Electrochromism of Niobium Oxide Thin Films Prepared by the Sol-Gel Process

Bunsho Ohtani, Kunihiro Iwai, Sei-ichi Nishimoto, and Tomoyuki Inui

Division of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-01, Japan

ABSTRACT

Thin layers of niobium oxide (NbOx) were accumulated by the sol-gel process, with the sol of NbO2 in ethanol prepared by partial hydrolysis of commercial niobium(V) ethoxide, on glass plates coated with transparent conducting tin oxide. Characterization by x-ray diffraction, differential thermal analysis, and thermogravimetry revealed that the as-prepared film, consisting of fully hydrated amorphous niobium(V) oxide, undergoes dehydration into the partially hydrated form and, finally, crystalline niobium(V) oxide (Nb2O5) by calcination at the temperature up to 873 K. The films exhibited electrochromic (EC) properties; the reversible color change was observed between colorless and brown-black by alternating anodic and cathodic polarizations, respectively. Among the films used in this study the crystalline Nb2O5 film showed the best EC properties and its spectral change, durability for repeated coloration-decoloration cycles, and retentivity of colored states, i.e., memory characteristics under open-circuit conditions were investigated in detail.

Transition metal oxides, e.g., oxides of tungsten (WO3), molybdenum (MoO3), and vanadium (V2O5), have been extensively investigated as electrochromic devices in the form of a thin film adhering to a conducting substrate. Among them, niobium oxide (NbOx) is also expected to show electrochromism, and several studies on NbOx thin films prepared by thermal oxidation, anodization, sputtering, vacuum evaporation, and the sol-gel process have been reported. Previous work in this laboratory has shown electrochemical response of WO3, iron(III) oxide (Fe2O3), and titanium(V) oxide (TiO2) films prepared by sol-gel process. In comparison with the sputtering or vacuum evaporation technique, the sol-gel process is of advantage for preparation without using specialized instruments such as a vacuum chamber. The preparation of NbOx thin film by thermal oxidation and anodization requires the niobium metal plates of desired size and shape of devices. This might be a limitation to these preparation processes, however, the sol-gel process has no such limitation; it is possible essentially to produce the film on the given substrate material in any size and shape. This paper deals with the preparation of NbOx thin films by the sol-gel process and the characterization of their properties by x-ray diffraction (XRD), differential thermal analysis (DTA), and thermogravimetry (TG). Their electrochemical (EC) properties are discussed and correlated with the structure.

Experimental

Sol of NbO2 was prepared by partial hydrolysis of niobium(V) ethoxide [Nb(OEt)4] (Kanto Chemicals) with concentrated hydrochloric acid (HCl; Wako Pure Chemical Industries). Griesmar and co-workers have reported the preparation of clear sol and monolithic gel of Nb2O5 by the hydrolysis of niobium(V) pentoxide [Nb(OEt)5] in the presence of acetic acid. As shown below, however, the addition of HCl also enables the preparation of clear NbO2 sol. A portion of Nb(OEt)4 (0.036 moles) was dissolved in ethanol (Wako, 99.5%; water 0.4%; 1.7 moles) at room temperature and cooled to 273.5 K in an ice bath. To the solution was slowly added under stirring a mixture of ethanol (0.98 mol) and HCl (0.036 mol). Additional stirring overnight at room temperature led to a slightly yellow clear sol containing 0.21 mol dm-3 of NbO2. Glass substrates coated with transparent conducting tin oxide (NESA) were supplied from Nippon Sheet Glass Company Limited in a cleaned state and used just after removal of dust by the blowing of dry air. The plates were dipped in and drawn from the NbO2 sol at a constant rate of 0.6 mm s-1. After gelation at room temperature for 10 min, the coated substrates were calcined at 423 K for 5 min in an electric furnace. Further calcination at the higher temperature (Tc) was performed for 2 h for every ten-layer accumulation. Hereafter, the entry of NbO2 films is made with the number of the layer and Tc, e.g., 20/733 refers to the film consisting of 20 layers calcined at 733 K.

Electrochemical measurements were performed with an HA-301 potentiosstat/galvanostat, an HB-104 function generator, and an HF-202D coulometer (Hokuto Denko). A Pyrex cell with flanges in opposite sides was used. An NbO2-coated substrate and a Pyrex glass plate were fixed on the flanges in parallel each other with fluorinated rubber (Vyton) gaskets. Through these two parallel plates passed the light beam for optical absorption measurements (a Shimadzu UV-2006S spectrophotometer). A plane platinum counterelectrode and an Ag/AgCl reference electrode were fixed in the positions outside the light beam. Electrolyte solutions, 1.0 or 9.0 mol dm-3 aqueous formic acid solution or 0.5 mol dm-3 sulfuric acid in the cell were degassed by bubbling nitrogen for at least 20 min before and during the measurements.

