<table>
<thead>
<tr>
<th>Title</th>
<th>IWASAWA THEORY OF DE RHAM (phi, Gamma)-MODULES OVER THE ROBBA RING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakamura, Kentaro</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the institute of mathematics of jussieu, 13(1): 65-118</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-01</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/57802</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>JIMJ_13_65-.pdf</td>
</tr>
</tbody>
</table>

Iwasawa theory of de Rham (φ, Γ)-modules over the Robba ring

Kentaro Nakamura

DOI: 10.1017/S1474748013000078, Published online: 27 February 2013

Link to this article: http://journals.cambridge.org/abstract_S1474748013000078

How to cite this article:

Request Permissions: Click here
IWASAWA THEORY OF DE RHAM (φ, Γ)-MODULES OVER THE ROBBA RING

KENTARO NAKAMURA
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
(kentaro@math.sci.hokudai.ac.jp)
(Received 4 April 2012; revised 6 February 2013; accepted 6 February 2013; first published online 27 February 2013)

Abstract The aim of this article is to study the Bloch–Kato exponential map and the Perrin-Riou big exponential map purely in terms of (φ, Γ)-modules over the Robba ring. We first generalize the definition of the Bloch–Kato exponential map for all the (φ, Γ)-modules without using Fontaine’s rings B_{crys}, B_{dR}^+ of p-adic periods, and then generalize the construction of the Perrin-Riou big exponential map for all the de Rham (φ, Γ)-modules and prove that this map interpolates our Bloch–Kato exponential map and the dual exponential map. Finally, we prove a theorem concerning the determinant of our big exponential map, which is a generalization of theorem $\delta(V)$ of Perrin-Riou. The key ingredients for our study are Pottharst’s theory of the analytic Iwasawa cohomology and Berger’s construction of p-adic differential equations associated to de Rham (φ, Γ)-modules.

Keywords: p-adic Hodge theory; (φ, Γ)-module; B-pair

2010 Mathematics subject classification: Primary 11F80
Secondary 11F85; 11S25

1. Introduction

1.1. Introduction

Let p be a prime number, K a finite extension of \mathbb{Q}_p, and G_K the absolute Galois group of K. Let B_{crys}, $B_{\epsilon} := B_{\text{crys}}^{\epsilon-1}$, B_{dR}^+, and B_{dR} be Fontaine’s rings of p-adic periods [14]. By the results of Fontaine [13], Cherbonnier and Colmez [8] and Kedlaya [22], the category of p-adic representations of G_K is naturally embedded in the category of (φ, Γ_K)-modules over the Robba ring $B_{\text{rig},K}^\dagger$. The (φ, Γ)-modules corresponding to p-adic representations are called étale (φ, Γ)-modules.

The aim of this article is to study the Bloch–Kato exponential map and the Perrin-Riou big exponential map in the framework of (φ, Γ)-modules. In particular, we generalize the Perrin-Riou big exponential map to all the de Rham (φ, Γ)-modules.

1.2. The Bloch–Kato exponential map

For a p-adic representation V of G_K, Bloch and Kato [7] defined a \mathbb{Q}_p-linear map

$$\exp_{K,V} := \delta_{1,V} : D_{dR}^K(V) \to H^1(K, V),$$
where we put $D^K_{dR}(V) := (B_{dR} \otimes_{\mathbb{Q}_p} V)^{G_K}$, as the first connecting homomorphism of the long exact sequence

$$0 \to H^0(K, V) \to H^0(K, B_e \otimes_{\mathbb{Q}_p} V) \oplus H^0(K, B^+_{dR} \otimes_{\mathbb{Q}_p} V) \to H^0(K, B_{dR} \otimes_{\mathbb{Q}_p} V)$$
$$\delta_1, V \to H^1(K, V) \to H^1(K, B_e \otimes_{\mathbb{Q}_p} V) \oplus H^1(K, B^+_{dR} \otimes_{\mathbb{Q}_p} V) \to H^1(K, B_{dR} \otimes_{\mathbb{Q}_p} V)$$
$$\delta_2, V \to H^2(K, V) \to H^2(K, B_e \otimes_{\mathbb{Q}_p} V) \to 0$$

associated to the short exact sequence obtained by tensoring V with the so-called Bloch–Kato fundamental exact sequence

$$0 \to \mathbb{Q}_p \xrightarrow{x \mapsto (x,x)} B_e \oplus B^+_{dR} \xrightarrow{\delta} B_{dR} \to 0.$$

When V is a de Rham representation, Kato [18] defined the dual exponential map

$$\exp^*_{K, V^\vee(1)} : H^1(K, V) \to D^K_{dR}(V)$$

using Tate’s pairing $\cup : H^1(K, V) \times H^1(K, V^\vee(1)) \to \mathbb{Q}_p$ and the canonical pairing $D^K_{dR}(V) \times D^K_{dR}(V^\vee(1)) \to K$. These maps describe the mysterious relationship between Galois objects and differential objects. In fact, when $V = \mathbb{Q}_p(1)$ or V is the p-adic Tate module of an elliptic curve over \mathbb{Q}, Kato [18, 20] proved that the values of $\exp^*_{\mathbb{Q}_p(\zeta_{p^n}), V^\vee(1-k)}$ for suitable $k \leq 0$ at some special arithmetic elements (i.e., cyclotomic units or Kato’s elements obtained from his Euler system) can be described by using the special values of the L-functions associated to cyclotomic twists of V.

In this article, we first generalize the above long exact sequence and the definition of the Bloch–Kato exponential and the dual exponential maps for (φ, Γ_K)-modules over $B_{\text{rig}, K}$.

Fix a set $\{\zeta_{p^n}\}_{n \geq 1} \subseteq K$ such that $\zeta_p \neq 1$, $\zeta_p = 1$, and $\zeta_{p^{n+1}} = \zeta_{p^n}$ for each $n \geq 1$. Set $K_n := K(\zeta_{p^n})$, $K_\infty := \bigcup_n K_n$ and $\Gamma_K := \text{Gal}(K_\infty/K)$. Let $t := \log(1 + T) \in B^1_{\text{rig}, K}$ be the period of $\mathbb{Q}_p(1)$ determined by $\{\zeta_{p^n}\}_{n \geq 1}$ (see §2.1 for the precise definition).

Let D be a (φ, Γ_K)-module over $B^1_{\text{rig}, K}$. Taking the ‘stalk at $\zeta_{p^n} - 1$’ ($n \geq 1$), we can define $K_\infty[[t]] := \bigcup_n K_n[[t]]$-modules $D_{\text{dif}}^+(D)$ and $D_{\text{dif}}(D) := D_{\text{dif}}^+(D)[1/t]$ with semi-linear $\Gamma_K := \text{Gal}(K_\infty/K)$-action. Using the φ, Γ_K-actions, we can define cohomologies

$$H^q(K, D), \quad H^q(K, D[1/t]), \quad H^q(K, D^+_{\text{dif}}(D)) \quad \text{and} \quad H^q(K, D_{\text{dif}}(D))$$

which correspond to

$$H^q(K, V), \quad H^q(K, B_e \otimes_{\mathbb{Q}_p} V), \quad H^q(K, B^+_{dR} \otimes_{\mathbb{Q}_p} V) \quad \text{and} \quad H^q(K, B_{dR} \otimes_{\mathbb{Q}_p} V),$$

respectively.

Our first result is the following theorem (more precisely, this is a combination of Theorems 2.8 and 2.21), which is the (φ, Γ)-module version of the above long exact sequence and its comparison with that of the étale case.
Theorem 1.1. (1) We have the following functorial exact sequence:
\[
0 \to H^0(K, D) \to H^0(K, D[1/i]) \oplus H^0(K, D_{\text{dif}}^+) \to H^1(K, D_{\text{dif}}(D))
\]
\[
\delta_{1,D} : H^1(K, D) \to H^1(K, D[1/i]) \oplus H^1(K, D_{\text{dif}}^+) \to H^1(K, D_{\text{dif}}(D))
\]
\[
\delta_{2,D} : H^2(K, D) \to H^2(K, D[1/i]) \to 0.
\]
(2) Let \(D(V)\) be the \((\varphi, \Gamma_K)\)-module over \(B^+_{\text{rig},K}\) associated to \(V\). Then, we have the following functorial isomorphisms.
(i) \(H^q(K, V) \cong H^q(K, D(V))\),
(ii) \(H^q(K, B_c \otimes_{\mathbb{Q}_p} V) \cong H^q(K, D(V)[1/i])\),
(iii) \(H^q(K, B_{\text{dif}}^+ \otimes_{\mathbb{Q}_p} V) \cong H^q(K, D_{\text{dif}}^+(D(V)))\)
for each \(q \geq 0\), and these comparison isomorphisms induce an isomorphism from the long exact sequence associated to \(V\) to that associated to \(D(V)\).

Remark 1.2. The isomorphism of (i) is due to Liu [23], and that of (iii) is due to Fontaine [15].

Remark 1.3. We construct this long exact sequence purely in terms of \((\varphi, \Gamma)\)-modules without using Fontaine’s rings \(B_{\text{crys}}, B^+_{\text{dif}}\) and \(B_{\text{dR}}\). As will be shown in this article, this fact enables us to reprove some results concerning Bloch–Kato or Perrin-Riou exponential maps more directly.

Remark 1.4. In fact, in § 2.5, we prove the above comparison result (2) in a more general setting. In [5], Berger defined a notion of \(B\)-pairs using \(B_c, B^+_{\text{dif}}\) and \(B_{\text{dR}}\), whose category naturally contains the category of \(p\)-adic representations of \(G_K\), and established an equivalence of categories between the category of \(B\)-pairs and that of \((\varphi, \Gamma_K)\)-modules over \(B^+_{\text{rig},K}\). In § 2.5, we prove the comparison isomorphisms for all the \(B\)-pairs (see Theorem 2.21).

As in the case of \(p\)-adic representations, we define the Bloch–Kato exponential map of \(D\) as the connecting homomorphism of the above exact sequence
\[
\exp_{K,D} := \delta_{1,D} : D_{\text{dR}}^K(D) \to H^1(K, D),
\]
where we put \(D_{\text{dR}}^K(D) := H^0(K, D_{\text{dif}}(D))\). When \(D\) is a de Rham \((\varphi, \Gamma)\)-module, then we also define the dual exponential map
\[
\exp^*_{K,D^\vee} : H^1(K, D) \to D_{\text{dR}}^K(D)
\]
in the same way as in the case of \(p\)-adic representations.

1.3. The Perrin-Riou big exponential map
To construct a \(p\)-adic \(L\)-function for a \(p\)-adic Galois representation \(V\) coming from a motive, it is crucial to \(p\)-adically interpolate the special values of the complex \(L\)-functions associated to cyclotomic twists of \(V\). Since the Bloch–Kato exponential map and the dual exponential map relate some arithmetic elements in Galois cohomology
groups with the special values of the \(L\)-functions, it is crucial to \(p\)-adically interpolate the Bloch–Kato exponential map and the dual exponential map for the construction of the \(p\)-adic \(L\)-function and for relating the \(p\)-adic \(L\)-function with the Selmer group.

Let \(\Lambda := \mathbb{Z}_p[[\Gamma_K]]\) be the Iwasawa algebra of \(\Gamma_K\), and let \(\Lambda_\infty\) be the \(\mathbb{Q}_p\)-valued distribution algebra of \(\Gamma_K\) (see §3.1 for the precise definition). For a \(p\)-adic representation \(V\) of \(G_K\), Perrin-Riou [28] defined a \(\Lambda\)-module

\[
\mathbf{H}^q_{Iw}(K, V) := \left(\lim_{\rightarrow n} \mathbf{H}^q(K_n, T) \right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p,
\]
called the Iwasawa cohomology of \(V\), where \(T\) is a \(G_K\)-stable \(\mathbb{Z}_p\)-lattice of \(V\) and the transition map is the corestriction map. This \(\Lambda\)-module \(p\)-adically interpolates \(\mathbf{H}^q(L, V(k))\) for any \(L = K, K_n\) and \(k \in \mathbb{Z}\), i.e., we have a natural projection map

\[
\text{pr}_{L, V(k)} : \mathbf{H}^q_{Iw}(K, V) \to H^q(L, V(k))
\]
for each \(L\) and \(k\). When \(K\) is unramified over \(\mathbb{Q}_p\) and \(V\) is a crystalline representation of \(G_K\), Perrin-Riou [29] constructed a system of functorial \(\Lambda_\infty\)-morphisms

\[
\Omega_{V, h} : (\Lambda_\infty \otimes_{\mathbb{Q}_p} \mathbf{D}_{\text{crys}}^K(V))^\Delta = 0 \to \Lambda_\infty \otimes_A (\mathbf{H}^1_{Iw}(K, V) / \mathbf{H}^1_{Iw}(K, V)_{A\text{-torsion}})
\]
for each \(h \geq 1\) such that \(\text{Fil}^{-h} \mathbf{D}_{\text{dR}}^K(V) = \mathbf{D}_{\text{dR}}^K(V)\), and proved that this interpolates \(\exp_{L, V(k)}\) and \(\exp_{L, V(k+1)}\) for any \(L = K, K_n\) and \(k\) for suitable \(h\). Here, the source of the map \(\Omega_{V, h}\) is an \(\Lambda_\infty\)-module which \(p\)-adically interpolates \(\mathbf{D}_{\text{dR}}^L(V(k))\) for any \(L\) and \(k\). This map \(\Omega_{V, h}\) is the most important ingredient for her study of \(p\)-adic \(L\)-functions [30].

The main purpose of this article is to generalize the map \(\Omega_{V, h}\) to all the de Rham \((\varphi, \Gamma)\)-modules. For this generalization, the following two notions are essential:

1. Pottharst’s theory of the analytic Iwasawa cohomology,
2. Berger’s construction of \(p\)-adic differential equations associated to de Rham \((\varphi, \Gamma)\)-modules.

As for (1), for each \((\varphi, \Gamma_K)\)-module \(D\) over \(\mathbf{B}_{\text{rig}, K}^+\), Pottharst [32] defined a \(\Lambda_\infty\)-module

\[
\mathbf{H}^q_{Iw}(K, D)
\]
called the analytic Iwasawa cohomology as a generalization of the Iwasawa cohomology of \(p\)-adic representations. In fact, he proved that we have a functorial \(\Lambda_\infty\)-isomorphism

\[
\mathbf{H}^q_{Iw}(K, D(V)) \xrightarrow{\sim} \Lambda_\infty \otimes_A \mathbf{H}^q_{Iw}(K, V)
\]
for each \(p\)-adic representation \(V\).

As for (2), let \(D\) be a de Rham \((\varphi, \Gamma)\)-module. In order to interpolate \(\mathbf{D}_{\text{dR}}^L(D(k))\), we need to generalize the \(\Lambda_\infty\)-module \(\Lambda_\infty \otimes_{\mathbb{Q}_p} \mathbf{D}_{\text{crys}}^K(V)\) for the de Rham case. Our idea is to use Berger’s \(p\)-adic differential equation \(\mathbf{N}_{\text{rig}}(D)\). Let \(\mathbf{V}_0 := \frac{\log(y)}{\log(x)} \in \Lambda_\infty\), where \(y \in \Gamma_K\) is a non-torsion element. For each \(i \in \mathbb{Z}\), we define \(\mathbf{V}_i := \mathbf{V}_0 - i \in \Lambda_\infty\). Let \(\chi : G_K \to \mathbb{Z}_p^\times\) be the \(p\)-adic cyclotomic character. \(\mathbf{V}_0\) acts on \(D\) as a differential operator and acts on \(\mathbf{B}_{\text{rig}, \mathbb{Q}_p}^+\) by \(i(1 + T) \frac{d}{dT}\).
In [3, 6], for a de Rham (φ, Γ_K)-module D over $B_{\text{rig}, K}^\dagger$, Berger defined a (φ, Γ_K)-submodule $N_{\text{rig}}(D) \subseteq D[1/t]$ which satisfies that $\nabla_0(N_{\text{rig}}(D)) \subseteq tN_{\text{rig}}(D)$. This condition enables us to define another better differential operator

$$\tilde{\delta} := \nabla_0 \otimes e_{-1} : N_{\text{rig}}(D) \to N_{\text{rig}}(D(-1)).$$

The map $\tilde{\delta}$ naturally induces a \mathbb{Q}_p-linear map

$$\tilde{\delta} : H^1_{\text{lw}}(K, N_{\text{rig}}(D)) \to H^1_{\text{lw}}(K, N_{\text{rig}}(D(-1))).$$

In §3.2, we define a canonical projection map for each $L = K, K_n$,

$$T_L : H^1_{\text{lw}}(K, N_{\text{rig}}(D)) \to D^\dagger_{\text{dR}}(D).$$

The main theorem of this article is the following (Theorem 3.10), which concerns the existence of a Λ_∞-morphism $\text{Exp}_{D,h}$ for each $h \in \mathbb{Z}_{\geq 1}$ such that $\text{Fil}^{-h}D^K_{\text{dR}}(D) = D^K_{\text{dR}}(D)$ which interpolates $\exp_{L, V(\gamma)}$ for some $k \geq -(h - 1)$ and $\exp^*_{L, D^\vee/(1-k)}$ for any $k \leq -h$.

Theorem 1.5. Let D be a de Rham (φ, Γ_K)-module over $B_{\text{rig}, K}^\dagger$. Let $h \in \mathbb{Z}_{\geq 1}$ such that $\text{Fil}^{-h}D^K_{\text{dR}}(D) = D^K_{\text{dR}}(D)$. Then there exists a functorial Λ_∞-linear map

$$\text{Exp}_{D,h} : H^1_{\text{lw}}(K, N_{\text{rig}}(D)) \to H^1_{\text{lw}}(K, D)$$

such that, for any $x \in H^1_{\text{lw}}(K, N_{\text{rig}}(D))$,

1. if $k \geq 1$ and there exists $x_k \in H^1(K, N_{\text{rig}}(D(k)))$ such that $\tilde{\delta}^k(x_k) = x$ or if $0 \geq k \geq -(h - 1)$ and $x_k := \tilde{\delta}^{-k}(x)$, then

$$\text{pr}_{L, D(k)}(\text{Exp}_{D,h}(x)) = \frac{(-1)^{h+k-1}(h + k - 1)!|G_{L, \text{tor}}|}{p^m(L)} \exp_{L, D(k)}(T_L(x_k))$$

for each $L = K, K_n$,

2. if $-h \geq k$, then

$$\exp^*_{L, D^\vee/(1-k)}(\text{pr}_{L, D(k)}(\text{Exp}_{D,h}(x)) = \frac{|G_{L, \text{tor}}|}{(-h - k)!p^m(L)} T_L(\tilde{\delta}^{-k}(x))$$

for each $L = K, K_n$, where we put $m(L) := \min\{v_p(\log(\chi(\gamma))) | \gamma \in G_L\}$ for each $L = K, K_n$.

Remark 1.6. The definition of $\text{Exp}_{D,h}$ is strongly influenced by Berger’s work [4] concerning the reinterpretation of the Perrin-Riou map in terms of (φ, Γ)-modules. In particular, this theorem is a generalization of Theorem 2.10 of [4] to all the de Rham (φ, Γ_K)-modules over $B_{\text{rig}, K}^\dagger$ for any p-adic field K.

Remark 1.7. When K is unramified and V is crystalline, we can easily compare $\Lambda_\infty \otimes_{\mathbb{Q}_p} D^K_{\text{crys}}(V)$ with $H^1_{\text{lw}}(K, N_{\text{rig}}(D(V)))$. Hence, we can also compare $\Omega_{V,h}$ with $\text{Exp}_{D(V), h}$ by Berger’s work above. Therefore, the maps $\text{Exp}_{D,h}$ and their interpolation formulae can be regarded as a generalization of Perrin-Riou’s theorem (Theorem 3.2.3 of [29]) on the existence of $\Omega_{V,h}$ and their interpolation formulae to all the de Rham
(ϕ,Γ)-modules. Moreover, Pottharst [32] generalized Ω_{V,h} (precisely, the inverse of Ω_{V,h} called the big logarithm) to crystalline (ϕ,Γ)-modules using the theory of Wach modules. We can also compare Pottharst’s map with our map. See § 3.5 for more details about the comparison of our big exponential map with their ones in the crystalline case. On the other hand, Colmez (Theorem 7 of [11]) generalized the Perrin-Riou map to all the de Rham p-adic representations by a completely different method.

Remark 1.8. In fact, Perrin-Riou and Comez also proved the uniqueness of their big exponential maps using the theory of ‘tempered Iwasawa cohomologies’. If we can generalize the theory of tempered Iwasawa cohomologies for (ϕ,Γ)-modules, it will be possible to prove the uniqueness of our map Exp_{D,h}.

Finally, we prove a theorem (Theorem 3.21) concerning the determinant of Exp_{D,h}.

Theorem 1.9. (δ(D)) Let D be a de Rham (ϕ,Γ_K)-module over B^{\dagger}_{rig,K} of rank d with Hodge–Tate weights \{h_1, h_2, \ldots, h_d\}. For each h ≥ 1 such that Fil^{-h}D_{dR}^K(D) = D_{dR}^K(D), we have the following equality of principal fractional ideals of \Lambda_{\infty}:

\[
\frac{1}{\prod_{\ell=1}^{d} \prod_{j=0}^{h-h_i-1} \nabla_{h_i+j}} \det_{\Lambda_{\infty}}(H^1_{Iw}(K, N_{rig}(D))) \xrightarrow{\text{Exp}_{D,h}} H^1_{Iw}(K, D)) = \text{char}_{\Lambda_{\infty}}(H^2_{Iw}(K, D))(\text{char}_{\Lambda_{\infty}}H^2_{Iw}(K, N_{rig}(D)))^{-1}.
\]

Remark 1.10. This theorem is a generalization of theorem δ(V) which was conjectured by Perrin-Riou [29] and was proved as a consequence of her reciprocity law conjecture Rec(V) proved by Colmez [11], Kato, Kurihara and Tsuji [21], Benoî [2] and Berger [4]. Theorem δ(V) is very important in her works on p-adic L-functions. For example, it enables us to define the ‘inverse of Ω_{V,h}’, which is a generalization of the Coleman homomorphism and from which we can conjecturally define the p-adic L-functions associated to V. In the non-étale crystalline case, Pottharst also generalized theorem δ(V) and proved his theorem δ(D) for all the crystalline (ϕ,Γ)-modules D by reducing to the étale case using a slope filtration argument. In § 3.5, when D is crystalline, we show that our theorem δ(D) is equivalent to their theorems δ(V) or δ(D). Moreover, our proof does not use Rec(V) and is via a direct computation rather than by reducing to the étale case, and hence gives a new and more direct proof of their theorems.

Introducing non-étale (ϕ,Γ)-modules to Iwasawa theory was initiated by Pottharst in [31, 32], where he studied Iwasawa’s main conjecture for p-supersingular modular forms by generalizing the notion of Greenberg’s Selmer groups using his theories of the analytic Iwasawa cohomology and of the big logarithm. Our interpolation formula of the big exponential map might help in studying the values of the p-adic L-functions. Moreover, the author hopes that the results of this article will shed some light on Iwasawa theory or p-adic L-functions in the case of bad reductions. As another application of this article, in a forthcoming article [27], the author generalize Kato’s
local ε-conjecture [19], which is intimately related with Kato’s generalized Iwasawa main conjecture [18], for families of (φ, Γ)-modules over the Robba ring, and prove the conjecture in some special cases using the results of this article.

Notation

Let p be a prime number. Let K be a finite extension of \mathbb{Q}_p, K_0 the maximal unramified extension of \mathbb{Q}_p in K, \overline{K} a fixed algebraic closure of K, and \mathbb{C}_p the p-adic completion of \overline{K}. Let $v_p : \mathbb{C}_p^\times \to \mathbb{Q}$ be the valuation such that $v_p(p) = 1$. Let $\cup |_{\mathbb{C}_p} : \mathbb{C}_p^\times \to \mathbb{Q}_0$ be the p-adic absolute value such that $|p|_p := 1/p$. Let $G_K := \text{Gal}(\overline{K}/K)$ be the absolute Galois group of K. We fix a set $\{\zeta_{p^n}\}_{n \geq 1} \subseteq \overline{K}^\times$ such that $\zeta_{p^n} \not= 1$ and $\zeta_{p^n}^1 = 1$ and $\zeta_{p^n}^{p^{n+1}} = \zeta_{p^n}$ for any $n \geq 1$. We put $K_n := K(\zeta_{p^n})$ (with $n \geq 1$) and $K_\infty := \cup_{n \geq 1} K_n$. Let $\chi : G_K \to \mathbb{Z}_p^\times$ be the p-adic cyclotomic character (i.e., the character defined by the formula $g(\zeta_{p^n}) = \zeta_{p^n}^{\chi(g)}$ for any $n \geq 1$ and $g \in G_K$). We put $\Gamma_K := G_K/\text{Ker}(\chi) \cong \text{Gal}(K_\infty/K)$. Denote by the same letter $\chi : \Gamma_K \to \mathbb{Z}_p^\times$ the map which is naturally induced by $\chi : G_K \to \mathbb{Z}_p^\times$. Define the base letter $\epsilon_1 := (\zeta_{p^n})_{n \geq 1} \in \mathbb{Z}_p(1) := \lim_{\longleftarrow} \mu_{p^n}(\overline{K})$. Set $\epsilon_k := \epsilon_1^{p^k} \in \mathbb{Z}_p(k) := \mathbb{Z}_p(1)^{\otimes k}$ for each $k \in \mathbb{Z}$. In this article, we normalize the Hodge–Tate weight such that that of $\mathbb{Q}_p(1)$ is 1. For a finite group G, we denote by $|G|$ the order of G.

2. The Bloch–Kato exponential map for (φ, Γ)-modules

In this section, we define the Bloch–Kato exponential map and the dual exponential map for (φ, Γ)-modules over the Robba ring. In §2.1, we first recall the definition of (φ, Γ)-modules over the Robba ring. In §2.2, we recall the definitions of some cohomology theories associated to (φ, Γ)-modules. Subsection §2.3 is the main part of this section, where we generalize Bloch–Kato’s fundamental exact sequence to all the (φ, Γ)-modules, and then define the Bloch–Kato exponential map for them and give an explicit formula of this map. In §2.4, we define the dual exponential map explicitly and then prove that this is the adjoint of our Bloch–Kato exponential map. In §2.5, we compare our exponential map with the classical Bloch–Kato exponential map using the notion of B-pairs.

2.1. (φ, Γ)-modules over the Robba ring

In this subsection, we recall the definition of (φ, Γ)-modules over the Robba ring.

We first recall the definition of Fontaine and Berger rings of p-adic periods [14, 3]. Almost all rings in this paragraph are used only in §2.4, where we compare our exponential map with the classical Bloch–Kato exponential map. Define $\mathcal{E}^+ := \lim_{\longleftarrow} 0 \mathcal{O}_{\mathcal{C}_p}/p$, where all the transition maps are the pth power map. The ring \mathcal{E}^+ is equipped with a valuation $v_{\mathcal{E}^+}$ defined by $v_{\mathcal{E}^+}(x_n)_{n \geq 0} := \lim_{n \to \infty} p^n v_p(x_n)$, where $x_n \in \mathcal{O}_{\mathcal{C}_p}$ is a lift of $x_n \in \mathcal{O}_{\mathcal{C}_p}/p$. By this $v_{\mathcal{E}^+}$, \mathcal{E}^+ is a perfect complete valuation ring. We denote by $\mathcal{E} := \text{Frac}(\mathcal{E}^+)$ the fraction field of \mathcal{E}^+. We define $\varepsilon := (\zeta_{p^n})_{n \geq 0} \in \mathcal{E}^+$ for the fixed set $\{\zeta_{p^n}\}_{n \geq 0}$. We have $v_{\mathcal{E}^+}(\varepsilon - 1) = \frac{p^n}{p-1}$. Define $\mathcal{P} := (\mathcal{P}_n)_{n \geq 0} \in \mathcal{E}^+$ where $\mathcal{P}_0 := p$ and $\mathcal{P}_{n+1} = \mathcal{P}_n p$ for any $n \geq 0$. Let $\mathcal{A}^+ := W(\mathcal{E}^+), \mathcal{A} := W(\mathcal{E})$ be the rings of
Witt vectors of \tilde{E}^+ and \tilde{E}, respectively, which are naturally equipped with actions of φ and G_K. For each $a \in \tilde{E}$, denote by $[\tilde{a}] \in \tilde{A}$ the Teichmüller lift of a. We have a natural G_K-equivariant surjective ring homomorphism $\theta : \tilde{A}^+ \to O_{C_p}$ such that $\theta((\tilde{x}_n)_{n \geq 0}) := \lim_{n \to \infty} x_n^p$, where $x_n \in O_{C_p}$ is a lift of \tilde{x}_n. We have $\text{Ker}(\theta) = ([\tilde{p}] - p)$.

