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Abstract

All living organisms are composed of basic structural, functional, and biological unit

such as cell. In biology, cell movement is one of the basic components to determine

the phenotype. The motility of cells is a highly dynamic phenomenon that is essential

to a variety of biological processes such as the embryonic development, wound heal-

ing, immune response and the cancer metastasis. For example, in wound healing in

animals, white blood cells and macrophages move to the wound site to kill the microor-

ganisms that cause infection. In most of the case, cells reach their target by crawling

and sometimes they are found to move collectively. This collective motion indeed refers

the heterogeneity in space and time of cells’ motility in a living organism.

For example, a confluent epithelial cell sheet exhibits a collective migration and sub-

cellular motion but, depending on the presence of their neighbors. Some cells undergo

collective migration but the other cells are transiently disordered and immobile. As cell

density increases, the number of cells migrating collectively increase up to some value of

cell density. Dynamic characteristics of individual cells do not necessarily preserve, that

is, some migrating cells turn to be immobile and immobile cells turn to be collectively

mobile, depending on the local environment. However, in terms of the observed massive

data flow, how to quantify such dynamic heterogeneity and how to extract the underlying

dynamic structure that dominates the spatio-temporal dynamics of cells are one of the

unresolved intriguing subjects. Along this aspect there exists a very similar phenomena

observed in a system composed of many particles such as colloidal fluids as they become

more crowded. To that end, this thesis mainly focuses on a quasi-two-dimensional (q2D)

colloidal fluid that shows dynamic heterogeneous behavior and explores and develops a

novel framework of data analysis to uncover above questions. As for the analysis of the

dynamical feature, this thesis introduces the concept of Lagrangian coherent structures

(LCSs) developed in dynamical systems theory. Basically, LCSs are moving partitions

that effectively divide the fluid domain into dynamically distinct regions with qualita-

tively different past or future. Here we study local-heterogeneous response and transient

dynamics in colloidal fluids responding against a local stimulus.

Colloidal fluids are analogous to cell motility in a sense of showing dynamic heterogeneity

that is modulated by density and/or confinement. In the researches on colloidal fluids

there exist several studies to quantify changes in local environments and the collectivity

over many particles by referring to the measure of the local environment. In the system

we investigate, the whole colloidal particles are flowing almost unidirectionally except a

single particle that is optically trapped at the center and gives a precise and localized

mechanical perturbation to the remaining particles at passing by the trapped particle.



Particle’s responses to the perturbation are found on the space-scale of several particles

diameter from the dragged particle. Indeed, these responses are spatially different at

different time, and cause spatial and temporal deformation of a fluid parcel consist-

ing of colloidal particles. How such deformations cause cage breaking and formation

surrounding a reference particle is our research interest.

Quantifying the interactions in dense colloidal fluids requires a properly designed order

parameter. Very frequently, the so-called bond orientational order parameter has been

used to evaluate the degree of packing configuration surrounding a reference particle.

However, it is known that the original definition of the bond-orientational order param-

eter yields discontinuous changes along time propagation of system, which hamper the

appropriate elucidation of dynamical events. In this dissertation, in Chapter 2, we first

present the modification of bond orientational order parameter, denoted by ψ̄6, that

avoids discontinuous changes in time so that ψ̄6 provides a suitable measure to quantify

the dynamics of the bond-orientational ordering of the local surroundings. Chapter 2

also provides an introductory concept of the so-called Lagrangian coherent structures

(LCSs). In this dissertation, LCSs are estimated from maximum finite-time Lyapunov

exponent (FTLE) field. Indeed, this maximum FTLE gives the finite-time average of

the separation (stretching/divergence) between nearby trajectories. In Appendix A, we

provide how one can compute the FTLE field from a set of particle trajectories.

In this system, the perturbation is attributed from the trapped probe particle to a set of

the neighboring particles. This perturbation indeed propagates into the flow and causes

spatial and temporal distortion of the packing structure surrounding each particle. In

Chapter 3, we investigate the dynamics of the bond-orientational ordering of the local

surroundings by wavelet transform. This wavelet transform provides a time-frequency

representation of the time series of ψ̄6. From this two-dimensional scalogram plot, one

can find at which time which frequency components appear in the time series. We

therefore look into the frequency components of each particle that correspond to the

inverse of the time scale of the perturbation in order to elucidate when nearby and/or

distant particles from the trapped particle are influenced by the perturbation. It is

found that particles having high power in frequencies corresponding to the frequency

scale of the perturbation actually undergo distortions of their packing configuration,

resulting in cage breaking and formation dynamics. Our results show that this transient

cage breaking dynamics mostly appeared in the forepart of the probe particle but in

a nonuniform manner. The essence of the wavelet analysis is that the conventional

spatial-correlation averaged over the entire time for the order parameter is not enough

to identify the spatio-temporal dynamics in this system.



Chapter 3 also provides a correspondence between the dynamic structure of cage break-

ing and formation of the bond-orientational ordering and the underlying dynamical

structure identified by LCSs. In this thesis, we show that, the language of LCSs pro-

vides a new means for studying the heterogeneous behavior in a colloidal fluid system.

When, where, and how particles undergo highly disturbance by the perturbation can

be identified in terms of the spatial location of LCSs. It is shown that the spatial dis-

tribution of the FTLE field and the power of particles in the wavelet transform have

a significant positive correlation, implying that LCSs provide a dynamic structure that

dominates the dynamics of cage breaking and formation of the colloidal fluids.

Chapter 4 provides the conclusion and other possible application of LCSs in colloidal

fluids. In this dissertation, we have analyzed LCSs in a colloidal system to probe the

local-heterogeneous response to the excitation elicited by the mechanical perturbation.

We discuss the applicability of the concept of LCSs to provide a deep insight into the

understanding of heterogeneous dynamics of, for example, collective cell migration in

response to stimuli.
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Chapter 1

Introduction

Colloidal systems are essential to life. It may not be a common term in biology these

days, but in the early 20th century, colloids were believed to hold the secrets of life.

They function in every body cell, in the blood, and in all body fluids, especially the

intercellular fluids. The colloidal nature of the interior of living cells motivated the study

of colloidal systems. Examples of colloidal systems in molecular and cellular biology

include: macromolecules such as proteins, RNA, and DNA; supramolecular assemblies

such as membranes and cytoskeletal structures; bigger object such as organelles and

cells.

Cell is the basic structural, functional, and biological unit for all living organisms. In

biology, one of the basic components to determine the phenotype in a living body is the

motion of cells. The motility of cells is a highly dynamic phenomenon that is essential

to a variety of biological processes such as the embryonic development, wound heal-

ing, immune response and the cancer metastasis[1]. For example, in wound healing in

animals, white blood cells and macrophages move to the wound site to kill the microor-

ganisms that cause infection. In most of the case, cells reach their target by crawling

and sometimes they are found to move collectively. This collective motion indeed refers

the heterogeneity in space and time of cells motility in a living organism. Motion within

a confluent epithelial cell sheet exhibits the collective migration and subcellular motion

but, depending on the presence of their neighbors. At large length scales and time scales,

collective migration slows as cell density rises. This behavior has an intriguing analogy

to dynamic heterogeneity in a system composed of many particles as they become more

crowded[2]. To that end, this thesis mainly investigates a colloidal fluid to understand

the heterogeneous behavior of particles in terms of underlying dynamical feature. This

colloidal fluid consists of uniform size silica beads whose dynamics are constrained in

a two dimensional space, thus forming a quasi-two-dimensional colloidal system. We

1



Chapter 1. Introduction 2

expect that, this system may provide an analogy to the dynamics of confluent epithelial

cell sheet.

Dynamical heterogeneity (DH) is one of the most intriguing subject in soft matter and

biological physics, as it is a definite property of amorphous materials, dense colloidal

fluids[3, 4], sheared granular media[5, 6] and super-cooled liquids[7, 8]. DH exists in all

disordered materials with glassy transitions that occur intermittently with waiting or

relaxation times that are broadly distributed. DH is usually composed of a succession

of confinement events of a particle by neighboring particles. This cage effect and the

breakages of the cages and transitions to diffuse, account for the variability of different

relaxation timescales[9, 10]. For short times, a particle is confined by its neighboring

particles in a cage whose timescale of confinement varies from place to place. On long

timescales the particle manages to break its cage, so that it is able to diffuse through

the entire system by successive cage breaking.

