INVARIANT SUBSPACES OF FINITE CODIMENSION AND UNIFORM ALGEBRAS

TAKAHIKO NAKAZI*
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
e-mail: nakazi@math.sci.hokudai.ac.jp

and TOMOKO OSAWA
Mathematical and Scientific Subjects, Asahikawa National College of Technology,
Asahikawa 071-8142, Japan
e-mail: ohsawa@asahikawa-nct.ac.jp

(Received 10 October, 2002; accepted 23 June, 2003)

Abstract. Let \(A \) be a uniform algebra on a compact Hausdorff space \(X \) and \(m \) a probability measure on \(X \). Let \(H^p(m) \) be the norm closure of \(A \) in \(L^p(m) \) with \(1 \leq p < \infty \) and \(H^\infty(m) \) the weak * closure of \(A \) in \(L^\infty(m) \). In this paper, we describe a closed ideal of \(A \) and exhibit a closed invariant subspace of \(H^p(m) \) for \(A \) that is of finite codimension.

2000 Mathematics Subject Classification. 46 J 15, 46 J 20.

1. Introduction. Let \(A \) be a uniform algebra on a compact Hausdorff space \(X \). \(M(A) \) denotes the maximal ideal space of \(A \). Let \(m \) be a probability measure on \(X \). \(H^p(m) \) denotes the norm closure of \(A \) in \(L^p(m) \) with \(1 \leq p < \infty \) and \(H^\infty(m) \) denotes the weak * closure of \(A \) in \(L^\infty(m) \). \(H^p(m) \) is called an abstract Hardy space. When \(A \) is a disc algebra, if \(m \) is the normalized Lebesgue measure on the unit circle, \(H^p(m) \) is the usual Hardy space and if \(m \) is the normalized area measure on the unit disc, \(H^p(m) \) is the usual Bergman space.

Let \(I \) be a closed ideal of \(A \). In this paper, we are interested in \(I \) with \(\dim A/I < \infty \). Then \(A/I \) is called a Q-algebra. Two dimensional Q-algebras can be described easily; that is, \(I = \{ f \in A; \phi_1(f) = \phi_2(f) = 0 \} \), where \(\phi_j \in M(A) \) \((j = 1, 2) \), or \(I = \{ f \in A; \phi(f) = D_\phi(f) = 0 \} \), where \(\phi \in M(A) \) and \(D_\phi \) is a bounded point derivation at \(\phi \). One of the authors [3] showed that a two dimensional operator algebra on a Hilbert space is a Q-algebra. It seems to be worthwhile to describe a finite dimensional Q-algebra. In Section 2, we describe an ideal \(I \) with \(\dim A/I < \infty \) using a theorem of T. W. Gamelin [2]. As a result, a finite dimensional Q-algebra is described.

When \(M \) is a closed subspace of \(H^p(m) \) and \(AM \subset M \), \(M \) is called an invariant subspace for \(A \). In this paper, we are interested in \(M \) with \(\dim H^p(m)/M < \infty \). When \(A \) is the polydisc algebra on \(T^n \) and \(m \) is the normalized Lebesgue measure on \(T^n \), a finite codimensional invariant subspace \(M \) in \(H^p(m) \) was described by P. Ahern and D. N. Clark [1] using the ideals in the polynomial ring \(C[z_1, \ldots, z_n] \) of finite codimension whose zero sets are contained in the polydisc \(D^n \). In Section 3, for an

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.
arbitrary uniform algebra \(A \) we describe a finite codimensional invariant subspace \(M \) in \(H^p(m) \) using the result in Section 2.

2. Finite codimensional ideal. Let \(\phi \in M(A) \). A closed subalgebra \(H \) of \(A \) is a \((\phi, k)\)-subalgebra if there is a sequence of closed subalgebras \(A = A_0 \supset A_1 \supset \cdots \supset A_k = H \) such that \(A_j \) is the kernel of a continuous point derivation \(D_j \) of \(A_{j-1} \) at \(\phi \). If \(H \) is a \((\phi, k)\)-subalgebra of \(A \), then \(H \) has finite codimension in \(A \) and \(M(H) = M(A) \) by [2, Lemma 9.1].

