the

criterion Jk in Eq. (35). This criterion represents how easily we can approximate

ϕy(yk
j) by ϕx(xk

j) in the latent space. Therefore, similar to this criterion, we use the

following criterion:

Jk
f =

∣∣∣∣∣∣Ûk′
(
ϕx(x) − ϕ̄k

x

)
− V̂k′

(
ϕy(ŷk) − ϕ̄k

y

) ∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣∣∣Tk
U
′Ξk

x
′
(
ϕx(x) − 1

NkΞ
k
x1k

)
− Tk

V
′Ξk

y
′
(
ϕy(ŷk) − 1

NkΞ
k
y1k

) ∣∣∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣∣∣Tk
U
′
(
Ξk

x
′ϕx(x) − 1

Nk Kk
x1k

)
− Tk

V
′
(
Ξk

y
′ϕy(ŷk) − 1

Nk Kk
y1k

) ∣∣∣∣∣∣∣∣∣∣2 (41)

for assignment of the target patch f to the optimal cluster kopt. Selection of the op-

timal cluster kopt minimizing Eq. (41) for the target patch f then becomes feasible.

14



Furthermore, the proposed method regards the result ŷkopt
obtained by the optimal

cluster kopt as the final output. Consequently, by performing the non-conventional

approach, which adaptively selects the optimal cluster for the target missing area,

we can reconstruct the missing textures in the target patch f accurately. As shown

in the previous subsection, the proposed method newly introduces the clustering

scheme into our previous work [26] for adaptively reconstructing images includ-

ing several kinds of textures. Then, for the reconstruction of the target patch f ,

the selection of the optimal cluster kopt becomes necessary. Therefore, in the pro-

posed method, we use the criterion Jk
f in Eq. (41), which is derived on the basis

of Eq. (35), for realizing this selection.

3.3. Priority Estimation Algorithm

As shown in the previous subsection, we can reconstruct the missing area Ω

within the target patch f . Therefore, the proposed method clips patches including

missing areas and performs their reconstruction to estimate all missing intensities.

It should be noted that in order to realize this scheme, we have to determine the

order in which patches along the fill-front of missing areas are filled. We call this

order “patch priority”. In the proposed method, patch priorities are determined

on the basis of an improved version of the method proposed by Criminisi et al.

[12]. Specifically, given a patch fp centered at pixel p that is in the fill-front of the

missing areas within the target image, its priority P(p) is defined as follows:

P(p) = C(p) · D(p), (42)

where C(p) and D(p) are called confidence term and data term, respectively, and

they are defined as follows:

C(p) =

∑
q∈ fp

∩
(I−Θ) C(q)

| fp|
, (43)
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D(p) =
|∇I⊥p · np|
α

. (44)

In the above equations, I and Θ are the whole areas of the target image and whole

missing areas, respectively. Furthermore, | fp| (= w × h) represents the number of

pixels included within the target patch fp. Then α is a normalization factor (e.g.,

α = 255 for a typical grayscale image), ∇I⊥p is an isophote at pixel p, and np is a

unit vector orthogonal to the fill-front at pixel p. Note that C(p) is initially set as

C(p) = 0 ∀p ∈ Θ and C(p) = 1 ∀p ∈ (I − Θ).

In the proposed method, we assign new values to the confidence term for the

reconstructed areas, i.e., we perform the renewal of the confidence term within the

reconstructed area of the target patch after its reconstruction procedure. Specif-

ically, we focus on the criterion Jkopt

f derived in Eq. (41) for the optimal cluster

kopt and denote it as ξ(p). The confidence term of pixel q in the reconstructed area

Ωp of the target patch fp centered at p is calculated by C(q) = exp
(
− ξ(p)
ζ

)
, where

ζ is the average of the values obtained from known patches in the same way as

Eq. (41), i.e., ζ = J
N from Eqs. (18) and (19). Note that we denote the recon-

structed area and the known area within fp as Ωp and Ω̄p, respectively. Therefore,

the renewal of C(q) (q ∈ fp) is specifically performed as follows:

C(q)←


C(q) if q ∈ Ω̄p

exp
(
− ξ(p)
ζ

)
if q ∈ Ωp

. (45)

This means if the target pixel q is the pixel whose intensity is known, i.e., q ∈ Ω̄p,

the confidence terms do not change. Since the intensities within Ω̄p do not change,

the values of C(q) do not also change. Thus, if q is the original pixel whose

intensity is original, C(q) is one. Furthermore, if q is the previously reconstructed

pixel whose intensity was estimated by other patches, C(q) does not change from
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the value provided in the previous reconstruction process. On the other hand, if

the target pixel q is the pixel whose intensity is estimated in this reconstruction

process, i.e., q ∈ Ωp, the confidence term is calculated based on the criterion in

Eq. (41), which corresponds to the error caused in the latent space. Therefore,

we can regard C(q) derived from this criterion as the reconstruction performance,

i.e., the confidence, of the target area Ωp. Therefore, it is reasonable to introduce

C(q) derived from the criterion in Eq. (41) into the KCFA-based reconstruction

method. In this way, we can reconstruct all of the missing areas within the target

image according to the patch priorities in Eq. (42).

4. Experimental Results

In this section, the performance of the proposed method is verified from results

of experiments in order to confirm its effectiveness. We prepared three test images

including missing areas and performed their reconstruction by using the proposed

method and several conventional methods. The reconstruction performance of our

method is verified from the obtained results, and the effectiveness of the proposed

KCFA-based method is also discussed.

In the experiment, a corrupted image that contains text regions as missing

areas was generated for each test image (Figs. 3(a), 5(a) and 7 (a)) as shown in

Figs. 3(c), 5(c) and 7 (c). Note that these images were used in the previously

reported papers [17, 21], and we used the same test images in this paper. Then

we applied the proposed method and the conventional methods to these corrupted

images and obtained their reconstruction results. For comparison, we used the

methods in [14], [17], [12], [13] and [22] as conventional methods. Note that

the methods in [14] and [17] generate subspaces of patches for reconstructing
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missing areas based on PCA and KPCA, respectively. In the method in [17],

a clustering scheme is also introduced into the reconstruction, and we therefore

used this method as a recent state-of-the-art method. The conventional method in

[12] is a representative method in the field of exemplar-based image inpainting.

The methods in [13] and [22] can be regarded as its improved versions, and we

thus regard them as state-of-the-art approaches.

In the experiment, the patch size was fixed to 17 (about two-times larger than

the patch size usually used in exemplar-based methods), and the number of train-

ing examples thus became smaller. Note that since the methods in [14] and [17]

do not adopt patch priority estimation, the size was set to 35. Since this compari-

son scheme was adopted in several papers, we also used such difficult conditions

in order to make the difference in the performance of the proposed method and the

conventional methods clearer. Furthermore, the number of clusters in our method

was simply determined as K = 4. The kernel function of ϕx(·) was the Gaussian

kernel whose parameter was twice of the variance of
∣∣∣∣∣∣xi − x j

∣∣∣∣∣∣ (i, j = 1, 2, · · · ,N).

Note that if we use the nonlinear map to the high-dimensional feature space for

ϕy(·), the pre-image estimation is necessary to obtain ŷk in 3.2. Thus, in order to

avoid errors of this estimation problem, we simply used the linear kernel.

From the obtained results shown in Figs. 3, 5 and 7, we can see that our

method can achieve reconstruction of missing areas successfully. For better sub-

jective evaluation, we show their zoomed portions in Figs. 4, 6 and 8. As shown

in the previous section, the proposed method can estimate the latent relationship

between unknown areas and their neighboring areas based on KCFA. Therefore,

optimal reconstruction derived from the other known areas within the target image

can be performed. Next, by introducing the new criterion into the clustering-based
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reconstruction algorithm, the proposed method can output the results obtained by

the optimal clusters as the final results. Furthermore, in the proposed method, the

above criterion is also used in the determination of patch priority, and this also

improves the missing area reconstruction.