We define $B_{\text{dr}} := \lim_{n \to \infty} \sum_{n \geq 0} \tilde{A}^+[1/p]/(\text{Ker}(\theta)[1/p])^n$ and define an element $t := \log([\epsilon]) = \sum_{n \geq 1} (\frac{-1}{n})^{n-1}([\epsilon] - 1)^n \in B_{\text{dr}}$; then B_{dr} is a discrete valuation ring with the maximal ideal $t B_{\text{dr}}$ and with the residue field \mathbb{C}_p. We have $\varphi(t) = pt$ and $\gamma(t) = \chi(\gamma)t$ for any $\gamma \in \Gamma_K$. We put $B_{\text{dr}} := \text{Frac}(B_{\text{dr}}) = B_{\text{dr}}[1/t]$. These rings B_{dr} and B_{dr} are naturally equipped with G_K-actions. Next, we define \tilde{B}_{rig} and B_{max}. For each $0 \leq r \leq s < +\infty$ such that $r, s \in \mathbb{Q}$, we define a ring $\tilde{A}^{[r,s]}$ as the p-adic completion of $\tilde{A}^+[r/p, \lfloor r-1/p \rfloor]$.

We define $\tilde{B}^{[r,s]} := \tilde{A}^{[r,s]}[1/p], B_{\text{max}} := \tilde{B}^{[0, \lfloor r/p \rfloor]}, \tilde{B}^{[r,s]} := \bigcap_{s < +\infty} \tilde{B}^{[r,s]}$ and $B_{\text{rig}} := \bigcup_{s < +\infty} \tilde{B}^{[r,s]}$ and $\tilde{B}^{[r,s]} := \bigcap_{s < +\infty} \tilde{B}^{[r,s]}$. These rings are equipped with G_K-actions. The ring B_{max} is stable by φ, and φ induces isomorphisms $\tilde{B}^{[r,s]} \cong \tilde{B}^{[r,\lfloor r\rfloor]}, \tilde{B}^{[r,s]} \cong \tilde{B}^{[r,s]}$ and $\tilde{B}^{[r,s]} \cong \tilde{B}^{[r,s]}$. For each $n \geq 0$, we put $r_n := p^{n-1}(p-1) = 1/v_p(\xi_{p^n}^\prime - 1)$. Then, we have a natural injection $\tilde{B}^{[r_0, r_0)} \hookrightarrow B_{\text{dr}}$ and a G_K-equivariant injection $t_n : \tilde{B}^{[r_0, r_0]} \to B_{\text{rig}}$ for each $n \geq 0$. The element t is an element of \tilde{B}_{rig}, and since we have $\tilde{B}_{\text{rig}} \subseteq B_{\text{max}}$ and $\tilde{B}_{\text{rig}} \subseteq B_{\text{rig}}$, t is also contained in B_{max} and B_{rig}. We denote $B := B_{\text{max}}[1/t]$ and $B_e := B_{\text{max}}[1/t]^{\varphi = 1}$. One has $B_e = (\tilde{B}^{[r, s]}[1/t])^{\varphi = 1}$ by Lemma 1.1.7 of [5].

We next recall the definition of the Robba ring $B^{[r,s]}_{\text{rig}} \subseteq \tilde{B}_{\text{rig}}$. See [3] for more details.

We set $T := [\epsilon] - 1 \in \tilde{A}^+$. We first assume that $K = F$ is unramified over \mathbb{Q}_p. For each $r \in \mathbb{Q}_{>0}$, we define a subring $B^{[r,s]}_{\text{rig}}$ of $\tilde{B}^{[r,s]}_{\text{rig}}$ by

$$B^{[r,s]}_{\text{rig}, F} := \left\{ f(T) : = \sum_{n \in \mathbb{Z}} a_n T^n | a_n \in F \text{ and } f(T), \text{ is convergent on } p^{-1/r} \leq |T|_p < 1 \right\}.$$

We define $B^{[r,s]}_{\text{rig}, F} := \bigcup_{r > 0} B^{[r,r]}_{\text{rig}, F} \subseteq \tilde{B}_{\text{rig}}$. We note that $t = \log(1 + T) \in B^{[r,s]}_{\text{rig}, \mathbb{Q}_p}$ for any r. As is a subring of $B^{[r,s]}_{\text{rig}}$, this definition of $B^{[r,s]}_{\text{rig}, F}$ does not depend on the choice of T, i.e., does not depend on the choice of $(\xi_{p^n})_{n \geq 0}$. For general K, we put $F := K_0$ and $e_K := [K_0 : F_0]$, and denote by $K_0' \subseteq K_0$ the maximal unramified extension of F in K_0. Then, the theory of fields of a norm enables us to define the subring $B_{\text{rig}}^{[r,s]}$ of \tilde{B}_{rig} as a finite etale extension of $B_{\text{rig}}^{[r,s]}$ of degree e_K, and there exist $r(K) \in \mathbb{Q}_{>0}$ and $\pi_K \in B^{[r,s]}_{\text{rig}, K}$ such that $B^{[r,s]}_{\text{rig}, K} := \bigcup_{r \geq r(K)} B^{[r,s]}_{\text{rig}, K}$ is the union of the subrings

$$B^{[r,s]}_{\text{rig}, K} := \left\{ f(\pi_K) : = \sum_{n \in \mathbb{Z}} a_n \pi_K^n | a_n \in F' \text{ and } f(X), \text{ is convergent on } p^{-1/r_{\text{max}}} \leq |X|_p < 1 \right\}$$

of $\tilde{B}^{[r,s]}_{\text{rig}}$. For each finite extension $K \subseteq K' \subseteq K$, $B^{[r,s]}_{\text{rig}, K}$ is a subring of $B^{[r,s]}_{\text{rig}, K'}$. The ring $B^{[r,s]}_{\text{rig}, K}$ is stable by the actions of φ and G_K on $\tilde{B}^{[r,s]}_{\text{rig}}$. More precisely, we have
\[\varphi(B_{\text{rig}, K}^{+, r}) \subseteq B_{\text{rig}, K}^{+, pr}, \] and the action of \(G_K \) factors through that of \(\Gamma_K \). When \(K = F \) is unramified, then we have an equality \(B_{\text{rig}, F}^{+} = B_{\text{rig}, F_n}^{+} \) for any \(n \geq 1 \), and the actions of \(\varphi \) and \(\Gamma_F \) are explicitly defined by the following formulae, for \(f(T) = \sum_{n \in \mathbb{Z}} a_n T^n \in B_{\text{rig}, F}^{+} \) and \(\gamma \in \Gamma_F \):

\[\varphi(f(T)) := \sum_{n \in \mathbb{Z}} \varphi(a_n)((T + 1)^p - 1)^n, \quad \gamma(f(T)) := \sum_{n \in \mathbb{Z}} a_n((T + 1)^\chi(\gamma) - 1)^n. \]

Next, we define a \(\mathbb{Q}_{p} \)-linear map \(\psi : B_{\text{rig}, K}^{+} \rightarrow B_{\text{rig}, K}^{+} \) as follows. It is known that \(B_{\text{rig}, K}^{+} \) can be written as a direct sum \(B_{\text{rig}, K}^{+} = \bigoplus_{i=0}^{p-1} (T + 1)^i \varphi(B_{\text{rig}, K}^{+}) \), so each element \(x \in B_{\text{rig}, K}^{+} \) is uniquely written as \(x = \sum_{i=0}^{p-1} (T + 1)^i \varphi(x_i) \). Then we define \(\psi \) by

\[\psi : B_{\text{rig}, K}^{+} \rightarrow B_{\text{rig}, K}^{+} : x = \sum_{i=0}^{p-1} (T + 1)^i \varphi(x_i) \mapsto x_0. \]

This operator \(\psi \) satisfies that \(\psi \varphi = \text{id} \) and \(\psi \) is surjective and commutes with the action of \(\Gamma_K \). More precisely, if we define \(n(K) := \min\{n | r_n \geq r(K)\} \), then we have \(\psi(B_{\text{rig}, K}^{+, r_{n+1}}) = B_{\text{rig}, K}^{+, r_n} \) for any \(n \geq n(K) \). For each \(n \geq n(K) \), the restriction of \(\iota_{n} : B_{\text{rig}, K}^{+, r_n} \rightarrow B_{dR}^{+} \) to \(B_{\text{rig}, K}^{+, r_n} \) factors through \(K_n[[t]] \subseteq B_{dR}^{+} \), i.e., \(\iota_{n} \) induces a \(\Gamma_K \)-equivariant injection

\[\iota_{n} : B_{\text{rig}, K}^{+, r_n} \rightarrow K_n[[t]]. \]

When \(K = F \) is unramified over \(\mathbb{Q}_{p} \), \(\iota_{n} : B_{\text{rig}, F}^{+, r_n} \rightarrow F_n[[t]] \) is explicitly defined by

\[\iota_{n} \left(\sum_{m \in \mathbb{Z}} a_m T^m \right) := \sum_{m \in \mathbb{Z}} \varphi^{-n}(a_m)(\xi^{p^m} \exp(t/p^n) - 1)^m. \]

One has the following commutative diagrams:

\[
\begin{array}{cccc}
B_{\text{rig}, K}^{+, r_n} & \xrightarrow{\iota_{n}} & K_n[[t]] & \xrightarrow{\iota_{n+1}} & K_{n+1}[[t]] \\
\downarrow \psi & \text{can} & \downarrow \psi & \downarrow \frac{1}{p} \text{Tr}_{K_{n+1}/K_n} \\
B_{\text{rig}, K}^{+, r_{n+1}} & \xrightarrow{\iota_{n+1}} & K_{n+1}[[t]] & \xrightarrow{\iota_{n}} & K_n[[t]]
\end{array}
\]

where can : \(K_n[[t]] \hookrightarrow K_{n+1}[[t]] \) is the canonical injection and \(\frac{1}{p} \text{Tr}_{K_{n+1}/K_n} \) is defined by

\[\frac{1}{p} \text{Tr}_{K_{n+1}/K_n} : K_{n+1}[[t]] \rightarrow K_n[[t]] : \sum_{m=0}^{\infty} a_m T^m \mapsto \sum_{m=0}^{\infty} \frac{1}{p} \text{Tr}_{K_{n+1}/K_n}(a_m)p^m. \]

Definition 2.1. We say that \(D \) is a \((\varphi, \Gamma_K)\)-module over \(B_{\text{rig}, K}^{+} \) if

1. \(D \) is a finite free \(B_{\text{rig}, K}^{+} \)-module,
2. \(D \) is equipped with a \(\varphi \)-semi-linear map \(\varphi : D \rightarrow D \) such that the linearization map \(\varphi^*(D) := B_{\text{rig}, K}^{+} \otimes_{\varphi, B_{\text{rig}, K}^{+}} D \rightarrow D : a \otimes x \mapsto a \varphi(x) \) is an isomorphism,
(3) D is equipped with a continuous semi-linear action of Γ_K which commutes with φ, where semi-linear means that $\varphi(ax) = \varphi(a)\varphi(x)$ and $\gamma(ax) = \gamma(a)\gamma(x)$ for any $a \in B_{\text{rig},K}$, $x \in D$ and $\gamma \in \Gamma_K$.

Let D be a (φ, Γ_K)-module over $B_{\text{rig},K}$. For each k, we denote by $D(k) := D \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(k)$ the kth Tate twist of D. For each finite extension L of K, the restriction $D|_L$ of D to L, which is a (φ, Γ_L)-module over $B_{\text{rig},L}$, is defined by

$$D|_L := B_{\text{rig},L} \otimes_{B_{\text{rig},K}} D,$$

and the actions of φ and $\Gamma_L(\subseteq \Gamma_K)$ are defined by $\varphi(a \otimes x) := \varphi(a) \otimes \varphi(x)$, $\gamma(a \otimes x) := \gamma(a) \otimes \gamma(x)$ for any $a \in B_{\text{rig},L}$, $x \in D$ and $\gamma \in \Gamma_L$. We define the dual D^\vee of D by

$$D^\vee := \text{Hom}_{B_{\text{rig},K}}(D, B_{\text{rig},K}^\dagger),$$

and, for any $f \in D^\vee$ and $\gamma \in \Gamma_K$, $\gamma(f) \in D^\vee$ is defined by $\gamma(f)(x) := \gamma(f(\gamma^{-1}x))$ for any $x \in D$, and $\varphi(f) \in D^\vee$ is defined by $\varphi(f)(\sum_{i=1}^m a_i\varphi(x_i)) := \sum_{i=1}^m a_i\varphi(f(x_i))$ for any $x = \sum_{i=1}^m a_i\varphi(x_i) \in D$ ($a_i \in B_{\text{rig},K}$, $x_i \in D$). Let D_1, D_2 be (φ, Γ_K)-modules over $B_{\text{rig},K}$. We define the tensor product $D_1 \otimes D_2$ by

$$D_1 \otimes D_2 := D_1 \otimes_{B_{\text{rig},K}} D_2$$

with φ and Γ_K acting diagonally. Let D be a (φ, Γ_K)-module over $B_{\text{rig},K}$ of rank d. By Theorem 1.3.3 of [6], there exists a $n(D) \geq n(K)$ and there exists a unique finite free $B_{\text{rig},K}^{\dagger,n(D)}$-submodule $D^{(n(D))} \subseteq D$ of rank d which satisfies

1. $B_{\text{rig},K}^{\dagger} \otimes_{B_{\text{rig},K}^{\dagger,n(D)}} D^{(n(D))} = D$,

2. if we put $D^{(n)} := B_{\text{rig},K}^{\dagger,n} \otimes_{B_{\text{rig},K}^{\dagger,n(D)}} D^{(n(D))}$ for each $n \geq n(D)$, then $\varphi(D^{(n)}) \subseteq D^{(n+1)}$ and the natural map $B_{\text{rig},K}^{\dagger,n} \otimes_{\varphi, B_{\text{rig},K}^{\dagger}} D^{(n)} \to D^{(n+1)} : a \otimes x \mapsto a\varphi(x)$ is an isomorphism for any $n \geq n(D)$.

The uniqueness of $D^{(n)}$ implies that $D^{(n)}$ is preserved by the Γ_K-action for any $n \geq n(D)$.

Using $D^{(n)}$, we define $D_{\text{diff}}^{\dagger}(D)$ and $D_{\text{diff}}(D)$ as follows. For each $n \geq n(D)$, we put

$$D_{\text{diff}}^{\dagger,n}(D) := K_n[[t]] \otimes_{\mathbb{Q}_p} B_{\text{rig},K}^{\dagger,n} D^{(n)}$$

(respectively $D_{\text{diff}}^{\dagger,n}(D) := K_n((t)) \otimes_{K_n[[t]]} D_{\text{diff}}^{\dagger,n}(D)$),

which is a finite free $K_n[[t]]$-module (respectively $K_n((t))$-module) of rank d with a semi-linear Γ_K-action. Define a transition map

$$D_{\text{diff}}^{\dagger,n}(D) \hookrightarrow D_{\text{diff}}^{\dagger,n+1}(D) : f(t) \otimes x \mapsto f(t) \otimes \varphi(x),$$

and define a map $D_{\text{diff}}^{\dagger,n}(D) \hookrightarrow D_{\text{diff}}^{\dagger,n+1}(D)$ in the same way. Using these transition maps, we define

$$D_{\text{diff}}^{\dagger}(D) := \lim_{\longrightarrow} D_{\text{diff}}^{\dagger,n}(D)$$

(respectively $D_{\text{diff}}(D) := \lim_{\longrightarrow} D_{\text{diff},n}(D)$).
Iwasawa theory of de Rham \((\varphi, \Gamma)\)-modules over the Robba ring

which is a free \(K_{\infty}[t] := \bigcup_{n=1}^{\infty} K_n[[t]]\)-module (respectively \(K_{\infty}((t)) := \bigcup_{n=1}^{\infty} K_n((t))\)-module) of rank \(d\) with a semi-linear \(\Gamma_K\)-action. For each \(n \geq n(D)\), define a canonical \(\Gamma_K\)-equivariant injection

\[
\iota_n : D^{(n)} \hookrightarrow D^+_{\text{dif}, n}(D) : x \mapsto 1 \otimes x.
\]

2.2. Cohomologies of \((\varphi, \Gamma)\)-modules

In this subsection, we recall the definitions of some cohomology theories associated to \((\varphi, \Gamma)\)-modules and the fundamental properties of them proved by Liu [23].

Let \(\Delta_K \subseteq \Gamma_K\) be the \(p\)-torsion subgroup of \(\Gamma_K\) which is trivial if \(p \neq 2\) and at largest cyclic of order 2 if \(p = 2\). Choose \(\gamma_K \in \Gamma_K\) whose image in \(\Gamma_K/\Delta_K\) is a topological generator (this choice of \(\Delta_K\) is useful for explicit formulae, but if desired one can reformulate everything to eliminate this choice).

For a \(\Delta_K\)-module \(M\), we put \(M^{\Delta_K} := \{x \in M | \gamma(x) = x\text{ for all } \gamma \in \Delta_K\}\). For a \(\mathbb{Z}[\Gamma_K]\)-module \(M\), we define a complex \(C_{\varphi, \gamma_K}^\bullet(M)\) concentrated in degree \([0, 1]\) by

\[
C_{\varphi, \gamma_K}^\bullet(M) : [M^{\Delta_K} \xrightarrow{\gamma_K^{-1}} M^{\Delta_K}].
\]

For a \(\mathbb{Z}[\Gamma_K]\)-module \(M\) with a \(\varphi\)-action which commutes with the action of \(\Gamma_K\), we define a complex \(C_{\varphi, \gamma_K}^\bullet(M)\) concentrated in degree \([0, 2]\) by

\[
C_{\varphi, \gamma_K}^\bullet(M) : [M^{\Delta_K} \xrightarrow{d_1} M^{\Delta_K} \oplus M^{\Delta_K} \xrightarrow{d_2} M^{\Delta_K}]
\]

with \(d_1(x) := ((\gamma_K - 1)x, (\varphi - 1)x)\) and \(d_2(x, y) := (\varphi - 1)x - (\gamma_K - 1)y\).

Let \(D\) be a \((\varphi, \Gamma_K)\)-module over \(B^\dagger_{\text{rig}, K}\). We put \(D[1/t] := B^\dagger_{\text{rig}, K}[1/t] \otimes_{B^\dagger_{\text{rig}, K}} D\). For each \(q \in \mathbb{Z}_{\geq 0}\), we define

\[
H^q(K, D) := H^q(C_{\varphi, \gamma_K}^\bullet(D)), \quad H^q(K, D[1/t]) := H^q(C_{\varphi, \gamma_K}^\bullet(D[1/t]))
\]

and

\[
H^q(K, D^+_{\text{dif}}(D)) := H^q(C_{\varphi, \gamma_K}^\bullet(D^+_{\text{dif}}(D))), \quad H^q(K, D_{\text{dif}}(D)) := H^q(C_{\varphi, \gamma_K}^\bullet(D_{\text{dif}}(D))).
\]

These definitions are independent of the choice of \(\gamma_K\). Namely, for each \(\gamma'_K \in \Gamma_K\) whose image in \(\Gamma_K/\Delta_K\) is a topological generator, we have \(\frac{\gamma'_K - 1}{\gamma_K - 1} \in \mathbb{Z}_p[[\Gamma_K/\Delta_K]]^\times\), and we have the canonical isomorphism

\[
H^q(C_{\varphi, \gamma_K}^\bullet(D)) \sim H^q(C_{\varphi, \gamma'_K}^\bullet(D))
\]

given by the map which is induced by the following map of complexes:

\[
C_{\varphi, \gamma_K}^\bullet(D) : [D^{\Delta_K} \xrightarrow{d_1} D^{\Delta_K} \oplus D^{\Delta_K} \xrightarrow{d_2} D^{\Delta_K}]
\]

\[
\begin{array}{ccc}
\varphi & & \gamma_K^{-1} \\
\downarrow \text{id} & & \downarrow \gamma_K^{-1} \oplus \text{id} & & \downarrow \gamma_K^{-1} \\
C_{\varphi, \gamma'_K}^\bullet(D) : [D^{\Delta_K} \xrightarrow{d_1} D^{\Delta_K} \oplus D^{\Delta_K} \xrightarrow{d_2} D^{\Delta_K}]
\end{array}
\]

where we note that the \(\mathbb{Z}_p[[\Gamma_K/\Delta_K]]\)-module structure on \(D^{\Delta_K}\) uniquely extends to a continuous \(\mathbb{Z}_p[[\Gamma_K/\Delta_K]]\)-module structure.
For (φ, Γ_K)-modules D_1, D_2 over $B_{\text{rig}, K}^\dagger$, we can define a cup product pairing:

$$\cup : H^{q_1}(K, D_1) \times H^{q_2}(K, D_2) \to H^{q_1+q_2}(K, D_1 \otimes D_2).$$

See § 2.1 of [23] for the definition. When $(q_1, q_2) = (0, 1), (1, 1)$, the pairing \cup is defined by

$$H^0(K, D_1) \times H^1(K, D_2) \to H^1(K, D_1 \otimes D_2) : (a, [x, y]) \mapsto [a \otimes x, a \otimes y],$$

$$H^1(K, D_1) \times H^1(K, D_2) \to H^2(K, D_1 \otimes D_2) : ([x, y], [x', y']) \mapsto [y \otimes \varphi(x') - x \otimes \gamma(y')].$$

The following theorem was proved by Liu [23] by reducing to the results of Herr [16, 17] in the étale case.

Theorem 2.2. Let D be a (φ, Γ_K)-module over $B_{\text{rig}, K}^\dagger$. Then $H^q(K, D)$ satisfies the following.

1. If $q \neq 0, 1, 2$.
2. For any q, $H^q(K, D)$ is a finite-dimensional \mathbb{Q}_p-vector space.
3. We have a canonical isomorphism $f_{\text{tr}} : H^2(K, B_{\text{rig}, K}^\dagger(1)) \to \mathbb{Q}_p$ and the following pairing $\langle . \rangle$ is perfect for each $q = 0, 1, 2$:

$$\langle . \rangle : H^q(K, D) \times H^{2-q}(K, D^\vee(1)) \cup H^2(K, D \otimes D^\vee(1)) \overset{\text{ev}}{\to} H^2(K, B_{\text{rig}, K}^\dagger(1)) \overset{f_{\text{tr}}}{\to} \mathbb{Q}_p,$$

where $\text{ev} : H^2(K, D \otimes D^\vee(1)) \to H^2(K, B_{\text{rig}, K}^\dagger(1))$ is the map induced by the evaluation map $D \otimes D^\vee(1) \to B_{\text{rig}, K}^\dagger(1) : x \otimes (f \otimes e_1) \mapsto f(x) \otimes e_1$.

Proof. See Theorem 0.2 of [23].

Remark 2.3. We remark that Liu proved the existence of functorial comparison isomorphisms $H^q(K, V) \sim H^q(K, D(V))$ for all the p-adic representations V of G_K. Then, the isomorphism f_{tr} is defined as the composition of the inverse of the comparison isomorphism $H^2(K, \mathbb{Q}_p(1)) \to H^2(K, D(\mathbb{Q}_p(1))) = H^2(K, B_{\text{rig}, K}^\dagger(1))$ with Tate’s trace $f'_{\text{tr}} : H^2(K, \mathbb{Q}_p(1)) \to \mathbb{Q}_p$. In this article, we normalize the isomorphism $f'_{\text{tr}} : H^2(K, \mathbb{Q}(1)) \to \mathbb{Q}_p$ such that Tate’s pairing

$$\langle . \rangle : H^1(\mathbb{Q}_p, \mathbb{Q}_p(1)) \times H^1(\mathbb{Q}_p, \mathbb{Q}_p) \to H^2(\mathbb{Q}_p, \mathbb{Q}_p(1)) \overset{f'_{\text{tr}}}{\to} \mathbb{Q}_p$$

satisfies that $\langle \kappa(a), \tau \rangle = \tau(\text{rec}_{\mathbb{Q}_p}(a))$ for any $a \in \mathbb{Q}_p^\times$ and $\tau \in \text{Hom}(G_{\mathbb{Q}_p}^{ab}, \mathbb{Q}_p) = H^1(\mathbb{Q}_p, \mathbb{Q}_p)$, where $\kappa : \mathbb{Q}_p^\times \to H^1(\mathbb{Q}_p, \mathbb{Q}_p(1))$ is the Kummer map and $\text{rec}_{\mathbb{Q}_p} : \mathbb{Q}_p^\times \to G_{\mathbb{Q}_p}^{ab}$ is the reciprocity map of local class field theory.

It is important to define the cohomology $H^q(K, D)$ using ψ instead of φ, which we recall below. We define a complex $C^\bullet_{\psi, \Gamma_K}(D)$ concentrated in degree $[0, 2]$ by

$$C^\bullet_{\psi, \Gamma_K}(D) : [D^{\Delta_K} \xrightarrow{d_1} D^{\Delta_K} \oplus D^{\Delta_K} \xrightarrow{d_2} D^{\Delta_K}]$$
with \(d'_1(x) \) \(:= ((\gamma_K - 1)x, (\psi - 1)x) \) and \(d'_2(x, y) := (\psi - 1)x - (\gamma_K - 1)y \). We define a surjective map \(C^*_{\psi, \gamma_K}(D) \to C^*_{\psi, \gamma_K}(D) \) of complexes by:

\[
\begin{align*}
C^*_{\psi, \gamma_K}(D) & \xrightarrow{d_1} D^\Delta_k \oplus D^\Delta_k \xrightarrow{d_2} D^\Delta_k \\
C^*_{\psi, \gamma_K}(D) & \xrightarrow{d'_1} D^\Delta_k \oplus D^\Delta_k \xrightarrow{d'_2} D^\Delta_k
\end{align*}
\]

The kernel of this map is the complex \([0 \to 0 \oplus D^\Delta_k, \psi = 0 \xrightarrow{0\ partial(\gamma_K - 1)} D^\Delta_k, \psi = 0]\). Concerning this complex, we have the following theorem.

Theorem 2.4. The map \(D^\Delta_k, \psi = 0 \xrightarrow{\gamma_K - 1} D^\Delta_k, \psi = 0 \) is an isomorphism. In particular, the map \(C^*_{\psi, \gamma_K}(D) \to C^*_{\psi, \gamma_K}(D) \) defined above is a quasi-isomorphism.

Proof. For example, see Lemma 2.4 of [23] in the étale case and see Theorem 2.6 of [32] for the general case. \(\square \)

Next, we recall the definition of crystalline or de Rham \((\phi, \Gamma)\)-modules.

Definition 2.5. For a \((\phi, \Gamma^k)\)-module \(D \) over \(B^+_{\text{rig}, K} \), we define

\[
D^k_{\text{crys}}(D) := D[1/\ell^k], \quad D^k_{\text{dR}}(D) := D_{\text{dif}}(D)[\ell^k = 1].
\]

We define a decreasing filtration on \(D^k_{\text{dR}}(D) \) by

\[
\text{Fil}^i D^k_{\text{dR}}(D) := D^k_{\text{dR}}(D) \cap iD^+_{\text{dif}}(D) \subseteq D^k_{\text{dif}}(D)
\]

for \(i \in \mathbb{Z} \).