If \(I \) is a closed ideal of \(A \) and \(A/I \) is of finite dimension, \(B = \mathcal{C} + I \) is a closed subalgebra of \(A \), and \(A/B \) is of finite dimension. By a theorem of T. W. Gamelin [2, Theorem 9.8], we can describe \(B \) and so also \(I \). Since \(B \) is a special closed subalgebra of \(A \) we can describe \(I \) more explicitly.

Theorem 1. If \(I \) is a closed ideal of \(A \) and \(A/I \) is of finite dimension, then there exists a closed subalgebra \(E = E(I) \) of \(A \) such that \(E = \{ f \in A : \phi_1(f) = \cdots = \phi_n(f) \} \), \(1 \leq n < \infty \), \(\{ \phi_j \} \subset M(A) \) and

\[
I = H^E \cap \ker \phi,
\]

where \(\phi = \phi_j/E \), \(1 \leq j \leq n \) and \(H^E \) is a \((\phi, k)\)-subalgebra with respect to \(E \) for some \(k \).

Proof. Put \(H = I + \mathcal{C} \); then \(A/H \) is of finite dimension. By a theorem of T. W. Gamelin [2, Theorem 9.8], \(H \) can be obtained from \(A \) in two steps.

(i) There exist pairs of points \(\psi_j, \psi_j' \), \(1 \leq j \leq \ell \), in \(M(A) \) such that if \(E \) consists of the \(f \in A \) such that \(\psi_j(f) = \psi_j'(f) \), \(1 \leq j \leq \ell \), then \(H \subset E \subset A \).

(ii) There exist distinct points \(\theta_j \in M(E) \) and \(\theta_j \)-subalgebras \(H_j \) of \(E \), \(1 \leq j \leq k \), such that \(H = H_1 \cap \cdots \cap H_k \).

Put \(\tilde{\psi}_j = \phi_j/E = \psi_j'/E \) for \(1 \leq j \leq \ell \); then \(\tilde{\psi}_j \) belongs to \(M(E) \). Since \(I \) is an ideal of \(A \), \(\tilde{\psi}_j \in \bigcap_{\ell = 1}^k \ker \tilde{\psi}_j \). To see this, let \(f \in A \) such that \(\psi_j(f) \neq \psi_j'(f) \). If \(g \in I \), then \(f g \in I \) but \(\psi_j(f g) \neq \psi_j'(f g) \) when \(\tilde{\psi}_j(g)
eq 0 \). This contradicts the fact that \(f g \in E \). Thus \(\tilde{\psi}_j(g) = 0 \). Hence \(I \subset \bigcap_{\ell = 1}^k \ker \tilde{\psi}_j \) and so \(H \subset \bigcap_{\ell = 1}^k \ker \tilde{\psi}_j + \mathcal{C} \). By the definition of \(E \), \(\tilde{\psi}_1 = \cdots = \tilde{\psi}_\ell \). Therefore \(E \) has the form \(E = \{ f \in A : \phi_1(f) = \cdots = \phi_n(f) \} \), \(1 \leq n < \infty \), and \(\{ \phi_j \} \subset M(A) \).

For each \(j \) with \(1 \leq j \leq k \), \(H_j \) is a \(\theta_j \)-subalgebra of \(A \) for \(\theta_j \in M(E) \). Hence there is a sequence of closed subalgebras \(E = E_{j_0} \supset E_{j_1} \supset \cdots \supset E_{j_\ell} = H_j \) such that \(E_{j_\ell} \) is the kernel of a continuous point derivation \(D_{\ell_j} \) of \(E_{j_\ell-1} \) at \(\theta_j \). We shall write \(E_{j_\ell} = \ker D_{\theta_j} \), where \(D_{\theta_j} \) is a derivation on \(E_{j_\ell-1} \). Then \(H = \bigcap_{\ell = 1}^k \ker D_{\theta_j} \) and so \(I = \bigcap_{\ell = 1}^k \ker D_{\theta_j} \cap \ker \theta_j \) for some \(\theta_j \in M(H) \). Suppose that \(g \) is an arbitrary function in \(I \). For any \(j(1 \leq j \leq k) \), there exists a function \(f \in E_{j_\ell-1} \) such that \(f \notin E_{j_\ell} = \ker D_{\theta_j} \). Since \(f g \in E \) and \(D_{\theta_j}(g) = 0 \), \(D_{\theta_j}(f g) = \theta_j(g) D_{\theta_j}(f) = 0 \) because \(D_{\theta_j} \) is a derivation on \(E_{j_\ell-1} \). This implies that \(\theta_j(g) = 0 \). Hence \(I \subset \bigcap_{\ell = 1}^k \ker \theta_j \). Therefore by the definition of \(E \), \(\theta_1 = \cdots = \theta_k \in M(E) \), and so \(H_1 = \cdots = H_k \). Thus \(\theta_1 | H = \theta \) and \(I = (\ker D_{\theta_1}) \cap \ker \theta_1 \).