The main feature of dynamical heterogeneity involves spatial and dynamical correlations

among particles that undergo large (“mobile”) displacements over a suitably chosen time

interval. More specifically, systems exhibit dynamical heterogeneity if (1) it is possible

to select a dynamically distinguishable subset of particles and (2) these dynamics are

spatially correlated. It was found that spatially correlated mobile particles move coop-

eratively in a fashion that they follow one another[11] and form quasi-one-dimensional,

stringlike clusters[12]. Particles that are dynamically correlated can be investigated by

constructing a four-point susceptibility where the dynamical correlation length grows by

increasing the density of the fluid[13]. Studies of DH also include topological persistence

as measured by two overlapping order parameters that quantify the correlation between

particle configurations at different times[14].

Understanding DH in granular systems subject to a mechanical perturbation is of con-

siderable interest [15–19]. Several experiments on granular systems have emphasized

the role of DH under shear perturbation[5, 20] and particle dragging[21–23]. Recent

experimental techniques that involve optical or magnetic tweezers coupled with optical

microscopy in colloidal systems[24, 25] allow a trapped particle to provide a precise and

localized mechanical perturbation to the system and to detect the response of the system

simultaneously. This enables us to investigate the microscopic origin of complex fluid

behavior, such as microviscosities in the shear thickening and shear thinning regimes as

a function of the speed of the probe particle[26, 27]. By applying a force to the probe

particle, one can explore the instantaneous and average structural responses[28] and the

spatial reorganization during and after the perturbation[29]. However, the interplay be-

tween DH and the spatio-temporal behavior of the caging of particles by their neighbors

is still poorly understood.
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The so-called bond-orientational order parameter[30–32], ψ6, has often been used in

quasi-two-dimensional (q2D) colloidal fluids[28, 33–35], in order to quantify how nearby

particles are closely packed to a reference particle, i.e., in the form of a hexagonal con-

figuration. Dynamics of ψ6 was studied in granular liquids near the glass transition to

probe the dynamical heterogeneity and slow dynamics. There, the spatial distribution

of the time-average of ψ6 was investigated in order to extract slow dynamics of the

medium-range crystalline ordered particles, whose long-range ordering is prevented by

frustration effects[35]. This time-average was taken over the structural relaxation time.

However, relaxation process may proceed over several timescales and some structural

cage breaking and formation may occur in shorter times than a timescale used for the

time-averaging. If so, it is difficult to determine properly when and how the structural

breakage and formation events happen and which particles are involved in those struc-

tural events in terms of the time-averaged spatial distribution of the bond-orientational

order parameter.

In this thesis, we focus on the time dependence and spatial extent of bond-orientational

ordering around individual particles in order to see how colloidal particles are involved

in the cage breaking and formation dynamics in response to a microscopic perturbation.

Indeed, this perturbation is attributed directly from the particle which is trapped at

the center and indirectly from the fluid moving around the trapped particle [28]. We

first introduce a modified bond-orientational order parameter, denoted by ψ̄6, to prop-

erly quantify the time evolution of bond-orientational ordering. This overcomes some

drawbacks that exist in the original definition of ψ6. From the time evolution of ψ̄6 we

observe that the size of temporal fluctuation in the magnitude of ψ̄6, not the magnitude

of ψ̄6 itself, reflect the extent of distortion in the surrounding particles, i.e., cage break-

ing and formation. To see when and which particles participate in the cage breaking

and formation dynamics, we perform a time-frequency analysis by continuous wavelet

transforms for the time series of ψ̄6. Basically, wavelet transform enable us to provide

a time-frequency representation of a time series of interest. From this two-dimensional

scalogram plot, one can find at which time and which frequency components occur in

a time series. It is found that particles having frequency components similar to that of

the inverse of the timescale of perturbation are involved in cage breaking and formation.

To look further into the origin of cage breaking and formation, we introduce the concept

of Lagrangian Coherent Structures (LCSs) developed in dynamical systems theory[36–

38], which effectively divide the flow into distinct regions with qualitatively different

past or future. A number of applications have been studied through LCSs including cell

behavior[39], blood flow mechanics inside blood vessels[38] and hearts[40], prey-predator

interaction in jelly fish feeding [41], particle dynamics [42], etc. However most of the

previous studies related to biological systems were discussed by a model simulation.
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Here, we study local heterogeneous responses and transient dynamics in colloidal fluids

responding against a stimulus.

In this thesis, LCSs refer to the location of large magnitude in the finite-time Lyapunov

exponent (FTLE) field where FTLE measures the maximum separation rate between

nearby trajectories over a finite time interval. Due to the characteristic of FTLE ridges,

their spatio-temporal location is expected to affect the nearby packing configuration of

the colloidal particles within the corresponding separation timescale. It is found that

the spatio-temporal distribution of the FTLE field and the power of the particles in

the wavelet transform, both computed for the same timescale, have a positive correla-

tion, showing that FTLE based LCSs, denoted by FTLE/LCSs[42], provides a dynamic

structure that dominates the dynamics of cage breaking and formation of the colloidal

fluids.

This thesis is organized as follows: In chapter 2 we briefly describe the experimental sys-

tem we study, overview and discuss some drawbacks of the original bond-orientational

order parameter, provide a modified bond-orientational order parameter, and introduce

the concept of FTLE/LCSs. Chapter 3 contains the investigation of the time series

of the ψ̄6, the wavelet analysis to investigate the cage breaking dynamics, the results

of FTLE/LCSs that probe the dynamical heterogeneity and the relationship between

FTLE/LCSs and cage breaking dynamics. We provide conclusions and outlook in chap-

ter 4.



Chapter 2

System and Method

2.1 A quasi-two-dimensional (q2D) system with a mechan-

ical perturbation

The quasi-two-dimensional (q2D) experimental system considered in this thesis was

described in detail in Ref. [28]. The sample consists of an aqueous suspension of uniform

size silica spheres (diameter d = 2.56± 0.04µm) and the suspension is confined between

two hard walls with height (separation) of 3.2 µm, i.e., slightly larger than the particle

diameter. A particle is optically trapped at the center by a 810 nm laser beam with

a force constant k = 0.2pN/nm. The stage containing the suspension is moved at a

constant speed v and thus the trapped particle interacts with and causes a mechanical

perturbation to the system. The case considered has an average packing fraction of

∼ 0.76. Note that the experimental data are collected in the reference frame of the

trapped particle and the stage moves with a constant speed. One can easily transform

the data into the dragged reference frame where the probe particle is dragged at constant

speed and the stage is stationary. We do our analysis in the trapped reference frame.

Note however that the quantities we analyze are frame-independent, i.e., do not depend

on the reference frame in which one observes the system dynamics.

2.2 Bond-orientational order parameter and its drawback

How can one quantify spatio-temporal heterogeneity of local environments in the neigh-

borhood of individual particles in colloidal fluids under a mechanical perturbation? In

a quasi-two-dimensional (q2D) colloidal fluid, the packing structure around a particle of

interest can be quantified by the so-called bond-orientational order parameter ψj6 defined

5



Chapter 2. System and Method 6

as[33–35, 43],

ψj6 =
1

nj

∣∣∣ nj∑
k=1

exp(i · 6θjk)
∣∣∣ (2.1)

for each particle j, where the sum runs over nj nearest neighbors around particle j,

and θjk is the angle between an arbitrary fixed axis and the link of particle j and its

k-th nearest neighbor as shown in Fig. 2.1. In Eq. 2.1, the summand term refers

to the configuration of the first neighboring cage, and nj is the corresponding number

of the first neighboring particles around particle j. Usually, nj is chosen either as a

constant of value six, i.e., six nearest neighbors,[28, 34] or as a variable dependent on

local coordination around particle j (first nearest neighbors) defined by using a Voronoi

construction[33, 35, 43]. The denominator nj is used to normalize ψj6 as 0 ≤ ψj6 ≤ 1. The

value ψj6 = 1 implies perfect hexatic order solely with six nearest neighboring particles,

whereas ψj6 � 1 implies a region deviating from hexatic order.

j

θ1
j

1

Arbitrary axis

θ1
j

θ2
j

θ3
j
2

3

Figure 2.1: Schematic picture of θjk, angle between an arbitrary axis (red line) and
the link (dotted lines) of the particle j and its k-th (e.g. k = 1, 2, 3) nearest neighbor.