Using cohomologies which we defined above, we have equalities

\[
D^k_{\text{dR}}(D) = H^0(K, D_{\text{dif}}(D)), \quad \text{Fil}^0 D^k_{\text{dR}}(D) = H^0(K, D^+_{\text{dif}}(D)),
\]

and

\[
D^k_{\text{crys}}(D)^{\phi = 1} = H^0(K, D[1/\ell]).
\]

As in the case of \(p \)-adic Galois representations of \(G_K \), we have inequalities

\[
dim_K D^k_{\text{crys}}(D) \leq \dim_K D^k_{\text{dR}}(D) \leq \text{rank} D.
\]

Definition 2.6. Let \(D \) be a \((\phi, \Gamma^k)\)-module over \(B^+_{\text{rig}, K} \). We say that \(D \) is crystalline (respectively de Rham) if an equality \(\dim_K D^k_{\text{crys}}(D) = \text{rank}(D) \) (respectively \(\dim_K D^k_{\text{dR}}(D) = \text{rank}(D) \)) holds. We say that \(D \) is potentially crystalline if there exists a finite extension \(L \) of \(K \) such that \(D|_L \) is a crystalline \((\phi, \Gamma^L)\)-module over \(B^+_{\text{rig}, L} \).

Definition 2.7. Let \(D \) be a de Rham \((\phi, \Gamma^k)\)-module over \(B^+_{\text{rig}, K} \). We call the set \(\{ h \in \mathbb{Z} | \text{Fil}^{-h} D^k_{\text{dR}}(D)/\text{Fil}^{-h+1} D^k_{\text{dR}}(D) \neq 0 \} \) the Hodge–Tate weights of \(D \).

If \(D \) is crystalline then \(D \) is also de Rham by the above inequalities. Because potentially de Rham implies de Rham by Hilbert 90, if \(D \) is potentially crystalline, then \(D \) is de
Rham. If D is potentially crystalline such that $D|_{L}$ is crystalline for a finite Galois extension L of K, then $D_{crys}^{L}(D) := D_{crys}^{L}(D|_{L})$ is naturally equipped with actions of φ and of $\text{Gal}(L/K)$, and we have a natural isomorphism $L \otimes_{L_{0}} D_{crys}^{L}(D) \sim D_{\text{dR}}^{L}(D)$, i.e., $D_{crys}^{L}(D)$ is naturally equipped with a structure of a filtered $(\varphi, \text{Gal}(L/K))$-module.

2.3. The Bloch–Kato exponential map for (φ, Γ)-modules

This subsection is the main part of this section. We define a map $\exp_{K,D} : D_{\text{dR}}^{K}(D) \rightarrow H^{1}(K, D)$, which is obtained by taking the cohomology long exact sequence associated to the functorial long exact sequence

\[0 \rightarrow H^{0}(K, V) \rightarrow H^{0}(K, B_{c} \otimes_{Q_{p}} V) \oplus H^{0}(K, B_{\text{dR}}^{+} \otimes_{Q_{p}} V) \rightarrow H^{0}(K, B_{\text{dR}} \otimes_{Q_{p}} V) \]
\[\delta_{1,v} : H^{1}(K, V) \rightarrow H^{1}(K, B_{c} \otimes_{Q_{p}} V) \oplus H^{1}(K, B_{\text{dR}}^{+} \otimes_{Q_{p}} V) \rightarrow H^{1}(K, B_{\text{dR}} \otimes_{Q_{p}} V) \]
\[\delta_{2,v} : H^{2}(K, V) \rightarrow H^{2}(K, B_{c} \otimes_{Q_{p}} V) \rightarrow 0 \]

which is obtained by taking the cohomology long exact sequence associated to the Bloch–Kato fundamental short exact sequence

\[0 \rightarrow V \rightarrow B_{c} \otimes_{Q_{p}} V \oplus B_{\text{dR}}^{+} \otimes_{Q_{p}} V \rightarrow B_{\text{dR}} \otimes_{Q_{p}} V \rightarrow 0. \]

See §2.5 for the comparison of the above exact sequence with the following exact sequence.

Theorem 2.8. Let D be a (φ, Γ_{K})-module over $B_{\text{rig}, K}$. Then there exists a canonical functorial long exact sequence

\[0 \rightarrow H^{0}(K, D) \rightarrow H^{0}(K, D[1/t]) \oplus H^{0}(K, D_{\text{diff}}^{+}(D)) \rightarrow H^{0}(K, D_{\text{diff}}(D)) \]
\[\delta_{1,d} : H^{1}(K, D) \rightarrow H^{1}(K, D[1/t]) \oplus H^{1}(K, D_{\text{diff}}^{+}(D)) \rightarrow H^{1}(K, D_{\text{diff}}(D)) \]
\[\delta_{2,d} : H^{2}(K, D) \rightarrow H^{2}(K, D[1/t]) \rightarrow 0. \]

Proof. To construct this exact sequence, we need to define some more complexes. For each $n \geq n(D)$, we define a complex with degree in $[0, 2]$:

\[\tilde{C}_{\varphi, \gamma_{K}}^{*}(D^{(n)}) : [(D^{(n)})^{\Delta_{K}} \xrightarrow{d_{1}} (D^{(n)})^{\Delta_{K}} \oplus (D^{(n+1)})^{\Delta_{K}} \xrightarrow{d_{2}} (D^{(n+1)})^{\Delta_{K}}] \]

with $d_{1}(x) := ((\gamma_{K} - 1)x, (\varphi - 1)x)$ and $d_{2}((x, y)) := (\varphi - 1)x - (\gamma_{K} - 1)y$. Define $\tilde{C}_{\varphi, \gamma_{K}}^{*}(D^{(n)[1/t]})$ in the same way. We also define $\tilde{C}_{\varphi, \gamma_{K}}^{*}(D_{\text{diff}, n}^{+}(D))$ with degree in $[0, 2]$ by

\[\prod_{m \geq n} D_{\text{diff, m}}^{+}(D)^{\Delta_{K}} \xrightarrow{d_{1}'} \prod_{m \geq n} D_{\text{diff, m}}^{+}(D)^{\Delta_{K}} \oplus \prod_{m \geq n+1} D_{\text{diff, m}}^{+}(D)^{\Delta_{K}} \xrightarrow{d_{2}'} \prod_{m \geq n+1} D_{\text{diff, m}}^{+}(D)^{\Delta_{K}} \]

with

\[d_{1}'((x_{m})_{m \geq n}) := (((\gamma_{K} - 1)x_{m})_{m \geq n}, (x_{m-1} - x_{m})_{m \geq n+1}) \]
and

\[d_2'(x_m)_{m \geq n}, (y_m)_{m \geq n+1} := (x_{m-1} - x_m) - (y_K - 1)y_m \]_{m \geq n+1}.

Define \(\tilde{C}_{\psi, y_K}^\bullet(D_{\text{diff}, n}(D)) = \bigcup_{k \geq 0} \tilde{C}_{\psi, y_K}^\bullet \left(\frac{1}{p^k} D_{\text{diff}, n}(D) \right) \). We first prove the following lemma.

Lemma 2.9. Let \(D \) be a \((\psi, \Gamma)\)-module over \(B_{\text{rig}, K}^+ \). The following sequence is exact for any \(n \geq n(D) \):

\[0 \to (D^{(n)})^\Delta_K \xrightarrow{f_1} (D^{(n)}[1/t])^\Delta_K \bigoplus \prod_{m \geq n} D_{\text{diff}, m}^+(D)^\Delta_K \xrightarrow{f_2} \bigcup_{k \geq 0} \prod_{m \geq n} \left(\frac{1}{p^k} D_{\text{diff}, m}(D) \right)^{\Delta K} \to 0, \]

where \(f_1(x) := (x, (\iota_m(x))_{m \geq n}) \) and \(f_2(x, (y_m)_{m \geq n}) := (\iota_m(x) - y_m)_{m \geq n} \).

Proof. Because the functor \(M \mapsto M^\Delta_K \) is exact for \(\mathbb{Q}[\Delta_K] \)-modules, it suffices to show that the sequence

\[0 \to D^{(n)} \xrightarrow{f_1} D^{(n)}[1/t] \bigoplus \prod_{m \geq n} D_{\text{diff}, m}^+(D) \xrightarrow{f_2} \bigcup_{k \geq 0} \prod_{m \geq n} D_{\text{diff}, m}(D) \to 0 \]

is exact.

That \(f_1 \) is injective and that \(f_2 \circ f_1 = 0 \) are trivial by definition.

If \((x, (y_m)_{m \geq n}) \in \text{Ker}(f_2)\), then we have \(\iota_m(x) = y_m \in D_{\text{diff}, n}(D) \) for any \(m \geq n \). Hence we have \(x \in D^{(n)} \) by Proposition 1.2.2 of [6], and so we have \((x, (y_m)_{m \geq n}) = f_1(x) \in \text{Im}(f_1)\).

Finally, we prove that \(f_2 \) is surjective. Because we have \(D^{(n)}[1/t] = \bigcup_{m \geq 0} \frac{1}{p^m} D^{(n)}, \) it suffices to show that the natural map

\[\frac{1}{p^k} D^{(n)} \to \prod_{m \geq n} \frac{1}{p^k} D_{\text{diff}, m}(D)/D_{\text{diff}, m}^+(D) : x \mapsto (\iota_m(x))_{m \geq n} \]

is surjective for any \(k \geq 1 \). Moreover, twisting by \(t^i \), it suffices to show that the map

\[D^{(n)} \to \prod_{m \geq n} D_{\text{diff}, m}(D)/t^i D_{\text{diff}, m}^+(D) : x \mapsto (\iota_m(x))_{m \geq n} \]

is surjective for any \(k \geq 1 \). By induction and by dévissage, it suffices to show that this map is surjective for \(k = 1 \). Let \(\{e_i\}_{i=1}^d \) be a basis of \(D \) such that \(D^{(n)} = B_{\text{rig}, K}^+ \bigoplus \cdots \bigoplus B_{\text{rig}, K}^{+,-} \) for any \(n \geq n(D) \). Then \(\{\iota_m(e_i)\}_{i=1}^d \) is a \(K_m \)-basis of \(D_{\text{Sen}, m}(D) := D_{\text{diff}, m}(D)/D_{\text{diff}, m}^+(D) \) for any \(m \geq n \) by Lemma 4.9 of [3]. Hence, for any \((y_m)_{m \geq n} \in \prod_{m \geq n} D_{\text{Sen}, m}(D), \) there exists \(a_{m,i} \in K_m \) \((m \geq n, 1 \leq i \leq d)\) such that \(y_m = \sum_{i=1}^d a_{m,i} \iota_m(e_i) \) for any \(m \geq n \). Because the natural map \(B_{\text{rig}, K}^+ \to \prod_{m \geq n} K_m : x \mapsto (\iota_m(x))_{m \geq n} \) is an isomorphism, there exists \(\{a_i\}_{1 \leq i \leq d} \subseteq B_{\text{rig}, K}^{+,-} \) such that \(\iota_m(a_i) = a_{m,i} \) for any \(m \geq n \) and \(i \). Then we have \(\iota_m(\sum_{i=1}^d a_i e_i) = y_m \) for any \(m \geq n \). This proves the surjection of \(f_2 \), and hence proves the lemma. \(\square \)

It is easy to see that the maps \(f_1, f_2 \) commute with the differentials of \(\tilde{C}_{\psi, y_K}^\bullet(\) \). Hence, for each \(n \geq n(D) \), we obtain the following short exact sequence of complexes:

\[0 \to \tilde{C}_{\psi, y_K}^\bullet(D^{(n)}) \xrightarrow{f_1} \tilde{C}_{\psi, y_K}^\bullet(D^{(n)}[1/t]) \oplus \tilde{C}_{\psi, y_K}^\bullet(D_{\text{diff}, n}(D)) \xrightarrow{f_2} \tilde{C}_{\psi, y_K}^\bullet(D_{\text{diff}, n}(D)) \to 0. \]
We define a transition map

\[\tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}^+) \to \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n+1}^+(D)) \]

which is induced by the map

\[\prod_{m \geq n} D_{\text{dif}, m}^+ (D) \to \prod_{m \geq n+1} D_{\text{dif}, m}^+ : (x_m)_{m \geq n} \mapsto (x_m)_{m \geq n+1}. \]

We similarly define \(\tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}) \to \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n+1}(D)) \). Taking the inductive limit with respect to \(n \geq n(D) \), we obtain the following short exact sequence of complexes:

\[0 \to C^\bullet_{\psi, \gamma K}(D) \to \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \to \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \to 0, \]

because we have \(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{1}^{(n)}) \cong C^\bullet_{\psi, \gamma K}(D_1) \) for \(D_1 = D, D[1/\ell] \). Taking the cohomology long exact sequence, we obtain the following long exact sequence:

\[0 \to H^0(K, D) \to H^0(K, D[1/\ell]) \oplus H^0\left(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \right) \to H^0\left(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \right) \]

\[\delta_{1, D} : H^1(K, D) \to H^1(K, D[1/\ell]) \oplus H^1\left(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \right) \to H^1\left(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \right) \]

\[\delta_{2, D} : H^2(K, D) \to H^2(K, D[1/\ell]) \oplus H^2\left(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \right) \to H^2\left(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}(D)) \right) \to 0. \]

Next, for \(D_{\text{dif}, n}^+(D) = D_{\text{dif}, n}^+(D), D_{\text{dif}, n}(D) \), define a map of complexes

\[C^\bullet_{\gamma K}(D_{\text{dif}, n}^+(D)) \to \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}^+(D)) \]

by

\[C^0_{\gamma K}(D_{\text{dif}, n}^+(D)) \to \tilde{C}^0_{\psi, \gamma K}(D_{\text{dif}, n}^+(D)) : x \mapsto (x_m)_{m \geq n} \quad \text{where } x_m := x (m \geq n), \]

\[C^1_{\gamma K}(D_{\text{dif}, n}^+(D)) \to \tilde{C}^1_{\psi, \gamma K}(D_{\text{dif}, n}^+(D)) : x \mapsto ((x_m)_{m \geq n}, 0) \quad \text{where } x_m := x (m \geq n). \]

It is easy to check that the map \(C^\bullet_{\gamma K}(D_{\text{dif}, n}^+(D)) \to \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}^+(D)) \) is a quasi-isomorphism. Because we have \(C^\bullet_{\gamma K}(D_{\text{dif}, n}^+(D)) = \lim_{n} C^\bullet_{\gamma K}(D_{\text{dif}, n}^+(D)) \), we obtain an isomorphism

\[H^q(K, D_{\text{dif}, n}^+(D)) \cong H^q\left(\lim_{n} \tilde{C}^\bullet_{\psi, \gamma K}(D_{\text{dif}, n}^+(D)) \right). \]

Combining the above isomorphisms and the above long exact sequence, we obtain the following desired long exact sequence:

\[0 \to H^0(K, D) \to H^0(K, D[1/\ell]) \oplus H^0(K, D_{\text{dif}, n}^+(D)) \to H^0(K, D_{\text{dif}, n}(D)) \]

\[\delta_{1, D} : H^1(K, D) \to H^1(K, D[1/\ell]) \oplus H^1(K, D_{\text{dif}, n}^+(D)) \to H^1(K, D_{\text{dif}, n}(D)) \]

\[\delta_{2, D} : H^2(K, D) \to H^2(K, D[1/\ell]) \oplus H^2(K, D_{\text{dif}, n}^+(D)) \to H^2(K, D_{\text{dif}, n}(D)) \to 0. \]
The functoriality of this exact sequence is trivial by construction. This finishes the proof of the theorem. \qed

Definition 2.10. Let \(D \) be a \((\varphi, \Gamma_K)\)-module over \(\mathcal{B}_{\text{rig}, K}^1 \). Then we define a map

\[
\exp_{K,D} : \mathcal{D}_\text{dR}^K(D) \to H^1(K, D)
\]

as the connecting map \(\delta_{1,D} : \mathcal{D}_\text{dR}^K(D) = H^0(K, \mathcal{D}_\text{dif}(D)) \to H^1(K, D) \) of the long exact sequence of Theorem 2.8. We call \(\exp_{K,D} \) the exponential map of \(D \).

Remark 2.11. By definition, we have \(\exp_{K,D}(\Fil^0 \mathcal{D}_\text{dR}(D)) = 0 \). Hence \(\exp_{K,D} \) induces a map

\[
\exp_{K,D} : \mathcal{D}_\text{dR}^K(D)/\Fil^0 \mathcal{D}_\text{dR}^K(D) \to H^1(K, D).
\]

To study the map \(\exp_{K,D} \), it is useful to define \(\exp_{K,D} \) in a more explicit way. The following lemma gives explicit definitions of \(\exp_{K,D} \) and \(\delta_{2,D} : H^1(K, \mathcal{D}_\text{dif}(D)) \to H^2(K, D) \).

Lemma 2.12. (1) Let \(x \) be an element of \(\mathcal{D}_\text{dR}^K(D) \). Take an \(n \geq n(D) \) such that \(x \in \mathcal{D}_\text{dif,n}(D) \), and take an \(\tilde{x} \in (D^{(n)}[1/t])^{\Delta K} \) such that \(\iota_m(\tilde{x}) - x \in \mathcal{D}_{\text{dif},m}^+(D) \) for any \(m \geq n \) (such an \(\tilde{x} \) exists by Lemma 2.9). Then we have

\[
\exp_{K,D}(x) = [(\gamma_K - 1)\tilde{x}, (\varphi - 1)\tilde{x}] \in H^1(K, D).
\]

(2) Let \([x]\) be an element of \(H^1(K, \mathcal{D}_\text{dif}(D)) \). Let \(x \in \mathcal{D}_\text{dif,n}(D)^{\Delta K} \) be a lift of \([x]\) for some \(n \geq n(D) \). Take an \(\tilde{x} \in (D^{(n)}[1/t])^{\Delta K} \) such that \(\iota_m(\tilde{x}) - x \in \mathcal{D}_{\text{dif},m}^+(D) \) for any \(m \geq n \) (such an \(\tilde{x} \) exists by Lemma 2.9). Then we have

\[
\delta_{2,D}([x]) = [(\varphi - 1)\tilde{x}] \in H^2(K, D).
\]

Proof. These formulae directly follow from the proof of the theorem above and the construction of the snake lemma. \qed

2.4. Dual exponential map

In this subsection, when \(D \) is de Rham, we define a map \(\exp_{K,D^\vee(1)}^* : H^1(K, D) \to \Fil^0 \mathcal{D}_\text{dR}^K(D) \), which we call the dual exponential map of \(D \). Then, we prove that the map \(\exp_{K,D}^* : H^1(K, D^\vee(1)) \to \Fil^0 \mathcal{D}_\text{dR}^K(D^\vee(1)) \) is the adjoint of the map \(\exp_{K,D} : \mathcal{D}_\text{dR}^K(D)/\Fil^0 \mathcal{D}_\text{dR}^K(D) \to H^1(K, D) \).

Before defining \(\exp_{K,D^\vee(1)}^* \), we prove some preliminary lemmas. Let \(D_1, D_2 \) be \((\varphi, \Gamma_K)\)-modules over \(\mathcal{B}_{\text{rig}, K}^1 \). We define a pairing

\[
\cup_{\text{dif}} : H^0(K, \mathcal{D}_{\text{dif}}(D_1)) \times H^1(K, \mathcal{D}_{\text{dif}}(D_2)) \to H^1(K, \mathcal{D}_{\text{dif}}(D_1 \otimes D_2))
\]

by \(x \cup_{\text{dif}} y := [x \otimes y] \) for any \(x \in H^0(K, \mathcal{D}_{\text{dif}}(D_1)) \) and \(y \in H^1(K, \mathcal{D}_{\text{dif}}(D_2)) \).
Lemma 2.13. The following two diagrams are commutative:

\[
\begin{align*}
\begin{array}{ccc}
H^0(K, D_{\text{dif}}(D_1)) \times H^1(K, D_{\text{dif}}(D_2)) & \xrightarrow{\cup_{\text{dif}}} & H^1(K, D_{\text{dif}}(D_1 \otimes D_2)) \\
\downarrow \exp_{K, D_1} & & \downarrow \hat{\delta}_{2, D_1 \otimes D_2} \\
H^1(K, D_1) \times H^1(K, D_2) & \xrightarrow{\cup} & H^2(K, D_1 \otimes D_2)
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
H^0(K, D_{\text{dif}}(D_1)) \times H^1(K, D_{\text{dif}}(D_2)) & \xrightarrow{\cup_{\text{dif}}} & H^1(K, D_{\text{dif}}(D_1 \otimes D_2)) \\
\uparrow a \to t_n(a) & & \downarrow \hat{\delta}_{2, D_1 \otimes D_2} \\
H^0(K, D_1) \times H^2(K, D_2) & \xrightarrow{\cup} & H^2(K, D_1 \otimes D_2)
\end{array}
\end{align*}
\]

In other words, we have equalities

\[
\delta_{2, D_1 \otimes D_2} \left(z \bigcup_{\text{dif}} [t_n(x)] \right) = \exp_{K, D_1}(z) \cup [x, y]
\]

and

\[
\delta_{2, D_1 \otimes D_2} \left(t_n(a) \bigcup_{\text{dif}} [b] \right) = a \cup \delta_{2, D_2}([b])
\]

for any \(z \in H^0(K, D_{\text{dif}}(D_1)), [x, y] \in H^1(K, D_2) \) and \(a \in H^0(K, D_1), [b] \in H^1(K, D_{\text{dif}}(D_2)) \).

Proof. Here, we only prove the commutativity of the first diagram. We can prove the commutativity of the second diagram in a similar way.

Take any \(z \in H^0(K, D_{\text{dif}}(D_1)) \) and \([x, y] \in H^1(K, D_2)\). Take \(n \) sufficiently large such that \(z \in D_{\text{dif}, n}(D_1) \) and \(x \in D_2^{(n)}, y \in D_2^{(n+1)} \). By Lemma 2.12(1), if we take \(\tilde{z} \in (D_1^{(n)}[1/t])^{\Delta_K} \) such that \(t_m(\tilde{z}) - z \in D_{\text{dif}, m}(D_1) \) for any \(m \geq n \), then we have

\[
\exp_{K, D_1}(z) = ([\gamma_K - 1] \tilde{z}, (\varphi - 1) \tilde{z}).
\]

Hence, we have

\[
\exp_{K, D_1}(z) \cup [x, y] = ([\gamma_K - 1] \tilde{z}, (\varphi - 1) \tilde{z}) \cup [x, y]
\]

\[
= ([\varphi - 1] \tilde{x} \otimes \varphi(x) - (\gamma_K - 1) \tilde{x} \otimes \gamma_K(y)] \in H^2(K, D_1 \otimes D_2).
\]

On the other hand, under the natural quasi-isomorphism \(C_{\varphi, \gamma_K}(D_{\text{dif}, n}(D)) \to \tilde{C}_{\varphi, \gamma_K}(D_{\text{dif}, n}(D)) \) which is defined in the proof of Theorem 2.8, the element \([t_n(x)] \in H^1(K, D_{\text{dif}, n}(D_2))\) is sent to

\[
[(t_m(x))_{m \geq n}, (t_m(y))_{m \geq n+1}] \in H^1(\tilde{C}_{\varphi, \gamma_K}(D_{\text{dif}, n}(D_2))).
\]

Hence, the element \(z \cup_{\text{dif}} [t_n(x)] \in H^1(K, D_{\text{dif}, n}(D_1 \otimes D_2)) \) is sent to

\[
[(z \otimes t_m(\tilde{x}))_{m \geq n}, (z \otimes t_m(y))_{m \geq n+1}] \in H^1(\tilde{C}_{\varphi, \gamma_K}(D_{\text{dif}, n}(D_1 \otimes D_2))).
\]

The element \((\tilde{z} \otimes x, \tilde{z} \otimes y) \in (D_1^{(n)} \otimes D_2^{(n+1)}[1/t])^{\Delta_K} \bigoplus (D_1^{(n+1)} \otimes D_2^{(n+1)}[1/t])^{\Delta_K} \) satisfies that \(((t_m(\tilde{z} \otimes x))_{m \geq n}, (t_m(\tilde{z} \otimes y))_{m \geq n+1}) - ((z \otimes t_m(x))_{m \geq n}, (z \otimes t_m(y))_{m \geq n+1}) \in \prod_{m \geq n} D_{\text{dif}, m}^+\).
\((D_1 \otimes D_2) \bigoplus \prod_{m \geq n+1} D_{\text{dif},m}^+ (D_1 \otimes D_2)\). Hence, by the definition of the boundary map \(\delta_{2,D_1 \otimes D_2}\), we obtain

\[
\delta_{2,D_1 \otimes D_2} \left(z \bigcup_{\text{dif}} [t_n(x)] \right) = [(\varphi - 1)(\tilde{z} \otimes x) - (\gamma_K - 1)(\tilde{z} \otimes y)].
\]

Using the equality \((\varphi - 1)x = (\gamma_K - 1)y\), it is easy to show the equality

\[(\varphi - 1)\tilde{z} \otimes \varphi(x) - (\gamma_K - 1)\tilde{z} \otimes \gamma_K(y) = (\varphi - 1)(\tilde{z} \otimes x) - (\gamma_K - 1)(\tilde{z} \otimes y).
\]

Hence we obtain the desired equality

\[
\exp_{K,D_1}(z) \cup [x, y] = \delta_{2,D_1 \otimes D_2} \left(z \bigcup_{\text{dif}} [t_n(x)] \right). \quad \square
\]

Let \(D\) be a de Rham \((\varphi, \Gamma_K)\)-module over \(B_{\text{rig},K}^\dagger\). Then the natural map

\[K(\varphi) \otimes K D_{\text{dif}}^K(D) \rightarrow D_{\text{dif}}(D) : f(t) \otimes x \mapsto f(t)x\]

is an isomorphism. We identify \(K(\varphi) \otimes K D_{\text{dif}}^K(D)\) with \(D_{\text{dif}}(D)\) by this isomorphism. Then, it is easy to check that the map

\[
g_D : D_{\text{dif}}^K(D) \rightarrow H^1(K, D_{\text{dif}}(D)) = \sim H^1(K(\varphi) \otimes K D_{\text{dif}}^K(D)))
\]

defined by

\[
g_D(x) := [\log(\chi(\gamma_K)) (1 \otimes x)] \in H^1(K(\varphi) \otimes K D_{\text{dif}}^K(D)))
\]

is an isomorphism and is independent of the choice of \(\gamma_K\) up to the canonical isomorphism. We note that \(D_{\text{dif}}^K(B_{\text{rig},K}^\dagger(1)) = K \cdot \frac{1}{\ell} \varepsilon_1\).

Lemma 2.14. The following diagram is commutative:

\[
\begin{array}{ccc}
D_{\text{dif}}^K(B_{\text{rig},K}^\dagger(1)) & \xrightarrow{=} & K \cdot \frac{1}{\ell} \varepsilon_1 \\
\downarrow g_{B_{\text{rig},K}^\dagger(1)} & & \downarrow \text{Tr}_{K/\mathbb{Q}_p} \\
H^1(K, D_{\text{dif}}(B_{\text{rig},K}^\dagger(1))) & \xrightarrow{\delta_{2,B_{\text{rig},K}^\dagger(1)}} & H^2(K, B_{\text{rig},K}^\dagger(1)) \\
 & \xrightarrow{f_{\ell}} & \mathbb{Q}_p
\end{array}
\]

Proof. Using the trace and the corestriction, it suffices to show the lemma when \(K = \mathbb{Q}_p\). Assume that \(K = \mathbb{Q}_p\). We prove the lemma by comparing the cohomology of the \((\varphi, \Gamma_{\mathbb{Q}_p})\)-module \(B_{\text{rig,\mathbb{Q}_p}}^\dagger(1)\) with the Galois cohomology of the \(p\)-adic representation \(\mathbb{Q}_p(1)\) of \(G_{\mathbb{Q}_p}\) as follows. Please see §2.5 for some notation and definitions used in the proof below.