Corollary 1. If \(I \) is a closed ideal of \(A \) and \(A/I \) is of finite dimension 2, then \(I = \{ f \in A : \phi_1(f) = \phi_2(f) = 0 \} \), where \(\phi_j \in M(A) \) (\(j = 1, 2 \)) and \(\phi_1 \neq \phi_2 \), or \(I = \{ f \in A : \phi(f) = D_\phi(f) = 0 \} \), where \(\phi \in M(A) \), and \(D_\phi \) is a bounded point derivation at \(\phi \).
proof. When dim \(A/I = 2 \), by Theorem 1, \(E = A \) or \(E = \{ f \in A; \phi_1(f) = \phi_2(f) \} \). If \(E = A \), then \(H^E_\phi = \{ f \in A; D_\phi(f) = 0 \} \) and if \(E = \{ f \in A; \phi_1(f) = \phi_2(f) \} \), then \(H^E_\phi = E \), since \(dim A/H^E_\phi = 1 \) because \(H^E_\phi = I + C \). This implies the corollary.

Corollary 2. If \(B \) is a finite dimensional \(Q \)-algebra and \(B_0 = \text{rad} \, B \) is its radical, then there exist subalgebras \(B_1, B_2, \ldots, B_{k+1} \) in \(B_0 \), such that \(B_{k+1} = \{ 0 \} \), \(dim B_j/B_{j+1} = 1 \) and \(B_{j+1} \) is an ideal of \(B_j \) for \(j = 0, 1, \ldots, k \). Hence \(rad \, B \) has a basis \(\{ f_0, f_1, \ldots, f_k \} \) such that \((f_j)^{2(k+1)-j} = 0 \) for \(j = 0, 1, \ldots, k \).

Proof. Since \(B \) is a \(Q \)-algebra, \(B = A/I \) for some uniform algebra \(A \) and some closed ideal \(I \) of \(A \). Also, since \(B \) is of finite dimension, we can apply Theorem 1 to \(A \) and \(I \). In the notation of Theorem 1, \(rad \, B = \{ f \in E; \phi(f) = 0 \}/I \). Since \(H^E_\phi \) is a \(\phi \)-subalgebra with respect to \(E \), there exists a sequence of closed subalgebras \(E = E_0 \supset E_2 \supset \cdots \supset E_{k+1} = H^E_\phi \) such that \(E_j \) is the kernel of a continuous point derivation \(D_j \) of \(E_{j-1} \) at \(\phi \). Hence \(E_j \cap \ker \phi \) is an ideal of \(E_j \cap \ker \phi \) and \(dim \{ E_j \cap \ker \phi \}, \ker \phi \} = 1 \). Put \(B_j = (E_j \cap \ker \phi)/I \). Then \(dim B_j/B_{j+1} = 1 \) and \(B_{j+1} \) is an ideal of \(B_j \), for \(j = 0, 1, \ldots, k \), and \(B_{k+1} = \{ 0 \} \). For each \(j \), there exists \(f_j \) such that \(B_j = \langle f_j \rangle + B_{j+1} \) and then \(\{ f_0, f_1, \ldots, f_k \} \) is a basis of \(rad \, B = B_0 \). Observe that \(f_j^2 \) belongs to \(B_{j+1} \) because \(E_{j+1} \cap \ker D_{j+1} \). Thus \((f_j)^{2(k+1)-j} = 0 \).