Next, we show results of quantitative evaluation for the proposed method and

the conventional methods. Results of SSIM index [29] calculated from the re-

construction results in Figs. 3, 5 and 7 are shown in Table 1. It is well known

that the MSE (PSNR) and its variants cannot successfully reflect visual image

quality [30]–[32]. Thus, since the SSIM index is one of the representative crite-

ria measuring visual image quality, we adopted the SSIM index as the criterion

for quantitative evaluation in this experiment. The definition of the SSIM index

is shown below. The SSIM index represents the similarity between two signal

vectors y1 and y2 (∈ Rn), and its specific definition is as follows:

SSIM(y1, y2) =
[
l(y1, y2)

]α · [c(y1, y2)
]β · [s(y1, y2)

]γ , (46)

where the terms l(y1, y2) and c(y1, y2) respectively compare the mean and vari-

ance of the two signal vectors. Furthermore, s(y1, y2) measures their structural

correlation. These three terms, l(y1, y2), c(y1, y2) and s(y1, y2), are obtained as

l(y1, y2) =
2µy1µy2 +C1

µ2
y1
+ µ2

y2
+C1

, (47)

c(y1, y2) =
2σy1σy2 +C2

σ2
y1
+ σ2

y2
+C2

, (48)

s(y1, y2) =
σy1,y2 +C3

σy1σy2 +C3
. (49)

In the above equations, µy1 and µy2 are the means of y1 and y2, σ2
y1

and σ2
y2

are the

variances of y1 and y2, and σy1,y2 is the cross covariance between y1 and y2. The
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constants C1, C2 and C3 are necessary for avoiding instability when the denomi-

nators are very close to zero. The parameters α > 0, β > 0 and γ > 0 determine

the relative importance of the three components in Eq. (46). As shown in [29],

those parameters are set as α = β = γ = 1 and C3 =
C2
2 , and formulation of the

SSIM index is simplified by

SSIM(y1, y2) =

(
2µy1µy2 +C1

) (
2σy1,y2 +C2

)(
µ2

y1
+ µ2

y2
+C1

) (
σ2

y1
+ σ2

y2
+C2

) . (50)

As shown in Eqs. (46), the SSIM index is based on human visual system (HVS).

Specifically, the first term defined in Eq. (47) is consistent with Weber’s law,

which states that the HVS is sensitive to the relative luminance change, and not

to the absolute luminance change. The second term defined in Eq. (48) is derived

based on the contrast masking characteristic that the contrast change is less sen-

sitive when there is a high base contrast than there is a low base contrast. Then,

in the third term defined in Eq. (49), the structure comparison is conducted after

luminance subtraction and contrast normalization. If we ignore C3, it is equivalent

to calculating the correlation coefficient. In this way, the SSIM index can measure

the similarity between two signal vectors according to the HVS. This means the

SSIM index can provide the similarity between the original image and the recon-

structed image with considering the sensitivity of their difference to the HVS. The

details of mathematical properties of the SSIM index are also shown in [33].

In addition to the three test images shown in Figs. 3, 5 and 7, we added six

test images shown in Figs. 9–14 to the results of the quantitative evaluation. In

these figures, we only show results of the proposed method due to the limitation of

pages. Note that the SSIM values are calculated from only the reconstructed areas.

As shown in Table 1, we can confirm that the proposed method mostly achieves the

20



improvement. Even though the use of the SSIM index is effective, it is difficult to

perfectly determine the order of reconstruction performance that is the same as the

subjective evaluation. This means that ranking of the reconstruction performance

that perfectly reflects subjective evaluation is difficult, and further improvement is

necessary in future work.

In the above experiment, we used the difficult condition, i.e., larger size patches,

in order to make the difference of the reconstruction performance between our

method and the conventional methods clearer. Next, we show other different ex-

perimental results obtained by using conditions which were adopted in each paper.

This means the conditions of the conventional methods were determined accord-

ing to their papers. In the new experiments, we prepared six test images shown in

Fig. 15 and randomly added missing blocks of size 8× 8 pixels with changing the

ratio of the missing pixels. Figure 16 shows the relationship between the ratio of

the missing pixels and the SSIM index calculated from the reconstructed image.

In the proposed method, the patch size was simply set to 15 × 15 pixels. From

these results, we can see the proposed method tends to output better results than

those of the conventional methods.