Take the element \([\log(\chi(\gamma_K)), 0] \in H^1(\mathbb{Q}_p, B_{\text{rig,\mathbb{Q}_p}}^\dagger)\). Then we have

\[
g_{B_{\text{rig,\mathbb{Q}_p}}^\dagger(1)} \left(\frac{a}{\ell} \varepsilon_1 \right) = \frac{a}{\ell} \varepsilon_1 \bigcup_{\text{dif}} [t_n(\log(\chi(\gamma_K)))]
\]
by the definition of g_D and \cup_{diff}. Hence, by Lemma 2.13, we obtain an equality
\[
\delta_2 \cdot b_{\text{rig-Q}}^1 (1) \left(g_{\text{rig-Q}}^1 (a \frac{e_1}{t}) \right) = \delta_2 \cdot b_{\text{rig-Q}}^1 (1) \left(a \frac{e_1}{t} \cup [\log(\chi(\gamma))] \right) = \exp_Q \cdot b_{\text{rig-Q}}^1 (1) \left(a \frac{e_1}{t} \cup [\log(\chi(\gamma)), 0] \right)
\]
for any $a \in \mathbb{Q}_p$. Hence, it suffices to show that
\[
f_{tr} \left(\exp_Q \cdot b_{\text{rig-Q}}^1 (1) \left(a \frac{e_1}{t} \right) \right) \cup [\log(\chi(\gamma)), 0] = a.
\]
We note that the comparison isomorphism
\[
\text{H}^1(\mathbb{Q}_p, b_{\text{rig-Q}}^1) \cong \text{H}^1(\mathbb{Q}_p, W(b_{\text{rig-Q}}^1)) \cong \text{H}^1(\mathbb{Q}_p, \mathbb{Q}_p)
\]
(where \mathbb{Q}_p on the right-hand side is the trivial p-adic representation of $G_{\mathbb{Q}_p}$) sends $[\log(\chi(\gamma)), 0]$ to the element $\log(\chi) \in \text{Hom}(G_{\mathbb{Q}_p}, \mathbb{Q}_p) = \text{H}^1(\mathbb{Q}_p, \mathbb{Q}_p)$ defined by $\log(\chi) : G_{\mathbb{Q}_p} \rightarrow \mathbb{Q}_p : g \mapsto \log(\chi(g))$. Hence, by Theorem 2.21, in particular, by the compatibility of $\chi \lim_{\rightarrow} (\chi)$ to prove this compatibility, but we use them to prove the compatibility of $\delta_{2, D}$ with $\delta_{2, W(D)}$, it suffices to show that Tate’s pairing satisfies
\[
\langle \exp_Q \cdot b_{\text{rig-Q}}^1 (a \frac{e_1}{t}, \log(\chi)) \rangle = a
\]
for any $a \in \mathbb{Q}_p$. Because it is known that $\kappa(b) = \exp_{\mathbb{Q}_p, \mathbb{Q}_p} \left(\frac{\log(b)}{t} e_1 \right)$ for any $b \in \mathbb{Z}_p^\times$ ($\kappa : \mathbb{Q}_p^\times \rightarrow \text{H}^1(\mathbb{Q}_p, \mathbb{Q}_p(1))$ is the Kummer map), we obtain
\[
\langle \exp_Q \cdot b_{\text{rig-Q}}^1 \left(\frac{\log(b)}{t} e_1 \right), \log(\chi) \rangle = \langle \kappa(b), \log(\chi) \rangle
\]
\[
= \log(b)
\]
for any $b \in \mathbb{Z}_p^\times$, where the last equality follows from Remark 2.3. This finishes the proof of the lemma. \[\square\]

Let D be a (φ, Γ_K)-module over $b_{\text{rig-K}}^\dagger$. We define a pairing
\[
\langle \cdot, \cdot \rangle_{\text{diff}} : \text{H}^0(K, D_{\text{diff}}(D)) \times \text{H}^1(K, D_{\text{diff}}(D^\vee(1))) \xrightarrow{\cup_{\text{diff}}} \text{H}^1(K, D_{\text{diff}}(D \otimes D^\vee(1)))
\]
\[
\xrightarrow{\text{ev}} \text{H}^1(K, D_{\text{diff}}(b_{\text{rig-K}}^\dagger(1))) \xrightarrow{g_{\text{rig-K}}^1} D_{\text{dr}}(b_{\text{rig-K}}^\dagger(1)) \rightarrow K
\]

Lemma 2.15. Let D be a (φ, Γ_K)-module over $b_{\text{rig-K}}$. Then the following diagrams
\[
\begin{array}{ccc}
\text{H}^0(K, D_{\text{diff}}(D)) \times \text{H}^1(K, D_{\text{diff}}(D^\vee(1))) & \xrightarrow{\langle \cdot, \cdot \rangle_{\text{diff}}} & K \\
\downarrow \text{exp}_{K,D} & & \downarrow \text{Tr}_{K/\mathbb{Q}_p} \\
\text{H}^1(K, D) \times \text{H}^1(K, D^\vee(1)) & \xrightarrow{\langle \cdot, \cdot \rangle} & \mathbb{Q}_p
\end{array}
\]
and
\[
\begin{align*}
H^0(K, D_{\text{dif}}(D)) \times H^1(K, D_{\text{dif}}(D^\vee(1))) &\xrightarrow{(\text{ev})_{\text{dif}}} \mathbb{Q}_p \\
\uparrow_{x \mapsto t_n(x)} &\quad \downarrow_{\delta_{2,D^\vee(1)}} & \downarrow_{\text{Tr}_{K/\mathbb{Q}_p}} \\
H^0(K, D) \times H^2(K, D^\vee(1)) &\xrightarrow{(\cdot)} \mathbb{Q}_p
\end{align*}
\]
are commutative. In other words, we have equalities
\[
\langle \exp_{K,D}(z), [x, y] \rangle = \text{Tr}_{K/\mathbb{Q}_p}([z, [t_n(x)]]_{\text{dif}})
\]
and
\[
\langle a, \delta_{2,D^\vee(1)}([b]) \rangle = \text{Tr}_{K/\mathbb{Q}_p}([t_n(a), [b]]_{\text{dif}})
\]
for any \(z \in H^0(K, D_{\text{dif}}(D)), [x, y] \in H^1(K, D^\vee(1)) \) and \(a \in H^0(K, D), [b] \in H^1(K, D_{\text{dif}}(D^\vee(1))) \).

Proof. This lemma follows from Lemmas 2.13 and 2.14.

Let \(D \) be a de Rham \((\varphi, \Gamma_K)\)-module over \(B_{\text{rig},K}^\dagger \).

We define a map
\[
\exp_{K,D}^*: H^1(K, D) \to \text{Fil}^0 \mathbb{D}_{\text{dR}}^K(D)
\]
as the composition of the natural map
\[
H^1(K, D) \to H^1(K, D_{\text{dif}}^+(D)) \to H^1(K, D_{\text{dif}}(D)) : [x, y] \mapsto [t_n(x)]
\]
(for sufficiently large \(n \)) with the inverse of the isomorphism
\[
g_D : \mathbb{D}_{\text{dR}}^K(D) \xrightarrow{\sim} H^1(K, D_{\text{dif}}(D)).
\]
Because we have \(D_{\text{dif}}^+(D) = \text{Fil}^0 K_{\text{rig}}(t) \otimes_K \mathbb{D}_{\text{dR}}^K(D) \), we can easily see that the image of \(\exp_{K,D}^*(D^\vee(1)) \) is contained in \(\text{Fil}^0 \mathbb{D}_{\text{dR}}^K(D) \). As in the case of \(p \)-adic Galois representations, the map \(\exp_{K,D}^* \) is the adjoint of \(\exp_{K,D} \) in the following sense. We define a \(K \)-bi-linear perfect pairing \([-,-]\) by
\[
[-,-]_{\text{dR}} : \mathbb{D}_{\text{dR}}^K(D) \times \mathbb{D}_{\text{dR}}^K(D^\vee(1)) \xrightarrow{\text{ev}} \mathbb{D}_{\text{dR}}^K(B_{\text{rig},K}^\dagger(1)) \xrightarrow{\varphi \mapsto a} K
\]
where \(\text{ev} \) is the natural evaluation map. By the definition of \(\text{Fil}^0 \), this pairing induces a perfect pairing
\[
[-,-]_{\text{dR}} : \mathbb{D}_{\text{dR}}^K(D)/\text{Fil}^0 \mathbb{D}_{\text{dR}}^K(D) \times \text{Fil}^0 \mathbb{D}_{\text{dR}}^K(D^\vee(1)) \to K.
\]

Proposition 2.16. Let \(D \) be a de Rham \((\varphi, \Gamma_K)\)-module over \(B_{\text{rig},K}^\dagger \). For any \(x \in \mathbb{D}_{\text{dR}}^K(D)/\text{Fil}^0 \mathbb{D}_{\text{dR}}^K(D) \) and \(y \in H^1(K, D^\vee(1)) \), the following equality holds:
\[
\langle \exp_{K,D}(x), y \rangle = \text{Tr}_{K/\mathbb{Q}_p}([x, \exp_{K,D}^*(y)]_{\text{dR}}).
\]

Proof. By Lemma 2.15, it suffices to show the equality
\[
[x, z]_{\text{dR}} = \langle x, g_{D^\vee(1)}(z) \rangle_{\text{dif}}
\]
for any $x \in H^0(K, D_{\text{dif}}(D)), z \in H^0(K, D_{\text{dif}}(D^\vee(1)))$; but this equality is trivial by definition.

2.5. Comparison with the Bloch–Kato exponential map of B-pairs

In this subsection, we show that the long exact sequence of Theorem 2.8 associated to D is isomorphic to the long exact sequence naturally defined from the cohomologies of the corresponding B-pair $W(D)$. In particular, in the étale case, we show that the sequence of Theorem 2.8 is isomorphic to the long exact sequence induced from the Bloch–Kato fundamental short exact sequence.

We first recall the definition of B-pairs and the definition of the functor from the category of (φ, Γ_K)-modules to the category of B-pairs which induces an equivalence between these categories; see [5] for more details.

The following definition is due to Berger [5].

Definition 2.17. We say that a pair $W := (W_e, W_{\text{dR}}^+)$ is a B-pair of G_K if

1. W_e is a finite free B_{e}-module with a continuous semi-linear G_K-action,
2. W_{dR}^+ is a G_K-stable finite B_{dR}^+-submodule of $W_{\text{dR}} := B_{\text{dR}} \otimes B_{\text{e}} W_e$ which generates W_{dR} as B_{dR}-module,

where semi-linear means that $g(ax) = g(a)g(x)$ for any $a \in B_{\text{e}}, x \in W_e$ and $g \in G_K$.

Remark 2.18. Let V be a p-adic representation of G_K. We define a B-pair

$$W(V) := (B_{\text{e}} \otimes Q_p, V, B_{\text{dR}}^+ \otimes Q_p, V).$$

By Bloch–Kato’s fundamental short exact sequence [7]

$$0 \to \mathbb{Q}_p \xrightarrow{\times (x, x)} B_{\text{e}} \bigoplus B_{\text{dR}}^+ \xrightarrow{(x, y) \mapsto x-y} B_{\text{dR}} \to 0,$$

we can easily see that this functor $V \mapsto W(V)$ is fully faithful; hence we can view the category of p-adic representations of G_K as a full subcategory of the category of B-pairs of G_K.

By the theorems of Fontaine, Cherbonnier and Colmez and Kedlaya, the category of p-adic representations of G_K is equivalent to the category of étale (φ, Γ_K)-modules over $B_{\text{rig}, K}$. Berger extended this categorical equivalence to the equivalence between the category of B-pairs of G_K with that of (φ, Γ_K)-modules over $B_{\text{rig}, K}$, which we recall below.

We first note that we have a (φ, G_K)-equivariant canonical injection $B_{\text{rig}, K}^+ \hookrightarrow \tilde{B}_{\text{rig}, K}^+$. Let D be a (φ, Γ_K)-module over $B_{\text{rig}, K}$ of rank d. For each $n \geq n(D)$, we define

$$W_e(D(n)) := (B_{\text{rig}, K}^+[1/t] \otimes B_{\text{rig}, K}^{1/t}, D(n)^{\varphi=1}).$$

Since we have an isomorphism

$$B_{\text{rig}, K}^{\flat, r_{n+1}} \otimes_{Q_p} B_{\text{rig}, K}^{\flat, r_n} D(n) \cong D(n+1) : a \otimes x \mapsto a\varphi(x)$$
and the map \(\varphi : \tilde{B}_{\text{rig}}^{\hat{t}, r_n} \tilde{\to} \tilde{B}_{\text{rig}}^{\hat{t}, r_{n+1}} \) is isomorphism, we obtain a natural isomorphism

\[
\tilde{B}_{\text{rig}}^{\hat{t}, r_n} \otimes (\tilde{B}_{\text{rig}}^{\hat{t}, r_n})^D_0 \xrightarrow{\varphi \otimes (\varphi \otimes x)} \tilde{B}_{\text{rig}}^{\hat{t}, r_{n+1}} \otimes \varphi \cdot (\tilde{B}_{\text{rig}}^{\hat{t}, r_n})^D_0
\]

i.e., the map

\[
\varphi : \tilde{B}_{\text{rig}}^{\hat{t}, r_n} \otimes (\tilde{B}_{\text{rig}}^{\hat{t}, r_n})^D_0 \to \tilde{B}_{\text{rig}}^{\hat{t}, r_{n+1}} \otimes (\tilde{B}_{\text{rig}}^{\hat{t}, r_n})^D_0 : a \otimes x \mapsto \varphi(a) \otimes \varphi(x)
\]

is an isomorphism. Hence, we obtain the following diagram:

\[
\begin{array}{ccc}
0 & \longrightarrow & \text{W}_e(D^{(n)}) \\
\downarrow \varphi & & \downarrow \varphi \\
0 & \longrightarrow & \text{W}_e(D^{(n+1)})
\end{array}
\]

with exact rows. Hence, the map

\[
\varphi : \text{W}_e(D^{(n)}) \tilde{\to} \text{W}_e(D^{(n+1)})
\]

is also an isomorphism. We define

\[
\text{W}_e(D) := \text{W}_e(D^{(n)})
\]

for any \(n \geq n(D) \). Using the isomorphism \(\varphi : \text{W}_e(D^{(n)}) \tilde{\to} \text{W}_e(D^{(n+1)}) \), \(\text{W}_e(D) \) does not depend on the choice of \(n \). One has that \(\text{W}_e(D) \) is a finite free \(B_e \)-module of rank \(d \), and the natural map

\[
\tilde{B}_{\text{rig}}^{\hat{t}, r_n} [1/t] \otimes B_e \text{W}_e(D^{(n)}) \to \tilde{B}_{\text{rig}}^{\hat{t}, r_n} [1/t] \otimes (\tilde{B}_{\text{rig}}^{\hat{t}, r_n})^D_0 : a \otimes x \mapsto ax
\]

is an isomorphism by Proposition 2.2.6 of [5]. Put

\[
\text{W}_{\text{dR}}(D) := \text{B}_{\text{dR}} \otimes B_e \text{W}_e(D).
\]

Using the isomorphism above, we obtain an isomorphism

\[
\text{W}_{\text{dR}}(D) \tilde{\to} \text{B}_{\text{dR}} \otimes B_e \text{W}_e(D^{(n)}) \tilde{\to} \text{B}_{\text{dR}} \otimes (\text{B}_{\text{dR}}^{\hat{t}, r_n} [1/t] \otimes (\text{B}_{\text{dR}}^{\hat{t}, r_n})^D_0) \to \text{B}_{\text{dR}} \otimes B_e \text{B}_{\text{dR}}^{\hat{t}, r_n} [1/t] \otimes (\text{B}_{\text{dR}}^{\hat{t}, r_n})^D_0
\]

We define a \(B_{\text{dR}}^{\hat{t}} \)-submodule

\[
\text{W}_{\text{dR}}^{+}(D) := \text{B}_{\text{dR}}^{+} \otimes (\text{B}_{\text{dR}}^{\hat{t}, r_n})^D_0
\]

of \(\text{W}_{\text{dR}}(D) \). Using the isomorphism

\[
\text{B}_{\text{dR}}^{+} \otimes (\text{B}_{\text{dR}}^{\hat{t}, r_n})^D_0 \to \text{B}_{\text{dR}}^{+} \otimes (\text{B}_{\text{dR}}^{\hat{t}, r_{n+1}})^D_0 : a \otimes x \mapsto a \otimes \varphi(x),
\]

\(\text{W}_{\text{dR}}^{+}(D) \) also does not depend on the choice of \(n \). Hence, we obtain a \(B \)-pair \(W(D) := (\text{W}_e(D), \text{W}_{\text{dR}}^{+}(D)) \).
The main theorem of [5] is the following.

Theorem 2.19. The functor $D \mapsto W(D)$ is exact and gives an equivalence of categories between the category of (φ, Γ_K)-modules over $B_{\text{rig}, K}^{\dagger}$ and the category of B-pairs of G_K. Moreover, if we restrict this functor to étale (φ, Γ_K)-modules, this gives an equivalence of categories between the category of étale (φ, Γ_K)-modules over $B_{\text{rig}, K}^{\dagger}$ and the category of p-adic representations of G_K.

Proof. This is Theorem 2.2.7 and Proposition 2.2.9 of [5].

Remark 2.20. The inverse functor $D(-)$ of $W(-)$ is defined as follows; see § 2 of [5] for the proof. Let $W = (W_e, W_{\text{dR}}^+)$ be a B-pair of G_K of rank d. For each $n \geq 1$, we first define

$$\tilde{D}^{(n)}(W) := \{ x \in B_{\text{rig}}^{++}[1/t] \otimes_{B_e} W_e | l_m(x) \in W_{\text{dR}}^+ \text{ for any } m \geq n \}.$$

Berger showed that $\tilde{D}(W) := \varinjlim_{n} \tilde{D}^{(n)}(W)$ is a finite free B_{rig}^{++}-module of rank d with a (φ, G_K)-action. Then, $D(W)$ is defined as the unique (φ, Γ_K)-submodule $D(W) \subseteq \tilde{D}(W)/\text{Ker}(x)$ over $B_{\text{rig}, K}^{\dagger}$ such that $B_{\text{rig}}^{++} \otimes_{B_{\text{rig}, K}^{\dagger}} D(W) \sim \tilde{D}(W)$.

Next, we recall the definition of Galois cohomology of B-pairs; see § 2 of [25] and the appendix of [26] for details. For a continuous G_K-module M, and for each $q \geq 0$, we denote by

$$C^q(G_K, M) := \{ c : G_K^q \rightarrow M \text{ continuous map} \}$$

the set of q continuous cochains (when $q = 0$, we define $G_K^0 := \{ \text{one point} \}$). As usual, we define the map

$$\delta_q : C^q(G_K, M) \rightarrow C^{q+1}(G_K, M)$$

by

$$\delta_q(c)(g_1, g_2, \ldots, g_{q+1}) := g_1c(g_2, \ldots, g_{q+1}) + (-1)^{q+1}c(g_1, g_2, \ldots, g_q) + \sum_{s=1}^q (-1)^s c(g_1, \ldots, g_{s-1}, g_s g_{s+1}, g_{s+2}, \ldots, g_{q+1})$$

and define the continuous cochain complex concentrated in degree $[0, +\infty)$ by

$$C^\bullet(G_K, M) := [C^0(G_K, M) \xrightarrow{\delta_0} C^1(G_K, M) \xrightarrow{\delta_1} \cdots].$$

We define

$$H^q(K, M) := H^q(C^\bullet(G_K, M)).$$

For a B-pair $W := (W_e, W_{\text{dR}}^+)$, we denote by

$$C^\bullet(G_K, W) := \text{Cone}(C^\bullet(G_K, W_e) \oplus C^\bullet(G_K, W_{\text{dR}}^+) \xrightarrow{(c_e, c_{\text{dR}})} C^\bullet(G_K, W_{\text{dR}}^+))[-1]$$

the degree (-1)-shift of the mapping cone of the map of complexes

$$C^\bullet(G_K, W_e) \oplus C^\bullet(G_K, W_{\text{dR}}^+) \rightarrow C^\bullet(G_K, W_{\text{dR}}^+),$$

where c_e, c_{dR} is the identity map.
We define

\[H^q(K, W) := H^q(C^*(G_K, W)). \]

By the definition of mapping cone, we have the following long exact sequence:

\[
0 \to H^0(K, W) \to H^0(K, W_v) \oplus H^0(K, W_{dR}^+) \to H^0(K, W_{dR}) \\
\delta_{1,v} \to H^1(K, W) \to H^1(K, W_v) \oplus H^1(K, W_{dR}^+) \to H^1(K, W_{dR}) \\
\delta_{2,v} \to H^2(K, W) \to H^2(K, W_v) \to 0,
\]

where the vanishings of \(H^q(K, W_{dR}^+) \), \(H^q(K, W_{dR}) \), \(H^{q+1}(K, W) \) and \(H^{q+1}(K, W_v) \) for any \(q \geq 2 \) are proved in [26].

We define

\[D_{dR}^K(W) := H^0(K, W_{dR}), \]

and we define

\[\exp_{K, W} := \delta_{1,v} : D_{dR}^K(W) \to H^1(K, W) \]

as the first boundary map of the above exact sequence.

When \(W = W(V) \), since we have a short exact sequence

\[0 \to V \to B_v \otimes_{Q_p} V \oplus B_{dR}^+ \otimes_{Q_p} V \to B_{dR} \otimes_{Q_p} V \to 0 \]

by Bloch and Kato, we have a canonical quasi-isomorphism

\[C^*(G_K, V) \to C^*(G_K, W(V)). \]

This quasi-isomorphism gives an isomorphism

\[H^q(K, V) \sim H^q(K, W(V)) \]

for each \(q \). By this isomorphism, the above exact sequence for \(W = W(V) \) is equal to the exact sequence

\[
0 \to H^0(K, V) \to H^0(K, B_v \otimes_{Q_p} V) \oplus H^0(K, B_{dR}^+ \otimes_{Q_p} V) \to H^0(K, B_{dR} \otimes_{Q_p} V) \\
\delta_{1,v} \to H^1(K, V) \to H^1(K, B_v \otimes_{Q_p} V) \oplus H^1(K, B_{dR}^+ \otimes_{Q_p} V) \to H^1(K, B_{dR} \otimes_{Q_p} V) \\
\delta_{2,v} \to H^2(K, V) \to H^2(K, B_v \otimes_{Q_p} V) \to 0,
\]

obtained from the Bloch–Kato fundamental short exact sequence.

The main result of this subsection is the following.

Theorem 2.21. Let \(D \) be a \((\varphi, \Gamma_K)\)-module over \(B_{rig,K}^+ \). For each \(q \geq 0 \), there exist the following functorial isomorphisms.

1. \(H^q(K, D) \sim H^q(K, W(D)) \),
2. \(H^q(K, D[1/l]) \sim H^q(K, W_e(D)) \),
3. \(H^q(K, D_{dR}^+(D)) \sim H^q(K, W_{dR}^+(D)) \),
4. \(H^q(K, D_{dif}(D)) \sim H^q(K, W_{dR}(D)) \).
Moreover, these isomorphisms give an isomorphism between the exact sequence associated to \(D\) in Theorem 2.8 and that associated to \(W(D)\) defined above.

Proof. We proved (1) in Theorem 5.11 of [26]. Since we have \(W_{dR}^+(D) = B_{dR}^+ \otimes_{K^{\infty}[[\ell]]} D_{\text{dif}}^+(D)\), then (3) follows Theorem 2.14 of [15]. (4) follows from (3) since we have \(W_{dR}(D) = \lim_{n \geq 0} \frac{1}{p^n} W_{dR}^+(D)\) and \(D_{\text{dif}}(D) = \lim_{n \geq 0} \frac{1}{p^n} D_{\text{dif}}^+(D)\).

We prove (2) using (1). By (1), we have

\[
H^q(K, D[1/\ell]) \sim \lim_{n \to \infty} H^q \left(K, \frac{1}{p^n} D \right) \sim \lim_{n \to \infty} H^q \left(K, W \left(\frac{1}{p^n} D \right) \right).
\]

Since we have \(W(\frac{1}{p^n} D) \sim (W_e(D), \frac{1}{p^n} W_{dR}^+(D))\) for each \(n \geq 0\), we obtain

\[
\lim_{n \to \infty} C^* \left(G_K, W_{dR}^+ \left(\frac{1}{p^n} D \right) \right) = \lim_{n \to \infty} C^* \left(G_K, \frac{1}{p^n} W_{dR}^+(D) \right) = C^* (G_K, W_{dR}(D)).
\]

Hence, we obtain an isomorphism

\[
\lim_{n \to \infty} H^q \left(K, W \left(\frac{1}{p^n} D \right) \right) \sim H^q \left(\lim_{n \to \infty} C^* \left(G_K, W \left(\frac{1}{p^n} D \right) \right) \right) \sim H^q \left(\text{Cone}(C^* (G_K, W_e(D)) \oplus C^* (G_K, W_{dR}(D))) \right) \sim C^* (G_K, W_{dR}(D))[-1]).
\]

Since we have the following short exact sequence of complexes:

\[
0 \to C^* (G_K, W_e(D)) \xrightarrow{x \to (x, x)} C^* (G_K, W_e(D)) \oplus C^* (G_K, W_{dR}(D)) \xrightarrow{(x, y) \to x - y} C^* (G_K, W_{dR}(D)) \to 0,
\]

we obtain a natural isomorphism

\[
H^q(K, W_e(D)) \sim H^q \left(\text{Cone}(C^* (G_K, W_e(D)) \oplus C^* (G_K, W_{dR}(D))) \right) \sim C^* (G_K, W_{dR}(D))[-1]).
\]

which proves (2).

Next, we prove that the isomorphisms (1)–(4) of the theorem give an isomorphism of the corresponding long exact sequences. Since the other commutativities are easy to check, it suffices to show that the following two diagrams are commutative

(i)

\[
\begin{array}{ccc}
H^0(K, D_{\text{dif}}(D)) & \xrightarrow{\sim} & H^0(K, W_{dR}(D)) \\
\downarrow \exp_{K,D} & & \downarrow \exp_{K,W(D)} \\
H^1(K, D) & \xrightarrow{\sim} & H^1(K, W(D))
\end{array}
\]
§1. Let γ denote a topological generator of Γ_k; the general case can be proved similarly using the argument of § 2.1 of [23]. If we denote by $\text{Ext}^1(B_{\text{rig,K}}, D)$ the group of extension classes of $B_{\text{rig,K}}$ by D, then we have the following canonical isomorphisms

$$\text{Ext}^1(B_{\text{rig,K}}, D) \sim \text{Ext}^1((B_{\text{rig,K}}, W(D)),$$

by § 2.1 of [23] and by § 2.1 of [25], and we have the following commutative diagram

\[
\begin{array}{ccc}
H^1(K, D) & \longrightarrow & H^1(K, W(D)) \\
\downarrow h_D & & \downarrow h_W(D) \\
\text{Ext}^1(B_{\text{rig,K}}, D) & \longrightarrow & \text{Ext}^1((B_{\text{rig,K}}, W(D))
\end{array}
\]

by Theorem 5.11 of [26], where the isomorphism

$$\text{Ext}^1(B_{\text{rig,K}}, D) \sim \text{Ext}^1((B_{\text{rig,K}}, W(D))$$

is given by

$$[0 \to B_{\text{rig,K}} \to D' \to D \to 0] \mapsto [0 \to (B_{\text{rig,K}}, W(D)) \to W(D') \to W(D) \to 0],$$

i.e., given by applying the functor $W(-)$.

