BrF₃-KHF₂: An air-stable fluorinating reagent

Toru Shishimi, Shoji Hara*

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Keywords: stable fluorinating reagent, KHF₂, BrF₃, desulfurizing fluorination

Abstract

BrF₃-KHF₂, an air-stable solid prepared from BrF₃ and KHF₂, was used in the various fluorination reactions, including desulfurizing fluorination reactions of benzylic sulfides, ketone and aldehyde dithioacetals, (phenylthio)glycosides, and trimethyl trithioorthocarboxylates. As the results, one to three fluorine atoms were selectively introduced to the substrates.

1. Introduction

Organofluorine compounds are widely used, as medicines, pesticides, functional materials, and so on [1]. They are generally prepared artificially using fluorinating reagents because organofluorine compounds are rare in nature. Therefore, the role of the fluorinating reagent is important for synthesizing desired organofluorine compounds, and many fluorinating reagents have been produced and used [2]. However, most of them are sensitive to moisture, and special skills and equipments are required for their use. Therefore, stable fluorinating reagent is desirable [3]. Recently, we reported the

* Corresponding author.
Tel/Fax: +81(11)7066556
E-mail address: shara@eng.hokudai.ac.jp (S. Hara)
preparation of a new stable fluorinating reagent, IF$_5$-pyridine-HF, and its use in various fluorination reactions [4]. BrF$_3$ has been also used as a fluorinating reagent, and is more reactive than IF$_5$ [5]. Therefore, we attempted to synthesize a new stable fluorinating reagent from BrF$_3$.

2. Results and discussion

BrF$_3$ is known to make a complex of MBF$_4$ where M is Cs, Rb, K [6], or Me$_4$N [7]. However, their ability as a fluorinating reagent has not yet been studied. We attempted to synthesize a stable complex from BrF$_3$. Addition of BrF$_3$ to KF in CH$_2$Cl$_2$ was performed at -78 °C, and the cooling bath was removed. When the temperature reached room temperature, a violent exothermal reaction took place. As BrF$_3$ violently reacts with CH$_2$Cl$_2$ at room temperature, this result shows that free BrF$_3$ remains in the mixture and causes the violent reaction. On the other hand, when BrF$_3$ was added to an excess amount of KHF$_2$ in CH$_2$Cl$_2$, the exothermal reaction did not occur even after reaching room temperature. A slightly reddish supernatant was removed by decantation and the remaining solid was washed with CH$_2$Cl$_2$ several times. The remaining solvent was removed by blowing a nitrogen gas to the solid. The resulting pale yellow solid is air-stable and can be stored in a Teflon™ bottle in the refrigerator [8]. We applied this BrF$_3$-KHF$_2$ complex in various fluorination reactions.

2.1. Desulfurizing difluorination of benzylic sulfide 1 using BrF$_3$-KHF$_2$

Initially, BrF$_3$-KHF$_2$ was used in a desulfurizing difluorination reaction of benzylic sulfide. When 2-[4-chlorophenyl]thio]-1,2-diphenyletanone (1a) was added to a
suspension of BrF$_3$-KHF$_2$ in CH$_2$Cl$_2$ at room temperature, the solution color became dark red, and 2,2-difluoro-1,2-diphenylethanone (2a) was formed in 88% yield. Although the yield of 2a was comparable to that obtained by using IF$_5$-pyridine-HF [4a], the reaction was completed in a shorter time (15 min versus 5 h) (Table 1).

Table 1

Comparison of reactivity of BrF$_3$-KHF$_2$ and IF$_5$-pyridine-HF in desulfurizing difluorination of 1aa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Fluorinating reagent</th>
<th>Reaction time</th>
<th>Yield of 2a(%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IF$_5$-pyridine-HF</td>
<td>5 h</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>BrF$_3$-KHF$_2$</td>
<td>15 min</td>
<td>89</td>
</tr>
</tbody>
</table>

a 2eq of fluorinating reagent to 1a was used.

bIsolated yield based on 1a used.