3. Finite codimensional invariant subspace. For a subset \(S \) of \(H^p(m) \), \([S]_p \) denotes the closure of \(S \) in \(H^p(m) \).

Theorem 2. If \(M \) is an invariant subspace of \(H^p(m) \) with \(dim H^p/M = n < \infty \), then there exists a closed ideal \(A \) such that \(dim A/I = n \), \([I]_p = M \) and \(I = M \cap A \). If \(H^E_\phi \) is a \(\phi \)-subalgebra with respect to \(E = E(I) \), then \([E]_p \supset [E_{j+1}]_p \) for any \(0 \leq j \leq k-1 \) and \(dim H^p/[E]_p = dim A/E \). Conversely, if \(dim A/I = n < \infty \), then \(dim H^p/[I]_p \leq n \).

Proof. Suppose that \(M \) is an invariant subspace of \(H^p(m) \) and \(dim H^p(m)/M = n < \infty \). Then there exist \(n \) linearly independent linear functionals \(\psi_1, \psi_2, \ldots, \psi_n \) in \((H^p)^* \) such that \(\psi_j = 0 \) on \(M \) for \(1 \leq j \leq n \). Put \(\phi_j = \psi_j | A \) for \(1 \leq j \leq n \) and \(I = M \cap A \). Then \(I = \bigcap_{j=1}^n \ker \phi_j \) and so \(dim A/I = n \). For \(\phi_1, \ldots, \phi_n \) are independent linear functionals in \(A^* \) because \(A \) is dense in \(H^p(m) \). If \(M \supset [I]_p \), then there exists \(\psi_{n+1} \in H^p(m)^* \) such that \(\psi_{n+1} = 0 \) on \([I]_p \) and \(\psi_1, \ldots, \psi_n, \psi_{n+1} \) are independent linear functionals in \(H^p(m)^* \). If we put \(\phi_{n+1} = \psi_{n+1} | A \), then \(\phi_1, \ldots, \phi_n, \phi_{n+1} \) are independent linear functionals in \(A^* \) because \(A \cap [I]_p \cap \ker \phi \) and \(I \subseteq \bigcap_{j=1}^{n+1} \ker \phi_j \). This contradicts implies that \(M = [I]_p \). Note that \(dim H^p/[E_k] = dim H^p/[I]_p = dim A/I = dim A/E_k \). If \(dim H^p/[E_0] < dim A/E_0 \) where \(E_0 = E \) or \([E_j]_p = [E_{j+1}]_p \), for some \(j \), then this contradicts the fact that \(dim H^p/[E_k] = dim A/E_k \). The converse is clear.

Corollary 1. If \(M \) is an invariant subspace of \(H^p \) with \(dim H^p/M = 2 \), then \(M = \{ f \in H^p; \Phi_1(f) = \Phi_2(f) = 0 \} \), where \(\Phi_j \in (H^p)^* \), and \(\Phi_j(f) = \Phi(f) \Phi_j(g) \) for \(f \in H^p \) and \(g \in A \), or \(M = \{ f \in H^p; \Phi(f) = D_\phi(f) = 0 \} \), where \(\Phi, D_\phi \in (H^p)^* \), \(\Phi(f) = \Phi(f) \Phi(g) \) and \(D_\phi(f) = \Phi(f) D_\phi(g) + \Phi(g) D_\phi(f) \) for \(f \in H^p \) and \(g \in A \).

Proof. This follows from Corollary 1 and Theorem 2.
Corollary 4. If M is an invariant subspace of H^p with $\dim H^p / M = n < \infty$, then there exist f_1, \ldots, f_n in A such that $\{f_j + M\}_{j=1}^n$ is a basis in H^p / M.

Proof. By Theorem 2, if $I = M \cap A$, then $\dim A/I = n$ and $M = [I]_p$. Hence there exist f_1, \ldots, f_n in A such that $\{f_j + I\}_{j=1}^n$ is a basis in A/I. If f_j belongs to M, then f_j also belongs to $M \cap A = I$ and so f_j does not belong to M. This proves the corollary.

REFERENCES