Previously, on this system[28], the orientation of the structural order around a particle

j was investigated by another index defined by

ψ̃j6 = Re{
6∑

k=1

exp(i · 6θjk)} (2.2)

where θjk is the angle between a fixed axis and the line connecting the centers of particle j

and its k-th nearest neighbor. The fixed axis was assumed along the dragging direction

of the probe particle in the dragged reference frame. To this end, ψ̃j6 was varied as
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−6 ≤ ψ̃j6 ≤ 6 where the sign reports the orientation of the hexatic structure relative

to the dragging direction. That is, 6 and −6 indicates the orientation of the hexatic

structure along the direction of dragging and of an angle 30◦ from the dragging direction,

respectively. Within a regular hexagonal domain ψ̃j6 become constant. Changes in the

value of ψ̃j6 refer the grain boundaries and transitions to disordered domains. It was

found that, in the dragged reference frame, the displacement of some individual particles

thus forming a displacement chain, responding to a displacement of the probe particle,

propagates according to the orientation of the local hexatic structure. In other words,

the displacement chains form inline when ψ̃j6 > 0 and bifurcate when ψ̃j6 < 0. Some

displacement chains were found to follow the grain boundaries indicating that the local

order and defects influence the particles’ response to the disturbance attributed from

the probe particle. However, the value of ψ̃j6 does not necessarily provide the proper

knowledge of the packing configuration surrounding a particle j. For example, ψ̃j6 = 0

can result from the two possible situations. One is the packing configuration surrounding

a particle j is far from a hexatic order. The other extreme case is that there is a perfect

hexatic order but its orientation with respect to the fixed axis (along dragging direction

in Ref. [28]) is 15◦. Therefore, in order to quantify the proper structural configuration

surrounding an individual particle, in our analysis we use ψj6 as defined in Eq. 2.1. Note

that, differences in the values of ψ6, obtained from Eq. 2.1, also have been used to assign

frozen (ordered) and mobile (disordered) regions, termed grain and grain boundary (GB)

regions, with some high and low values of ψ6, respectively[34].

Particles in the GB regions are loosely packed and are identified as mobile particles com-

pared to those in the grain regions. It was pointed out that some of these mobile particles

move “cooperatively” associated with breakage of their neighboring cages[34]. This co-

operative motion was determined by the criterion, so-called Donati string criterion[11].

The criterion states that one particle is moved and another particle takes it place after

time ∆t as illustrated in Fig. 2.2. In the figure, the light circles correspond to the

position of particles at time t = t0 and the dark ones correspond to the same particle

at later time t∗ = t0 + ∆t. Viewing the particles’ position at two different times as

in Fig. 2.2, it was observed that these particles are moving cooperatively along string

like paths[11, 12]. Using the Donati criterion, it was found that the string particles are

localized in GB regions[34]. They can be visualized by a snapshot of bond-orientational

structure overlaying the string particles at the high packing fraction of 0.85 [34]. How-

ever, at (comparatively) lower packing fraction, e.g., ∼ 0.76 in our q2D colloidal fluid

system experiencing the constant dragging perturbation[28], ordered and disordered re-

gions are sparsely distributed and they are not directly related to the mobility of the

particles. For example, particles in remote regions having lower values of ψ6 simply
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Initial Position

t = t0

Position at t*

t* = t0+∆t

Figure 2.2: Schematic picture of the Donati criterion. Light circle: particles at the
initial position t = t0. Dark circle: same particles at a later time t∗ = t0 + ∆t. The
black line segments connect the same particles at the two times. The arrows indicate

the path followed by some of the particles.

passing along the flow applied to the colloidal system while maintaining the low ψ6 val-

ues. Furthermore, for constant dragging perturbation, the forced motion of the probe

particle distorts its bond-orientational structure by repeatedly breaking its neighboring

cages and leads to the extension of GB and disordered region[28].

To demonstrate it, Fig. 2.3 shows two representative snapshots of the distribution of

ψ6 of colloidal particles. In Fig. 2.3(a) some particles in front of the center particle

along the steady flow (indicated by the green ellipse) get stuck and are slowed down for

some time duration and have a large ψ6 values (i.e., ordered). However, in Fig. 2.3(b)

at some later time, the ordered region disappears and becomes disordered with smaller

ψ6. In fact, regions of large and small ψ6 vary in time and sometimes exchange with

each other. Thus the instantaneous distribution of ψ6 does not necessarily capture the

imminent heterogeneous nature of the frozen and mobile regions. In this regard, the

time variation of ψ6 is more insightful to understand how the perturbation induces the

rearrangement of particles’ positions.

In quantifying the time evolution of packing structure around individual particles in

colloidal fluids, some disadvantages emerge for the bond-orientational order parameter

especially at packing fractions, e.g., 0.72-0.79. In Eq. 2.1, the summand term takes into

account only the orientation (or angular position) of the neighboring particles. Therefore

ψ6 gives the same value for the different cases shown in Figs. 2.5(a) and 2.5(b) since the

angular positions of the surrounding particles are the same.

Another problem is in the identification of the number of neighboring particles around

particle j, nj . One common choice is nj = 6, that is, six nearest neighbors surrounding

any particle of interest[28, 34]. However, when a particle is surrounded by more than
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Figure 2.3: (a) and (b) are two snapshots of ψ6 of colloidal particles with their
displacement vector under the steady flow from the left top to the right bottom, where
the center particle trapped by the optical tweezer as outlined by black bold circle. The
particles enclosed by the green line show a typical behavior of particles in front of the

center particle. See Sec. 2.2

six particles in the first neighboring shell as described schematically in Fig. 2.5(c,d,e)

(it was found that about 12% of all particles have more than six particles there in our

system), the identification of six nearest neighbors may change from time to time due

to the fluctuation in positions. Therefore, ψ6 may change discontinuously in time for

particles that have more than six neighboring particles in the first shell for a certain

time duration even when the actual configurational change of neighboring particles is

smooth.

Another choice for nj is to determine the neighboring particles by using Voronoi tessella-

tion [35, 43]. Voronoi tessellation or Voronoi diagram is a way of partitioning space with

a set of points, called sites, into convex polygons such that each polygon contains exactly

one site. Every point in each convex polygon is closer to that site than to any other.

The polygons are called Voronoi cells. As for simple illustration, Fig. 2.4 shows Voronoi

tessellation for a set of 16 sites {P1, P2, · · · , P16} in the Euclidean plane R2. In this case

each site Pk ∈ {P1, P2, · · · , P16} is simply a point. The Voronoi cell Rk associated with

the site Pk contains all the points whose distance to Pk is not greater than their distance

to the other sites than Pk. In other words, if D(y, Pk) is defined as an Euclidean dis-

tance, then the Voronoi cell Rk is defined as Rk = {y ∈ R2|D(y, Pk) ≤ D(y, Pj)∀j 6= k}.
The equality refers the segments in a Voronoi tessellation corresponding to all points

in the plane equidistant to the two nearest sites. Fig. 2.5(f,g,h) show the samples of

Voronoi tessellation for the colloidal particles whose centers are regarded as sites. Here

we construct the Voronoi tessellation using the software Mathematica.

For each Voronoi cell, Voronoi vertices are the points equidistant to three (or more) sites.
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y1

y2
Pk Pj

Rk

D(
y,P

k) D
(y,P

j )

Voronoi 

Vertex

Figure 2.4: Voronoi tessellation for a set of 16 sites in the Euclidean plane. A Voronoi
cell Rk associated with the site Pk is shown by a blue polygon whose Voronoi vertices
are indicated by red circle. The cell contains all the points y ∈ R2 whose distance to Pk

is less than that from the other site Pj , i.e. D(y1, Pk) ≤ D(y1, Pj). Points on the edges
of the Voronoi cell are equidistant to the two nearest sites, i.e. D(y2, Pk) = D(y2, Pj).