In the reaction of BrF$_3$-KHF$_2$ with benzylic sulfides containing an electron-withdrawing group (1b-d), the corresponding desulfurizing difluorination products (2a-c) were obtained in high yields as shown in Table 2.
Table 2

Desulfurizing difluorination of 1 with BrF₃-KHF₂

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate 1</th>
<th>Reaction time</th>
<th>Product 2</th>
<th>Yield (%)ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>⁺Cl⁻C₆H₄S⁻ 1b</td>
<td>3 h</td>
<td> F⁻F⁻ 2b</td>
<td>(84)</td>
</tr>
<tr>
<td>2</td>
<td>Ph⁻CO⁻NET₂⁻Ph⁻S⁻ 1c</td>
<td>15 min</td>
<td>Ph⁻CO⁻NET₂⁻F⁻F⁻ 2c</td>
<td>76 (85)c</td>
</tr>
<tr>
<td>3</td>
<td>Ph⁻O⁻Ph⁻S⁻Me⁻ 1d</td>
<td>15 min</td>
<td>Ph⁻O⁻F⁻F⁻ 2a</td>
<td>91 (99)c</td>
</tr>
</tbody>
</table>

ᵃIf otherwise not mentioned, the reaction was carried out in CH₂Cl₂ at room temperature using 2 eq of BrF₃-KHF₂ to 1.

ᵇIsolated yield based on 1 used. In parentheses, ¹⁹F NMR yield.

ᶜ3eq of BrF₃-KHF₂ to 1 was used.

2.2. Reaction of aldehyde and ketone dithioacetal 3 with BrF₃-KHF₂

BrF₃-KHF₂ was also applied to the reaction with the ketone and aldehyde dithioacetals [3c, 5b, 9]. Reactions with diphenyl dithioacetals of aldehydes (3a-c) and ketones (3d,e) were completed in 1 h, and the corresponding gem-difluorides (4a-e) were obtained in
good yields, as shown in Table 3.

Table 3.

The reaction of aldehyde and ketone thioacetals with BrF3-KHF2.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate 3</th>
<th>Reación time (min)</th>
<th>Product 4</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>45</td>
<td></td>
<td>(91)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>45</td>
<td></td>
<td>81(90)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>15</td>
<td></td>
<td>91(99)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>45</td>
<td></td>
<td>(84)</td>
</tr>
</tbody>
</table>
2.3. Synthesis of glycosyl fluorides 6 by the reaction of (phenylthio)glycosides 5 with BrF₃-KHF₂

Glycosyl fluorides have been widely used as glycosyl donors in glycosidation reactions [10]. They are generally prepared from the corresponding thioglycosides using a fluorination reagent with or without an oxidizing agent [11]. We applied BrF₃-KHF₂ for the synthesis of glycosyl fluorides (6) from the corresponding (phenylthio)glycosides (5). Both pyranosyl fluoride (6a) and furanosyl fluorides (6b-d) were prepared in good yield by the reaction of the corresponding (phenylthio)glycosides (5a-d) with BrF₃-KHF₂ in CH₂Cl₂ (Table 4). In the reaction with furanosyl derivatives, only one isomer was selectively formed (Entries 2-4).

Table 4.
The reaction of (phenylthio)glycosides with BrF₃-KHF₂

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate 5</th>
<th>Reacion</th>
<th>Product 6</th>
<th>Yield</th>
</tr>
</thead>
</table>

\(^a\)If otherwise not mentioned, the reaction was carried out at room temperature using 2.2 eq of BrF₃-KHF₂ to 3.

\(^b\)Isolated yield based on 3. In parentheses, \(^1⁹\)F NMR yield.

\(^c\)The reaction was carried out at 0 °C.
	Structure	time	(%)
1	![Image](5a.png)	4 h	83(86)\(^c\)
	![Image](6a.png)		(\(\alpha : \beta = 63:37\))
2	![Image](5b.png)	15 min	89(94)\(^d\)
	![Image](6b.png)		\(\alpha\) only
3	![Image](5c.png)	15 min	87
	![Image](6c.png)		\(\beta\) only
4	![Image](5d.png)	15 min	(66)
	![Image](6d.png)		\(\beta\) only

\(^a\)If otherwise not mentioned, the reaction was carried out at room temperature using 1.1 eq of BrF\(_3\)-KHF\(_2\) to 5.