X-ray diffraction patterns of Nb2O5 films on NESA glass substrate were recorded on a Mac Science MXP18 diffrac-
Results and Discussion

Figure 1 shows parts of XRD patterns of NbOx films (a) and powders (b) prepared by the gelation of Nb2O5 solution and subsequent heat-treatment. Only less intense peaks corresponding to the NESA layer (20; 26.4, 38.0, 52.0 deg) appeared in the pattern of films calcined at <733 K, suggesting their amorphous structure. Similar amorphous structure was observed in the case of powder. Heat-treatment at higher temperatures (≧733 K) led to the crystallization of NbOx as seen for both films and powders; intense peaks (20; 22.5, 28.0, 37.0 deg) are assigned to Nb2O5 crystallites. The relatively smaller intensity of the powder at 733 K may be due to the shorter duration (5 min) of heat-treatment during the in situ XRD measurement compared with that for films (2 h). Calculation at higher elevated temperature (773 to 873 K) reduced the intensity of Nb2O5 peaks for the film, while it enhanced them for powder; peaks (20; 46.0, 56.0, 55.0 deg) newly appeared. These facts suggest the partial decomposition of NESA layer occurring at higher temperature. Thus, the Nb2O5 layer obtained by calculation at the lower temperature consists of amorphous oxide, and of crystalline Nb2O5 at the higher (≧733 K) temperature.

Such a structural change was followed by TG and DTA of Nb2O5 powders (Fig. 2). On heating up to 850 K, the weight of the powdered Nb2O5 sample decreased to ca. 81% of the original (a), accompanied by a significant endothermic DTA peak with the maximum at ca. 400 K. The weight loss due to the elimination of water is most plausible. Subsequent heating up to 700 K induced negligible change in the weight of sample, suggesting the metastable structure of Nb2O5 in this temperature region (b). Further weight decrease was observed at around 750 K. Characteristic exothermic peak appeared at 780 K. Neither change in weight nor DTA shift was observed at the temperature region higher than 800 K (c). The total weight loss during the heating from room temperature to 1273 K was 24%. On the assumptions that Nb2O5 consists of NbO2 and that only the dehydration causes the weight loss, the composition a of Nb2O5 ⋅ 5H2O [or Nb(OH)5] and b of Nb2O5 ⋅ 2H2O [or Nb2O5(OH)] account for the results in TG. At present we have no experimental results to distinguish the hydrated oxides (Nb2O5 ⋅ 5H2O and Nb2O5 ⋅ 2H2O ⋅ H2O) from the hydroxides [Nb(OH)5 and Nb2O5(OH)]. The Nb2O5 gel prepared from Nb(OH)4 showed a similar, but somewhat shifted (to higher temperature), DTA curve. However, the above-mentioned double-step TG curve is a unique characteristic of Nb2O5 sol from Nb(OH)4. Sharp decrease in weight could be seen between 473 and 523 K for the gel from Nb(OH)4.

On the basis of the results of XRD, TG, and DTA, the structure of Nb2O5 could be described as follows. The as-prepared gel (a) in a fully hydrated amorphous phase is dehydrated by the calcination at lower than 550 K into a metastable amorphous phase of partly hydrated oxide. Further dehydration into crystalline Nb2O5 proceeds at temperature higher than 700 K. The exothermic peak in DTA at 780 K may correspond to the accompanying amorphous-crystal transition.

The Nb2O5 films were almost colorless and transparent. An example is shown in Fig. 3. This spectrum was recorded in transmission mode, not in reflection mode, and therefore included the concurrent absorption by a NESA glass substrate. The undulations seen in a whole range of spectrum are the interference pattern due to reflections of the front and back surfaces of the film. Difference in such optical characteristics due to the calcination temperature was not so marked. The films exhibited negligible change in these ultraviolet and visible range spectra by the contact with an aqueous formic acid solution (9.0 mol dm-3).

Cathodic polarization in acidic electrolyte induced the change in color. The Nb2O5 film turned brown or black and was bleached readily by anodic polarization. As Fig. 3 shows, an almost constant increase in absorption by cathodic polarization was observed in visible to the near infrared region. Thus, the thin films of Nb2O5 exhibited the EC activity. Early studies suggested that electrochromism of Nb2O5 is based on simultaneous injection of cations (proton, H+) and electrons, thereby reversible change occurs between Nb2O5 and H+ Nb2O4.