To that end, Voronoi vertices are connected with three (or more) edges making a trian-

gular (or more) network and particles sharing those edges are counted as neighboring

particles. As indicated by the red circle in Fig. 2.5(f,g,h), a new short length’s edge that

may emerge in time as shown in Fig. 2.5(h) also results in a discontinuous change in

the number of the neighboring particles. That is, if one of the edges becomes very short

compared to the others, the corresponding triangular network becomes unstable due to

the fluctuation of the particles’ position. After a certain moment, another triangular

network may develop at that location. As a result, the number of neighboring parti-

cles can change discontinuously and this causes (unphysical) discontinuous jumps in the

values of ψ6. This is not favorable in the study of the dynamics of packing structure,

i.e., cage breaking and formation dynamics. At high packing fraction, the above prob-

lem may not be so significant because particles are densely packed and they have very

little space to fluctuate. However at a relatively low packing fraction, such as ∼ 0.76 in

our study, one will be immediately confronted to the above drawbacks in computing the

bond-orientational order parameter. Therefore, some modification is needed to eliminate

these drawbacks.
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(a) Densely packed: 6 = 1.0 (b) Loosely packed: 6 = 1.0
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(f) at time t0 (g) at time t0+Δt (h) at time t0+2Δt

Figure 2.5: (a) Densely packing and (b) loosely packing structures. Both return the
same value of ψ6(= 1). (c, d, e) One particle is surrounded by seven particles but which
particles are the six nearest neighbors are different from time to time because of the
fluctuation of their distance from the center particle. (f, g, h) Voronoi construction
at successive time instants. Fluctuations in the particle positions result in different
constructions in (g) to (h) because one triangular network in (f) becomes unstable in
(g) and developed another network at that location in (h) as indicated by the red circle.

2.3 A modified bond-orientational order parameter ψ̄6

We present a modified bond-orientational order parameter ψ̄6 to properly quantify the

dynamical evolution of local packing structure. This parameter is defined as

ψ̄j6 ≡
|
∑′

k w(|rk − rj |) exp(i · 6θjk)|
c0

, (2.3)

where the summation
∑′

k runs over all particles except the jth particle, θjk is the angle

between an arbitrary fixed axis and the link of the particles k and j whose positions are

denoted by rk and rj , respectively, c0 is the maximum possible value of the denominator

in case that the whole system attains perfect order (i.e., making ψ̄j6 normalized as 0 ≤
ψ̄j6 ≤ 1). The weight function w(r) = exp(− (r−d)2

2σ2 ), d is the diameter of each particle.

This weight function w(r) takes into account the distance between the surrounding
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particles and the particle of interest. In order to choose the value of σ, we estimate

the size of the first neighboring shell in terms of the radial distribution function. The

radial distribution function g(r) is a measure of the probability of finding a particle at

a distance r from another particle[44]. The general algorithm involves, first, calculating

the distance between all particle pairs, second, these distances are sorted into a histogram

where each bin has a width dr. The histogram is then normalized with respect to an ideal

gas, where particle histograms are completely uncorrelated. For two dimensional system,

this normalization is the number density ρ = N/A, N is the total number of particles

and A is the area, of the system multipled by the area of the shell that extends from r

to r + dr. This normalization constant can be expressed by Nid = ρπ[(r + dr)2 − r2].

Mathematically, for two dimensional system, g(r) is formulated by

g(r) =
1

NT ′Nid

T ′∑
t=1

N∑
i=1

N∑
j=1
j 6=i

δ
[
r − rij

]
(2.4)

where rij =
∥∥ri(t)−rj(t)

∥∥, ri(t) is the position of particle i at time t, δ is the Dirac’s delta

function, and T ′ is the total number of frames. Fig. 2.6 shows the radial distribution

function for our colloidal system with the bin size 0.1d. The first minimum in g(r)

provides the characteristic length scale of the first neighboring shell. Outside of the first

neighboring shell, i.e. 1.5 ≤ r/d, a number of obvious peaks indicate that the particles

are ordered and packed around each other in the neighboring shells. At long range, g(r)

tends to a value of 1, indicating that particles in that range are uniformly distributed.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

g
(r

)

r/d

Figure 2.6: Average radial distribution function of a colloidal fluid with an average
packing fraction of 0.76. The Péclet number (Pe) for the dragging is 190. This radial
distribution function is calculated by using configurations of the colloidal fluid observed

for 74.61s with frame rate 67 Hz.
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In our system the radial distribution function has the well-defined first minimum placed

at approximately 1.5d as seen in Fig. 2.6. In our system σ is chosen so that particles

in the first neighboring shell lie within two standard deviations, 2σ = 1.5d − d = 0.5d

from the mean d, and hexagonal configurations such as Fig. 1(a,b) can be distinguished

(e.g., ψ̄6, returns 1.0 and 0.567 for the configurations in Fig. 2.5(a) and Fig. 2.5(b),

respectively). Another advantage is that this formula does not require identifying the

neighboring particles, and is therefore free from any discontinuous identification of neigh-

boring particles. Note that ψ̄6, like the original ψ6, is a frame-independent measure.

2.4 Lagrangian Coherent Structures (LCSs)

In this section, we introduce another concept, Lagrangian Coherent Structures (LCSs),

to investigate underlying mechanism behind cage breaking and formation. The con-

cept of Lagrangian Coherent Structures was first introduced by Haller[36, 37] and has

received significant attention for understanding transport phenomena in finite-time non-

autonomous dynamical systems. Briefly, LCSs serve as robust transport barriers between

regions in which particles have different dynamical behavior. By definition, LCSs are

an invariant manifold across which any particle cannot traverse. Thus they are barriers

to transport between the regions of different dynamics. Such structures can be charac-

terized as co-dimension one (lines in two-, surfaces in three-dimensions) and play the

dominant role in attracting, repelling or shearing of neighboring trajectories over a finite

time interval [t0, t1]. Fig. 2.7 shows a schematic description of repelling and sheared

type LCSs. Fig. 2.7(a) depicts a fluid parcel containing a set of particles initially at

time t = t0 is deformed along the normal direction to the repelling LCSs as it repels

strongly the nearby fluid particles by time t = t1. Fig. 2.7(b) depicts a fluid parcel that

deforms along the tangential direction to the sheared LCS as the particles in the upper

side move faster than those of the lower side.

The cornerstone of this structure is the frame-invariance property. To that end, when

defining LCSs, the fluid motion is viewed from a Lagrangian, rather than an Euler

perspective. A number of phenomena have been studied through LCSs including cell

behavior[39], blood flow mechanics inside blood vessels[38] and hearts[40], prey-predator

interaction in jelly fish feeding [41], particle dynamics [42], etc.

Based on the numerous application of LCSs, the most efficient and simplest diagnostic

tool for identifying LCSs would be to identify the ridges or the location of high magni-

tude in the finite-time Lyapunov exponent (FTLE) field[45]. Basically, at each location

of the ridges, the FTLE possesses the maximum separation rate between nearby trajec-

tories over a finite time interval. Maximum ridges of the FTLE field in forward-time
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t = t0 t = t1

Repelling LCS

Shear LCS

Fluid parcel
Deformed

fluid parcel

(a)

(b)

Figure 2.7: Two types of deformation of a fluid parcel containing a set of particles
over the time interval [t0, t1]. (a) For repelling LCS, this deformation occurs normal to

it and (b) for shear type LCS, such deformation occurs tangential to it.

propagation are indicators of repelling LCSs that are the regions of the locally strongest

diverging flow in the system[46, 47]. Performing the same procedure in backward-time

propagation can identify maximum ridges of the backward-time FTLE field. The re-

gions of the locally strongest diverging flow backward in time are, in fact, those of the

locally strongest converging flow in ordinary forward-time propagation, corresponding

to attracting LCSs in the system.

2.4.1 Mathematical background of LCSs

First let x(t; t0,x0) ∈ R2 be the position of a particle at time t ∈ R, which starts from

the initial position x0 = x(t0; t0,x0) at time t = t0. Here we consider two dimensional

space because the system in this study can be regarded as a two-dimensional system as

the motion of particles are confined between two hard walls and the height (distance)

between two walls is only 1.5 times the diameter of particles[28]. By following particle

trajectories over a duration of time T after initial time t0, we obtain a particle flow map
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Figure 2.8: Figure shows the propagation of small initial displacement δx0 to x0 at
the initial time t0. The flow map Ft0+T

t0 (x0) takes particles from their initial position
x0 to their position at time t0 + T .

Ft0+T
t0

(x0) = x(t0 + T ; t0,x0) that takes particles from their initial position x0 to their

position at time t0 + T .