\(^b\)Isolated yield based on 5. In parentheses, \(^{19}\)F NMR yield.

\(^c\)1.5 eq of BrF\(_3\)-KHF\(_2\) to 5 was used.

\(^d\)The reaction was carried out at 0 °C.

2.4. Reaction of trimethyl trithioorthocarboxylates 7 with BrF\(_3\)-KHF\(_2\)
A tris(methylthio)methyl group can be introduced to the electron rich aromatic ring and α-position of the ester group by a reaction with tris(methylthio)methyl cation species generated from dimethyl trithiocarbonate [12]. The reaction of N,N-dimethyl-4-[tris(methylthio)methyl]aniline (7a) with BrF₃-KHF₂ was completed in 15 min at 0 °C, and the tris(methylthio)methyl group was converted to the trifluoromethyl group. However, bromination at the aromatic ring took place concurrently and 2-bromo-N,N-dimethyl-4-(trifluoromethyl)aniline (8a) was formed in moderate yield (Entry 1 in Table 5). Similarly, in the reaction of N-methyl-3-tris(methylthio)methylindole (7b), 5-bromo-1-methyl-3-(trifluoromethyl)-1H-indole (8b) was obtained selectively (Entry 2). On the other hand, in the reaction of ethyl 2,2-dimethyl-3,3,3-tris(methylthio)propanoate (7c) with BrF₃-KHF₂, only two fluorine atoms were introduced and one methylthio group remained (Entry 3).

Table 5.

Reaction of trimethyl trithioorthocarboxylates 7 with BrF₃-KHF₂.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate 7</th>
<th>Reaction time</th>
<th>Product 8</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[C(SMe)₃]Me₂N</td>
<td>15 min</td>
<td>[CF₃]BrMe₂N</td>
<td>52 (62)</td>
</tr>
<tr>
<td>2</td>
<td>[C(SMe)₃]Me</td>
<td>15 min</td>
<td>[CF₃]BrMe</td>
<td>76 (83)</td>
</tr>
</tbody>
</table>
The reaction was carried out in CH₂Cl₂ at 0 °C using 3.2 eq of BrF₃-KHF₂ to 7.

Isolated yield based on 7. In parentheses, ¹⁹F NMR yield.

3. Conclusion

A new air-stable fluorinating reagent, BrF₃-KHF₂, was prepared by the reaction of BrF₃ with KHF₂. The reagent was shown to be more reactive than the previously reported IF₅-pyridine-HF in desulfurizing difluorination reaction of the benzylic sulfide. The reagent was successively applied to desulfurizing fluorination reactions of dithioacetals, (phenylthio)glycosides, and trimethyl trithioorthocarboxylates.

4. Experimental

4.1. General

The melting points were measured with a Yanagimoto micro melting-point apparatus. The IR spectra were recorded using a JASCO FT/IR-410. The ¹H NMR (400 MHz) spectra, ¹⁹F NMR (376 MHz) spectra, and ¹³C NMR (100 MHz) were recorded in CDCl₃ on a JEOL JNM-A400II FT NMR and the chemical shift, δ, is referred to TMS (¹H, ¹³C) and CFCl₃ (¹⁹F), respectively. BrF₃ in a cylinder was purchased from Galaxy Chemicals, LLC and used without purification. BrF₃ was transferred from cylinder to a Teflon™ bottle through a Teflon™ tube using nitrogen pressure. BrF₃ decomposes in air.
by humidity under emitting HF fume, and should be handled in a bench hood with rubber-gloved hands under nitrogen atmosphere. BrF₃ reacts violently with most of organic solvents at room temperature and a special care is required for its use.

4.2. Preparation of BrF₃-KHF₂

To a suspension of KHF₂ (3.4 g, 44 mmol) in CH₂Cl₂ (10 mL) in a Teflon™ bottle, BrF₃ (3.0g, 22 mmol) was slowly added through a Teflon™ tube at –78 °C. The resulting mixture was stirred at –78 °C for 30 min, and the cooling bath was removed and temperature was allowed to reach room temperature. A slightly reddish supernatant was removed using a Teflon™ pipette, and the remaining solid was washed with CH₂Cl₂ (10 mL) several times, until CH₂Cl₂ became almost colorless. The remaining solvent was removed by stirring under nitrogen stream for a few hours. The resulting pale yellow solid (5.4 g) was stored in a Teflon™ bottle in the refrigerator. It is slightly hygroscopic, and therefore, it should be used as quickly as possible to minimize contact with moisture.