Let $a \in H^0(K, D_{\text{dif}}(D)) \sim H^0(K, W_{\text{dif}}(D)).$ By the above diagram, it suffices to show that the functor $W(-)$ sends the extension corresponding to $\text{exp}_K(D)\langle a \rangle$ to the extension corresponding to $\text{exp}_K, W(D)(a)$.

Take n sufficiently large such that $a \in D_{\text{dif,m}}(D)^{1/k-1}.$ By (1) of Lemma 2.12, and by the definition of the isomorphism $H^1(K, D) \sim \text{Ext}^1(B_{\text{rig,K}}, D)$, if we take $\tilde{a} \in D\langle 0 \rangle [1/t]$ such that $t_m(\tilde{a}) - a \in D_{\text{dif,m}}(D)$ for any $m \geq n$, the extension $D_{\tilde{a}}$ corresponding to $\text{exp}_K, D(a)$ is explicitly defined by

$$0 \to D \xrightarrow{x \to (x, 0)} D \oplus B_{\text{rig,K}} \xrightarrow{(x, y) \to y} B_{\text{rig,K}} \to 0$$

such that

$$\varphi((x, y)) := (\varphi(x) + \varphi(y)(\gamma_k - 1)\tilde{a}, \varphi(y)e),$$

$$\gamma_k((x, y)) := (\gamma_k(x) + \gamma_k(y)(\varphi - 1)\tilde{a}, \gamma_k(y)e)$$

for any $(x, y) \in D \oplus B_{\text{rig,K}}.$
On the other hand, the extension
\[W_a := (W_e,a) := W_e(D) \oplus B_e e_{\text{crys}}, W_{dR,a}^+ := W_{dR}^+(D) \oplus B_{dR}^+ e_{dR} \]
corresponding to \(\exp_{K,W(D)}(a) \) is defined by
\[g(x + ye_{\text{crys}}) := g(x) + g(y)e_{\text{crys}}, \quad g(x' + y'e_{dR}) := g(x') + g(y')e_{dR} \]
for any \(g \in G_K, x \in W_e(D), x' \in W_{dR}^+(D), y \in B_e, y' \in B_{dR}^+ \), and the inclusion
\[W_{dR,a}^+ \hookrightarrow B_{dR} \otimes B_e W_{e,a} = W_{dR}(D) \oplus B_{dR} e_{\text{crys}} \]
is defined by
\[x + ye_{dR} \mapsto (x + ya) + ye_{\text{crys}} \quad (x \in W_{dR}^+(D), y \in B_{dR}^+) \).

Let us show that \(D(W_a) \cong D_a \) as an extension. By the definition of \(\tilde{a} \), we can easily check that \(\tilde{D}(\tilde{a}) \) defined in Remark 2.20 is isomorphic to
\[B_{\text{rig}}^{t,r_n} \otimes_{B_{\text{rig},K}} D_{\text{rig}^{(a)}} \oplus B_{\text{rig}}^{t,r_n}(e_{\text{crys}} + \tilde{a}) \subseteq B_{\text{rig}}^{t,r_n}[1/t] \otimes_{B_e} W_{e,a} \]
and that \(\tilde{D}(W_a) \) contains a \((\varphi, \Gamma_K) \)-module \(D \oplus B_{\text{rig},K}(e_{\text{crys}} + \tilde{a}) \) over \(B_{\text{rig},K} \), which is easily seen to be isomorphic to \(D_a \), hence finishing the proof of the commutativity of (i).

Finally, we prove the commutativity of (ii). By Lemma 2.15 (we note that we can show the \(B \)-pairs analogue of Lemma 2.15 in the same way), it suffices to show that the following diagram is commutative:

(ii)
\[H^0(K, D_{\text{dif}}(D^\vee(1))) \xrightarrow{\sim} H^0(K, W_{dR}(D^\vee(1))) \]
\[\xrightarrow{x \mapsto \text{can}} \]
\[H^0(K, D^\vee(1)) \xrightarrow{\sim} H^0(K, W(D^\vee(1))) \]

The commutativity of this diagram is trivial. We finish the proof of the theorem. \(\square \)

3. The Perrin-Riou big exponential map for de Rham \((\varphi, \Gamma) \)-modules

This section is the main part of this article. For any de Rham \((\varphi, \Gamma) \)-module \(D \), we construct a system of maps \(\{ \text{Exp}_{D,h} \}_{h \geq 0} \), which we call big exponential maps, and prove their important properties, i.e., their interpolation formulae and theorem \(\delta(D) \).

The first two subsections deal with preliminaries. In §3.1, we recall Pottharst’s theory of the analytic Iwasawa cohomologies [32]. In §3.2, we recall Berger’s construction of \(p \)-adic differential equations associated to de Rham \((\varphi, \Gamma) \)-modules [3, 6]. The next two subsections form the main part of this article. In §3.3, we define the maps \(\{ \text{Exp}_{D,h} \}_{h \geq 0} \) and prove their interpolation formulae. In §3.4, we formulate and prove theorem \(\delta(D) \).

In §3.5, we compare our big exponential maps and our theorem \(\delta(D) \) with those of Perrin-Riou or Pottharst in the crystalline case.
3.1. Analytic Iwasawa cohomology

In this subsection, we recall the results of Pottharst concerning analytic Iwasawa cohomologies of \((\varphi, \Gamma)\)-modules over the Robba ring [32].

Let \(\Lambda := \mathbb{Z}_p[[\Gamma_K]] := \varprojlim_n \mathbb{Z}_p[\Gamma_K/\Gamma_K_n]\) be the Iwasawa algebra of \(\Gamma_K\). If we decompose \(\Gamma_K\) by \(\Gamma_K \sim \Gamma_K_{\text{tor}} \times \Gamma_K_{\text{free}}\), where \(\Gamma_K_{\text{tor}} \subseteq \Gamma_K\) is the torsion subgroup of \(\Gamma_K\) and \(\Gamma_K_{\text{free}} = \Gamma_K \cap \chi^{-1}(1 + 2p\mathbb{Z}_p)\), then we have an isomorphism \(\Lambda \sim \mathbb{Z}_p[\Gamma_{K,\text{tor}}] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p [[\Gamma_{K,\text{free}}]]\)

If we take a topological generator \(\gamma \in \Gamma_K_{\text{free}},\) then we also have a \(\mathbb{Z}_p[\Gamma_{K,\text{tor}}]\)-algebra isomorphism \(\mathbb{Z}_p[\Gamma_{K,\text{tor}}] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p [[\Gamma_{K,\text{free}}]] \sim \mathbb{Z}_p[\Gamma_{K,\text{tor}}] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p [[T]]\) defined by \(1 \otimes [\gamma] \mapsto 1 \otimes (1 + T)\).

Let \(m \subseteq \Lambda\) be the Jacobson radical of \(\Lambda\). For each \(n \geq 1\), we set \(A_n := \Lambda[\frac{m^n}{p}]^\wedge [1/p]\), where \(\Lambda[\frac{m^n}{p}]^\wedge\) is the \(p\)-adic completion of \(\Lambda[\frac{m^n}{p}]\), which is an affinoid algebra over \(\mathbb{Q}_p\).

The natural map \(\Lambda[\frac{m^n+1}{p}] \to \Lambda[\frac{m^n}{p}]^\wedge\) induces a continuous map \(A_{n+1} \to A_n\) for each \(n \geq 1\). We set \(A_\infty := \varprojlim_n A_n\). If we fix an isomorphism \(\Lambda \sim \mathbb{Z}_p[\Gamma_{K,\text{tor}}] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p [[T]]\) as above, then this isomorphism naturally extends to \(\mathbb{Q}_p[\Gamma_{K,\text{tor}}]\)-algebra isomorphism \(A_\infty \sim \mathbb{Q}_p[\Gamma_{K,\text{tor}}] \otimes_{\mathbb{Q}_p} \mathbb{B}_\text{rig}^+, \) where the ring \(\mathbb{B}_\text{rig}^+\) is defined by

\[
\mathbb{B}_\text{rig}^+ \ := \left\{ f(T) = \sum_{n=0}^{\infty} a_n T^n \mid a_n \in \mathbb{Q}_p \text{ and } f(T) \text{ is convergent on } 0 \leq |T| < 1 \right\}.
\]

We remark that the above isomorphism \(A_\infty \sim \mathbb{Q}_p[\Gamma_{K,\text{tor}}] \otimes_{\mathbb{Q}_p} \mathbb{B}_\text{rig}^+\) also depends on the choice of a topological generator \(\gamma\) and is highly non-canonical, and is only used to help the reader to understand the structure of \(A_\infty\).

We define \(A_n[\Gamma_K]\)-modules \(\tilde{A}_n\) and \(\tilde{A}_n'\) by \(\tilde{A}_n = \tilde{A}_n' = A_n\) as a \(A_n\)-module and \(\gamma(\lambda) := [\gamma] \cdot \lambda,\) \(\gamma(\lambda') := [\gamma^{-1}] \cdot \lambda'\) for \(\lambda \in \tilde{A}_n, \lambda' \in \tilde{A}_n'\) and \(\gamma \in \Gamma_K\).

Let \(D\) be a \((\varphi, \Gamma_K)\)-module over \(\mathbb{B}_\text{rig}^+.\) For each \(n \geq 1\), we define a \((\varphi, \Gamma_K)\)-module \(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i\) over \(\mathbb{B}_\text{rig}^+.\) as follows (see § 2 of [32] for a more precise definition).

We define \(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i := D \otimes_{\mathbb{Q}_p} A_n\) as a \(\mathbb{B}_\text{rig}^+\) modules and define \(\varphi(x \otimes \lambda) := \varphi(x) \otimes \lambda,\) \(\psi(x \otimes \lambda) := \psi(x) \otimes \lambda\) and \(\gamma(x \otimes \lambda) := \gamma(x) \otimes [\gamma^{-1}] \cdot \lambda\) for \(x \in D, \lambda \in \tilde{A}_n\) and \(\gamma \in \Gamma_K\).

For each \(n \geq 1\), we define two complexes \(C^*_{\varphi, \lambda}^i(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i)\) and \(C^*_{\psi, \lambda}^i(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i)\) and define the natural map of complexes \(C^*_{\varphi, \lambda}^i(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i) \to C^*_{\psi, \lambda}^i(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i)\) in the same way as those for \(D\). We define \(H^q(K, D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i) := H^q(C^*_{\varphi, \lambda}^i(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i))\), which is a \(A_n\)-module.

The natural map \(A_{n+1} \to A_n\) induces a natural map \(D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i \to D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i\), and this map induces \(H^q(K, D \otimes_{\mathbb{Q}_p} \tilde{A}_{n+1}^i) \to H^q(K, D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i)\). Following [32], we define the analytic Iwasawa cohomology of \(D\) as follows.

Definition 3.1. Let \(D\) be a \((\varphi, \Gamma_K)\)-module over \(\mathbb{B}_\text{rig}^+.\) and let \(q \geq 0\) be an integer. We define the \(q\)th analytic Iwasawa cohomology of \(D\) by

\[
H^q_{\text{Iw}}(K, D) := \varprojlim_n H^q(K, D \otimes_{\mathbb{Q}_p} \tilde{A}_n^i),
\]

which is a \(A_\infty\)-module.
Because we have a decomposition $\mathbb{Q}_p[\Gamma_{K, \text{tor}}] = \bigoplus_{\eta \in \hat{\Gamma}_{K, \text{tor}}} \mathbb{Q}_p \alpha_\eta$, where $\hat{\Gamma}_{K, \text{tor}}$ is the character group of $\Gamma_{K, \text{tor}}$ and α_η is the idempotent corresponding to η, we also have $\Lambda_\infty = \bigoplus_{\eta \in \hat{\Gamma}_{K, \text{tor}}} \Lambda_\infty \alpha_\eta$, and each $\Lambda_\infty \alpha_\eta$ is non-canonically isomorphic to $B^{+}_{\text{rig}, \mathbb{Q}_p}$.

Let \mathbb{M} be a Λ_∞-module. Using this decomposition, we obtain a decomposition $\mathbb{M} = \bigoplus_{\eta \in \hat{\Gamma}_{K, \text{tor}}} \mathbb{M}_\eta$, where we define $\mathbb{M}_\eta := \alpha_\eta \mathbb{M}$ which is a $\Lambda_\infty \alpha_\eta$-module. For a $B^{+}_{\text{rig}, \mathbb{Q}_p}$-module N, we define $N_{\text{tor}} := \{x \in N | ax = 0 \text{ for some non zero } a \in B^{+}_{\text{rig}, \mathbb{Q}_p} \}$. For a Λ_∞-module \mathbb{M}, we define $\mathbb{M}_{\text{tor}} := \bigoplus_{\eta \in \hat{\Gamma}_{K, \text{tor}}} (\mathbb{M}_\eta)_{\text{tor}}$.

As for the fundamental properties of $H^q_{\text{Iw}}(K, D)$, Potthast proved the following results, which are a generalization of Perrin-Riou’s results [29] in the case of p-adic Galois representations.

Theorem 3.2. Let D be a (φ, Γ_K)-module over $B^{+}_{\text{rig}, K}$ of rank d. Then we have the following.

1. For each $n \geq 1$ and $q \geq 0$, the natural map

$$H^q(K, D) \otimes_{\mathbb{Q}_p} \tilde{\Lambda}_n(1) \to H^q(K, D) \otimes_{\mathbb{Q}_p} \tilde{\Lambda}_n$$

induces an isomorphism of Λ_n-modules

$$H^q(K, D) \otimes_{\mathbb{Q}_p} \tilde{\Lambda}_n(1) \otimes \Lambda_{n+1} \Lambda_n \to H^q(K, D) \otimes_{\mathbb{Q}_p} \tilde{\Lambda}_n.$$

2. $H^q_{\text{Iw}}(K, D) = 0$ if $q \neq 1, 2$.

3. $H^1_{\text{Iw}}(K, D)_{\text{tor}}$ and $H^2_{\text{Iw}}(K, D)$ are finite-dimensional \mathbb{Q}_p-vector spaces.

4. $H^1_{\text{Iw}}(K, D)/H^1_{\text{Iw}}(K, D)_{\text{tor}}$ is a finite free Λ_∞-module of rank $d|K: \mathbb{Q}_p|$.

Proof. This is Theorem 2.6 and Proposition 2.9 of [32].

Let A be a \mathbb{Q}_p-affinoid algebra, and let $\delta : \Gamma_K \to A^\times$ be a continuous homomorphism. We define $A(\delta) := A e_\delta$ the free rank-1 A-module with the base e_δ with an A-linear Γ_K action by $\gamma(e_\delta) := \delta(\gamma) e_\delta$ for $\gamma \in \Gamma_K$. Then the continuous \mathbb{Q}_p-algebra homomorphism $f_\delta : \Lambda_\infty \to A$ which is defined by $f_\delta(\gamma) := \delta(\gamma)^{-1}$ for any $\gamma \in \Gamma_K$ induces the isomorphism

$$D \otimes_{\mathbb{Q}_p} (\tilde{\Lambda}_\infty \otimes \Lambda_{\infty, f_\delta} A) \to D \otimes_{\mathbb{Q}_p} A(\delta) : x \otimes (\lambda \otimes a) \mapsto x \otimes f_\delta(\lambda)ae_\delta$$

of (φ, Γ_K)-modules over $B^{+}_{\text{rig}, K} \otimes_{\mathbb{Q}_p} A$. This isomorphism induces the canonical projection map

$$H^q_{\text{Iw}}(K, D) \to H^q(K, D) \otimes_{\mathbb{Q}_p} (\tilde{\Lambda}_\infty \otimes \Lambda_{\infty, f_\delta} A) \to H^q(K, D) \otimes_{\mathbb{Q}_p} A(\delta).$$

For each $L = K_n$ ($n \geq 1$) or $L = K$, $k \in \mathbb{Z}$ and $q \geq 0$, as a special case of the above projection map, we define the canonical map

$$\text{pr}_{L, D(k)} : H^q_{\text{Iw}}(K, D) \to H^q(L, D(k))$$

as follows. First, define the continuous homomorphism $\delta_L : \Gamma_K \to \mathbb{Q}_p[\Gamma_K/\Gamma_L]^\times : \gamma \mapsto [\gamma]^{-1}$. Then, for each $k \in \mathbb{Z}$, we obtain the projection map

$$H^q_{\text{Iw}}(K, D) \to H^q(K, D) \otimes_{\mathbb{Q}_p} \mathbb{Q}_p[\Gamma_K/\Gamma_L](\delta_L \chi^k))$$
associated to the character $\delta_L x^k$. Using the isomorphism $D \otimes_{Q_p} Q_p[\Gamma_K/\Gamma_L](\delta_L x^k) \sim\sim D(k) \otimes_{Q_p} Q_p[\Gamma_K/\Gamma_L] \bigl\langle x \otimes a e_{\delta_L x^k} \mapsto (x \otimes e_k) \otimes a \bigr\rangle$ (where $Q_p[\Gamma_K/\Gamma_L]$ is defined similarly as $\widetilde{\Lambda}_\infty^i$), we define
\[
\text{pr}_{L,D(k)} : H_{lw}^q(K, D) \to H^q(K, D \otimes_{Q_p} Q_p[\Gamma_K/\Gamma_L](\delta_L x^k))
\sim\sim H^q(K, D(k) \otimes_{Q_p} Q_p[\Gamma_K/\Gamma_L] \bigl\langle x \otimes a e_{\delta_L x^k} \mapsto (x \otimes e_k) \otimes a \bigr\rangle),
\]
where the last isomorphism is the canonical one induced by Shapiro's lemma (see Theorem 2.2 of [23]).

For each $k \in \mathbb{Z}$, we define a canonical isomorphism
\[
f_{D,k} : H_{lw}^q(K, D) \sim\sim H_{lw}^q(K, D(k))
\]of Q_p-vector spaces as follows. We first define continuous Q_p-algebra isomorphisms $f_k : A_0 \sim\sim A_0$ ($A_0 = \Lambda, \Lambda, A_\infty$) by $f_k(\chi) := \chi(\gamma)^{-k}[\gamma]$ for any $\gamma \in \Gamma_K$. Using f_k, for each $n \geq 1$, we define a continuous $B_{\text{rig}, K}$-linear isomorphism $D \otimes_{Q_p} \Lambda_n^i \sim\sim D(k) \otimes_{Q_p} \Lambda_n^i : x \otimes \lambda \mapsto (x \otimes e_k) \otimes f_k(\lambda)$. This map commutes with φ and Γ_K-actions, and hence induces an isomorphism $C_{\psi, \gamma_k}^\bullet (D \otimes_{Q_p} \Lambda_n^i) \sim\sim C_{\psi, \gamma_k}^\bullet (D(k) \otimes_{Q_p} \Lambda_n^i)$ of complexes of Q_p-vector spaces, and hence also induces an isomorphism $f_{D,k} : H_{lw}^q(K, D) \sim\sim H_{lw}^q(K, D(k))$ of Q_p-vector spaces for each q.

Using the ψ-complex $C_{\psi, \gamma_k}^\bullet (D \otimes_{Q_p} \Lambda_n^i)$, we can describe $H_{lw}^q(K, D)$ in a more explicit way as follows.

Theorem 3.3. Let D be a (φ, Γ_K)-module over $B_{\text{rig}, K}^\dagger$.

1. For each $n \geq 1$, the map
\[
(\gamma_k - 1) : (D \otimes_{Q_p} \Lambda_n^i)^{\Delta_k, \psi = 0} \to (D \otimes_{Q_p} \Lambda_n^i)^{\Delta_k, \psi = 0}
\]
is an isomorphism. In particular, the natural map
\[
C_{\psi, \gamma_k}^\bullet (D \otimes_{Q_p} \Lambda_n^i) \to C_{\psi, \gamma_k}^\bullet (D \otimes_{Q_p} \Lambda_n^i)
\]
is a quasi-isomorphism.

2. The complex
\[
C_{\psi}^\bullet (D) : [D \xrightarrow{\psi - 1} D]
\]
of Λ_∞-modules concentrated in degree $[1, 2]$ calculates $H_{lw}^q(K, D)$, i.e., we have functorial isomorphisms of Λ_∞-modules
\[
\iota_D : D^{\psi = 1} \sim\sim H_{lw}^1(K, D)
\]
and
\[
D/(\psi - 1)D \sim\sim H_{lw}^2(K, D).
\]

Proof. This is Theorem 2.6 of [32]. \qed
Remark 3.4. Let D be a (φ, Γ_K)-module over $B_{\text{rig}, K}^\dagger$. Then one has that the structure of the $\mathbb{Q}_p[\Gamma_K]$-module on D uniquely extends to a structure of a continuous Λ_∞-module (see Proposition 2.13 of [10]).

We define $p_{\Delta_K} := \frac{1}{|\Delta_K|} \sum_{g \in \Delta_K} g \in \mathbb{Q}[\Delta_K]$, $\log_0(a) := \frac{\log(a)}{p_\varphi(\log(a))} \in \mathbb{Z}_p^\times$ for any non-torsion $a \in \mathbb{Z}_p^\times$. For $q = 1$, the isomorphism

$$t_D : D^\psi = 1 \xrightarrow{\sim} H^1_{Iw}(K, D)$$

is defined as the composition of the following isomorphisms:

$$t_D : D^\psi = 1 \xrightarrow{\sim} \lim_{\leftarrow n} \left((D \otimes_{\mathbb{Q}_p} \Lambda_n^i)^{\Delta_K} / (\gamma_K - 1)(D \otimes_{\mathbb{Q}_p} \Lambda_n^i)^{\Delta_K}\right)^{\psi = 1}$$

$$\xrightarrow{\sim} \lim_{\leftarrow n} H^1(C_{\psi, \gamma_K}(D \otimes_{\mathbb{Q}_p} \Lambda_n^i))$$

$$\xrightarrow{\sim} \lim_{\leftarrow n} H^1(C_{\psi, \gamma_K}(D \otimes_{\mathbb{Q}_p} \Lambda_n^i)) = H^1_{Iw}(K, D),$$

where each isomorphism is defined as follows. The first isomorphism is defined by $x \mapsto (|\Gamma_{K, \text{tor}}|^\log_0(\chi(\gamma_K))p_{\Delta_K}(x \otimes 1))_{n \geq 1}$, for any $x \in D^\psi = 1$ (see the proof of Theorem 2.6 of [32]). We remark that it is Λ_∞-linear because we have $p_{\Delta_K}(\gamma x \otimes 1) = p_{\Delta_K}(x \otimes 1) \cdot [\gamma]$ (mod $(\gamma_K - 1)$) for any $\gamma \in \Gamma_K$. The second isomorphism is defined as the projective limit of the isomorphisms

$$((D \otimes_{\mathbb{Q}_p} \Lambda_n^i)^{\Delta_K} / (\gamma_K - 1)(D \otimes_{\mathbb{Q}_p} \Lambda_n^i)^{\Delta_K})^{\psi = 1} \xrightarrow{\sim} H^1(C_{\psi, \gamma_K}(D \otimes_{\mathbb{Q}_p} \Lambda_n^i)) : x \mapsto [x, y],$$

where $x \in (D \otimes_{\mathbb{Q}_p} \Lambda_n^i)^{\Delta_K}$ is a lift of φ and $y \in (D \otimes_{\mathbb{Q}_p} \Lambda_n^i)^{\Delta_K}$ is an element such that $(\psi - 1)x = (\gamma_K - 1)y$ (see Proposition 2.4 of [32]). The third isomorphism is induced by Theorem 3.3 (1).

For each $k \in \mathbb{Z}$, we have the following commutative diagram:

$$D^\psi = 1 \xrightarrow{t_D} H^1_{Iw}(K, D)$$

$$\xrightarrow{\big| \cdot \otimes e_k}$$

$$D(k)^\psi = 1 \xrightarrow{t_D(k)} H^1_{Iw}(K, D(k))$$

3.2. p-adic differential equations associated to de Rham (φ, Γ)-modules

In this subsection, we recall the results of Berger concerning the construction of p-adic differential equations associated to de Rham (φ, Γ)-modules. Let D be a de Rham (φ, Γ)-module over $B_{\text{rig}, K}^\dagger$. Then we have an isomorphism $K_n((t)) \otimes_K D_{\text{dR}}^K(D) \xrightarrow{\sim} D_{\text{dif}, n}(D)$ for each $n \geq n(D)$. Hence $K_n[[t]] \otimes_K D_{\text{dR}}^K(D)$ is a Γ_K-stable $K_n[[t]]$-lattice of $D_{\text{dif}, n}(D)$ for each $n \geq n(D)$. Define $\nabla_0 := \log(\gamma) / \log(\gamma(x)) \in \Lambda_\infty$, where γ is a non-torsion element of Γ_K, which is independent of the choice of γ. For each $i \in \mathbb{Z}$, we define $\nabla_i := \nabla_0 - i \in \Lambda_\infty$. The operator ∇_0 satisfies the Leibnitz rule $\nabla_0(fx) = \nabla_0(f)x + f \nabla_0(x)$ for any $f \in B_{\text{rig}, K}^\dagger$, $x \in D$. When $K = F$ is unramified over \mathbb{Q}_p, then we have $\nabla_0(f(T)) = t(T + 1)^{\frac{\partial f(T)}{\partial t}}$ for $f(T) \in B_{\text{rig}, F}^\dagger$. For the case of general K, let $P(X) \in B_{\text{rig}, K}^\dagger[T]$ be the monic minimal polynomial of $\pi_K \in B_{\text{rig}, K}^\dagger$ over $B_{\text{rig}, K}^\dagger$. Calculating $0 = \nabla_0(P(\pi_K))$, we
obtain \(\nabla_0(\pi_K) = -\frac{1}{\partial x(\pi_K)} \nabla_0(P)(\pi_K) \), where we define \(\nabla_0(P)(X) := \sum_{i=0}^{m} \nabla_0(a_i)X_i^m \) for any \(P(X) = \sum_{i=0}^{m} a_i X_i^m \in B_{\text{rig},k'_0}^+ [X] \). We denote by \(\hat{\Omega}_{B_{\text{rig},k'_0}^+} \) the continuous differentials. Then one has \(\hat{\Omega}_{B_{\text{rig},k'_0}^+} = B_{\text{rig},k}^+ dT \) by the étaleness of the inclusion \(B_{\text{rig},k}^+ \subseteq B_{\text{rig},k}^\dagger \).

Theorem 3.5. Let \(D \) be a de Rham \((\varphi, \Gamma_K)\)-module over \(B_{\text{rig},k}^\dagger \) of rank \(d \). For each \(n \geq n(D) \), we define

\[
N_{\text{rig}}^{(n)}(D) := \{ x \in D^{(n)}(1/t)[1/t] | m(x) \in K_m[[t]] \otimes_K D_{\text{dR}}^K(D) \text{ for any } m \geq n \}.
\]

Then \(N_{\text{rig}}(D) := \lim_{n \to \infty} N_{\text{rig}}^{(n)}(D) \) is a \((\varphi, \Gamma_K)\)-module over \(B_{\text{rig},k}^\dagger \) of rank \(d \) which satisfies the following.

1. \(N_{\text{rig}}(D)[1/t] = D[1/t] \),
2. \(D_{\text{dif},n}(N_{\text{rig}}(D)) = K_n[[t]] \otimes_K D_{\text{dR}}^K(D) \) for any \(n \geq n(D) \),
3. \(\nabla_0(N_{\text{rig}}(D)) \subseteq tN_{\text{rig}}(D) \).

In fact, properties (1) and (2) uniquely characterize \(N_{\text{rig}}(D) \).

Proof. See, for example, Theorem 5.10 of [3] or Theorem 3.2.3 of [6]. \qed

By condition (3) in the above theorem, we can define a differential operator

\[
\partial := \frac{1}{t} \nabla_0 : N_{\text{rig}}(D) \to N_{\text{rig}}(D)
\]

which satisfies that \(\partial \varphi = p \varphi \partial \) and \(\partial \gamma = \chi(\gamma) \gamma \partial \) for any \(\gamma \in \Gamma_K \). In particular, we can equip \(N_{\text{rig}}(D) \) with a structure of a \(p \)-adic differential equation over \(B_{\text{rig},k}^\dagger \) with Frobenius structure by

\[
N_{\text{rig}}(D) \to N_{\text{rig}}(D) \otimes_{B_{\text{rig},k}^\dagger} \hat{\Omega}_{B_{\text{rig},k}^\dagger / k'_0} : x \mapsto \partial(x)dT,
\]

where we define \(\varphi(dT) := pdT \) and \(\gamma(dT) := \chi(\gamma)dT \) for any \(\gamma \in \Gamma_K \).