To locate LCSs, we compute the FTLE field of the flow map. We consider a trajectory

x0 and a nearby displaced trajectory y0 = x0 + δx0, where δx0 is an arbitrary small

initial displacement at time t0 to x0 as shown in Fig. 2.8. By the advection of the flow,

the propagation of this displacement by time t0 + T is given by,

δx(t0 + T ) = Ft0+T
t0

(y0)− Ft0+T
t0

(x0) =
dFt0+T

t0
(x0)

dx0
δx0 +O

(
‖δx0‖2

)
(2.5)

where
dF

t0+T
t0

(x0)

dx0
is the Jacobian of the flow map. By dropping higher-order terms of

δx0, the magnitude of δx(t0 + T ) is given by,

∥∥δx(t0 + T )
∥∥ =

∥∥∥∥∥dFt0+T
t0

(x0)

dx0
δx0

∥∥∥∥∥ =

√〈dFt0+T
t0

(x0)

dx0
δx0,

dFt0+T
t0

(x0)

dx0
δx0

〉
=

√〈
δx0,C

t0+T
t0

(x0)δx0

〉
(2.6)

where< ·, · > is the standard inner product on R2, Ct0+T
t0

(x0) =
(

dF
t0+T
t0

(x0)

dx0

)∗ dF
t0+T
t0

(x0)

dx0

is the finite-time right Cauchy-Green deformation tensor, a rotation and translation

invariant measure of deformation. The symbol * refers to matrix transposition. Since

Ct0+T
t0

(x0) is a symmetric and positive definite tensor, all the eigenvalues of this tensor

are real and positive. The eigenvectors associated with the eigenvalues are orthonormal

to each other. The growth of the initial displacement δx0 will become maximum when
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it is aligned with the eigenvector corresponding to the largest eigenvalue of Ct0+T
t0

(x0).

That is, if λmax

(
Ct0+T
t0

(x0)
)

is the maximum eigenvalue of Ct0+T
t0

(x0), then

∥∥δx(t0 + T )
∥∥ =

√
λmax

(
Ct0+T
t0

(x0)
)∥∥δx0

∥∥. (2.7)

The largest finite-time Lyapunov exponent (FTLE) represents the maximum linear

growth rate of a small initial displacement over a finite time interval [t0, t0 + T ] and

is defined as[36]

Λt0+T
t0

(x0) =
1

|T |
ln

∥∥∥∥∥δx(t0 + T )

δx0

∥∥∥∥∥ =
1

|T |
ln
√
λmax

(
Ct0+T
t0

(x0)
)
. (2.8)

According to this definition, The FTLE can be considered as a measure of how the

trajectories are sensitive to the initial condition. Also, due to the frame-independence

of the Cauchy-Green deformation tensor, the FTLE field is independent of the choice of

the reference frame. Basically, the largest eigenvalue and the corresponding eigenvector

provides the maximal amount and the maximal principal stretching direction of the

deformation of a fluid parcel. The distribution of the FTLE field in the phase space can

be used to locate the maximum deformation of a fluid parcel in the dynamical system.

Here, the locations of the high magnitude of FTLE values in the FTLE field are used to

identify Lagrangian Coherent Structures(LCSs)[48] and denoted by FTLE/LCSs.

2.4.2 Computation of FTLE/LCSs

There are four steps involved in computing the FTLE field defined by Eq. 2.8. Firstly,

a set of virtual particles are placed on an initial grid with a uniform spacing of 0.0125d

at the initial time t0 in the domain of interest. Next, by the advection of the flow, the

particles are allowed to move from the initial time t0 to the final time t0 + T . The

trajectories of the particles at time t can be obtained by constructing the flow map from

instantaneous tracking[42, 49] of colloid particle positions from the experimental data.

The details of the construction of the flow map is discussed in the Appendix A. Once the

flow map is obtained, next step is to compute the Jacobian of the flow map, usually by

finite differencing, to obtain the Cauchy-Green deformation tensor. Finally, the largest

eigenvalue of the tensor is extracted and synthesized into a FTLE field as in Eq. 2.8.

Indeed, the FTLE value is computed for each particle in the grid and assigned to the

particle location at time t0. This process is repeated for various initial times t0 to get

the time evolution of the FTLE field. In general, one can choose an integration time

corresponding to the timescale of the dynamics of interest. However, it is not desirable

to choose the integration time larger than the timescale in which all the particles are

advected out from the spatial domain.
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Results and discussion

In this chapter, we investigate the dynamics of the bond-orientational ordering of the lo-

cal surroundings by wavelet transform. This wavelet transform provides a time-frequency

representation of the time series of ψ̄6. From this two-dimensional scalogram plot, one

can find at which time which frequency components appear in the time series. We there-

fore look into the frequency components of each particle that correspond to the inverse

of the time scale of the perturbation in order to elucidate when nearby and/or distant

particles from the trapped particle are influenced by the perturbation. This chapter also

provides a correspondence between the dynamic structure of cage breaking and forma-

tion of the bond-orientational ordering and the underlying dynamical structure identified

by LCSs. We show that, the language of LCSs provides a new means for studying the

heterogeneous behavior in a colloidal fluid system.

3.1 Investigation of the time series of ψ̄6

Fig. 3.1 shows a representative snapshot of ψ̄6 at one time instant, which shows that, at

this packing fraction of ∼ 0.76, there exist no clear grain and grain boundary regions.

Turning to the time evolution of ψ̄6(t), it has been found that ψ̄6(t) of the center particle,

which is optically trapped, exhibits the largest fluctuation along the time propagation.

Some other particles also exhibit a similar large variation of ψ̄6(t) when they are passing

through the neighborhood of the center particle and/or in front of the center particle.

Fig. 3.2 exemplifies the time evolution of ψ̄6(t) for some randomly selected particles.

In the plot at the lower-middle image of the figure, each colored circle represents the

position of a randomly selected colloidal particle at a certain time instant with a line

passing through the circle corresponding to the trajectory of the corresponding particle.

The number inside the circle is the particle’s index. The trapped particle is located at

17



Chapter 3. Results and discussion 18

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8 10

y
/d

x/d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
6

Figure 3.1: A snapshot of ψ̄6 in the colloidal fluids at the packing fraction of ∼ 0.76.
The darker (the lighter or the more yellowish) the color, the closer (the looser) to

hexagonal packing the nearby configuration is.

the center. The time series of ψ̄6(t) of the selected particles are superposed to that of

ψ̄6(t) of the probe particle, as indicated by the red line. From the superposition of the

time series, we can see that variations of ψ̄6(t) for particles 119, 137, 221, 235, at some

time duration, are roughly similar to those of the probe particle as indicated by dotted

ellipses. In fact, at these time durations the corresponding particles are passing through

the neighborhood of the probe particle. However, for particle 354, such a significant local

and fast fluctuation of ψ̄6(t) seems not to exist; it simply “passively” passes through the

remote region from the center particle.

Fig. 3.3 illustrates the underlying configurational changes corresponding to the fluctu-

ation of ψ̄6 for the center particle (indicated by the red circle) and two other particles

of index 119 and 137 (blue circles). Here the particles surrounding the center particle,

and also particles of index 119 and 137, are chosen within the radial distance of 1.5d

from them (since particles in the first neighboring shell lie within 1.5d from a particular

particle). The vectors (magnified by two times) on the particle represent their displace-

ments in time 0.5d/v. Fig. 3.3(a) shows that the packing structure for the probe particle

is repeatedly breaking and more likely forming in a hexagonal shape which is quanti-

fied by ψ̄6. One can see that for the center particle, this fluctuation more likely occurs

in the timescale (∼ d/v) as the center particle needs to move one particle’s diameter
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Figure 3.2: Time series of ψ̄6(t) of some randomly chosen particles, as shown in the
lower-middle panel, is superposed to that of the probe particle for comparison. The unit
of time on the horizontal axis is d/v where d and v denotes, respectively, the diameter
of each particle and the constant speed applied to the system except the trapped probe
particle. One can see that the time period of one oscillation in the fluctuation of ψ̄6(t)

of the probe particle is found to be an order of unity in the unit of d/v.

(d) through breaking its first neighboring cage at the constant speed v. Within this

timescale, the surrounding medium will also be perturbed and this perturbation causes

a rearrangement of the packing structure around some other particles. For example, in

Fig. 3.3, particles of index 119 and 137 show that, along the plateau regions of ψ̄6(t),

that is, from 6 to 7.5 d/v for particles 119 and 137, their packing configuration is not

changing significantly. In this time regime, surrounding particles simply move parallel

to the constant velocity vector v applied to the system and the displacement vectors of

the surrounding particles are similar to each other. However, whenever the displacement

vectors of the surrounding particles become not in parallel, ψ̄6(t) starts to fluctuate with

large amplitude. Such large fluctuation starts from ∼ 8d/v for both the particles when

some nearby particles seem to get stuck and slow down as illustrated by the displacement

vectors. This shows that fluctuations in the magnitude of ψ̄6(t) manifest the dynami-

cal heterogeneity in the neighborhood of the corresponding particles. It should also be

noted that the timescale of the fluctuations in ψ̄6(t) for these particles looks similar to

that for the center particle.
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Figure 3.3: A series of snapshots of local configurations in the neighborhood of a
particle along the time evolution associated with ψ̄6(t). (a) the center particle, (b)
particle 119, and (c) particle 137. The vectors indicate the displacements of the cor-
responding particle in time 0.5d/v and the center particle and particles 119 and 137
are indicated by red and blue circles, respectively. In (b) and (c) ψ̄6(t) of the center
particle is also shown for comparison. In (b) particle 119 undergoes direct collision to

the center particle near the time 10 d/v, but in (c) particle 137 does not.