Finally, we discuss the limitations of the proposed method. In this paper, we

have focused on the reconstruction of missing textures, and the proposed method

is optimized for realizing the accurate texture reconstruction. Therefore, when ap-

plying the proposed method to an image including strong structure components,

undesired degradations are observed. We show an example obtained by recon-

structing an image including structure components based on our method in Fig.

17. From the obtained results, we can see successful reconstruction of some struc-

ture components , i.e., missing edges is difficult in the proposed method. In this
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figure, we also show an example reconstructed by our previously reported method

which focuses on accurate reconstruction of missing structure components [6].

This method adopts a probabilistic model, GMRF model, but the main concept

is quite similar to the variational image inpainting. Compared with the result ob-

tained by the proposed method, the missing edges can be accurately recovered

by this method. Therefore, it is necessary to adopt variational image inpainting

methods [1]–[9] for assisting accurate reconstruction of images including struc-

ture components.

We also discuss the computation cost of the proposed method. In the exper-

iments shown in Fig. 16, we measured the computation times of the proposed

method and the conventional method in [12]. Since our method and the method in

[12] adopt the similar patch priority estimation scheme, we first compare these two

methods. Then the computation time of our method was about 2.1-times longer

than that of the method in [12], averagely. The experiments were performed on

a personal computer using Intel(R) Core(TM) i7 950 CPU 3.06 GHz with 8.0

Ggytes RAM. The implementation was performed by using Matlab. Note that in

[34], Kwok et al. reported inpainting that was about 15–50-times faster than that

of the method in [12], where the method in [34] adopts a similar reconstruction ap-

proach to that of [13] used as the comparison in this paper. The computation cost

of the proposed method is thus larger than those of the previously reported meth-

ods since the proposed method has to perform the clustering of known patches

and the selection of the best matched cluster for each target patch. It is therefore

necessary to improve the speed of computation by introducing some alternative

approaches into our reconstruction method. This topic will be investigated in sub-

sequent studies.
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5. Conclusions

In this paper, we have presented a novel missing texture reconstruction method

based on KCFA. The proposed method enables derivation of the latent relation-

ship by calculating the KCFA-based optimal orthonormal projection matrices for

reconstructing missing areas from their neighboring areas. Furthermore, we used

the new criterion monitoring errors caused in the latent space to select the optimal

cluster for reconstruction and determine the patch priority. Improvements by the

proposed method were confirmed from experimental results.
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KCFA-based reconstruction (3.2)

Information about        and Cluster 1 Cluster 2 Cluster K

KCFA-based clustering of known patches (3.1)

Adaptive selection of the optimal cluster

Clipped known patches ( )Nifi ,,2,1 K=

Target patch f

Ω Ω

Reconstruction result

…

…

Patch priority estimation (3.3)

Figure 1: Outline of the proposed method. Our reconstruction method is composed of two al-

gorithms, “KCFA-based clustering of known patches” (3.1) and “KCFA-based reconstruction in-

cluding adaptive selection of the optimal clusters” (3.2). Furthermore, patch priority estimation is

introduced into the proposed KCFA-based reconstruction method (3.3).
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ŷ

ΩΩ

′k
Û
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Figure 2: Illustrations of “latent relationship estimation of the kth cluster” and “reconstruction

algorithm using the kth cluster’s latent space”.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: (a) Original image (480 × 359 pixels), (b) Flag image of missing areas, (c) Corrupted

image including text regions “Chain of Mountain” (8.9% loss), (d) Reconstructed image by the

proposed method, (e) Reconstructed image by the conventional method [14], (f) Reconstructed

image by the conventional method [17], (g) Reconstructed image by the conventional method