Moreover, because we have an isomorphism

\[
N_{\text{rig}}(D(-1)) \sim N_{\text{rig}}(D) \otimes_{B_{\text{rig},k}^\dagger} N_{\text{rig}}(B_{\text{rig},k}^\dagger(-1)) = N_{\text{rig}}(D) \otimes_{B_{\text{rig},k}^\dagger} tB_{\text{rig},k}^\dagger(-1) = tN_{\text{rig}}(D)(-1),
\]

we obtain a \(\varphi \)-equivariant map:

\[
\tilde{\partial} : N_{\text{rig}}(D) \to N_{\text{rig}}(D(-1)) : x \mapsto \nabla_0(x) \otimes e_{-1}.
\]

3.3. Construction of \(\text{Exp}_{D,h} \) for de Rham \((\varphi, \Gamma)\)-modules

This subsection is the main part of this article. We generalize Perrin-Riou’s big exponential map to all the de Rham \((\varphi, \Gamma)\)-modules, and prove that this map interpolates the exponential map and the dual exponential map of cyclotomic twists of a given \((\varphi, \Gamma)\)-module.

We first prove the following easy lemma. We remark that a stronger version (in the crystalline case) appears in § 2.2 of [4].
Lemma 3.6. Let D be a de Rham (φ, Γ_K)-module over $B^+_{\text{rig}, K}$, and let $h \in \mathbb{Z}_{\geq 1}$ such that $\text{Fil}^{-h} D_{\text{dR}}^K(D) = D_{\text{dR}}^K(D)$. Then we have
\[
\nabla_{h-1} \cdot \nabla_{h-2} \cdot \ldots \cdot \nabla_1 \cdot \nabla_0(N_{\text{rig}}(D)) \subseteq D.
\]

Proof. By (3) of Theorem 3.5, and by the formula $\nabla_i(t^i x) = t^i \nabla_0(x)$ for each $i \in \mathbb{Z}$, we obtain an inclusion $\nabla_{h-1} \cdot \nabla_{h-2} \cdot \ldots \cdot \nabla_0(N_{\text{rig}}(D)) \subseteq t^h N_{\text{rig}}(D)$. Hence, it suffices to show that $t^h N_{\text{rig}}(D)$ is contained in D. By (2) of Theorem 3.5, we have $D_{\text{dR}, n}(t^h N_{\text{rig}}(D)) = t^h K_n[[t]] \otimes_K D_{\text{dR}}^K(D)$ for each $n \geq n(D)$. Hence, by the assumption on h, $t^h K_n[[t]] \otimes_K D_{\text{dR}}^K(D)$ is contained in $\text{Fil}^0(K_n((t)) \otimes_K D_{\text{dR}}^K(D)) = D_{\text{dR}, n}(D)$ for any $n \geq n(D)$. Hence $t^h N_{\text{rig}}(D)$ is also contained in D. \[\square\]

Definition 3.7. Let D be a de Rham (φ, Γ_K)-module over $B^+_{\text{rig}, K}$, and let $h \in \mathbb{Z}_{\geq 1}$ such that $\text{Fil}^{-h} D_{\text{dR}}^K(D) = D_{\text{dR}}^K(D)$. Then we define a $\Lambda\infty$-linear map
\[
\text{Exp}_{D,h} : N_{\text{rig}}(D)^{\psi=1} \rightarrow H^1_{\text{Iw}}(K, D) : x \mapsto \iota_D(\nabla_{h-1} \cdot \nabla_0(x)),
\]
where $\iota_D : D^{\psi=1} \sim H^1_{\text{Iw}}(K, D)$ is the isomorphism defined in Theorem 3.3.

Remark 3.8. This definition is strongly influenced by the work of Berger [4], where he reconstructed Perrin-Riou’s big exponential map using (φ, Γ)-modules over the Robba ring. Using the work in § 3.5 below, comparing $D_{\text{crys}}^K(D) \otimes_{\mathbb{Q}_p} (B^+_{\text{rig}, \mathbb{Q}_p})^{\psi=0}$ with $N_{\text{rig}}(D)^{\psi=1}$, one sees that in the crystalline étale case our map is essentially the same as that of Berger, reinterpreted in terms of $N_{\text{rig}}(D)^{\psi=1}$. Therefore, we regard our map as a generalization of his.

Next, we define a projection map for each $L = K$ or $L = K_n$ $(n \geq 1)$
\[
T_L : N_{\text{rig}}(D)^{\psi=1} \rightarrow D_{\text{dR}}^L(D)
\]
as follows. Because we have $\psi(N_{\text{rig}}^{(m+1)}(D)) \subseteq N_{\text{rig}}^{(m)}(D)$ for any sufficiently large m, we have an equality $N_{\text{rig}}(D)^{\psi=1} = N_{\text{rig}}^{(m)}(D)^{\psi=1}$ for any $m \gg 0$. Let $n \geq 1$ be any integer. We take a sufficiently large $m \geq n$, as above. Then we define T_L for $L = K_n$ or $L = K$ by
\[
T_L : N_{\text{rig}}(D)^{\psi=1} = N_{\text{rig}}^{(m)}(D)^{\psi=1} \xrightarrow{\iota_m} K_m[[t]] \otimes_K D^K_{\text{dR}}(D) \xrightarrow{n \rightarrow 0} D_{\text{dR}}^K(D) \xrightarrow{\frac{1}{[K_m : K]} \text{Tr}_{K_m / L}} D_{\text{dR}}^L(D).
\]
Because we have a commutative diagram
\[
\begin{array}{c}
N_{\text{rig}}^{(m+1)}(D) \xrightarrow{\iota_{m+1}} K_{m+1}[[t]] \otimes_K D^K_{\text{dR}}(D) \xrightarrow{n \rightarrow 0} D_{\text{dR}}^{K_{m+1}}(D) \\
\downarrow \psi \downarrow \frac{1}{p} \text{Tr}_{K_{m+1} / K_m} \\
N_{\text{rig}}^{(m)}(D) \xrightarrow{\iota_m} K_m[[t]] \otimes_K D^K_{\text{dR}}(D) \xrightarrow{n \rightarrow 0} D_{\text{dR}}^K(D)
\end{array}
\]
the definition of T_L does not depend on the choice of $m \gg n$.

The following lemma directly follows from the definition.

Lemma 3.9. Let D be a de Rham (φ, Γ_K)-module over $B^\dagger_{\text{rig}, K}$, and let $h \in \mathbb{Z}_{\geq 1}$ such that $\text{Fil}^{-h} D^{K}_{\text{dR}}(D) = D^{K}_{\text{dR}}(D)$. Then we have the following.

1. $\text{Exp}_{D, h+1} = \nabla_h \text{Exp}_{D, h}$.
2. The following diagram is commutative:

$$
\begin{array}{ccc}
\mathcal{N}_{\text{rig}}(D(1))_{\psi=1} & \xrightarrow{\delta} & \mathcal{N}_{\text{rig}}(D)_{\psi=1} \\
\downarrow \text{Exp}_{D(1), h+1} & & \downarrow \text{Exp}_{D, h} \\
\mathbf{H}^1_{\text{Iw}}(K, D(1)) & \xrightarrow{f_{D(1), -1}} & \mathbf{H}^1_{\text{Iw}}(K, D)
\end{array}
$$

where $f_{D(1), -1} : \mathbf{H}^1_{\text{Iw}}(K, D(1)) \xrightarrow{\sim} \mathbf{H}^1_{\text{Iw}}(K, D)$ is the canonical isomorphism defined in §3.1.

The main theorem of this paper is the following, which says that $\text{Exp}_{D, h}$ interpolates $\exp_{L, D^{\psi}(k)}$ for suitable $k \geq -(h-1)$ and $\exp^*_{L, D_{\psi}(1-k)}$ for any $k \leq -h$ for any $L = K_n, K$. According to the comparison of $D^L_{\text{crys}}(D) \otimes_{\mathbb{Q}_p} (B^\text{rig}_{\text{rig}} / \mathbb{Q}_p)^{\psi=0}$ with $\mathcal{N}_{\text{rig}}(D)_{\psi=1}$ provided in §3.5, we see this theorem as a generalization of Berger’s theorem (Theorem 2.10 of [4]) in the crystalline étale case.

Theorem 3.10. For any $h \in \mathbb{Z}_{\geq 1}$ such that $\text{Fil}^{-h} D^{K}_{\text{dR}}(D) = D^{K}_{\text{dR}}(D)$, $\text{Exp}_{D, h}$ satisfies the following formulae.

1. If $k \geq 1$ and there exists $x_k \in \mathcal{N}_{\text{rig}}(D(k))_{\psi=1}$ such that $\widetilde{\delta}^k(x_k) = x$, or if $0 \geq k \geq -(h-1)$ and $x_k := \widetilde{\delta}^{-k}(x)$, then

$$
\text{pr}_{L, D^{\psi}(k)}(\text{Exp}_{D, h}(x)) = \frac{(-1)^{h+k-1}(h+k-1)! |\Gamma_{L, \text{tor}}|}{p^{m(L)}} \text{exp}_{L, D^{\psi}(k)}(T_L(x_k)),
$$

2. If $-h \geq k$, then

$$
\exp^*_{L, D_{\psi}(1-k)}(\text{pr}_{L, D}(\text{Exp}_{D, h}(x))) = \frac{|\Gamma_{L, \text{tor}}|}{(-h-k)! p^{m(L)}} T_L(\widetilde{\delta}^{-k}(x)),
$$

for any $L = K, K_n (n \geq 1)$, where we put $m(L) := \min \{v_p(\log(\chi(\gamma))) | \gamma \in \Gamma_L \}$.

Proof. We first prove (1). By Lemma 3.9, it suffices to show (1) for $k = 0$. Moreover, since we have a commutative diagram

$$
\begin{array}{ccc}
D^{K}_{\text{dR}}(D) & \xrightarrow{\exp_{K, m}} & H^1(K_m, D) \\
\downarrow \text{Tr}_{K_m/L} & & \downarrow \text{cor}_{K_m/L} \\
D^{L}_{\text{dR}}(D) & \xrightarrow{\exp_{L, D}} & H^1(L, D)
\end{array}
$$

for each $L = K_n, K (m \geq n)$ (where $\text{cor}_{K_m/L}$ is the corestriction map), and since we have an equality

$$
[K_n : L] \frac{|\Gamma_{K_n, \text{tor}}|}{p^{m(K_n)}} = \frac{|\Gamma_{L, \text{tor}}|}{p^{m(L)}},
$$
it suffices to show (1) when \(L = K_n \) for sufficiently large \(n \). Hence we may assume that \(n \geq n(D) \) and \(\Gamma_{K_n, \text{tor}} = \{ 1 \} \). We set \(N_n := \lfloor \Gamma_K / (\Gamma_{K_n} \times \Delta_K) \rfloor \). Then we can write uniquely \(\gamma^N_n = \gamma_n g \), where \(\gamma_n \in \Gamma_{K_n} \) is a topological generator of \(\Gamma_{K_n} \) and \(g \in \Delta_K \). Under this situation, we prove (1) using the isomorphisms \(H^1_{\text{Iw}}(K, D) \to \lim_m H^1(C^{\psi, \gamma_n}(D \hat{\otimes}_p \tilde{A}_m)) \) and \(H^1(K_n, D) \to H^1(C^{\psi, \gamma_n}(D)) \). We define

\[
\frac{\nabla_0}{\gamma_n - 1} := \frac{1}{\log(\chi(\gamma_n))} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{n} (\gamma_n - 1)^{k-1} \in \Lambda_\infty.
\]

Let \(x \in (N_n^{(n)}(D))^\psi = 1 \) be any element. By the same argument as in the proof of Theorem 2.3 of [4], we have equalities

\[
\frac{\nabla_0}{\gamma_n - 1}(T_{K_n}(x)) = \frac{1}{\log(\chi(\gamma_n))} T_{K_n}(x) \in D_{\text{dR}}^K(D)
\]

and

\[
\iota_n \left(\frac{\nabla_0}{\gamma_n - 1}(x) \right) = \frac{\nabla_0}{\gamma_n - 1}(\iota_n(x)) = \frac{1}{\log(\chi(\gamma_n))} T_{K_n}(x) + tz \in K_n[[t]] \otimes_{K_n} D_{\text{dR}}^K(D)
\]

for some \(z \in K_n[[t]] \otimes_{K_n} D_{\text{dR}}^K(D) \). Hence, if we define

\[
\bar{x} := \nabla_{h-1} \cdot \nabla_{h-2} \cdot \nabla_1 \cdot \frac{\nabla_0}{\gamma_n - 1}(x) \in (D^{(n)}[1/t])^{\psi = 1},
\]

then we obtain

\[
\iota_n(\bar{x}) = \nabla_{h-1} \cdot \nabla_{h-2} \cdot \nabla_1 \cdot \frac{\nabla_0}{\gamma_n - 1}(\iota_n(x)) = \nabla_{h-1} \cdot \nabla_{h-2} \cdot \nabla_1 \left(\frac{1}{\log(\chi(\gamma_n))} T_{K_n}(x) + tz \right) = (-1)^{h-1} (1 - h) \frac{1}{\log(\chi(\gamma_n))} T_{K_n}(x) \pmod{t^m K_n[[t]] \otimes_{K_n} D_{\text{dR}}^K(D)}.
\]

Next, we claim that we have

\[
\iota_m(\bar{x}) \equiv \iota_n(\bar{x}) \pmod{t^m K_n[[t]] \otimes_{K_n} D_{\text{dR}}^K(D)}
\]

for any \(m \geq n \). To prove this claim, it suffices to show that

\[
\iota_{m+1}(\bar{x}) - \iota_m(\bar{x}) \equiv t^m K_{m+1}[[t]] \otimes_{K_{m+1}} D_{\text{dR}}^{K_{m+1}}(D)
\]

for any \(m \geq n \). Moreover, since we have \(\iota_{m+1}((\varphi - 1)z) = \iota_m(z) - \iota_{m+1}(z) \) and \(D_{\text{dif}, m}(t^m N_{\text{rig}}(D)) = t^m K_m[[t]] \otimes_{K_m} D_{\text{dR}}^K(D) \), it suffices to show that

\[
(\varphi - 1)\bar{x} \in t^m N_{\text{rig}}^{(n+1)}(D).
\]

Since \(x \in N_{\text{rig}}(D)^\psi = 1 \), we have \(\varphi(x) - x \in N_{\text{rig}}(D)^\psi = 0 \). By Theorem 2.4, there exists a unique \(\gamma_n \in N_{\text{rig}}(D)^\psi = 0 \) such that

\[
\varphi(x) - x = (\gamma_n - 1)\gamma_n.
\]
Then we have

\[(\varphi - 1)\tilde{x} = \nabla_{h-1} \cdots \nabla_1 \cdot \frac{\nabla_0}{\gamma_n - 1} (\varphi(x) - x)\]

\[= \nabla_{h-1} \cdots \nabla_1 \cdot \frac{\nabla_0}{\gamma_n - 1} ((\gamma_n - 1)y_n)\]

\[= \nabla_{h-1} \cdots \nabla_1 \cdot \nabla_0(y_n) \in \ell^n_{\text{rig}}(D),\]

where the last inclusion follows from Lemma 3.6.

By this claim, by Lemma 2.12 (1), by the definition of the canonical isomorphism

\[H^1(K_n, D) \sim H^1(C^\bullet, \gamma_n(D)),\]

and by the fact that \(\ell^h K_m[[t]] \otimes_{K_m} D_{\text{dR}}^K (D) \subseteq D_{\text{dR}, m}(D),\) we obtain

\[\frac{(-1)^{h-1} (h - 1)!}{\log(\chi(\gamma_n))} \exp_{K_n, D}(T_{K_n}(x)) = [(\gamma_n - 1)\tilde{x}, (1 - \psi)\tilde{x}]\]

\[= [\nabla_{h-1} \cdot \nabla_{h-2} \cdots \nabla_1 \cdot \nabla_0(x), 0] \in H^1(C^\bullet, \gamma_n(D)).\]

Since the natural projection map \(\text{pr}_{K_n, D}: D^\psi = 1 \to H^1(K_n, D) \sim H^1(C^\bullet, \gamma_n(D))\) is given by \(\text{pr}_{K_n, D}(y) = [\log_0(\chi(\gamma_n))y, 0],\) we obtain

\[\text{pr}_{K_n, D}(\text{Exp}_{D, h}(x)) = [\log_0(\chi(\gamma_n))\nabla_{h-1} \cdots \nabla_0(x), 0]\]

\[= (-1)^{h-1} (h - 1)! \frac{\log_0(\chi(\gamma_n))}{\log(\chi(\gamma_n))} \exp_{K_n, D}(T_{K_n}(x))\]

\[= (-1)^{h-1} (h - 1)! \frac{p^m(K_n)}{p^m(K_n)} \exp_{K_n, D}(T_{K_n}(x)),\]

which proves (1).

Next we prove (2). Because we have

\[\text{Tr}_{K_{n+1}/K_n}(\exp_{K_{n+1}, D^\psi(1)}(x)) = \exp_{K_n, D^\psi(1)}(\text{cor}_{K_{n+1}/K_n}(x))\]

for any \(x \in H^1(K_{n+1}, D),\) it suffices to show (2) for sufficiently large \(n\) as in the proof of (1). Moreover, by Lemma 3.9, it suffices to show (2) for \(\text{Exp}_{D, 1}\) when \(D\) satisfies \(\text{Fil}^{-1} D_{\text{dR}}^K (D) = D_{\text{dR}}^K (D).\) For \(x \in N_{\text{rig}}(D)^\psi = 1,\) we write

\[\iota_n(x) := \sum_{m=0}^\infty m^x_m \in D_{\text{dR}, m}(N_{\text{rig}}(D)) = K_n[[t]] \otimes_{K_n} D_{\text{dR}}^K (D) \quad (x_m \in D_{\text{dR}}^K (D)).\]

Because we have the following commutative diagram

\[
\begin{array}{ccc}
N_{\text{rig}}(D) & \xrightarrow{\iota_n} & K_n[[t]] \otimes_{K_n} D_{\text{dR}}^K (D) \\
\downarrow{\tilde{\alpha}^k} & & \downarrow{f(t) \otimes 0 \mapsto (a^k t)^{-k} (f(t)) \otimes t^{-k} x_k} \\
N_{\text{rig}}(D(k)) & \xrightarrow{\iota_n} & K_n[[t]] \otimes_{K_n} D_{\text{dR}}^K (D(k))
\end{array}
\]
for each \(k \leq -1 \), we obtain
\[
T_{K_n} \left(\tilde{\theta}^{-k}(x) \right) = \iota_n \left(\tilde{\theta}^{-k}(x) \right) |_{t=0} = \left(\frac{d}{dt} \right)^{-k} \left(\sum_{m=0}^{\infty} t^m x_m \right) |_{t=0} \otimes t^{-k} e_k
= (-k)! \cdot x_{-k} \otimes t^{-k} e_k \in D_{dR}^{K_n}(D(k)) = D_{dR}^{K_n}(D) \otimes t^{-k} e_k.
\]

On the other hand, we have an equality
\[
pr_{K_n,D(k)}(\text{Exp}_{D,1}(x)) = \text{pr}_{K_n,D(k)}(\nabla_0(x)) = [\log_0(\chi(\gamma_n))\nabla_0(x) \otimes e_k, 0] \in H^1(K_n, D(k)) = H^1(C^\cdot(\gamma_n)(D(k))),
\]
and the natural map
\[
H^1(C^\cdot(\gamma_n)(D(k))) \to H^1(C^\cdot_{\gamma_n}(D_{\text{dif}}(D(k)))) = H^1(C^\cdot_{\gamma_n}(K_\infty((t)) \otimes K_n D_{dR}^{K_n}(D(k))))
\]
sends the element \([\log_0(\chi(\gamma_n))\nabla_0(x) \otimes e_k, 0] \to
\[
[\log_0(\chi(\gamma_n))\nabla_0(\iota_n(x)) \otimes e_k] = \left[\log_0(\chi(\gamma_n)) \nabla_0 \left(\sum_{m=0}^{\infty} t^m x_m \right) \otimes e_k \right]
= \left[\log_0(\chi(\gamma_n)) \left(\sum_{m=1}^{\infty} m t^m x_m \right) \otimes e_k \right].
\]
Moreover, since we have
\[
\left[\log_0(\chi(\gamma_n)) \left(\sum_{m=1, m \neq -k}^{\infty} m t^m x_m \right) \otimes e_k \right] = 0 \in H^1(C^\cdot_{\gamma_n}(D_{\text{dif}}(D(k)))),
\]
we obtain an equality
\[
\left[\log_0(\chi(\gamma_n)) \left(\sum_{m=1}^{\infty} m t^m x_m \right) \otimes e_k \right] = [\log_0(\chi(\gamma_n))(-k)x_{-k} t^{-k} \otimes e_k]
\in H^1(C^\cdot_{\gamma_n}(D_{\text{dif}}(D(k)))).
\]
By these calculations, and by the definition of \(\exp_{K_n,D^\cdot(1-k)}^* \), we obtain
\[
\exp_{K_n,D^\cdot(1-k)}^*(pr_{K_n,D(k)}(\text{Exp}_{D,1}(x))) = \exp_{K_n,D^\cdot(1-k)}^*([\log_0(\chi(\gamma_n))\nabla_0(x) \otimes e_k, 0])
= (-k) [\log_0(\chi(\gamma_n))]^{-1} x_{-k} \otimes t^{-k} e_k \in D_{dR}^{K_n}(D(k))
= (-1 - k) \cdot p^m(K_n) T_{K_n} \left(\tilde{\theta}^{-k}(x) \right),
\]
which proves (2), and hence finishes the proof of the theorem. \(\square \)

3.4. Determinant of \(\text{Exp}_{D,h} \): a generalization of Perrin-Riou’s theorem \(\delta(V) \)

In this subsection, we formulate and prove a theorem which we call \(\delta(D) \) concerning the determinant of our big exponential maps, which says that the determinant of our map \(\text{Exp}_{D,h} \) can be described by the second Iwasawa cohomologies \(H^2_{Iw}(K, D) \) and
$H_{f}^{2}(K,N_{\text{rig}}(D))$ and by the ‘Γ-factor’, which is determined by the Hodge–Tate weights of D.

To formulate theorem $\delta(D)$, we need to recall the definition of the characteristic ideal $\text{char}_{\Lambda_{\infty}}(M) \subseteq \Lambda_{\infty}$ for a co-admissible torsion Λ_{∞}-module M. A co-admissible Λ_{∞}-module is defined as a Λ_{∞}-module which is isomorphic to the global section of a coherent sheaf on the rigid analytic space $\cup_{n}\text{Spm}(\Lambda_{n})$. See [33] or § 1 of [32] for more precise definitions. Let M be a torsion co-admissible Λ_{∞}-module. For each $n \geq 1$, we put $M_{n} := M \otimes_{\Lambda_{\infty}} \Lambda_{n}$, which is a finite generated torsion Λ_{n}-module, and $M \xrightarrow{\sim} \lim_{\leftarrow n} M_{n}$ by the theorem of Schneider and Teitelbaum. Since Λ_{n} is a finite product of principal ideal domains, Λ_{n} is a finite length Λ_{n}-module. Hence, we can define a unique principal ideal $(f_{M})_{n}$ of Λ_{n} such that $\text{length}_{\Lambda_{n}}((M_{n})_{x}) = \nu_{x}(f_{M})_{n}$ for each maximal ideal x of Λ_{n}, where ν_{x} is the normalized valuation of the local ring $(\Lambda_{n})_{x}$ of Λ_{n} at x. By the theorem of Lazard, there exists a unique principal ideal (f_{M}) of Λ_{∞} such that $f_{M} \Lambda_{n} = (f_{M})_{n} \subseteq \Lambda_{n}$ for each $n \geq 1$. Then, the characteristic ideal $\text{char}_{\Lambda_{\infty}}(M)$ of M is defined by

$$\text{char}_{\Lambda_{\infty}}(M) := (f_{M}) \subseteq \Lambda_{\infty}.$$

Let $\text{Frac}(\Lambda_{\infty})$ be the ring of the total fractions of Λ_{∞}. Since we have $\Lambda_{\infty} \xrightarrow{\sim} \bigoplus_{\eta \in \widehat{K}_{\text{tor}}} \Lambda_{\infty} \alpha_{\eta}$ and we have a non-canonical isomorphism $\Lambda_{\infty} \alpha_{\eta} \xrightarrow{\sim} B_{\text{rig},Q_{p}}^{+}$ for each $\eta \in \widehat{K}_{\text{tor}}$, we have $\text{Frac}(\Lambda_{\infty}) = \bigoplus_{\eta \in \widehat{K}_{\text{tor}}} \text{Frac}(\Lambda_{\infty} \alpha_{\eta})$, where $\text{Frac}(\Lambda_{\infty} \alpha_{\eta})$ is the fraction field of $\Lambda_{\infty} \alpha_{\eta}$. For any principal ideals $(f_{1}, (f_{2}) \subseteq \Lambda_{\infty}$ such that $f_{i} \alpha_{\eta} \neq 0$ for any $i = 1, 2$ and $\eta \in \widehat{K}_{\text{tor}}$, we denote by $(f_{1})(f_{2})^{-1} \subseteq \text{Frac}(\Lambda_{\infty})$ the principal fractional ideal of $\text{Frac}(\Lambda_{\infty})$ generated by $f_{1}f_{2} \in \text{Frac}(\Lambda_{\infty})$.

Let M_{1} and M_{2} be co-admissible Λ_{∞}-modules, and let $f : M_{1} \to M_{2}$ be a Λ_{∞}-linear morphism. We assume that $\text{Coker}(f)$ is a torsion Λ_{∞}-module and that the natural induced map $\alpha_{\eta} \tilde{f} : \alpha_{\eta}(M_{1}/M_{1,\text{tor}}) \to \alpha_{\eta}(M_{2}/M_{2,\text{tor}})$ is a non-zero injection for each $\eta \in \widehat{K}_{\text{tor}}$. Because we have $(M/M_{\text{tor}}) \otimes_{\Lambda_{\infty}} \Lambda_{n} \xrightarrow{\sim} M_{n}/M_{n,\text{tor}}$ for any co-admissible Λ_{∞}-module M, and because the latter is a finite projective Λ_{n}-module, we can define $\det_{\Lambda_{\infty}}(\tilde{f}_{n}) := \det_{\Lambda_{n}}(\tilde{f}_{n}) : M_{1,n}/M_{1,n,\text{tor}} \to M_{2,n}/M_{2,n,\text{tor}} \in \Lambda_{n}$ and $\det_{\Lambda_{\infty}}(\tilde{f}) := \lim_{\leftarrow n} \det_{\Lambda_{n}}(\tilde{f}_{n}) \in \Lambda_{\infty}$, which satisfies that $\alpha_{\eta} \det_{\Lambda_{\infty}}(\tilde{f}) \neq 0$ for any $\eta \in \widehat{K}_{\text{tor}}$. We define a principal fractional ideal $\det_{\Lambda_{\infty}}(f) \subseteq \text{Frac}(\Lambda_{\infty})$ by

$$\det_{\Lambda_{\infty}}(f) := (\det_{\Lambda_{\infty}}(\tilde{f})) \text{char}_{\Lambda_{\infty}}(M_{2,\text{tor}})(\text{char}_{\Lambda_{\infty}}(M_{1,\text{tor}}))^{-1} \subseteq \text{Frac}(\Lambda_{\infty}).$$

Lemma 3.11. $\det_{\Lambda_{\infty}}(\cdot)$ satisfies the following formulae.