3.2 Wavelet analysis for the time series of ψ̄6

In order to quantitatively investigate the spatio-temporal behavior of the time variation

of ψ̄6(t), we employ continuous wavelet transform to ψ̄6(t) and focus on the frequency

component corresponding to the timescale of the perturbation by the probe particle.

A set of particles that contain the frequency component appearing in a certain time

duration along the time propagation can be considered as ones that respond to the

perturbation. Wavelet transform analysis involves a transformation from a time series

ψ̄6(t) with multiplication by a window function called a wavelet function. In brief,

this wavelet function operates along the time series with dilation and compression of the

support of the window function, and the wavelet transform quantifies the local matching

of the wavelet with the time series. If the wavelet matches well with the time series at

a specific scale and location, then a large transformed value is obtained. Otherwise a

small value is obtained. The transform is computed at various locations of the signal
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and for various scales of the wavelet, thus filling a two dimensional time-scale plane.

The continuous version of this transform is called continuous wavelet transform (CWT).

It is defined as[50]

CWTφ
ψ̄6

(τ, s) =
1√
s

∫
ψ̄6(t)φ(

t− τ
s

)dt, (3.1)

which is a function of two variables, τ and s, the translation and scale parameters,

respectively. φ(t) is called the wavelet function. Note that the scale parameter s has a

reciprocal relationship with frequency f , i.e., s = fb/f , where fb is the base frequency

of the wavelet function. Therefore we can rewrite Eq. 3.1 as a function of τ and f as

C̃WT
φ

ψ̄6
(τ, f) =

√
f

fb

∫
ψ̄6(t)φ

(f(t− τ)

fb

)
dt. (3.2)

For the wavelet function, in this thesis, we choose a modified version of the Gabor

wavelet defined as

φ(t) =
1√
w

(ei2πνt/w − e−πν2
)e−π(t/w)2

(3.3)

with width parameter w and frequency parameter ν. Note that, the original Gabor

wavelet[51] does not contain the second term in the brackets. We have discussed the

details about the modification in the Appendix B. Nevertheless, the width parameter w

controls the width of the region over which φ(t) is concentrated. The smaller the value of

w, the more φ(t) is confined to a smaller interval of the time axis. The value ν/w is the

base frequency for the Gabor wavelet, and hence the window size depends on the value of

the base frequency to be monitored. Note that there is always uncertainty between the

time and frequency resolution of the window function used in the wavelet analysis: the

wider (narrower) the window size, w, the better (worse) the resolution in frequency but

the worse (better) the resolution in time. Several ways have been proposed to find the

uncertainty bound, and the most common one is the product of the standard deviations

in the time and frequency domain. Among all kinds of window functions, the Gabor

wavelet is known to achieve the lowest bound of the uncertainity and obtain the best

analytical resolution in the time and frequency domain[51].

In the computation, we set ν = 1, w = d/v so that the timescale of the base frequency

fb corresponds to the timescale of the perturbation applied to the probe particle, i.e.,

fb = v/d = 0.07324/frame where v = 0.1875µm/frame is the flow velocity applied to

the system and d = 2.56 ± 0.04µm is the diameter of particles. In principle, w can

be determined irrespective of any value of fb, and, thus, as long as we increase the

value of ν, the width parameter w also increases (in order to keep fb(= ν/w) constant).

This implies that we could obtain higher frequency resolution but at the same time we

will lose the time resolution due to the filtering of larger w. Because of the reciprocal
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relationship between scale and frequency, the value of ν = 1 provides modest resolution

in both frequency and time in the wavelet transform[52].

The magnitude-scalogram of the Gabor wavelet transform for the probe particle is shown

in the two-dimensional time-frequency plane in Fig. 3.4 as evaluated from Eq. 3.2. In-

deed, in our calculation, we varied frequencies from 0.0078 to 0.5, the Nyquist frequency.

One can see that, with the above choice of ν and w, this scalogram has significant fre-

quency components around fb (corresponding to the yellowish bright regions). As a

reminder, the bond-orientational ordering in Figs. 3.2 and 3.3(a) in the vicinity of the

center particle appears and disappears repeatedly under the perturbation to the particle.

From the corresponding trajectory of ψ̄6(t) (Fig. 3.3(a)), the value of ψ̄6(t) is relatively

small < 0.5 and one particle seems to get stuck in front of the probe particle at these

time regimes. Likewise, the bright regions appear roughly in an “oscillatory” manner in

Fig. 3.4 and there exist some time regimes where the frequency components around fb

are absent (e.g., at time time 1, 5-6, 7.5, 9.5 d/v).

Particles whose C̃WT scalograms consist of such frequency components are expected

to be involved in cage breaking and formation dynamics on some timescale when those

components emerge. In order to evaluate the existence of such frequency components

we calculate the power of the wavelet transform at each time t, as defined as

P (t) =

∫ Nyquistfrequency

fb−σfb
A(f, t)df, (3.4)

where A(f, t) is defined as A(f, t) = |C̃WT
φ

ψ̄6
(t, f)| and σfb ≈ 0.03 is the amount of
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Figure 3.4: The C̃WT scalogram for the time series of bond-orientational structure
ψ̄6 of the probe particle. The color bar represents the magnitude of the Gabor wavelet

transform in a two-dimensional time-frequency plane.
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uncertainty for the frequency component fb. This uncertainty arises because of the

finite size of the window function and can be evaluated from the Fourier transform of

the Gabor wavelet[52]. Therefore the lower bound in the computation is fb − σfb . The

upper bound is the Nyquist frequency because in the C̃WT computation we do not see

any frequency component larger than 0.30.

Fig. 3.5 shows P (t) for colloidal particles at some time t. One can see that particles

surrounding the probe particle show relatively high power compared to particles far from

the probe particle. From the time evolution of distribution of power of particles, we also

notice that some particles simultaneously exhibit high power for some time duration.

In fact, near that duration the bond-orientational structure around those particles are

distorted and these particles are collectively involved in cage breaking and formation

dynamics through the response to the perturbation. Sometimes the particles in such a

high power fluctuation form in a line, sometimes they are scattered, sometimes they are

in a cluster including the probe particle.

In order to look into the spatial occurrence or organization of such transient high pow-

ered particles, we plot the spatial distribution of the maximum values in the power P

encountered at each position over the entire snapshots in Fig. 3.6(a). The high powered

particles are mostly located in front of the center particle with a forward radial pattern

that expands to the remote region from the center particle. The pattern observed here

is very similar to spatial fluctuation analysis of the same data in Ref. [28]. Fig. 3.6(b)

presents the spatial distribution of the averaged power P in which the average is taken

over all the temporal P values of particles visiting in a space-fixed cell during the total

observation time. This implies that even though some high powered particles appear

in the regions remote from the probe particle they are relatively fewer and particles

having high power mostly appear up to the third neighboring shell in front of the center
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Figure 3.5: P (t) for colloidal particles is plotted at several values of time t. The color
bar represents the total power in the wavelet transform. Brighter color corresponds to
higher power, therefore, contains the frequency components of interest, involving cage
breaking and formation dynamics. The (optically trapped) center particle is outlined

by the black circle.
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Figure 3.6: (a) Spatial distribution of the maximum values in the power P encoun-
tered at each position over the domain 12d × 12d with the probe particle located at
the center. Particles having high power are mostly located in the forepart of the probe
particle. (b) Spatial distribution of the averaged power P of particles shows that high
powered particles commonly occurred up to the third neighboring shell in front of the
center particle. For both computations, the cell size for spatial binning is chosen as

0.15d× 0.15d.

particle. The results found in Fig. 3.6 shows the importance of the wavelet analysis,

since such spatial pattern cannot be captured by the time averaged spatial correlation

of ψ̄6 (Fig. C.1 in the Appendix C).