[12], (h) Reconstructed image by the conventional method [13], (i) Reconstructed image by the

conventional method [22].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a)–(i) Zoomed portions of Figs. 3(a)–(i).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: (a) Original image (480×360 pixels), (b) Flag image of missing areas, (c) Corrupted im-

age including text regions “Grand Canyon” (8.9% loss), (d) Reconstructed image by the proposed

method, (e) Reconstructed image by the conventional method [14], (f) Reconstructed image by

the conventional method [17], (g) Reconstructed image by the conventional method [12], (h) Re-

constructed image by the conventional method [13], (i) Reconstructed image by the conventional

method [22].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: (a)–(i) Zoomed portions of Figs. 5(a)–(i).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: (a) Original image (480×360 pixels), (b) Flag image of missing areas, (c) Corrupted im-

age including text regions “Green Terraced Paddy Fileds” (11.9% loss), (d) Reconstructed image

by the proposed method, (e) Reconstructed image by the conventional method [14], (f) Recon-

structed image by the conventional method [17], (g) Reconstructed image by the conventional

method [12], (h) Reconstructed image by the conventional method [13], (i) Reconstructed image

by the conventional method [22].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: (a)–(i) Zoomed portions of Figs. 7(a)–(i).
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(a) (b) (c)

Figure 9: (a) Original image (480×360 pixels), (b) Corrupted image including text regions “Build-

ings in Tokyo” (10.7% loss), (c) Reconstructed image by the proposed method.

(a) (b) (c)

Figure 10: (a) Original image (480 × 640 pixels), (b) Corrupted image including text regions

“Market of Agricultural Products” (6.2% loss), (c) Reconstructed image by the proposed method.

These images are shown by rotating 90 degrees to the right.

(a) (b) (c)

Figure 11: (a) Original image (640×480 pixels), (b) Corrupted image including text regions “Blue

Sky and Beautiful Cityspace” (5.9% loss), (c) Reconstructed image by the proposed method.
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(a) (b) (c)

Figure 12: (a) Original image (640 × 480 pixels), (b) Corrupted image including text regions

“Green Forest and Waterfall” (6.7% loss), (c) Reconstructed image by the proposed method.

(a) (b) (c)

Figure 13: (a) Original image (640 × 480 pixels), (b) Corrupted image including text regions

“Photograph of a Street Scene” (5.5% loss), (c) Reconstructed image by the proposed method.

(a) (b) (c)

Figure 14: (a) Original image (640 × 480 pixels), (b) Corrupted image including text regions

“Green Forest and Waterfall” (6.7% loss), (c) Reconstructed image by the proposed method.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: (a)–(f) Test images used for examining the relationship between the ratio of missing

pixels and the SSIM index of the reconstruction results obtained by each method. The size of the

test images shown in (a)–(f) are 480 × 360 pixels, 640 × 480 pixels, 480 × 640 pixels, 640 × 480

pixels, 640 × 480 pixels and 480 × 360 pixels, respectively. The image in (c) is shown by rotating

90 degrees to the right.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Relationship between the ratio of missing pixels and the SSIM index of the reconstruc-

tion results obtained by each method: (a)–(f) respectively show the results obtained from the test

images shown in Figs. 15(a)–(f).
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(a) (b)

(c) (d)

Figure 17: Reconstruction example of an image including structure components: (a) Original

image (480×640 pixels), (b) Corrupted image including missing regions, (c) Reconstructed image

by the proposed method, (d) Reconstructed image by our previously reported method [6].
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Table 1: Performance comparison (SSIM) of the proposed method and the conventional methods.

Image Ref [14] Ref [17] Ref [12] Ref [13] Ref [22] Our Method

Figure 3 0.6382 0.7311 0.7318 0.7246 0.7635 0.7949

Figure 5 0.5239 0.6475 0.5077 0.5277 0.5314 0.5886

Figure 7 0.6416 0.6836 0.6822 0.6773 0.7188 0.7478

Figure 9 0.5986 0.6893 0.6563 0.6708 0.6949 0.7416

Figure 10 0.6217 0.7548 0.6992 0.6980 0.7060 0.7837

Figure 11 0.7154 0.7806 0.7155 0.7108 0.7351 0.8192

Figure 12 0.6362 0.7208 0.7298 0.7196 0.7331 0.7931

Figure 13 0.6710 0.7914 0.6852 0.6799 0.6799 0.8126

Figure 14 0.6223 0.7748 0.7366 0.7288 0.7505 0.8325
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