4.2. Desulfurizing difluorination of benzylic sulfides 1 with BrF₃-KHF₂

4.2.1. 2,2-Difluoro-1,2-diphenylethanone (2a)

To a suspension of BrF₃-KHF₂ (129 mg) in CH₂Cl₂ (2.4 mL) in Teflon™ bottle, 1a (101 mg, 0.3 mmol) in CH₂Cl₂ (1.0 mL) was added at room temperature, and the mixture was stirred at room temperature for 15 min. Then, H₂O (5 mL) was added to the reaction mixture and the resulting product was extracted with CH₂Cl₂ (5 mL X 3). The combined organic layer was washed with saturated aqueous NaHCO₃ (5 mL) and...
saturated aqueous Na$_2$S$_2$O$_3$ (5 mL), and dried over MgSO$_4$. After concentration under reduced pressure, 2a was isolated by column chromatography (silica gel, hexane-ether) in 89% yield. IR (neat) 1703 (C=O), 1450, 1256, 1135 cm$^{-1}$; 1H NMR (400MHz, CDCl$_3$) δ 7.43-7.61 (m, 8H), 8.02-8.04 (m, 2H); 19F NMR (376MHz, CDCl$_3$) δ -98.12 (s, 2F); 13C NMR (100MHz, CDCl$_3$) δ 188.9 (t, 2J$_{C\cdotp F}$ = 30.7 Hz), 134.2, 133.1 (t, 2J$_{C\cdotp F}$ = 24.9 Hz), 132.1, 130.9, 130.3 (t, 4J$_{C\cdotp F}$ = 2.9 Hz, 2C), 128.8 (2C), 128.6 (2C), 125.6 (t, 3J$_{C\cdotp F}$ = 5.8 Hz, 2C), 116.9 (t, 1J$_{C\cdotp F}$ = 253.9 Hz); HRMS (EI) calcd for C$_{14}$H$_{10}$F$_2$O 232.0700, found 232.0683.

4.2.2. Butyl 2,2-difluoro-2-phenylacetate (2b)

IR (neat) 2963, 1764 (C=O), 1265, 1105 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.62-7.60 (m, 2H), 7.49-7.45 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 1.68-1.60 (m, 2H), 1.37-1.28 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); 19F NMR (376 MHz, CDCl$_3$) δ -104.65 (s, 2F); 13C NMR (100 MHz) δ 164.3 (t, 2J$_{C\cdotp F}$ = 35.7 Hz), 132.8 (t, 2J$_{C\cdotp F}$ = 25.8 Hz), 130.9, 128.6 (2C), 125.4 (t, 3J$_{C\cdotp F}$ = 6.2 Hz, 2C), 113.4 (t, 1J$_{C\cdotp F}$ = 251.9 Hz), 66.8, 30.2, 18.9, 13.5; HRMS (EI) calcd for C$_{12}$H$_{14}$F$_2$O$_2$ 228.0962, found 228.0956.

4.2.3. N,N-Diethyl-2,2-difluoro-2-phenylacetamide (2c)

IR (neat) 2979, 1669 (C=O), 1452, 1364, 1260, 1093 cm$^{-1}$; 1H NMR (400MHz, CDCl$_3$) δ 7.56 (d, J = 7.0 Hz, 2H), 7.44-7.49 (m, 3H), 3.42 (q, J = 7.2 Hz, 2H), 3.25 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H); 19F NMR (376MHz, CDCl$_3$) δ -95.41 (s, 2F); 13C NMR (100MHz, CDCl$_3$) δ 162.7 (t, 2J$_{C\cdotp F}$ = 29.7 Hz), 133.9 (t, 2J$_{C\cdotp F}$ = 23.6 Hz), 130.7 (t, 4J$_{C\cdotp F}$ = 1.9 Hz, 2C), 128.7, 125.1 (t, 3J$_{C\cdotp F}$ = 5.8 Hz, 2C),
115.5 (t, \(J_{C,F} = 251.5 \) Hz), 42.0 (t, \(J_{C,F} = 3.8 \) Hz), 41.4, 13.7, 12.2; HRMS(EI) calec for \(C_{12}H_{15}F_{2}NO \) 227.1122, found 227.1128.