It may be obvious to have high powered particles in the first neighboring shell of the

probe particle, since those particles always collide with the probe particle. However, it

is far from trivial how, when, and where high powered particles emerge in the region

remote from the probe particle, which result in a cage breaking and formation in that

region.

3.3 FTLE/LCSs and dynamics of cage breaking and for-

mation

In this section we analyze FTLE-based Lagrangian Coherent Structures (LCSs) to look

into the dynamical foundation of the time dependent cage breaking and formation,

and the question of why such spatial time-dependent organization of cage breaking and

formation dynamics extends into the remote region.
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3.3.1 FTLE/LCSs as separatrices

Here we consider the square domain (12d × 12d) containing the probe particle at the

center. For this square domain, the characteristic timescale of colloidal particles is

11d/v. Note that choosing the integration time larger than this will make the FTLE

ridges sharper and extend towards the dragging direction, i.e., top left direction. Fig.

3.7 demonstrates six consecutive snapshots of the FTLE field with the superposition of

colloidal particles along the time propagation. First, one can see that the FTLE/LCSs,
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Figure 3.7: Time evolution of the FTLE field with the superposition of colloidal
particles. At the initial time t = 0, green, cyan, and white particles are identified
corresponding to those in the right, and left of the FTLE/LCSs, and those sandwiched

by the FTLE/LCSs, respectively. See Text in section 3.3.1.



Chapter 3. Results and discussion 26

as forward FTLE ridges, exist in the forepart of the probe particle, which indicates that

particles traveling and approaching to the probe particle experience some dynamical het-

erogeneity or frustration. In our investigation at some time instants, we have found that

the most unstable directions turned out to be approximately normal to the FTLE/LCSs

indicating repelling type LCSs (Fig. D.1 in the Appendix A). The most striking conse-

quence of the application of the FTLE/LCSs is that they divide the colloidal flow into

distinct regions of different dynamical characteristics. In this figure, we initially assigned

a set of sample particles colored by cyan, green and white corresponding to their posi-

tions relative to the FTLE/LCSs at time t = 0 (the origin of time is arbitrarily chosen)

and look into their advection with the time evolution of the FTLE/LCSs. Cyan and

green particles are identified according to the left and right of the FTLE/LCSs, respec-

tively, and white particles are inside the foliation of the FTLE/LCSs. The gray particles

are all the rest at t = 0 and also particles that flow into the domain. By monitoring the

time evolution of the FTLE field with the superposition of the colloid (colored) particles,

one can immediately see that by the time interval 11d/v white particles lag while green

and blue particles move forward by leaving the white particles and the probe particle.

This occurs because the motions of the white particles are retarded and get caught in

the surrounding FTLE ridges for some time duration when they are traveling in front of

the probe particle. In particular, one white particle, outlined by a bold white circle, in

the vicinity of the probe particle becomes significantly stuck from 4.4d/v to 8.8d/v and

gets lagged. This affects the motion of the other white particles coming behind.

3.3.2 FTLE/LCSs break particles arrangements in colloidal fluids

From the characteristics of the FTLE/LCSs, one can expect that the presence of the

FTLE/LCSs in the vicinity of a particle causes a significant distortion of the cage near

the corresponding particle. It is because particles on either side of the ridges will be

separated from each other, resulting in the breaking of ordered structures. Therefore, to

establish a relationship between the FTLE/LCSs and the dynamics of cage breaking and

formation discussed in Sec. 3.1 and 3.2, we compute the FTLE field for the integration

time corresponding to the timescale of the perturbation. This timescale is the same as

that used in the wavelet analysis. Fig. 3.8 shows representative samples of the FTLE

field with the superposition of colloidal particles indicated by gray circles. The size of

the filled white circles inside the gray circles represents their power evaluated in the

wavelet transform. From the time evolution of the FTLE field superimposed the power

of colloidal particles, we notice that high-powered particles are more likely located near

the FTLE ridges as expected, even when the particles are located far from the center

particle.
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Figure 3.8: Samples of the FTLE field (T = d/v) superimposed colloidal particles
(gray circle). See Text in section 3.3.2.

This result indicates that if the FTLE/LCSs penetrate the surrounding structure of

high powered particles, their surrounding structure will be broken during the integration

timescale, i.e., the timescale of the perturbation. In order to establish this relationship

between the FTLE/LCSs and cage breaking and formation evaluated by the power in

wavelet transform, we investigate the correlation between the maximum values in the

FTLE field surrounding the particles and powers of the particles. Fig. 3.9 presents a

2D histogram with respect to these two quantities. The correlation coefficient is found

to be 0.667 with the standard error (s.e.) ±0.001, which tells us that the concept of

FTLE/LCSs plays a pivotal role for uncovering the mechanism of cage breaking and

formation dynamics.

Fig. 3.10 also shows a 2D histogram for the same quantity as in Fig. 3.9, but in this

case the integration time for the FTLE field is taken for 10 times longer than that in

Fig. 3.9. It is found that, for this integration time, the correlation coefficient decreases

to 0.49 compared to 0.667.
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Figure 3.9: 2D histogram with respect to the maximum values of FTLE field sur-
rounding individual particles and powers of the particles in the wavelet transform. The
color bar gives the number of points in each bin. Large population in the plot indicates
the prevalent occurrence of no cage distortion at low FTLE field in the remote region.

See Text in section 3.3.2.
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Figure 3.10: 2D histogram for the same quantity as in Fig. 3.9 with 10 times longer
integration time than the timescale of the perturbation. The correlation coefficient is

0.490± 0.001s.e.
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Conclusion and outlook

In this thesis, we have presented a modified bond-orientational order parameter ψ̄6

which is free from discontinuities that cause difficulties with the standard ψ6 parameter.

This modified order parameter allows us to elucidate the spatio-temporal behavior of

packing distortion associated with a particle’s rearrangement. The key caution is that

the value of the order parameter does not necessarily reflect the behavior of the particles

in ordered/disordered region for the packing fraction of the system we studied. Rather,

the time variation of the ψ̄6 parameter does. We found that particles that undergo

packing distortion on the timescale of a perturbation contain high power in the wavelet

analysis. The resulting cage breaking and formation dynamics can be considered a

consequence of the system’s mechanical response to the perturbation, which occurs in a

highly anisotropic fashion (as seen in Fig. 3.6(a)). It should be noted that high-powered

particles do not necessarily mean that they have been uncaged and are actively mobile at

the same time, particularly in the remote region. Indeed, the presence of “dislocated”

particle pairs[43] in this region trigger a cage breaking and formation surrounding a

particle even though that particle does not move actively.

We have investigated the spatial occurrence of cage breaking dynamics in terms of FTLE-

based LCSs. It was shown that FTLE/LCSs can probe the spatially heterogeneous

dynamics in the colloidal system. In particular, particles whose motion is highly dis-

turbed by the perturbation can be rationalized in terms of FTLE/LCSs. In this thesis

FTLE/LCSs were elucidated by the location of high amplitude in the FTLE field. How-

ever, the elucidation of characteristics of flows nearby the FTLE/LCSs is also crucial.

One can intuitively think that in a system of constant dragging perturbation, the fluid

parcel will be deformed in a way such that some particle will be stuck in front of the

dragged particle and the nearby particles on either side will move passing through the

stuck region, which may result in a sheared type deformation. However, our preliminary

29
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investigation, as exemplified in Fig. D.1 in the Appendix A, indicates that the most

stretched directions of the deformation tensor are normal to the FTLE ridges, indicat-

ing repelling type LCSs. FTLE ridges that are extracted for backward time propagation

provide approximations of attracting LCSs (in forward time propagation), to which

nearby particles are attracted. Such attracting LCSs can also be of great importance

in understanding the formation of a free volume and trailing wake behind the probe

particle under the variation of dragging speed and/or Péclet number (the ratio of the

shear rate of a flow to the particle’s diffusion rate).

We expect that FTLE/LCSs may be a useful tool to quantify the dynamical correlation

length in spatially heterogeneous dynamics near the jamming transition, and can probe

the microscopic origin of the jamming transition. Since it is difficult to investigate

directly the dynamics near the density regime where the jamming transition occurs, it

is vital to develop a method to extrapolate results of our analysis in the lower density

regime to those near the jamming transition. To extrapolate the results from lower

density regime to a higher density regime, an appropriate choice of integration time

may be important. For example, in a higher density regime, deformation timescales

of fluid parcels are expected to be longer as the packing fraction increases. In a lower

density regime, deformation timescales can be longer or shorter depending on the Péclet

number. At lower packing fraction the hydrodynamic interaction dominates particle

motions instead of direct collisions among particles. Therefore, the dynamics of the

particles can be different depending on the hydrodynamic interaction and the system

settings. In order to investigate them, a method to determine an appropriate integration

time is needed.