Although the Nb2O5 film exhibited the above EC properties, unrelated with Tc, the degree of coloration under given conditions of cathodic polarization depended considerably on Tc, as shown in Fig. 4. The change in absorbance (ΔOD) by the cathodic polarization was monitored at 700 nm and plotted against Tc. The as-prepared film (Tc; 425 K) showed larger ΔOD, which was reduced by elevating Tc up to 700 K. At Tc > 700 K, ΔOD was drastically enhanced to attain its maximum at 733 K, and gradually decreased by the further calcination at higher Tc. In several experiments of different potentials of cathodic polarization, similar dependences...
were observed (Fig. 4). Comparison of these \(T_c \) dependents with the presumed structure of NbO\(_6\) indicates that the fully hydrated amorphous oxide (a) showed relatively higher EC property and it was reduced by dehydration into partly hydrated form (b). Further dehydration and crystallization (c) enhanced the EC property markedly. The lower EC property of the (b) state, assigned to be Nb\(_2\)O\(_5\) \(\cdot \) H\(_2\)O, should be correlated with its poor electronic and ionic conductivity\(^{18}\).

Figure 5 shows the variations of \(\Delta OD \), current, and potential as a function of time during the repeated potential stepping at intervals of 20 s between -0.6 and +1.0 V. Reversible change in \(\Delta OD \) was observed, and its maximum was kept almost constant during a few tenths of cycles. A relatively large cathodic current, which induces the coloration, was seen just after the step of potential to -0.6 V and gradually decreased. Appreciable residual cathodic current flowed even at 20 s after the cathodic step. On the contrary, the decay of anodic current was rather sharp; both \(\Delta OD \) and current became negligible within 5 s. This behavior of cathodic and anodic currents seems to depend on neither the potential nor the concentration and kind of electrolytes (data not shown). Figure 6 shows relationship between \(\Delta OD \) and passed charge, the latter of which was calculated by integration of the current profile, for both cathodic (coloration) and anodic (bleaching) processes. The linear relation for both processes at various cathodic potential clearly shows that the EC property of the present NbO\(_6\) films is attributed to a unique reversible electrochemical reaction. From the slope of the linear plot, \(\Delta OD \) per unit charge density, corresponding to efficiency of coloring, is estimated to be \(38 \, \text{C}^{-1} \, \text{cm}^2 \) (at 700 nm). This coulombic efficiency is superior to that reported for NbO\(_6\) thin film via the sol-gel process (\(6 \, \text{C}^{-1} \, \text{cm}^2 \) at 800 nm)\(^9\) and sputtering (\(<10 \, \text{C}^{-1} \, \text{cm}^2 \))\(^{19}\). However, the efficiency is ca. four times smaller than that for a WO\(_3\) film prepared by sol-gel process (\(167 \, \text{C}^{-1} \, \text{cm}^2 \) at 800 nm).\(^{15}\)

Fig. 4. Dependence on \(T_c \) of \(\Delta OD \) by cathodic polarization at given potentials for 20 s in 9.0 mol dm\(^{-3}\) aqueous formic acid solution.

Fig. 5. Results of repeated potential stepping by every 20 s between -0.6 and +1.0 V of NbO\(_6\) film (10/733) immersed in 1.0 mol dm\(^{-3}\) aqueous formic acid solution.

Fig. 6. Relationship between \(\Delta OD \) and passed charge during coloration: (●) figures denote the potential and (+1.0 V) bleaching processes of 10/733 film immersed in a 1.0 mol dm\(^{-3}\) aqueous formic acid solution.
The phenomenon has been interpreted as the improved memory characteristics of WO₃ thin film could be improved by the extended cycling experiment. Furthermore, the use of an organic solvent containing lithium salt. However, in our experiments, the negative effect of nitrogen bubbling could be seen. In addition, the acetonitrile solution of lithium fluoroborate was also unsuccessful for the memory of Nb₂Os films prepared by anodization and thermal oxidation. The spontaneous bleachings under open-circuit conditions should be caused by the oxidation of H₃NB₃O₈. The reason for its dependence on the cathodic potential is unknown at present. However, it is possible to assume that difference in distribution, i.e., depth profile of reduced moiety (H₂NB₃O₈) depending on the cathodic potential, gives considerable influence on the oxidation of H₃NB₃O₈. Research along this line is now in progress.

Conclusion

Thin film of Nb₂O₅ was prepared on NESA glass substrates by the sol-gel process. The optimum EC properties were obtained for the film consisting of crystalline Nb₂O₅. Its stability in repeated polarization cycles depended on the cathodic polarization time. The Nb₂O₅ films prepared by the sol-gel process in this work have higher coulombic efficiency than the other Nb₂O₅ films in previous reports. However, the spontaneous bleaching proceeds under open-circuit conditions. Clarification of the reason for this poor memory characteristic and improvements are necessary for the practical use of this Nb₂O₅ film as the electrochromic material.

Acknowledgment

The authors indebted to Mr. Masaya Chigane (Osaka Municipal Technical Research Institute) for his cooperation in XRD measurements. Dr. Hiroaki Tada (Nippon Sheet Glass Co. Ltd.) is greatly acknowledged for the supply of NESA glass substrates.

Manuscript submitted Nov. 29, 1993; revised manuscript received May 2, 1994.

Kyoto University assisted in meeting the publication costs of this article.

REFERENCES