(i) $\det_{\Lambda_{\infty}}(f) = \text{char}_{\Lambda_{\infty}}(\text{Coker}(f))(\text{char}_{\Lambda_{\infty}}(\text{Ker}(f)))^{-1}$.

(ii) For any $f_{1} : M_{1} \to M_{2}$ and $f_{2} : M_{2} \to M_{3}$ as above, we have an equality

$$\det_{\Lambda_{\infty}}(f_{2} \circ f_{1}) = \det_{\Lambda_{\infty}}(f_{1})\det_{\Lambda_{\infty}}(f_{2}).$$

(iii) If we have a commutative diagram

$$\begin{array}{c}
0 \longrightarrow M_{1} \longrightarrow M_{1}' \longrightarrow M_{1}'' \longrightarrow 0 \\
\downarrow f \quad \downarrow f' \quad \downarrow f''
\end{array}$$

$$\begin{array}{c}
0 \longrightarrow M_{2} \longrightarrow M_{2}' \longrightarrow M_{2}'' \longrightarrow 0
\end{array}$$

Then $\det_{\Lambda_{\infty}}(f_{1})\det_{\Lambda_{\infty}}(f_{2}) = \det_{\Lambda_{\infty}}(f_{2} \circ f_{1}).$
with exact rows, then we have an equality
\[\det_{A_\infty}(f') = \det_{A_\infty}(f)\det_{A_\infty}(f''). \]

Proof. One can prove this by an easy linear algebra argument, so we omit the proof. \(\square \)

Let \(M_1, M_2 \) be \(A_\infty \)-modules, and let \(d_i : M_i \to M_i \) be a \(A_\infty \)-linear endomorphism. Denote by \(C_{d_i}^*(M_i) := [M_i \xrightarrow{d_i} M_i] \) the complex of \(A_\infty \)-modules concentrated in degree \([1, 2]\). We assume that \(H^j(C_{d_i}^*(M_i)) \) are co-admissible \(A_\infty \)-modules for any \(i, j \in \{1, 2\} \).

Let \(f : M_1 \to M_2 \) be a \(A_\infty \)-linear morphism which satisfies that \(f \circ d_1 = d_2 \circ f \). We assume that the induced maps \(H^i(f) : H^i(C_{d_1}^*(M_1)) \to H^i(C_{d_2}^*(M_2)) \) for \(i = 1, 2 \) satisfy the conditions in the last paragraph. Then we define a principal fractional ideal
\[\det_{A_\infty}(H^\bullet(f)) := \det_{A_\infty}(H^1(f))\det_{A_\infty}(H^2(f))^{-1}. \]

Lemma 3.12. \(\det_{A_\infty}(H^\bullet(f)) \) satisfies the following.

(iv) For \((M_i, d_i)(i = 1, 2, 3)\), \(f_1 : M_1 \to M_2 \) and \(f_2 : M_2 \to M_3 \) as above, we have
\[\det_{A_\infty}(H^\bullet(f_2 \circ f_1)) = \det_{A_\infty}(H^\bullet(f_1))\det_{A_\infty}(H^\bullet(f_2)). \]

(v) If \(\ker(f) \) and \(\operatorname{coker}(f) \) are both torsion co-admissible \(A_\infty \)-modules, then we have an equality
\[\det_{A_\infty}(H^\bullet(f)) = A_\infty. \]

Proof. This is also proved by an easy linear algebra argument, so we omit the proof. \(\square \)

We apply these definitions to the following situation. Let \(D \) be a de Rham \((\varphi, \Gamma_K)\)-module over \(\mathcal{B}^{\text{rig}}_{\text{rig}, K} \). Take \(h \geq 1 \) such that \(\text{Fil}^{-h}\mathcal{D}^K_{\text{rig}}(D) = \mathcal{D}^K_{\text{rig}}(D) \). We want to apply the above definitions to the maps \(\psi - 1 : D \to D, \psi - 1 : N^\text{rig}(D) \to N^\text{rig}(D) \) and the map \(\nabla_{h-1} \cdots \nabla_0 : N^\text{rig}(D) \to D \) defined in Lemma 3.6. By Theorem 3.2, in order to apply the above definition to this setting, we need to show the following lemma.

Lemma 3.13. The map
\[\nabla_{h-1} \cdots \nabla_0 : N^\text{rig}(D)^{\psi=1}/N^\text{rig}(D)^{\psi=1} \to D^{\psi=1}/D^{\psi=1} \]
which is induced by \(\nabla_{h-1} \cdots \nabla_0 : N^\text{rig}(D)^{\psi=1} \to D^{\psi=1} \) is injective.

Proof. We first note that the map \(\nabla_{h-1} \cdots \nabla_0 : N^\text{rig}(D)^{\psi=1} \to D^{\psi=1} \) is the composition of \(\nabla_{h-1} \cdots \nabla_0 : N^\text{rig}(D)^{\psi=1} \to (t^h N^\text{rig}(D))^{\psi=1} \) with the natural injection \((t^h N^\text{rig}(D))^{\psi=1} \hookrightarrow D^{\psi=1} \). Since we have
\[(t^h N^\text{rig}(D))^{\psi=1} = D^{\psi=1} \cap (t^h N^\text{rig}(D))^{\psi=1}, \]
the map \((t^h N^\text{rig}(D))^{\psi=1}/(t^h N^\text{rig}(D))^{\psi=1} \to D^{\psi=1}/D^{\psi=1} \) is injective. To show that the map
\[N^\text{rig}(D)^{\psi=1}/N^\text{rig}(D)^{\psi=1} \xrightarrow{\nabla_{h-1} \cdots \nabla_0} (t^h N^\text{rig}(D))^{\psi=1}/(t^h N^\text{rig}(D))^{\psi=1} \]

is injective, it suffices to show that the map
\[
N_{\text{rig}}(D)^{\psi=1}/N_{\text{rig}}(D)_{\text{tor}}^{\psi=1} \xrightarrow{\nabla h_1 \cdots \nabla 0 \cdot} N_{\text{rig}}(D)^{\psi=1}/N_{\text{rig}}(D)_{\text{tor}}^{\psi=1}
\]
is injective. Since \(N_{\text{rig}}(D)^{\psi=1}/N_{\text{rig}}(D)_{\text{tor}}^{\psi=1}\) is a finite free \(A_\infty\)-module by Theorem 3.2 and \(\nabla h_1 \cdots \nabla 0 \in A_\infty\) is a non-zero divisor, the map
\[
N_{\text{rig}}(D)^{\psi=1}/N_{\text{rig}}(D)_{\text{tor}}^{\psi=1} \xrightarrow{\nabla h_1 \cdots \nabla 0 \cdot} N_{\text{rig}}(D)^{\psi=1}/N_{\text{rig}}(D)_{\text{tor}}^{\psi=1}
\]
is injective, which proves the lemma. \(\square\)

By this lemma and by Theorem 3.2, we can define a fractional ideal
\[
\det_{A_\infty}(H^*(N_{\text{rig}}(D) \xrightarrow{\nabla h_1 \cdots \nabla 0} D)) \subseteq \text{Frac}(A_\infty).
\]
By the definition of \(\det_{A_\infty}(-)\), and since \(H^2_{\text{Iw}}(K,-)\) are co-admissible torsion \(A_\infty\)-modules by Theorem 3.2, we have an equality:
\[
\det_{A_\infty}(H^*(N_{\text{rig}}(D) \xrightarrow{\nabla h_1 \cdots \nabla 0} D)) = \det_{A_\infty}(N_{\text{rig}}(D)^{\psi=1} \xrightarrow{\text{Exp}_{D,h}} H^1_{\text{Iw}}(K, D)) \cdot \text{char}_{A_\infty}(H^2_{\text{Iw}}(K, N_{\text{rig}}(D)))(\text{char}_{A_\infty}(H^2_{\text{Iw}}(K, D)))^{-1}.
\]

Concerning this determinant, we have the following theorem. As we will explain in the next subsection, this theorem can be seen as a generalization of theorem \(\delta(V)\) of Perrin-Riou (Conjecture 3.4.7 of [29]) and of theorem \(\delta(D)\) of Pottharst (Theorem 3.4 of [32]).

Theorem 3.14. \((\delta(D))\) Let \(D\) be a de Rham \((\varphi, \Gamma_K)\)-module over \(B^\dagger_{\text{rig},K}\) of rank \(d\) with Hodge-Tate weights \(\{h_1, h_2, \ldots, h_d\}\) (note that the Hodge-Tate weight of \(\mathbb{Q}_p(1)\) is 1). For any \(h \geq 1\) such that \(\text{Fil}^{-h}D^\dagger_{\text{dR}}(D) = D^\dagger_{\text{dR}}(D)\), we have the following equality of principal fractional ideals of \(A_\infty\):
\[
\frac{1}{(\prod_{i=1}^d \prod_{j=0}^{h-h_i-1} \nabla h_i+j_i)^{[K:\mathbb{Q}_p]}} \det_{A_\infty}(N_{\text{rig}}(D)^{\psi=1} \xrightarrow{\text{Exp}_{D,h}} H^1_{\text{Iw}}(K, D)) = \text{char}_{A_\infty}(H^2_{\text{Iw}}(K, D))(\text{char}_{A_\infty}(H^2_{\text{Iw}}(K, N_{\text{rig}}(D))))^{-1}.
\]

In particular, the ideal of the left-hand side does not depend on \(h\), where we define \(\prod_{j=0}^{h-h_i-1} \nabla h_i+j_i := 1\) when \(h = h_i\).

Proof. By the definition of \(\det_{A_\infty}(H^*(-))\) and because we have an isomorphism \(H'(D^\psi \xrightarrow{1} D) \cong H^i_{\text{Iw}}(K, D)\) by Theorem 3.3, it suffices to show that
\[
\det_{A_\infty}(H^*(N_{\text{rig}}(D) \xrightarrow{\nabla h_1 \cdots \nabla 0} D)) = \left(\prod_{i=1}^d \prod_{j=0}^{h-h_i-1} \nabla h_i+j_i\right)^{[K:\mathbb{Q}_p]}.
\]
Moreover, since we have an equality

\[
\det_{A_\infty}(H^\bullet(N_{\text{rig}}(D) \overset{\psi_{i-1}}{\to} D)) \\
= \prod_{i=0}^{h-1} \det_{A_\infty}(H^\bullet(iN_{\text{rig}}(D) \overset{\psi_i}{\to} i^{i+1}N_{\text{rig}}(D))) \cdot \det_{A_\infty}(H^\bullet(i^hN_{\text{rig}}(D) \overset{\iota}{\to} D))
\]

by Lemma 3.12 (where \(\iota : i^hN_{\text{rig}}(D) \to D\) is the canonical inclusion), it suffices to show the following equalities.

1. \(\det_{A_\infty}(H^\bullet(i^iN_{\text{rig}}(D) \overset{\psi_i}{\to} i^{i+1}N_{\text{rig}}(D))) = \Lambda_\infty\) for each \(0 \leq i \leq h-1\),
2. \(\det_{A_\infty}(H^\bullet(i^hN_{\text{rig}}(D) \overset{\iota}{\to} D)) = (\prod_{i=1}^d \prod_{j=0}^{h-h-i} \nabla_{h+i})^{[K : \mathbb{Q}_p]}\).

Claim (1) follows from property (v) of Lemma 3.12 because \(\text{Ker}(\nabla_i : i^iN_{\text{rig}}(D) \to i^{i+1}N_{\text{rig}}(D))\) and \(\text{Coker}(\nabla_i : i^iN_{\text{rig}}(D) \to i^{i+1}N_{\text{rig}}(D))\) are finite-dimensional \(K_0\)-vector spaces by a result of Crew (§ 6 of [12]) (precisely, his result was under the assumption of the Crew conjecture, which is now a theorem proved by André [1], Mebkhout [24] and Kedlaya [22]).

We prove claim (2) as follows. We first consider the following diagram of short exact sequences:

\[
\begin{array}{cccccc}
0 & \longrightarrow & i^hN_{\text{rig}}(D) & \longrightarrow & D & \longrightarrow & D/i^hN_{\text{rig}}(D) & \longrightarrow & 0 \\
\downarrow \psi_{i-1} & & \downarrow \psi_{i-1} & & \downarrow \psi_{i-1} & & \downarrow \psi_{i-1} & & \downarrow \psi_{i-1} \\
0 & \longrightarrow & i^hN_{\text{rig}}(D) & \longrightarrow & D & \longrightarrow & D/i^hN_{\text{rig}}(D) & \longrightarrow & 0
\end{array}
\]

Using the snake lemma, we obtain the following long exact sequence:

\[
0 \to H^1_{\text{lw}}(K, i^hN_{\text{rig}}(D)) \to H^1_{\text{lw}}(K, D) \to (D/i^hN_{\text{rig}}(D))^{\psi=1}
\]

\[
\to H^2_{\text{lw}}(K, i^hN_{\text{rig}}(D)) \to H^2_{\text{lw}}(K, D) \to (D/i^nN_{\text{rig}}(D))/((\psi - 1) = 0.
\]

Since \((D/i^hN_{\text{rig}}(D))^{\psi=1}\) is a torsion co-admissible \(A_\infty\)-module and

\[
(D/i^nN_{\text{rig}}(D))/((\psi - 1) = 0
\]

by Proposition 2.1 of [32], we obtain an equality:

\[
\det_{A_\infty}(H^\bullet(i^hN_{\text{rig}}(D) \overset{\iota}{\to} D)) = \text{char}_{A_\infty}((D/i^hN_{\text{rig}}(D))^{\psi=1}).
\]

Hence, it suffices to show that

\[
\text{char}_{A_\infty}((D/i^hN_{\text{rig}}(D))^{\psi=1}) = \left(\prod_{i=1}^d \prod_{j=0}^{h-h-i} \nabla_{h+i+j}\right)^{[K : \mathbb{Q}_p]}
\]

Since we have \(D_{\text{dif}, n}^+(i^hN_{\text{rig}}(D)) = i^hK_n[[t]] \otimes_K D_{\text{dif}}^K_m(D)\) for any sufficiently large \(n \gg 0\), we have a \(A_\infty\)-linear isomorphism for each \(n \gg 0\):

\[
D^{(n)}/i^hN_{\text{rig}}(D) \sim \prod_{m \geq n} D_{\text{dif}, m}^+(D)/(i^hK_m[[t]] \otimes_K D_{\text{dif}}^K_m(D)) : x \mapsto (\ell_m(x))_{m \geq n}.
\]
where the injection follows from the definition of $N_{\text{rig}}^{(n)}(D)$ and the surjection follows by the same proof as Lemma 2.9. If we write $D_{dR}^K(D) = \bigoplus_{i=1}^d K\beta_i$ such that $\beta_i \in \text{Fil}^{-h} D_{dR}^K(D) \setminus \text{Fil}^{-h+1} D_{dR}^K(D)$, then we can write

\[D_{\text{dif},n}^+(D) = \text{Fil}^0(K_n((t))) \otimes_K D_{dR}^K(D) \]

\[= \bigoplus_{i=1}^d K_n[[t]](t^h\beta_i). \]

Since Γ_K acts trivially on each β_i, we obtain a Λ_∞-linear isomorphism:

\[g_n : D^{(n)}/t^h N_{\text{rig}}^{(n)}(D) \xrightarrow[\sim]{} \bigoplus_{i=1}^d \prod_{m \geq n} t^h K_m[[t]]/t^h K_m[[t]]. \]

Since we have the following commutative diagrams:

\[
\begin{align*}
D^{(n)}/t^h N_{\text{rig}}^{(n)}(D) \xrightarrow[g_n]{\sim} & \prod_{m \geq n} \bigoplus_{i=1}^d t^h K_m[[t]]/t^h K_m[[t]] \\
\downarrow \cong & \quad \downarrow (\lambda_m)_{m \geq n} \mapsto (\lambda_m)_{m \geq n+1}
\end{align*}
\]

\[
\begin{align*}
D^{(n+1)}/t^h N_{\text{rig}}^{(n+1)}(D) \xrightarrow[g_{n+1}]{\sim} & \prod_{m \geq n+1} \bigoplus_{i=1}^d t^h K_m[[t]]/t^h K_m[[t]] \\
\downarrow \psi & \quad \downarrow (\lambda_m)_{m \geq n+1} \mapsto \left(\frac{1}{p} \text{Tr}_{K_{m+1}/K_m}(\lambda_m)\right)_{m \geq n}
\end{align*}
\]

and

\[
\begin{align*}
D^{(n+1)}/t^h N_{\text{rig}}^{(n+1)}(D) \xrightarrow[g_{n+1}]{\sim} & \prod_{m \geq n+1} \bigoplus_{i=1}^d t^h K_m[[t]]/t^h K_m[[t]] \\
\downarrow \psi & \quad \downarrow (\lambda_m)_{m \geq n+1} \mapsto \left(\frac{1}{p} \text{Tr}_{K_{m+1}/K_m}(\lambda_m)\right)_{m \geq n}
\end{align*}
\]

we obtain the following Λ_∞-isomorphism:

\[
(D/t^h N_{\text{rig}}(D))^{\psi=1} = \lim_{n \to \infty} \left(\prod_{m \geq n} \bigoplus_{i=1}^d t^h K_m[[t]]/t^h K_m[[t]]\right)
\]

\[
\cong \bigoplus_{i=1}^d \lim_{n \to \infty} \left(\text{Tr}_{K_{m+1}/K_m}(\lambda_m)_{m \geq n}\right)
\]

\[
\cong \bigoplus_{i=1}^d \frac{1}{p} \text{Tr}_{K_{m+1}/K_m}(\lambda_m)_{m \geq 1}
\]

Since we similarly have the Λ_∞-isomorphism

\[
(t^h \mathcal{B}_{\text{rig},K}/t^h \mathcal{B}_{\text{rig},K})^{\psi=1} \cong \lim_{n \to \infty} \left(\prod_{m \geq n} t^h K_m[[t]]/t^h K_m[[t]]\right)
\]

for each $h' \leq h$, it suffices to show that

\[
\text{char}_{\Lambda_\infty}((t^h \mathcal{B}_{\text{rig},K}/t^h \mathcal{B}_{\text{rig},K})^{\psi=1}) = (\nabla_{h'} \nabla_{h'-1} \cdots \nabla_{h-1})^{[K:Q_p]}.
\]
Since we have \((t^h B^\dagger_{\text{rig},K}/t^h B^\dagger_{\text{rig},K})/(\psi - 1) = 0\) for any \(h > h'\) by Proposition 2.1 of [32], we obtain the following short exact sequence:

\[
0 \to \left(t^{h'+1} B^\dagger_{\text{rig},K}/t^h B^\dagger_{\text{rig},K} \right)^{\psi = 1} \to \left(t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K} \right)^{\psi = 1} \to (t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K})^{\psi = 1} \to 0
\]

for each \(h > h'\), and hence we obtain

\[
\text{char}_{A_\infty}(t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K})^{\psi = 1} = \prod_{i=0}^{h-h'-1} \text{char}_{A_\infty}(t^{h+i} B^\dagger_{\text{rig},K}/t^{h+i+1} B^\dagger_{\text{rig},K})^{\psi = 1}.
\]

Hence, to prove claim (2), it suffices to show the following lemma.

Lemma 3.15. For each \(h \in \mathbb{Z}\), we have

\[
\text{char}_{A_\infty}(t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K})^{\psi = 1} = (\nabla_h^{[K:Q_p]}).
\]

Proof. From the short exact sequence

\[
0 \to t^{h+1} B^\dagger_{\text{rig},K} \to t^h B^\dagger_{\text{rig},K} \to t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K} \to 0
\]

and from the fact that \((t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K})/(\psi - 1) = 0\), we obtain the following exact sequence:

\[
0 \to H^1_{tw}(K, t^{h+1} B^\dagger_{\text{rig},K}) \to H^1_{tw}(K, t^h B^\dagger_{\text{rig},K}) \to (t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K})^{\psi = 1} \to 0
\]

Hence, we obtain an equality:

\[
\text{char}_{A_\infty}(t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K})^{\psi = 1} = \det_{A_\infty}(H^\bullet(t^{h+1} B^\dagger_{\text{rig},K} \to t^h B^\dagger_{\text{rig},K})).
\]

If we apply (iv) of Lemma 3.12 to the composition of the maps

\[
t^h B^\dagger_{\text{rig},K} \xrightarrow{\nabla_h} t^{h+1} B^\dagger_{\text{rig},K} \xrightarrow{\nabla_h} t^h B^\dagger_{\text{rig},K},
\]

we obtain an equality:

\[
\det_{A_\infty}(H^\bullet(t^{h+1} B^\dagger_{\text{rig},K} \to t^h B^\dagger_{\text{rig},K})) = \det_{A_\infty}(H^\bullet(t^h B^\dagger_{\text{rig},K} \to t^{h+1} B^\dagger_{\text{rig},K}))^{-1}.
\]

Since we have \(\det_{A_\infty}(H^\bullet(t^{h+1} B^\dagger_{\text{rig},K} \to t^h B^\dagger_{\text{rig},K})) = A_\infty\) by claim (1), we obtain

\[
\det_{A_\infty}(H^\bullet(t^{h+1} B^\dagger_{\text{rig},K} \to t^h B^\dagger_{\text{rig},K})) = \det_{A_\infty}(H^\bullet(t^h B^\dagger_{\text{rig},K} \to t^{h+1} B^\dagger_{\text{rig},K})).
\]

Finally, because \(t^h B^\dagger_{\text{rig},K}/(\psi - 1)(t^{h+1} B^\dagger_{\text{rig},K})\) is a co-admissible torsion \(A_\infty\)-module and the \(A_\infty\)-free rank of \((t^h B^\dagger_{\text{rig},K})^{\psi = 1}\) is \([K:Q_p]\) by Theorem 3.2, we obtain

\[
\det_{A_\infty}(H^\bullet(t^{h+1} B^\dagger_{\text{rig},K} \to t^h B^\dagger_{\text{rig},K})) = (\nabla_h^{[K:Q_p]}).
\]

Combining all these equalities, we obtain the equality

\[
\text{char}_{A_\infty}(t^h B^\dagger_{\text{rig},K}/t^{h+1} B^\dagger_{\text{rig},K})^{\psi = 1} = (\nabla_h^{[K:Q_p]}),
\]

which proves the lemma, and hence proves the theorem. \(\square\)
3.5. Crystalline case

In this final subsection, we compare our results obtained in the last two subsections with the previous results of Perrin-Riou when K is unramified over \mathbb{Q}_p and D is potentially crystalline such that $D|_{K_n}$ is crystalline for some $n \geq 0$. After some preliminaries on the theory of p-adic Fourier transform, we recall the Berger formula of the Perrin-Riou big exponential map $\Omega_{D, h}$, which is a map from a Λ_∞-submodule of $\Lambda_\infty \otimes_{\mathbb{Q}_p} D_{\text{crys}}^K(D)$ to $H^1_{\text{Iw}}(K, D)/H^1_{\text{Iw}}(K, D)_{\text{tor}}$. We next recall the statements of Perrin-Riou’s theorem $\delta(V)$. Finally, we compare our exponential map $\text{Exp}_{D, h}$ with Perrin-Riou’s big exponential map. In particular, we show that our theorem $\delta(D)$ is equivalent to Perrin-Riou’s theorem $\delta(V)$ in the unramified and crystalline case.

If K is unramified, the cyclotomic character gives an isomorphism $\chi : \Gamma_K \sim \mathbb{Z}^\times_p$. If we set $T := [\varepsilon] - 1$, then $B_{\text{rig}, K}^r = \cup_{\varepsilon > 0} B_{\text{rig}, K}^{t, r}$ can be written as

$$B_{\text{rig}, K}^r := \left\{ f(T) := \sum_{n \in \mathbb{Z}} a_n T^n | a_n \in K \text{ and } f(T) \text{ is convergent on } p^{-1/r} \leq |T|_p < 1 \right\},$$

and the actions of φ and $\gamma \in \Gamma_K$ are given by the formula

$$\varphi \left(\sum_{n \in \mathbb{Z}} a_n T^n \right) := \sum_{n \in \mathbb{Z}} \varphi(a_n)((1 + T)^p - 1)^n, \quad \gamma \left(\sum_{n \in \mathbb{Z}} a_n T^n \right) := \sum_{n \in \mathbb{Z}} a_n((1 + T)\chi(\gamma) - 1)^n.$$

We define a (φ, Γ_K)-stable subring $B_{\text{rig}, K}^+$ of $B_{\text{rig}, K}^r$ by

$$B_{\text{rig}, K}^+ := \left\{ f(T) = \sum_{n = 0}^{+\infty} a_n T^n | a_n \in K \text{ and } f(T) \text{ is convergent on } 0 \leq |T|_p < 1 \right\}.$$

We have natural φ- and $\Gamma_K \sim \Gamma_{\mathbb{Q}_p}$-equivariant isomorphisms

$$B_{\text{rig}, \mathbb{Q}_p}^+ \otimes_{\mathbb{Q}_p} K \sim B_{\text{rig}, K}^+, \quad B_{\text{rig}, \mathbb{Q}_p}^+ \otimes_{\mathbb{Q}_p} \mathbb{Q}_p \sim B_{\text{rig}, K}^+ : f(T) \otimes a \mapsto af(T).$$

One has a Λ_∞-linear isomorphism defined by

$$\Lambda_\infty \sim (B_{\text{rig}, \mathbb{Q}_p}^+)^{\psi = 0} : \lambda \mapsto \lambda \cdot (1 + T).$$

We remark that the definition of this isomorphism depends on the choice of T, i.e., the choice of $\{\xi_{p^n}\}_{n \geq 1}$. In this subsection, we consider potentially crystalline (φ, Γ_K)-modules D over $B_{\text{rig}, K}^r$ such that $D|_{K_n}$ are crystalline for some $n \geq 0$.

We first need to study the relationship between $N_{\text{rig}}(D)^{\psi = 1}$ and $\Lambda_\infty \otimes_{\mathbb{Q}_p} D_{\text{crys}}^K(D)$.

Lemma 3.16. Let D be a potentially crystalline (φ, Γ_K)-module over $B_{\text{rig}, K}^r$ such that $D|_{K_n}$ is crystalline for some $n \geq 0$. Then there exists an isomorphism of (φ, Γ_K)-modules over $B_{\text{rig}, K}^r$:

$$N_{\text{rig}}(D) \sim B_{\text{rig}, K}^r \cong_k D_{\text{crys}}^K(D),$$

where, on the right-hand side, φ and Γ_K act diagonally.
We define a map \(\text{Col} : B_{\text{rig},K} \{1/t\} \otimes_K D_{\text{crys}}^K(D) \to D[1/t] : f(T) \otimes x \mapsto f(T)x \)

is an isomorphism, the natural map

\[B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D) \to D[1/t] : f(T) \otimes x \mapsto f(T)x \]

is injective. Then, it is easy to see that

\[B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D) \subset D[1/t] \] satisfies conditions (1) and (2) of Theorem 3.5. Hence \(B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D) \sim N_{\text{rig}}(D) \) by the uniqueness of \(N_{\text{rig}}(D) \).

By this lemma, \(B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D) \) can be seen as a \((\varphi, \Gamma_K)\)-stable submodule of \(N_{\text{rig}}(D) \). Since we have an isomorphism

\[\Lambda_{\infty} \otimes_{\mathbb{Q}_p} D_{\text{crys}}^K(D) \sim (B_{\text{rig},K}^+ \otimes_{\mathbb{Q}_p} D_{\text{crys}}^K(D))^\varphi = 0 \]

and the map \((\varphi - 1)\) sends \((B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D))^\varphi = 0\) to \((B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D))^\varphi = 0\), to study the relationship between \(\Lambda_{\infty} \otimes_{\mathbb{Q}_p} D_{\text{crys}}^K(D) \) and \(N_{\text{rig}}(D)^\varphi = 1 \), we need to study the inclusion \((B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D))^\varphi = 1 \hookrightarrow N_{\text{rig}}(D)^\varphi = 1 \) and the map

\[\varphi - 1 : (B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D))^\varphi = 1 \to (B_{\text{rig},K}^+ \otimes_K D_{\text{crys}}^K(D))^\varphi = 0 \].