Another possible application of FTLE/LCSs would be for understanding the dynamical

behavior of particles and phase transition associated with rheological properties, such as

shear thinning, Newtonian flow and shear thickening of colloidal fluids. Application to

shear thickening is expected to shed light on the lubrication hydrodynamics, formation

of hydroclusters in the shear thickening regime [53, 54], and microviscosity in the field

of active microrheology where the rheological properties are probed by single particle

motion[27].

Question is whether the analysis that we have studied in colloidal fluids can contribute

to a biological system. An experimental study within a confluent monolayer of epithelial

cells[2] reports the collective migration of epithelial cells depending on the presence of

their neighbors. It is found that this collective migration slows as cell density increases.

This observation provide an intriguing analogy to the dynamic heterogeneity in a system

composed of many particles as they become more crowded. We expect that, our analysis

can provide a deep insight into the understanding of heterogeneous dynamics of different
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subcellular region, and for example, collective cell migration in response to the leader

cells (a sort of stimuli), in a confluent epithelial cell sheet.



Appendix A

Construction of the flow map

To construct the flow map Ft0+T
t0

(x0), we use instantaneous tracking of colloid particle

positions from the experimental data. Here the instantaneous particle tracking results

are used to estimate the small time step flow maps, Fti+∆t
ti

, over the inter-frame time

∆t. By composing a number of small time step flow maps, we are able to achieve more

accurate approximation of the total flow map Ft0+T
t0

[42, 49], which can be written as

Ft0+T
t0

= Ft0+T
t0+(k−1)∆t ◦ F

t0+(k−1)∆t
t0+(k−2)∆t ◦ · · · ◦ Ft0+2∆t

t0+∆t ◦ Ft0+∆t
t0

(A.1)

where T = k∆t and the symbol “◦” denote the function composition. Because the

flow maps are needed to compute on a discrete grid of points, z0, an interpolation is

necessary to compile them to obtain Ft0+T
t0

. That is, we consider a small time step flow

map Fti+∆t
ti

and the same flow map but restricted to z0, i.e, Fti+∆t
ti

|z0 . Applying the

interpolation, I, on the flow map Fti+∆t
ti

|z0 , we obtain an interpolated flow map IFti+∆t
ti

that approximates Fti+∆t
ti

. Fig. A.1 shows an illustration to construct an interpolated

small time step flow maps over the time between frames at t0 and t0 + ∆t. Evaluating

small time step interpolated flow maps consecutively allows for the total flow map to be

approximated. Therefore, an approximation to the total flow map in Eq. A.1 can be

obtained by

F̃t0+T
t0

(z0) = IFt0+k∆t
t0+(k−1)∆t ◦ IF

t0+(k−1)∆t
t0+(k−2)∆t ◦ · · · ◦ IF

t0+2∆t
t0+∆t ◦ IF

t0+∆t
t0

(z0)

≈ Ft0+T
t0

(z0). (A.2)

As the trajectories of the particles are given on a scattered position they must be in-

terpolated onto the points coincident with the compiled flow map at a given time step.

To this end, we use the radial basis function (RBF) interpolation scheme accompanied

with a multiquadric function as a basis function[55].
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IF
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Figure A.1: Figure shows the construction of the interpolated small time step flow
maps over two adjacent inter-frame time ∆t. zi,j is the tracking of particle i at time tj
and Ft1

t0 is a small time step flow map over [t0, t0 + T ]. The interpolation operator I
acts on Ft1

t0 resulting the interpolated flow map IFt1
t0 which approximates Ft1

t0 .

Once the flow map is obtained, it is necessary to compute the Jacobian of the flow map

Ft0+∆t
t0

to obtain the Cauchy-Green deformation tensor. This Jacobian of the flow map

can be obtained by applying the chain rule to Eq. A.1 resulting the product of the

Jacobians of the small time step flow maps, which yields

DFt0+T
t0

= DFt0+T
t0+(k−1)∆t ×DF

t0+(k−1)∆t
t0+(k−2)∆t × · · · ×DFt0+2∆t

t0+∆t ×DFt0+∆t
t0

(A.3)

where D is the Jacobian.



Appendix B

Modification of the Gabor wavelet

In general, mother wavelet (denoted by φ(t)) in the wavelet transform is required to

satisfy the following conditions.[50]

1. The finiteness of an integral of the squared magnitude of φ(t):

E =

∫ ∞
−∞
|φ(t)|2dt <∞. (B.1)

2. The zero mean condition: ∫ ∞
−∞

φ(t)dt = 0. (B.2)

This condition is called the admissibility condition. Unless the admissibility con-

dition holds, the results of the wavelet transform using such mother wavelet are

different with each other between two time series x(t) and x(t) + c (c: a constant

value), that is, only the difference is the baseline of the measurement. This is

unfavorable because the underlying oscillatory timescales should not depend on

constant baseline of the time series.

The original version of the Gabor wavelet [51] (also referred as complex Morlet wavelet)

defined by

φ(t) =
1√
w
ei2πνt/we−π(t/w)2

(B.3)

(w: width parameter, ν: frequency parameter) does not satisfy the admissibility condi-

tion: ∫ ∞
−∞

1√
w
ei2πνt/we−π(t/w)2

dt =
√
we−πν

2 6= 0. (B.4)
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In order to meet the admissibility condition the following modification is applied to Eq.

B.3 [50]:

φ̃(t) =
1√
w

(ei2πνt/w − e−πν2
)e−π(t/w)2

, (B.5)

which yields ∫ ∞
−∞

1√
w

(ei2πνt/w − e−πν2
)e−π(t/w)2

dt = 0. (B.6)

The second term in the bracket of Eq. B.5 corrects for the non-zero mean of the complex

sinusoid of the first term.



Appendix C

Time averaged spatial-correlation

of ψ̄6

We have introduced the wavelet analysis in Sec. IIIB to quantify the spatio-temporal

behavior of colloidal particles under the perturbation. One might wonder whether the

spatial behavior elucidated in terms of wavelet analysis can be simply observed in the

time averaged spatial correlation of ψ̄6, gψ̄6
(r). Here we show that gψ̄6

(r) does not have

any significant spatial correlation. This implies that the time averaged spatial correlation

cannot capture the underlying transient structure. The time averaged spatial-correlation

of ψ̄6 is represented by

gψ̄6
(r) =

1

T

∫
dt
∑
i

δ (r− (ri(t)− rc))(
ψ̄c6(t; rc)− 〈ψ̄c6〉

) (
ψ̄i6(t; ri(t))− 〈ψ̄6〉(ri(t))

)
,

where

〈ψ̄c6〉 =
1

T

∫
ψ̄c6(t; rc)dt,

〈ψ̄6〉(r) =

∫
dt
∑

i ψ̄
i
6(t; ri(t))δ(r− ri(t))∫

dt
∑

i δ(r− ri(t))
,

and c and T denote the center particle that is optically trapped in the colloidal assembly

and the entire time length, respectively. Fig. C.1(b) shows gψ̄6
(r) larger than the

standard deviation of the correlation that is estimated by the usual formula
1−gψ̄6

(r)2

√
T−1

with T − 1 degrees of freedom[56]. This shows that there is no significant correlation in

ψ̄6 after averaging over the entire time T , except the center particle itself.
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Figure C.1: (a)The time averaged spatial correlation of ψ̄6. (b) the time averaged
spatial correlation of ψ̄6 larger than the standard error in correlation showing that the
time averaged spatial correlation of ψ̄6 does not have a significant statistical correlation

except the center particle. The color grade indicates the strength of correlation.



Appendix D

Indication of repelling LCSs

Fig. D.1 shows a representative snapshot of LCSs at a certain time instant. One can

see that most of the maximal stretching directions of the deformation tensor indicated

by white arrows appear normal to the FTLE ridges, indicating that these FTLE/LCSs

are classified by repelling LCSs. Indeed nearby particles of the ridges are found to be

repelled from each other as a response to the perturbation attributed from the center

particle. Systematic analyses on the prevalence of repelling LCSs and timescale of the

persistence of the LCSs will be reported elsewhere.
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Figure D.1: A representative snapshot of the FTLE ridges at a certain time instant.
The white arrows denote maximal stretching directions of the deformation tensor.
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