4.3. The reaction of aldehyde and ketone thioacetals 3 with \(BrF_{3}-KHF_{2} \)

4.3.1. 1-(Difluoromethyl)naphthalene (4a)

The reaction was carried out as in the case of 2a using 2.2 eq of \(BrF_{3}-KHF_{2} \) to 3a, and yield of 4a was determined to be 91 % by \(^{19}F \) NMR using fluorobenzene as an internal standard. IR (neat) 1514, 1349, 1242 cm\(^{-1}\); \(^{1}H \) NMR \(\delta \) 8.19-7.49 (m, 7H), 7.14 (t, \(J = 55.8 \) Hz, 1H); \(^{19}F \) NMR \(\delta \) -111.48 (d, \(J = 56.0 \) Hz, 2F) (lit.[13] –111.38 (d, \(J = 55.2 \) Hz)); \(^{13}C \) NMR \(\delta \) 133.7, 131.5, 129.7, 129.5 (t, \(J_{C,F} = 21.1 \) Hz), 128.7, 127.1, 126.4, 124.8 (t, \(J_{C,F} = 8.6 \) Hz), 124.6, 123.5, 115.4 (t, \(J_{C,F} = 239.5 \) Hz).

4.3.2. 4-(Difluoromethyl)-1,1'-biphenyl (4b)

White solid. mp 71-72 °C (lit.[14] 77.0-77.5 °C); IR (KBr) 1414, 1380, 1226, 1077, 1024, 767 cm\(^{-1}\); \(^{1}H \) NMR \(\delta \) 7.69-7.39 (m, 9H), 6.70 (t, \(J = 56.5 \) Hz, 1H); \(^{19}F \) NMR \(\delta \) -110.98 (d, \(J = 57.3 \) Hz, 2F); \(^{13}C \) NMR \(\delta \) 143.7 (t, \(J_{C,F} = 1.9 \) Hz), 140.2, 133.2 (t, \(J_{C,F} = 22.1 \) Hz), 128.9 (2C), 127.9, 127.4 (2C), 127.2 (2C), 126.0 (t, \(J_{C,F} = 6.2 \) Hz, 2C), 114.7 (t, \(J_{C,F} = 238.5 \) Hz).

4.3.3. Methyl 4-(difluoromethyl)benzoate (4c)

White solid. mp 38 °C (lit.[15] 36.5-37.0 °C); IR (KBr) 1724 (C=O), 1442, 1281 cm\(^{-1}\); \(^{1}H \) NMR \(\delta \) 8.13 (d, \(J = 8.0 \) Hz, 2H), 7.59 (d, \(J = 8.1 \) Hz, 2H), 6.70 (t, \(J = 56.7 \) Hz,
1H), 3.95 (s, 3H); \(^{19}\)F NMR \(\delta -112.86\) (d, \(J = 57.9\) Hz, 2F); \(^{13}\)C NMR \(\delta 166.2, 138.4\) (t, \(^2\)J\(_{C-F} = 22.5\) Hz), 132.3, 129.9 (2C), 125.6 (t, \(^3\)J\(_{C-F} = 6.3\) Hz, 2C), 114.0 (t, \(^1\)J\(_{C-F} = 240.9\) Hz), 52.3.

4.3.4. 9,9-Difluoro-9H-fluorene (4d)

White solid. mp 46-48 °C (lit. [16] 47-48 °C). IR (KBr) 1918, 1454, 1261 cm\(^{-1}\); \(^1\)H NMR \(\delta 7.62\) (d, \(J = 7.0\) Hz, 2H), 7.56 (d, \(J = 7.3\) Hz, 2H), 7.45 (dd, \(J = 7.5, 7.5\) Hz, 2H), 7.33 (dd, \(J = 7.6, 7.6\) Hz, 2H); \(^{19}\)F NMR \(\delta -112.12\) (s, 2F); \(^{13}\)C NMR \(\delta 139.4\) (t, \(^3\)J\(_{C-F} = 5.3\) Hz, 2C), 137.9 (t, \(^2\)J\(_{C-F} = 25.1\) Hz, 2C), 132.0 (2C), 128.7 (2C), 123.7 (2C), 123.2 (t, \(^1\)J\(_{C-F} = 244.0\) Hz), 120.3 (2C).