Before studying these maps, we recall some facts concerning \(p \)-adic Fourier transforms (see § 2.6 of [10]). Let \(f : \mathbb{Z}_p \to \mathbb{Q}_p \) be a map, and let \(h \in \mathbb{Z}_{\geq 0} \). We say that \(f \) is locally \(h \)-analytic if, for each \(x \in \mathbb{Z}_p \), there exists \(\{a_n(x)\}_{n \geq 0} \subset \mathbb{Q}_p \) such that \(f(x + p^h y) = \sum_{n=0}^{\infty} a_n(x)y^h \) for any \(y \in \mathbb{Z}_p \). We define

\[LA_h(\mathbb{Z}_p, \mathbb{Q}_p) := \{ f : \mathbb{Z}_p \to \mathbb{Q}_p | f \text{ is locally } h\text{-analytic} \} \]

and

\[LA(\mathbb{Z}_p, \mathbb{Q}_p) := \lim_{\mathbb{Z}_p \to \mathbb{Q}_p} LA_h(\mathbb{Z}_p, \mathbb{Q}_p) \].

\(LA_h(\mathbb{Z}_p, \mathbb{Q}_p) \) is a \(\mathbb{Q}_p \)-Banach space whose norm \(|-|_h\) is defined by

\[|f|_h := \sup_{x \in \mathbb{Z}_p, n \geq 0} |a_n(x)|_p \].

We define the actions of \(\varphi \), \(\psi \) and \(\gamma \in \Gamma_K \supseteq \Gamma_{Q_0} \) on \(LA(\mathbb{Z}_p, \mathbb{Q}_p) \) by

\[\varphi(f)(x) := \begin{cases} 0 & (x \in \mathbb{Z}_p) \\ f \left(\frac{x}{p} \right) & (x \in p\mathbb{Z}_p) \end{cases} \]

\[\psi(f)(x) := f(px), \quad \gamma(f)(x) := \frac{1}{\chi(\gamma)} f \left(\frac{x}{\chi(\gamma)} \right). \]

We define a map \(\text{Col} : B_{\text{rig},\mathbb{Q}_p}^+ \to LA(\mathbb{Z}_p, \mathbb{Q}_p) \), which we call the Colmez transform, by

\[\text{Col}(f)(x) := \text{Res} \left((1 + T)^x f(T) \frac{dT}{1 + T} \right) \quad \text{for each } x \in \mathbb{Z}_p, \]
where \(\text{Res} : \mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \to \mathbb{Q}_p \) is the residue map defined by

\[
\text{Res} \left(\sum_{n \in \mathbb{Z}} a_n T^n \right) := a_{-1}.
\]

The map \(\text{Col} \) commutes with the actions of \(\psi, \varphi \), and \(\Gamma_{\mathbb{Q}_p} \), and we have \(\text{Ker}(\text{Col}) = \mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \). Hence we obtain the following short exact sequence:

\[
0 \to \mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \to \mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \xrightarrow{\text{Col}} \text{LA}(\mathbb{Z}_p, \mathbb{Q}_p) \to 0.
\]

For each \(k \in \mathbb{Z}_{\geq 0} \), we define a locally analytic function \(x^k : \mathbb{Z}_p \to \mathbb{Q}_p : y \mapsto y^k \). This function satisfies that

\[
\psi(x^k) = p^k x^k \quad \text{and} \quad \chi(x^k) = \chi(\gamma)^{(k+1)} x^k.
\]

Lemma 3.17. Let \(D_0 \) be a \(\varphi \)-module over \(\mathbb{Q}_p \), i.e., \(D_0 \) is a finite-dimensional \(\mathbb{Q}_p \)-vector space with a \(\mathbb{Q}_p \)-linear automorphism \(\varphi : D_0 \to D_0 \). Then, for sufficiently large \(k_0 \gg 0 \), we have the following equalities.

1. \[
\bigoplus_{k=0}^{k_0} (t^k \otimes D_0)^{\psi = 1} = \bigoplus_{k=0}^{\infty} (t^k \otimes D_0)^{\psi = 1} = (\mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \otimes \mathbb{Q}_p D_0)^{\psi = 1},
\]
2. \[
\bigoplus_{k=0}^{k_0} (t^k \otimes D_0)/(1 - \varphi)(t^k \otimes D_0) \to \bigoplus_{k=0}^{\infty} (t^k \otimes D_0)/(1 - \varphi)(t^k \otimes D_0) \to (\mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \otimes \mathbb{Q}_p D_0)/(1 - \varphi)(\mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \otimes \mathbb{Q}_p D_0),
\]
3. \[
(\mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \otimes \mathbb{Q}_p D_0)/(1 - \varphi)(\mathbb{B}^+_{\text{rig}, \mathbb{Q}_p} \otimes \mathbb{Q}_p D_0) = 0,
\]
4. \[
\bigoplus_{k=0}^{k_0} (x^k \otimes D_0)^{\psi = 1} = \bigoplus_{k=0}^{\infty} (x^k \otimes D_0)^{\psi = 1} = (\text{LA}(\mathbb{Z}_p, \mathbb{Q}_p) \otimes \mathbb{Q}_p D_0)^{\psi = 1},
\]
5. \[
\bigoplus_{k=0}^{k_0} (x^k \otimes D_0)/(1 - \varphi)(x^k \otimes D_0) \to \bigoplus_{k=0}^{\infty} (x^k \otimes D_0)/(1 - \varphi)(x^k \otimes D_0) \to (\text{LA}(\mathbb{Z}_p, \mathbb{Q}_p) \otimes \mathbb{Q}_p D_0)/(1 - \varphi)(\text{LA}(\mathbb{Z}_p, \mathbb{Q}_p) \otimes \mathbb{Q}_p D_0),
\]

where we define \(t^k \otimes D_0 := \mathbb{Q}_p t^k \otimes \mathbb{Q}_p D_0 \) and \(x^k \otimes D_0 := \mathbb{Q}_p x^k \otimes \mathbb{Q}_p D_0 \) for each \(k \geq 0 \).

Proof. When \(D_0 \) is one dimensional, then all these properties are proved in § 2 of [10]. In the general case, this lemma can be proved in the same way, so we omit the proof.

We go back to our situation. Let \(D \) be a potentially crystalline \((\varphi, \Gamma_K) \)-module over \(\mathbb{B}^+_{\text{rig}, K} \) such that \(D|_{K_n} \) is crystalline for some \(n \geq 0 \). We define a \(\Lambda_{\infty} \)-linear morphism

\[
\tilde{\Delta} : (\mathbb{B}^+_{\text{rig}, K} \otimes_K D^{\text{crys}}_{\text{crys}}(D))^{\psi = 0} \to \bigoplus_{k=0}^{\infty} t^k \otimes D^{\text{crys}}_{\text{crys}}(D)/(1 - \varphi)(t^k \otimes D^{\text{crys}}_{\text{crys}}(D)).
\]
Because we have \(\psi \) (suffices to show that there exists \(y \).

Lemma 3.18. There exists the following exact sequence of the above lemma.

\[
\begin{array}{c}
0 \rightarrow \bigoplus_{k=0}^{\infty} (t^k \otimes D_{crys}^K(D))^{\psi=1} \rightarrow (B_{rig,K}^+ \otimes K D_{crys}^K(D))^{\psi=1} \\
\end{array}
\]

\[
\begin{array}{c}
\phi^{-1} \rightarrow (B_{rig,K}^+ \otimes K D_{crys}^K(D))^{\psi=0} \overset{\Delta}{\rightarrow} \bigoplus_{k=0}^{\infty} (t^k \otimes D_{crys}^K(D))/\psi \rightarrow 0,
\end{array}
\]

where the exactness at the second arrow follows from the equality

\[
\bigoplus_{k=0}^{\infty} (t^k \otimes D_{crys}^K(D))^{\psi=1} = (B_{rig,K}^+ \otimes K D_{crys}^K(D))^{\psi=1},
\]

which is proved in (1) of Lemma 3.17. We show that the natural map

\[
(B_{rig,K}^+ \otimes K D_{crys}^K(D))^{\psi=0} \rightarrow (B_{rig,K}^+ \otimes K D_{crys}^K(D))/(1 - \varphi)(B_{rig,K}^+ \otimes K D_{crys}^K(D)) : z \mapsto z
\]

is a surjection. To prove this claim, let \(z \) be an element of \(B_{rig,K}^+ \otimes K D_{crys}^K(D) \). Then it suffices to show that there exists \(y \in B_{rig,K}^+ \otimes K D_{crys}^K(D) \) such that \(\psi(z - (1 - \varphi)y) = 0 \).

Because we have \(\psi(z - (1 - \varphi)y) = \psi(z) - (\psi - 1)y \), such \(y \) exists by (3) of Lemma 3.17.

By this claim, and because we have a natural isomorphism

\[
\bigoplus_{k=0}^{\infty} (t^k \otimes D_{crys}^K(D))/(1 - \varphi)(t^k \otimes D_{crys}^K(D)) \cong (B_{rig,K}^+ \otimes K D_{crys}^K(D))/(1 - \varphi)(B_{rig,K}^+ \otimes K D_{crys}^K(D))
\]

by Lemma 3.17, we obtain the surjection

\[
(B_{rig,K}^+ \otimes K D_{crys}^K(D))^{\psi=0} \rightarrow \bigoplus_{k=0}^{\infty} (t^k \otimes D_{crys}^K(D))/(1 - \varphi)(t^k \otimes D_{crys}^K(D)),
\]
which is explicitly defined by
\[
\sum_{i=1}^{m} f_i(T) \otimes x_i \mapsto \left(\frac{1}{k!} \otimes \left(\sum_{i=1}^{m} \partial^k(f_i(0) \cdot x_i) \right) \right)_{k \geq 0}.
\]

Since this map and $\tilde{\Delta}$ only differ by a factor of $k!$ at each kth component, their kernels and images are equal. Hence we finish proving the exactness of the sequence in this lemma. \hfill \square

The following definition is Berger’s formula for Perrin-Riou’s big exponential map. More precisely, Berger defined Perrin-Riou’s map for crystalline p-adic representations, and the following definition is just the direct generalization of his formula for potentially crystalline (φ, Γ)-modules.

Definition 3.19. Let D be a potentially crystalline (φ, Γ_K)-module over $B_{\text{rig}, K}$ such that $D|_{K_n}$ is crystalline for some $n \geq 0$, and let $h \geq 1$ be an integer such that $\text{Fil}^{-h}D^K_{\text{dR}}(D) = D^K_{\text{dR}}(D)$. Then, we define a Λ_∞-linear map
\[
\Omega_{D,h} : (\Lambda_\infty \otimes_{\mathbb{Q}_p} D^K_{\text{crys}}(D))_{\tilde{\Delta} = 0} \to H^1_{\text{Iw}}(K, D)/H^1_{\text{Iw}}(K, D)_{\text{tor}}
\]
as the composition of the isomorphism
\[
(\varphi - 1)^{-1} : (\Lambda_\infty \otimes_{\mathbb{Q}_p} D^K_{\text{crys}}(D))_{\tilde{\Delta} = 0} \sim (B^+_{\text{rig}, K} \otimes_K D^K_{\text{crys}}(D))_{\varphi = 1} / (B^+_{\text{rig}, K} \otimes_K D^K_{\text{crys}}(D))_{\varphi = 1}
\]
with the natural inclusion
\[
(B^+_{\text{rig}, K} \otimes_K D^K_{\text{crys}}(D))_{\varphi = 1} / (B^+_{\text{rig}, K} \otimes_K D^K_{\text{crys}}(D))_{\varphi = 1} \hookrightarrow N_{\text{rig}}(D)_{\varphi = 1} / N_{\text{rig}}(D)_{\varphi = 1}
\]
and with the injection proved in Lemma 3.13
\[
\text{Exp}_{D,h} : N_{\text{rig}}(D)_{\varphi = 1} / N_{\text{rig}}(D)_{\varphi = 1} \hookrightarrow H^1_{\text{Iw}}(K, D)/H^1_{\text{Iw}}(K, D)_{\text{tor}}.
\]

Remark 3.20. Let V be a crystalline representation of G_K, and let $D(V)$ be the (φ, Γ_K)-module over $B_{\text{rig}, K}$ associated to V. If we admit the natural isomorphisms $\Lambda_\infty \otimes_{\Lambda_\infty} H^1_{\text{Iw}}(K, V) \sim H^1_{\text{Iw}}(K, D)$ (see § 2 of [32]) and $D^K_{\text{crys}}(V) \sim D^K_{\text{crys}}(D(V))$, Berger proved that the map
\[
\Omega_{V,h} : (\Lambda_\infty \otimes_{\mathbb{Q}_p} D^K_{\text{crys}}(V))_{\tilde{\Delta} = 0} \sim (\Lambda_\infty \otimes_{\mathbb{Q}_p} D^K_{\text{crys}}(D(V)))_{\tilde{\Delta} = 0}
\]
\[
\Omega_{D,h} \circ H^1_{\text{Iw}}(K, D(V))/H^1_{\text{Iw}}(K, D(V))_{\text{tor}} \sim \Lambda_\infty \otimes_{\Lambda_\infty} (H^1_{\text{Iw}}(K, V)/H^1_{\text{Iw}}(K, V)_{\text{tor}})
\]
coinsides with Perrin-Riou’s original map defined in [29] (see Theorem 2.13 of [4]).

To state Perrin-Riou’s theorem $\delta(V)$, we slightly generalize the definition of $\det_{\Lambda_\infty}(-)$ to the following situation. Let M_1 and M_2 be co-admissible Λ_∞-modules. We assume that there exist co-admissible Λ_∞-submodules $M'_1 \subseteq M_1$ and $M'_2 \subseteq M_2$ such that M_1/M'_1 and M_2/M'_2 are torsion Λ_∞-modules and that there exists a Λ_∞-linear map $f : M'_1 \to M_2/M'_2$ for which we can define $\det_{\Lambda_\infty}(f)$. Under this situation, we define a fractional ideal $\det_{\Lambda_\infty}(f : M_1 \to M_2) \subseteq \text{Frac}(\Lambda_\infty)$ by
\[
\det_{\Lambda_\infty}(f : M_1 \to M_2) := \det_{\Lambda_\infty}(f : M'_1 \to M_2/M'_2) \text{char}_{\Lambda_\infty}(M_1/M'_1)^{-1} \text{char}_{\Lambda_\infty}(M'_2).
\]
We apply this definition to the map
\[\Omega_{D,h} : (A_\infty \otimes_{\mathbb{Q}_p} D_{\text{cris}}^{K_n}(D))^{\hat{\Delta}=0} \to H^1_{Iw}(K, D)/H^1_{Iw}(K, D)_{\text{tor}}, \]
i.e., we define the principal fractional ideal
\[\det_{A_\infty}(\Omega_{D,h} : A_\infty \otimes_{\mathbb{Q}_p} D_{\text{cris}}^{K_n}(D) \to H^1_{Iw}(K, D)) \]
by the product
\[\det_{A_\infty}(\Omega_{D,h} : (A_\infty \otimes_{\mathbb{Q}_p} D_{\text{cris}}^{K_n}(D))^{\hat{\Delta}=0} \to H^1_{Iw}(K, D)/H^1_{Iw}(K, D)_{\text{tor}}) \cdot \text{char}_{A_\infty}(H^2_{Iw}(K, D)). \]

Using this definition, Perrin-Riou’s theorem \(\delta(V) \) can be stated as follows. More precisely, the following is the direct generalization of Perrin-Riou’s theorem \(\delta(V) \) to non-étale crystalline \(D \). In Proposition 3.23 below, we will prove the theorem by proving that the theorem is equivalent to Theorem 3.14.

Theorem 3.21. Let \(D \) be a potentially crystalline \((\varphi, \Gamma_K)\)-module over \(B_{\text{rig}, K}^\dagger \) such that \(D|_{K_n} \) is crystalline. Let \(\{h_1, \ldots, h_d\} \) be the set of Hodge–Tate weights of \(D \), and let \(h \geq 1 \) be an integer such that \(\text{Fil}^{-h} D_{dR}^K(D) = D_{dR}^K(D) \). Then, we have an equality of fractional ideals of \(\text{Frac}(A_\infty) \)
\[\det(\Omega_{D,h} : A_\infty \otimes_{\mathbb{Q}_p} D_{\text{cris}}^{K_n}(D) \to H^1_{Iw}(K, D)) = \prod_{1 \leq h_1 \leq h \leq d} \nabla_{h_1} \nabla_{h_1+1} \cdots \nabla_{h-1}^{[K:\mathbb{Q}_p]} \cdot \text{char}_{A_\infty}(H^2_{Iw}(K, D)). \]

Remark 3.22. On the other hand, for any slope potentially crystalline \(D \), Pottharst defined the ‘inverse’ map
\[\log_D : H^1_{Iw}(K, D) \to \text{Frac}(A_\infty) \otimes_{\mathbb{Q}_p} D_{\text{cris}}^{K_n}(D) \]
of \(\Omega_{D,h} \) using the theory of Wach modules. Using \(\log_D \), he also proved his theorem \(\delta(D) \) (Theorem 3.4 of [32]) by reducing it to Perrin-Riou’s theorem \(\delta(V) \) using a slope filtration argument. It is easy to check that the theorem above is equivalent to his theorem \(\delta(D) \).

The next proposition is the main result of this subsection, which says that, when \(D \) is as above, our Theorem 3.14 is equivalent to the above Theorem 3.21.

Proposition 3.23. We have an equality
\[\det_{A_\infty}(N_{\text{rig}}(D))^{\psi=1} \xrightarrow{\text{Exp}_{D,h}} H^1_{Iw}(K, D) \cdot \text{char}_{A_\infty}(H^2_{Iw}(K, N_{\text{rig}}(D))) = \det_{A_\infty}(A_\infty \otimes_{\mathbb{Q}_p} D_{\text{cris}}^{K_n}(D) \to H^1_{Iw}(K, D)). \]
In particular, Theorem 3.14 is equivalent to Theorem 3.21.
Proof. Since we have \(N_{\text{rig}}(D) = B_{\text{rig}, K}^+ \otimes_K D_{\text{crys}}^K(D) \) by Lemma 3.16, the principal fractional ideal

\[
\det_A(\text{char}_K) \cdot \text{char}_A(\text{H}) = \text{det}_A \left(N_{\text{rig}}(D) \right) = \prod_{i=1}^n \text{det}(A_i)
\]

is equal to the product

\[
\det_A \left(\prod_{i=1}^n \text{det}(A_i) \right) = \text{char}_A(\text{H}) \cdot \text{char}_A(\text{H}) = \text{char}_A(\text{H})^2 = \text{char}_A(\text{H})^2.
\]

Since we have

\[
\text{det}_A \left(\prod_{i=1}^n \text{det}(A_i) \right) = \text{char}_A(\text{H}) \cdot \text{char}_A(\text{H}) = \text{char}_A(\text{H})^2 = \text{char}_A(\text{H})^2.
\]

by (3) of Lemma 3.17, using the snake lemma, we obtain the following isomorphisms:

\[
(B_{\text{rig}, K}^+ \otimes_K D_{\text{crys}}^K(D)) \xrightarrow{\psi=1} (B_{\text{rig}, K}^+ \otimes_K D_{\text{crys}}^K(D)) \xrightarrow{\psi=1} \bigoplus_{k=0}^{k_0} (x^k \otimes D_{\text{crys}}^K(D)) = \bigoplus_{k=0}^{k_0} (x^k \otimes D_{\text{crys}}^K(D))
\]

where the last isomorphism is (4) of Lemma 3.17 for sufficiently large \(k_0 \gg 0 \). We similarly obtain an isomorphism

\[
\text{H}_2^{\text{crys}}(K, N_{\text{rig}}(D)) = \bigoplus_{k=0}^{k_0} (x^k \otimes D_{\text{crys}}^K(D)) / (1 - \psi)(x^k \otimes D_{\text{crys}}^K(D)).
\]

Hence, we obtain

\[
\det_A(\text{char}_K) \cdot \text{char}_A(\text{H}) = \det_A \left(\bigoplus_{k=0}^{k_0} (x^k \otimes D_{\text{crys}}^K(D)) \right) = \text{char}_A(\text{H})^2
\]

and by the property of \(\text{char}_A(\text{H}) \), the fractional ideal

\[
\text{det}_A(x) \otimes_{\mathbb{Q}_p} D_{\text{crys}}^K(D) \xrightarrow{\text{det}_A} \text{H}_1^{\text{crys}}(K, D)
\]

is equal to the product

\[
\text{det}_A(\text{char}_A(\text{H})) = \text{char}_A(\text{H})^2
\]

Next, we calculate the right-hand side of the proposition.

First, by the definition of \(\Omega_{D,h} \) and by the property of \(\text{det}_A(\text{char}_A(\text{H})) \), the fractional ideal

\[
\text{det}_A(\text{char}_A(\text{H})) = \text{char}_A(\text{H})^2
\]

is equal to the product

\[
\text{det}_A(\text{char}_A(\text{H})) = \text{char}_A(\text{H})^2
\]

Next, we calculate the right-hand side of the proposition.

First, by the definition of \(\Omega_{D,h} \) and by the property of \(\text{det}_A(\text{char}_A(\text{H})) \), the fractional ideal

\[
\text{det}_A(\text{char}_A(\text{H})) = \text{char}_A(\text{H})^2
\]

is equal to the product

\[
\text{det}_A(\text{char}_A(\text{H})) = \text{char}_A(\text{H})^2
\]

Next, we calculate the right-hand side of the proposition.

First, by the definition of \(\Omega_{D,h} \) and by the property of \(\text{det}_A(\text{char}_A(\text{H})) \), the fractional ideal

\[
\text{det}_A(\text{char}_A(\text{H})) = \text{char}_A(\text{H})^2
\]
By Lemma 3.18, we have
\[
\det_{A_\infty}\left((B^+_{\text{rig}, K} \otimes K D_{\text{crys}}^n(D))^{\psi=1} \longrightarrow A_\infty \otimes \mathbb{Q}_p \ D_{\text{crys}}^n(D) \right) = \det_{A_\infty}\left(\bigoplus_{k=0}^{k_0} t^k \otimes D_{\text{crys}}^n(D) \right)^{\psi=1} \longrightarrow \bigoplus_{k=0}^{k_0} t^k \otimes D_{\text{crys}}^n(D) = A_\infty.
\]

Hence, we also obtain an equality:
\[
\det_{A_\infty}(A_\infty \otimes \mathbb{Q}_p \ D_{\text{crys}}^n(D) \xrightarrow{\Omega_{D,h}} H^1_{\text{Iw}}(K, D)) = \det_{A_\infty}\left((B^+_{\text{rig}, K} \otimes K D_{\text{crys}}^n(D))^{\psi=1} \longrightarrow \bigoplus_{k=0}^{k_0} t^k \otimes D_{\text{crys}}^n(D) \right) = A_\infty.
\]
which proves the proposition.

\[\square\]

List of notation

Here is a list of the main notation of the article, in the order of the section in which it appears.

§ 1.1: exp_{K,V}^*, \exp_{K,V}^*(λ).

§ 1.2: Λ, H^1_{Iw}(K, V), \Omega_{V,h}.

Notation: p, K, K_0, \bar{K}, \mathbb{C}_p, v_p, | |_p, G_K, \{ζ_p^n\}_{n \geq 0}, K_n, K_\infty, χ, Γ_K, e_1, e_k, |G|.

§ 2.1: \tilde{\mathbb{E}}^+, v_{\tilde{\mathbb{E}}^+}, \bar{E}, \bar{\mathbb{E}}, \tilde{A}, \bar{\mathbb{A}}, \bar{\mathbb{A}}, \vartheta, B^+_{\text{dR}}, t, B_{\text{dR}}, \tilde{B}_{\text{rig}}, \tilde{A}^{[r]}, \tilde{B}^{[r]}, B^+_\text{max}, \tilde{B}_{\text{rig}}, \tilde{B}^+_\text{rig}, r_n, t_n, \tilde{B}^+_{\text{rig}}, r_n : \tilde{B}^+_{\text{rig}} \to B^+_{\text{dR}}, \bar{B}^+_\text{max}, \bar{B}, T, \tilde{B}^+_{\text{rig}}, \tilde{B}^+_\text{rig}, F, B^+_\text{rig}, F, K_0, r(Κ), π_K, B^+_{\text{rig}, K}, B^{\dagger}_{\text{rig}, K}, \psi, n(Κ), t_n, B^{\dagger}_{\text{rig}, K} \to K[[l]], \frac{1}{p} \text{Tr}_{K_{n+1}/K_n}, D_L, D^*, D_1 \otimes D_2, n(D), D^{(n)}, D^{\text{dif}}(D), D^{\text{dif}, n}(D), D^{\text{dif}}(D), K_\infty([l]), \text{exp}(D^{(n)} \to D_{\text{dif}, n}(D)).

§ 2.2: Δ, K, Υ, M^{Δ, K}, C^{\varphi, Υ}(M), C^{\varphi, Υ}(M), H^q(K, D), H^q(K, D)[1/l], H^q(K, D_{\text{dif}}(D)), \text{Fil}^\ell \text{D}_{\text{dr}}(D).

§ 2.3: δ_{1,D}, δ_{2,D}, \tilde{C}^{\varphi, Υ}(D^{(n)}), \tilde{C}^{\varphi, Υ}(D^{(n)}[1/l]), C^{\varphi, Υ}(D^{\text{dif}, n}(D)), C^{\varphi, Υ}(D_{\text{dif}, n}(D)), \exp_{K,D}.

§ 2.4: \text{Fil}^\ell, \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D).

§ 2.5: \text{Fil}^\ell, \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D), \text{Fil}^\ell(D).

§ 3.1: Γ_{K,tor}, Γ_{K,free}, A_\eta, A_\infty, B^+_{\text{rig}, Q_p}, \tilde{A}_n, \tilde{A}_n^\prime, D \otimes \mathbb{Q}_p \tilde{A}_n^\prime, H^1_{Iw}(K, D), \tilde{\Gamma}_{K,tor}, η, α_n, M_{\text{tor}}(A), f_3, \text{pr}_L(D), \delta_L, \mathbb{Q}_p(\tilde{Γ}_{K}/G_L)^{\dagger}, f_{D,k}, f_k, C^{\varphi, Υ}(D), t_p, D_{\Delta K, \text{log}_0(\cdot)}.

§ 3.2: \nabla_0, \tilde{Ω}_{B^+_{\text{rig}, K} \otimes K_0, n}^{(n)}(D), \mathbb{N}_{\text{rig}}(D), \mathbb{N}_{\text{rig}}(D), \tilde{\nabla}_0, \tilde{\Delta}, \tilde{\Delta}.

§ 3.3: \nabla_0, \text{Exp}_{D,h}, T_L, m(L).

§ 3.4: char_{A_\infty}(M), \det_{A_\infty}(f), \det_{A_\infty}(H^*(f)).

§ 3.5: B^+_{\text{K, rig}}, L_{A,h}(\mathbb{Z}, p), L_{\mathbb{Z}, p}, L_{\mathbb{Q}, p}, | |_h, \text{Col}, \text{Res}, x^K, \bar{A}, Ω_{D,h}.

K. Nakamura
Acknowledgements. The author would like to thank Kenichi Bannai for constant encouragement. He also would like to thank Gaétan Chenevier and Jonathan Pottharst for discussing related topics on \((\varphi, \Gamma)\)-modules over the Robba ring.

References

K. Nakamura

27. K. Nakamura, A generalization of Kato’s local ε-conjecture for (φ, Γ)-modules over the Robba ring, in preparation.
32. J. Pottharst, Cyclotomic Iwasawa theory of motives, preprint on his web page.