4.3.5. 2,2-Difluoroadamantane (4e)

White solid. mp 102-103 °C (lit. [17] 104-105 °C); IR (KBr) 2938, 2917, 1389, 1121 cm\(^{-1}\); \(^1\)H NMR \(\delta 2.18\) (brs, 2H), 1.97 (brs, 2H), 1.94 (brs, 2H), 1.86 (brs, 2H), 1.78-1.72 (m, 6H); \(^{19}\)F NMR \(\delta -100.41\) (s, 2F); \(^{13}\)C NMR \(\delta 125.5\) (t, \(^1\)J\(_{C-F} = 248.2\) Hz), 36.6 (2C), 35.8 (t, \(^2\)J\(_{C-F} = 4.0\) Hz, 2C), 34.0 (t, \(^3\)J\(_{C-F} = 4.0\) Hz, 4C), 26.4.

4.4. The reaction of phenylthioglycosides 5 with BrF\(_3\)-KHF\(_2\)

4.4.1. 2,3,4,5-Tetra-O-acetyl-D-glucopyranosyl fluoride (6a)

The reaction was carried out as in the case of 2a using 1.5 eq of BrF\(_3\)-KHF\(_2\) to 5a, and 6a was isolated in 83% yield. The ratio of \(\alpha\)-isomer : \(\beta\)-isomer was determined to be 63:37 from \(^1\)H NMR spectra. (6a-\(\alpha\)) mp 104-106 °C. IR (neat) 2958, 1748 (C=O),
1379, 1230, 1038 cm\(^{-1}\). \(^1\)H NMR \(\delta = 5.76\) (ddd, \(J = 53.4, 2.76\) Hz, 1H), 5.50 (dd, \(J = 9.9, 9.9\) Hz, 1H), 5.16 (dd, \(J = 9.9, 9.9\) Hz, 1H), 4.96 (ddd, \(J = 24.6, 10.4, 2.8\) Hz, 1H), 4.29 (dd, \(J = 12.2, 3.8\) Hz, 1H), 4.21-4.13 (m, 2H), 2.14 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H); \(^1\)F NMR \(\delta = 150.34\) (ddd, \(J = 52.5, 25.3\) Hz, 1F); \(^{13}\)C NMR \(\delta = 170.5, 169.9, 169.8, 169.4, 103.7\) (d, \(^1J_{C-F} = 228.8\) Hz), 70.1 (d, \(^2J_{C-F} = 24.8\) Hz), 69.7 (d, \(^3J_{C-F} = 4.1\) Hz), 69.3, 67.2, 61.1, 20.6, 20.5, 20.4 (2C). (6a-\(\beta\)) mp 77-78 °C. IR (neat) 2942, 1761, 1439, 1378, 1227, 1109, 1042 cm\(^{-1}\); \(^1\)H NMR \(\delta = 5.37\) (dd, \(J = 52.0, 6.1\) Hz, 1H), 5.22-5.20 (m, 2H), 5.18-5.08 (brs, 1H), 4.29-4.20 (m, 2H), 3.93-3.88 (s, 1H), 2.11 (s, 6H), 2.05 (s, 6H); \(^1\)F NMR \(\delta = 137.83\) (1F, dd, \(J = 51.9, 10.4\) Hz); \(^{13}\)C NMR \(\delta = 170.5, 170.0, 169.2, 169.1, 106.1\) (d, \(^1J_{C-F} = 219.2\) Hz), 72.0 (d, \(^3J_{C-F} = 4.1\) Hz), 71.7 (d, \(^3J_{C-F} = 8.3\) Hz), 71.1 (d, \(^2J_{C-F} = 28.9\) Hz), 67.4, 61.7, 20.6-20.5 (4C); HRMS (EI) cale for C\(_{14}\)H\(_{20}\)O\(_9\)F (M\(^{++}\)H) 351.1091, found 351.1115.

2,3;5,6-di-O-Isopropylidene-\(\alpha\)-D-mannofuranosyl fluoride (6b-\(\alpha\))

IR (neat) 2989, 1374, 1212, 1130, 1070, 972, 849 cm\(^{-1}\); \(^1\)H NMR \(\delta = 5.69\) (d, \(J = 59.5\) Hz, 1H), 4.77-4.43 (m, 2H), 4.43-4.38 (m, 1H), 4.18-4.05 (m, 3H), 1.46 (s, 6H), 1.39 (s, 3H), 1.35 (s, 3H); \(^1\)F NMR \(\delta = 129.25\) (dd, \(J = 59.5, 6.7\) Hz, 1F); \(^{13}\)C NMR \(\delta = 113.6\) (d, \(^1J_{C-F} = 221.6\) Hz), 113.2, 109.4, 84.7, (d, \(^2J_{C-F} = 42.2\) Hz), 82.6, 78.6, 72.7, 66.6, 26.9, 25.8, 25.1, 24.5; HRMS (EI) cale for C\(_{12}\)H\(_{19}\)O\(_5\)F (M\(^{++}\)H) 263.1295, found 263.1317.

4.4.4. 2,3-O-Isopropylidene-5-O-benzoyl-\(\beta\)-D-ribofuranosiyl fluoride (6c)

IR (neat) 2990, 1725, 1273, 1094, 977, 714 cm\(^{-1}\); \(^1\)H NMR \(\delta = 8.07\) (d, \(J = 8.2\) Hz, 2H), 7.61-7.56 (m, 1H), 7.48-7.42 (m, 2H), 5.83 (d, \(J = 61.8\) Hz, 1H), 4.88-4.85 (m, 2H), 4.71-4.67 (m, 1H), 4.45-4.37 (m, 2H), 1.50 (s, 3H), 1.35 (s, 3H); \(^1\)F NMR \(\delta = 116.44\) (d,
\[J = 60.9 \text{ Hz, } 1F \} \text{ lit.[18]} -115.85 \text{ (dq, } J = 61.6, 4.0 \text{ Hz, } 1F) \}; \ ^{13}C \text{ NMR } \delta = 166.1, 133.4, 129.9 (2C), 129.6, 128.5(2C), 115.4 (d, \ ^{1}J_{C,F} = 223.1 \text{ Hz}), 113.3, 86.5 (d, \ ^{2}J_{C,F} = 3.2 \text{ Hz}), 85.1 (d, \ ^{2}J_{C,F} = 40.8 \text{ Hz}), 81.0, 64.7, 26.4, 25.0. \\

4.4.5. 2,3,5-Tri-O-benzyl-\beta-D-arabinofuranosyl fluoride (6d)

White solid. mp 78-79 °C (lit.[19] 77-78 °C); IR (KBr) 3062, 3030, 2865, 1454, 1115, 1028, 738, 698 cm\(^{-1}\); \(^{1}H\) NMR \(\delta \) 7.30-7.17 (m, 15H), 5.79 (d, \(J = 61.5 \text{ Hz, } 1H\), 4.73-4.45 (m, 7H), 4.17 (dd, \(J = 9.3, 2.2 \text{ Hz, } 1H\), 3.96 (dd, \(J = 5.1, 2.0 \text{ Hz, } 1H\), 3.64-3.57 (m, 2H); \(^{19}F\) NMR \(\delta \) -121.23 (dd, \(J = 61.6, 9.2 \text{ Hz, } 1F\); \(^{13}C\) NMR \(\delta \) 137.9, 137.7, 137.2, 127.7-128.5 (15C), 108.3 (d, \(^{1}J_{C,F} = 229.9 \text{ Hz}\), 84.5 (d, \(^{2}J_{C,F} = 21.5 \text{ Hz}\), 82.4, 81.5, 73.5, 72.6, 72.4, 71.5.

4.5. Reaction of trimethyl trithioorthocarboxylates 7 with BrF\(_3\)-KHF\(_2\)

4.5.1. 2-Bromo-N,N-dimethyl-4-(trifluoromethyl)aniline (8a)

The reaction was carried out as in the case of 2a at 0 °C using 3.2 eq of BrF\(_3\)-KHF\(_2\) to 7a, and 8a was isolated in 52% yield. IR (neat) 2952, 2874, 2842, 2791, 1608, 1324, 1123 cm\(^{-1}\); \(^{1}H\) NMR \(\delta \) 7.79 (s, 1H), 7.49 (d, \(J = 7.5 \text{ Hz, } 1H\), 7.09 (d, \(J = 7.5 \text{ Hz, } 1H\), 2.87 (s, 6H); \(^{19}F\) NMR \(\delta \) -62.52(s, 3F); \(^{13}C\) NMR \(\delta \) 154.9, 131.3, (q, \(^{3}J_{C,F} = 3.8 \text{ Hz}\), 125.3 (q, \(^{3}J_{C,F} = 3.8 \text{ Hz}\), 125.2 (q, \(^{2}J_{C,F} = 34.3 \text{ Hz}\), 123.7 (t, \(^{1}J_{C,F} = 276.0 \text{ Hz}\), 120.3, 117.9, 43.8 (2C); HRMS (EI) calcd for C\(_{9}\)H\(_{8}\)BrF\(_{3}\)N (M\(^{+}\)-1) 265.9791, found 265.9792.

4.5.2. 5-Bromo-1-methyl-3-(trifluoromethyl)-1H-indole (8b)

White solid. mp 60 °C (lit.[20] 58-60 °C); IR (KBr) 1558, 1473, 1235, 1095 cm\(^{-1}\); \(^{1}H\)
NMR (DMSO-d$_6$) δ 8.08 (s, 1H), 7.72 (s, 1H), 7.60 (d, $J = 8.9$ Hz, 1H), 7.46 (dd, $J = 8.9$, 1.9 Hz, 1H), 3.86 (s, 3H); 19F NMR (DMSO-d$_6$) δ -54.8 (s, 3F); 13C NMR (DMSO-d$_6$) δ 135.4, 131.8 (q, $^3J_{C-F} = 4.9$ Hz), 125.4, 124.8 (q, $^3J_{C-F} = 2.2$ Hz), 124.3 (q, $^1J_{C-F} = 270.0$ Hz), 120.4, 113.9, 113.3, 120.6 (q, $^2J_{C-F} = 37.2$ Hz), 33.2.

4.5.3. Ethyl 3,3-difluoro-2,2-dimethyl-3-(methylthio)propanoate (8c)

IR (neat) 2988, 2938, 1737, 1274, 1175, 1034 cm$^{-1}$; 1H NMR δ 4.20 (q, $J = 7.3$ Hz, 2H), 2.29 (s, 3H), 1.40 (s, 6H), 1.28 (t, $J = 7.3$ Hz, 3H); 19F NMR δ -84.67 (s, 2F); 13C NMR δ 171.7 (t, $^3J_{C-F} = 2.8$ Hz), 131.5 (t, $^1J_{C-F} = 289$ Hz), 61.5, 51.6 (t, $^3J_{C-F} = 22.0$ Hz), 20.7 (t, $^3J_{C-F} = 3.1$ Hz, 2C), 13.9, 9.9 (t, $^2J_{C-F} = 5.3$ Hz); HRMS (EI) calcd for C$_8$H$_{14}$F$_2$O$_2$S 212.0683, found 262.0682.

Acknowledgment

We are grateful to prof. Hermann-Josef Frohn (University of Duisburg-Essen, Germany) for his kind advice on the handling of BrF$_3$.

References

[2] Recent reviews and books on fluorination reagent, see: (a) R. P. Singh, J. M.

[8] We didn’t have any information about the structure of this solid. But it was conveniently used as BrF₃-2(KHF₂) (MW 215) because, two equivalent of KHF₂ to BrF₃ was used to make it. This solid is insoluble in most of organic solvents, and a slightly hygroscopic.

[9] As for the recent review articles of gem-difluoride synthesis from thioacetals, see:

