Seasonal changes in mesozooplankton swimmers collected by sediment trap moored at a single station of Northwind Abyssal Plain in the western Arctic Ocean

KOHEI MATSUNO¹*, ATSUSHI YAMAGUCHI², AMANE FUJIWARA¹, JONAOTARO ONODERA³, EIJI WATANABE³, ICHIRO IMAI², SANA CHIBA³, NAOMI HARADA³ AND TAKASHI KIKUCHI³

¹ARCTIC ENVIRONMENT RESEARCH CENTER, NATIONAL INSTITUTE OF POLAR RESEARCH, 10-3 MIDORI-CHO, TACHIKAWA, TOKYO 190-8518, JAPAN,

²LABORATORY OF MARINE BIOLOGY, GRADUATE SCHOOL OF FISHERIES SCIENCES, HOKKAIDO UNIVERSITY, 3-1-1 MINATO-CHO, HAKODATE, HOKKAIDO 041-8611, JAPAN,

³JAPAN AGENCY FOR MARINE-EARTH SCIENCE AND TECHNOLOGY, NATSUSHIMA-CHO 2-15, YOKOSUKA, KANAGAWA 237-0061, JAPAN

* CORRESPONDING AUTHOR: matsuno.kohei@nipr.ac.jp, k.matsuno@fish.hokudai.ac.jp

KEYWORDS: copepods; life cycle; Pacific water; sea ice; sediment trap

RUNNING HEAD: Seasonal changes of mesozooplankton in Arctic Ocean
Abstract

To examine seasonal changes in mesozooplankton community, analyses were made on the swimmer samples (>1 mm) collected by a sediment trap mooring at 184 m depth of Northwind Abyssal Plain in the western Arctic Ocean during October 2010 to September 2011. The zooplankton swimmer flux ranged 5−44 ind. m$^{-2}$ day$^{-1}$ and was greater during July to October; copepods were the dominant taxon. Based on the zooplankton swimmer flux, cluster analysis classified samples into three groups (A, B-1 and B-2). The occurrence of each group showed clear seasonality: group A was observed during July to October, group B-1 was seen in November to January, and group B-2 was seen during March to June. The seasonal variability in population structures of four dominant copepod swimmers were clearly different among the species. Most *Calanus hyperboreus* were C6F throughout the year. For *Metridia longa* and *Paraeuchaeta glacialis*, C6Fs dominated during January to May, and early copepodid stages increased during June to October. *Heterorhabdus norvegicus* was dominated by C5 during November to February, and C6F/M during March to May. Since Pacific copepods (*Neocalanus cristatus*) occurred with significant number during August–September, possible causes are discussed.

INTRODUCTION

After 1990’s, a drastic reduction of sea ice cover area has been observed in the Arctic Ocean during summer (July–October). This reduction is considered to have been caused by an increased flow of warm Pacific Summer Water (PSW) from the Bering Sea Strait into the Arctic Ocean (Shimada *et al.*, 2006; Woodgate *et al.*, 2010). The Pacific sector of the Arctic Ocean comprises both shallow (Chukchi Sea and East Siberian Sea) and deep (Canada Basin and Mendeleyev Ridge) areas (Fig. 1). Sea ice reduction in this region has been the greatest in the Arctic Ocean (Shimada *et al.*, 2001, 2006; Stroeve *et al.*, 2007; Comiso *et al.*, 2008; Markus *et al.*, 2009), and this reduction of sea ice is expected to alter the marine ecosystem structure in the Arctic Ocean (Grebmeier *et al.*, 2006; Hunt and Drinkwater, 2007; Grebmeier, 2012).

The zooplankton community in the western Arctic Ocean has been studied based on net
samples (Springer et al., 1989; Darnis et al., 2008; Hopcroft et al., 2010; Matsuno et al., 2011, 2012). However, seasonal sea ice coverage in this area prevents collection of net samples in winter, and most of the studies were conducted only in summer. To evaluate seasonal changes in zooplankton community, analysis on zooplankton swimmers (Knauer et al., 1979) collected by moored sediment trap is a powerful tool (cf. Forbes et al., 1992). According to Knauer et al. 1979, swimmer is defined that zooplankton actively swam into the trap and was killed by the preservation fluid filled with the cups. Because of their importance, seasonal changes in swimmer community collected by sediment trap have been studied in several areas of the Arctic Ocean, especially in the Beaufort Sea (Forbes et al., 1992; Ota et al., 2008; Makabe et al., 2010). According to Makabe et al. (2010), seasonal changes in Arctic swimmer community are related to the sea ice concentration, temperature and salinity. This is partly because large copepods migrate to surface when the sea ice melts (Conover and Huntley, 1991), graze on phytoplankton in the ice-edge bloom (Springer and McRoy, 1993), and then reproduce. The reproduction seasons of dominant copepods vary with species and areas within the Arctic Ocean (Falk-Petersen et al., 2009). Despite their importance, little information is available for life cycle of copepods other than dominant species. For dominant copepods, their species-specific lipid accumulation and gonad maturation have little evaluated in the western Arctic Ocean.

In the present study, we analyzed zooplankton swimmers collected by sediment trap sampling at 13−15 day intervals moored at 184 m in Northwind Abyssal Plain during October 2010 to September 2011. Through this analysis, seasonal changes in swimmer community structure and population structure of the four dominant copepods (Calanus hyperboreus, Metridia longa, Paraechaeta glacialis and Heterorhabdus norvegicus) were evaluated. Lipid accumulation and gonad maturation of adult females (C6F) from the dominant copepods were analyzed to evaluate their life cycle patterns. Seasonal occurrence of the Pacific copepods (Neocalanus cristatus) was also noted and the possible cause was discussed.

METHOD
Field sampling

Samples were collected by sediment trap (SMD26 S-6000, open mouth area 0.5 m², Nichiyu Giken Kogyo, Co. Ltd.) rotated at 13–15 day intervals moored at 184 m and 1,300 m at St. NAPt (Northwind Abyssal Plain trap, 75°00′N, 162°00′W, bottom depth 1975 m) during 4 October 2010 to 28 September 2011 (Fig. 1). This station is seasonally affected by inflow of Bering Shelf Water (BSW) from Bering Strait (Weingartner et al., 2005; Woodgate et al., 2005). The end of the trap rope was fixed to the sea bottom. Sea water for filling sample cups was taken from 1,000 m water depth in the southern Canada Basin (salinity 34.89), and was filtered with membrane filter (0.45 µm pore size) to make 5% buffered formalin seawater. The sample cups were filled with the 5% buffered formalin seawater before the sediment trap was deployed.

After the trap was retrieved, the 26 samples each were gently filtered with 1 mm mesh, and the remaining fraction (>1 mm size) on the mesh was treated as zooplankton swimmers. Since the number of zooplankton swimmer was low for deeper trap (1,300 m), we treated only shallower trap (184 m) in this study. The fine size fraction (<1 mm) for each sample was evenly divided to 10 aliquots using the Wet Sample Divider (McLane™ WSD-10). The one of divided aliquots for each sample was filtered on weighed polycarbonate membrane filter, and was desalted with Milli-Q waters. The sample filters were dried with diphosphorus pentaoxide in desiccator for three days. The dried sample filters were weighed with analytical balance to calculate total mass flux (mg dry mass [DM] m⁻² day⁻¹) of < 1 mm size fraction for each sample period.

As the supplemental environmental data, the moored trap depth and the water temperature (accuracy of ±0.2°C) were monitored every hour (sensor type: ST-26S-T). We estimated the current speed at St. NAPt in 2010 by a physical ocean general circulation model: Center for Climate System Research Ocean Component Model (COCO) version 4.9. The model performance in the western Arctic Ocean has been verified in previous decadal and seasonal experiments (Watanabe et al., 2012; Watanabe and Ogi, 2013). Time-series data on weekly averaged percentage ice coverage around St. NAPt (74.5–75.5°N, 161.5–162.5°W) during the mooring period were calculated from the sea ice concentration data set (http://iridl.ldeo.columbia.edu/SOURCES/.IGOS-
S/nmc/.Reyn_SmithOlv2/, cf. Reynolds et al., 2002). For sea ice coverage data of whole Arctic Ocean, the data were downloaded from the AMSER-E data set (http://www.ijis.iarc.uaf.edu/seaice/-extent/plot.csv). The MODIS/Aqua Level 3 binned chlorophyll-α data (reprocessing version 2012.0) were downloaded from the Distributed Active Archive Center (DAAC) of Goddard Space Flight Center (GSFC), NASA. We used daily data at 9-km resolution, and composited to 9 days running mean.

Analysis of zooplankton swimmer

For zooplankton swimmer samples (>1 mm), identification and enumeration of zooplankton were made under a dissecting microscope. In this study, swimmer defined that zooplankton in >1 mm samples swam actively into the trap (cf. Knauer et al., 1979). Specimens damaged before collection were distinguished based on the description of Sampei et al. (2009), while their contribution was small (<0.65% in total count) and excluded from following analysis. Species identification of copepods followed mainly Brodsky (1967) and Frost (1989) for *Pseudocalanus* spp. (*P. minutus* and *P. newmani*), Frost (1974) for *Calanus* spp. (*C. glacialis* and *Calanus marshallae*), and Miller (1988) for *Neocalanus* spp. Identification of the four dominant calanoid copepods (*Calanus hyperboreus*, *Metridia longa*, *Paraeuchaeta glacialis* and *Heterorhabdus norvegicus*) was made to the copepodid stage level.

For *C. hyperboreus*, *M. longa* and *P. glacialis*, the copepodid stage 6 females (C6Fs) contain a large oil sac in the prosome. To analyze the amount of oil, oil length relative to prosome length (PL) was scored into three groups: I (the lipid length is 0–4% of PL), II (4–40% of PL) and III (>40% of PL). For the same three species, gonad maturation of the C6F was also scored into three groups: I (immature), II (small oocytes in ovary or oviduct) and III (large eggs or distended opaque in oviduct). For this gonad maturation index, we referred to those used previously for *C. hyperboreus* (Hirche and Niehoff, 1996) and *M. longa* (Tande and Grønvik, 1983). Of the four dominant copepods, only *H. norvegicus* was not analyzed for lipid accumulation and gonad maturation, because of the difficulty in observation. *Heterorhabdus norvegicus* accumulate lipids
in many small oil droplets, and the low transparency of the prosome prevents observation of their gonad.

The flux \((F, \text{ ind. m}^{-2} \text{ day}^{-1})\) of zooplankton swimmers was calculated from the following equation:

\[F = N \times \frac{1}{0.5} \times \frac{1}{d} \]

where \(N\) is the number of individuals (ind.), 0.5 is the mouth area (m\(^2\)) of the sediment trap, and \(d\) is the sampling interval (days). We counted total zooplankton swimmers 37–288 individuals per sample. Since the sampling interval is similar (13–15 days) throughout the sampling period, conversion factor between count and flux was similar (one individual sample\(^{-1}\) corresponded to 0.133–0.154 ind. m\(^{-2}\) day\(^{-1}\) \([=1/0.5/13–15]\)).

Data analysis

Zooplankton swimmer flux data \((F: \text{ ind. m}^{-2} \text{ day}^{-1})\) for each species was log transformed \((\log_{10}[X+1])\) prior to analysis to reduce the bias of flux. Similarities between samples were examined using the Bray-Curtis index (Bray and Curtis, 1957). To group samples, the similarity indices were coupled with hierarchical agglomerative clustering using a complete linkage method (Unweighted Pair Group Method using Arithmetic mean: UPGMA) (Field *et al.*, 1982). All of these analyses were carried out using PRIMER v6 software (PRIMER-E Ltd.). Inter-group differences in flux of all zooplankton swimmers were tested by one-way ANOVA and an ex post facto test by Fisher’s Protected Least Significant Difference test (PLSD). These statistical analyses were carried out using StatView v5 software (SAS Institute Inc.).

RESULTS

Hydrography

The trap depth varied between 181 and 218 m (Fig. 2a), and was stable around 184 m most of the date then temporally deepened (220 m) within short period (6–7 days) in October, December 2010.
and September 2011. Temperature at sediment trap ranged from −1.6 to −0.6°C (Fig. 2b). Rapid decreases in temperature were paralleled with the deepening changes in the moored trap depth (Fig 2a, b). The five days mean of current velocity simulated by ocean circulation model showed slow subsurface current (<11.3 cm s⁻¹ at 45 m and <2.7 cm s⁻¹ at 188 m water depths) at St. NAPt (Fig. 2c). From two times CTD casts at the station, four water masses were identified at 0–500 m water column: i.e. SML: Surface Mixed Layer (0–25 m), PSW: Pacific Summer Water (25–100 m), PWW: Pacific Winter Water (100–250 m), AW: Atlantic Water (>250 m) (Fig. 2d, e) (McLaughlin et al., 2011).

Sea ice around the sediment-trap site showed clear seasonal changes, with a decrease from early July, complete melting (sea ice concentration: 0%) in September, a rapid increase during October, and 100% coverage during November to June (Fig. 3a). The total mass flux (<1 mm size range) ranged 19.3–215.9 mg DM m⁻² day⁻¹ and peaked during November–December (Fig. 3a). High chl. a was observed during August–September (Fig. 3a). At St. NAPt, the midnight sun occurred during early May to early August, and polar night was from early November to early February (Fig. 3b).

Swimmer community

Based on the zooplankton swimmer flux, cluster analysis classified the zooplankton swimmer communities largely (A and B) at 55% dissimilarity level, then group B subdivided (B-1 and B-2) at 47% dissimilarity level (Fig. 4a). Occurrence of each group showed distinct seasonality. Group A (n = 8) was observed from July to October, group B-1 (n = 6) from November to January, and group B-2 (n = 9) from March to June (Fig. 4b). Zooplankton swimmer flux ranged from 5 to 44 ind. m⁻² day⁻¹. While except extremely high peak of amphipods (Themisto libellula) in April, zooplankton swimmer flux was highest during July to October (Fig. 4b). The averaged zooplankton swimmer flux was highest in A (20.0±4.9 ind. m⁻² day⁻¹), lower in B-2 (16.1±3.9), and lowest in B-1 (11.9±2.4). Copepods comprised 18 to 94% of the zooplankton swimmer flux and were the dominant taxon; amphipods the second most dominant group (0–74%) (Fig. 4b). The
characterized species of each group (significantly abundant than the other groups analyzed by one-way ANOVA and Fisher’s PLSD, *p*<0.05) were as follows: A, the mesopelagic copepods *Paraeuchaeta glacialis*; and B-2, the inter-zonal copepod *Calanus hyperboreus*. While group B-1 dominated by *Metridia longa* and *Heterorhabdus norvegicus*, their flux showed no significant seasonal changes.

Copepod population structure

The population structures of the four dominant copepods (*C. hyperboreus, M. longa, P. glacialis* and *H. norvegicus*) varied with species. Throughout the year, *C. hyperboreus* was predominated by C6F (Fig. 5a). The population structure of *M. longa* and *P. glacialis* showed seasonal change; both were dominated by C6F from January to May, and early copepodid stages (C1–C4) occurred during June–October (Fig. 5b, c). *Heterorhabdus norvegicus* showed a different seasonal pattern; it was dominated by C5 during November–February, the contribution of C6F/M increased during March–October, and C1 and C2 stages occurred in June–July (Fig. 5d).

Lipid accumulation in C6Fs of the dominant copepods (excluding *H. norvegicus*) also showed species-specific seasonal patterns. Most *C. hyperboreus* contained more lipids (stage III) during December–January (83%) than during February–October (56%) (Fig. 6a). For *M. longa*, stage III individuals dominated during October–December, their composition gradually decreased during March to June, and all specimens had no oil sacs in July (Fig. 6b). The lipid accumulation of *P. glacialis* showed fluctuated seasonal change (Fig. 6c).

Gonad maturation of C6Fs of the dominant copepods (excluding *H. norvegicus*) showed more distinct seasonality. For *C. hyperboreus*, mature individuals were observed only during February–April (Fig. 6d). Mature *M. longa* were seen during March–July, note that in September was based on only one specimen (Fig. 6e), with the lipid accumulation decreased (Fig. 6b). Most *P. glacialis* (47%) matured during August–January (Fig. 6f), when egg carrying *P. glacialis* C6Fs were also seen.
Pacific copepods

The Pacific copepod *Neocalanus cristatus* occurred (0–0.92 ind. m$^{-2}$ day$^{-1}$) throughout the year, and was higher during August–September when the sea ice was reduced (Fig. 7). All *N. cristatus* were stage C5, and lipid accumulation varied.

DISCUSSION

Trap collection efficiency

In general, underestimate bias in sinking particle flux is concerned due to low trap collection efficiency under flowing water condition especially shallower than 1,000 m (Buesseler *et al.*, 2007). The time-series monitoring data for physical oceanography around St. NAPt are limited. However, the directly measured water current around St. NAPt in winter was slower than 10 cm s$^{-1}$ at 58 and 250 m water depths (Sumata and Shimada, 2007). The current speed estimated by ocean circulation model also confirmed that the speed of the subsurface current around trap was slow (<2.7 cm s$^{-1}$) at St. NAPt throughout the year (Fig. 2c). These slow current speeds were not expected to have a significant effect on sediment trap collection efficiency. The sediment trap temporarily deepened to 220 m with short period (6–7 days) in October, December 2010 and September 2011 (Fig. 2a). Temporal changes in temperature also confirmed these changes (Fig. 2b). The tilt of sediment trap was estimated within 15° in the deepening events. Except for these periods, mooring depth of sediment trap was kept 180–190 m. Since the PWW were occurred between 100–250 m (Fig. 2d, e), there expected little changes in water masses at the trap depth. Although the deployment depth of sediment trap was not completely constant throughout the studied period, the seasonality of total mass fluxes at 184 m trap and at 1,300 m trap (Onodera *et al.*, pers. comm.) was well paralleled ($r^2 = 0.621, p<0.0001$). These results suggest that the influence of the trapping efficiency bias is usually insignificant for the studied sediment trap samples.

Seasonal changes in swimmer community

Previously reported zooplankton swimmer communities collected by sediment trap in the Arctic
Ocean are summarized in Table 1. Throughout the studies, copepods are the most dominant taxa, followed by amphipods or pteropods similar with this study. Within the copepods, *C. finmarchicus* is reported to be dominated for the shallower trap (ca. 100 m) in the Norwegian fjord faced to the North Atlantic Ocean (Willis *et al.*, 2006, 2008). While in the deep-layer (500 m) of the eastern Greenland Sea, *C. finmarchicus* was lesser and dominated by *M. longa* (Seiler and Brandt, 1997). For the western Arctic Ocean (Amundsen Gulf and Beaufort Sea), not faced to the Atlantic Ocean, *C. finmarchicus* did not occur and *M. longa* was dominated (Forbes *et al.*, 1992; Sampei *et al.*, 2012). For the northernmost station (81°N), diapausing *C. hyperboreus* was predominated (Hargrave *et al.*, 1989). Thus, the dominant copepod species collected by sediment trap may vary with region and trap depths. The trap depth of this study (184 m) was relatively shallow, but because the NAPt is not faced to the Atlantic Ocean, *C. finmarchicus* did not occur. Dominant copepods of this study, *H. norvegicus* followed with *M. longa*, were a unique, because of the dominance of the mesopelagic copepods (Yamaguchi and Ikeda, 2000). *Heterorhabdus norvegicus* is reported to be the second dominant copepods in the zooplankton swimmer fauna of the eastern Greenland Sea (Seiler and Brandt, 1997), thus this species may be dominant copepods throughout the mesopelagic layer of the Arctic Ocean. Copepod fauna evaluated by stratified net samplings also noted the occurrence of *H. norvegicus* throughout the Arctic Ocean (Kosobokova and Hirche, 2000; Auel and Hagen, 2002; Kosobokova and Hopcroft, 2010; Dvoretsky and Dvoretsky 2011). Add to these copepods, occurrence of small number of the Pacific copepods is a special feature of this study. Since the zooplankton swimmer community of this study showed clear seasonal changes (groups A, B-1 and B-2), following, we discuss the characteristics of each swimmer group.

The group A, corresponded with open water period (July–October), dominated by the carnivorous *P. glacialis* (3.7–9.4 times greater flux than the other groups, one-way ANOVA, \(p<0.001 \)). For the numerical dominance of *P. glacialis* during July–October, two factors are considered: i) correspondence of growth to large copepodid stages (>1 mm in size), ii) correspondence of presence of massive diel vertical migration (DVM) at that period. For the
former, dominance of C5 stage during the period (Fig. 5c) suggests that the major population grew
up this season. For the latter, *P. norvegica*, which is an Atlantic congener species for *P. glacialis*,
is known to perform DVM during autumn (Kaartvedt *et al.*, 2002), but cease DVM during midnight
sun and polar night (Fleddum *et al.*, 2001). At St. NAPt, the midnight sun occurred during early
May to early August, and polar night was from early November to early February (Fig. 3c). Thus,
if *P. glacialis* had similar DVM of *P. norvegica*, the dominance of *P. glacialis* in group A
(July–October) was caused by the presence of DVM for *P. glacialis* during that period.

Changes in zooplankton swimmer community from group A to B-1 was corresponded with
the timing of ice coverage and entered polar night (Fig. 3c). The group B-1 was characterized
with the dominance of mesopelagic *M. longa* and *H. norvegicus*. While their flux showed little
seasonal changes (Fig. 5b, d), the other two species showed clear seasonality: peaked in May–June
for *C. hyperboreus* (Fig. 5a) and July–October for *P. glacialis* (Fig. 5c). Thus, group B-1 was
composed mainly by mesopelagic copepods (*M. longa* and *H. norvegicus*) stable occurred in the
mesopelagic layer. For the other two species (*C. hyperboreus* and *P. glacialis*), seasonal vertical
migration (SVM) and presence/absence of DVM is considered to be a key mechanism to govern the
seasonal changes in swimmer community.

During the ice coverage period (November–June), the swimmer community changed from
group B-1 to B-2 in February due to the drastic increase (ca. 10 times) of *C. hyperboreus* (one-way
ANOVA, *p*<0.01). *Calanus hyperboreus* is known to perform SVM (Hirche, 1997; Vinogradov,
1997), diapause at depth (500–1,500 m) in winter, and make upward SVM to the surface layer in
April (Hirche and Niehoff, 1996). In the present study, it was shown that *C. hyperboreus* included
only C6Fs and their flux increased from February and peaked in May (Fig. 5a). This increase in
flux during February to May was presumably due to their upward SVM from deep layer.
Therefore, the change in swimmer community (from group B-1 to B-2) during January–March
might have been caused by the upward SVM of *C. hyperboreus*. For arousal mechanism of resting
copepods, presence of an internal body timer is discussed (Miller and Grigg, 1991; Miller *et al.*, 1991).
Since daylight hours changed greatly from zero (polar night) to 24h (midnight sun) during
February to April (Fig. 3c), this change in day-night cycle may affect the arousal of diapause for *C. hyperboreus*.

As specialized seasonal event of this study, the occurrence of Pacific copepods was observed. The Pacific copepod *N. cristatus* C5 was abundant during August–September when sea ice coverage decreased (Fig. 8). This seasonal pattern suggests that the amount of the inflow Pacific Water may increase when the sea ice coverage decreases. While *N. cristatus* C5 is known to perform SVM to deep layer to diapause during late summer (Miller et al., 1984), the greater flux of *N. cristatus* C5 in August–September may also be caused by their SVM. Since their reproduction occurs >1,000 m depth (Miller et al., 1984), the possibility of their reproduction in the Arctic Ocean could not be evaluated from this study.

Population structure of dominant copepods

Calanus hyperboreus populations were composed much of C6F throughout the year (Fig. 5a). *Calanus hyperboreus* reproduces during November–April in Amundsen Gulf (Ota et al., 2008), November–March in the Greenland Sea (Hirche and Niehoff, 1996), and February–March in the Norwegian Sea (Østvedt, 1955). In the present study, mature C6F were seen only from February to April, which suggests this is the reproduction period (Fig. 8). This reproduction season (February–April) generally corresponds to the previous studies with slight seasonal variances. For the regional variability in reproduction timing of *C. hyperboreus*, timing of the phytoplankton bloom is reported to be a most important factor (Conover and Siferd, 1993; Hirche and Niehoff, 1996). Full-lipid individuals in stage C6F dominated in December–January, and the lipid accumulation decreased from February when the reproduction started (Fig. 6a). This seasonal correspondence between reproduction period and decrease of lipid accumulation would be caused by the utilization of the stored lipid to reproduction (Hirche and Niehoff, 1996; Vinogradov, 1997).

The *M. longa* population was dominated by C6F during January–May, and early copepodid stages (C1–C4) during June–October (Fig. 5b). *Metridia longa* is omnivore and performs diel vertical migration (Conover and Huntley, 1991; Ashjian et al., 1995), and has no diapause phase
The main reproduction season shows regional variability: during April–May in the Balsfjorden (Tande and Gronvik, 1983), in winter under the sea ice in the Barents Sea (Hirche and Kosobokova, 2011), and in autumn in a polynya in the Beaufort Sea (Makabe et al., 2010). In this study, mature C6F occurred only during March–July (Fig. 6e), and early copepodid stages (C1–C4) dominated the population during June–October (Fig. 5b). These facts suggest that *M. longa* reproduces during March–July and the new population appear during June–October. This reproduction season (March–July) in the western Arctic Ocean is slightly longer than that in the Balsfjorden (April–May) (Tande and Grønvik, 1983). Lipid accumulated (stage III) individuals dominated during October–December, decreased gradually over winter and no specimens had oil sacs in July (Fig. 6b). This season of decreasing lipids (March–June) parallels the gonad maturation season (March–July). These facts suggest that the stored lipids are used for gonad maturation of *M. longa* as was seen in *C. hyperboreus*.

The *P. glacialis* population was dominated by C6F during January–May, and contained early copepodid stages (C2–C4) during June–October (Fig. 5c). Carnivorous *Paraechaeta* spp. performs raptorial feeding throughout the year, accumulate much lipids, and have no diapause phase (Båmstedt, 1979; Øresland, 1991). Since mature C6F *P. glacialis* dominated during August–January and egg carrying C6F also occurred during the same period (Fig. 6f), this species is assumed to reproduce in this period. This may be related to the ice-edge bloom at the surface. Ice-edge bloom is known to be occurred after ice melting (Springer and McRoy, 1993) (Fig. 3b). Ice-edge bloom induces the upward migration of Arctic copepods (e.g., *C. glacialis*) and reproduction of small copepods (e.g., *Pseudocalanus* spp.) (Conover and Huntley, 1991), which would provide sufficient food condition for carnivorous *P. glacialis*. Since sufficient food condition (abundant small metazoan zooplankton) is a key to make growth and reproduction of *Paraechaeta* spp. (Yamaguchi and Ikeda, 2001; Abe et al., 2012), *P. glacialis* may have performed reproduction in this season. This reproduction season of *P. glacialis* (August–January) differs with those of *C. hyperboreus* (February–April) and *M. longa* (March–July). These differences
may be related to differences in feeding modes, i.e., carnivory in *P. glacialis* and suspension feeding in *C. hyperboreus* and *M. longa*.

The *H. norvegicus* population was dominated by C5 during November–February and C6F/M during March–October, and C1 and C2 were collected in June and July (Fig. 5d). Since lipid accumulation and gonad maturation could not be analyzed for *H. norvegicus*, the reproduction season was estimated from the population structure data. Combining dominance of early copepodid stage (June and July) and assuming development time of *Heterorhabdus* spp. nauplii (1–2 months) (Yamaguchi and Ikeda, 2000), the reproduction season is thought to be during April and May. Little comparable information is available for the life cycle of *H. norvegicus*. Thus, the reproduction seasons of the dominant four copepods differed (Fig. 8), and possible causes of these differences include species-specific feeding modes, seasonal changes in food availability, and the presence/absence of ontogenetic vertical migration.

In summary, while the limitation of sampling design (data based on single sediment trap at a single station and depth), through the analyses on zooplankton swimmers collected by a sediment trap, zooplankton communities were clearly separated into three seasons (Fig. 8). The season when each copepod dominated corresponded with the reproduction timing of each species. For the four dominant copepods, their reproduction timings varied with species, which may be related to the feeding modes. In addition, the occurrence of the Pacific copepods was observed. Since their peak period (August–September) corresponded with timing of their SVM, they may enter sediment trap to perform descent SVM.

ACKNOWLEDGEMENTS

We are grateful to the captain, officers and crews of the R.V. Mirai (JAMSTEC), operated by GODI, R/V CCGS Sir Wilfrid Laurier, and Dr. Humfrey Melling (IOS, Canada) for their help in the mooring operation and sampling collection. We thank Dr. John Richard Bower (Hokkaido University) for correcting English of this manuscript. Drs. Yasunori Sakurai, Kenshi Kuma and Toru Hirawake (Hokkaido University) provided valuable comments on an earlier draft of the
This study was supported by Green Network of Excellence Program (GRENE Program), Arctic Climate Change Research Project ‘Rapid Change of the Arctic Climate System and its Global Influences’ and Grant-in-Aid for Scientific Research (S) 22221003 Catastrophic reduction of sea-ice in the Arctic Ocean –its impact on the marine ecosystems in the polar region– to NH and JSPS Fellows (234167) to KM. Part of this study was supported by Grant-in-Aid for Scientific Research (A) 24248032 and Grant-in-Aid for Scientific Research on Innovative Areas 24110005 from the JSPS.
REFERENCES

Ota, Y., Hattori, H., Makabe, R. *et al.* (2008) Seasonal changes in nauplii and adults of *Calanus hyperboreus* (Copepoda) captured in sediment trap, Amundsen Gulf, Canadian Arctic.

Figure legends

Fig. 1. Location of St. NAPt (Northwind Abyssal Plain trap) in the western Arctic Ocean where the sediment trap was moored at 184 m during October 2010 to September 2011. ACW: Alaskan Coastal Water, AW: Anadyr Water, BSW: Bering Shelf Water.

Fig. 2. Seasonal changes in depth (a) and temperature (b) monitored for shallower trap at St. NAPt during October 2010 to September 2011. Current velocity at 45 m and 188 m of St. NAPt (c) estimated by a physical ocean general circulation model: Center for Climate System Research Ocean Component Model (COCO) version 4.9. Temperature (d) and salinity (e) observed from CTD casts at St. NAPt in 30 October 2010 and 21 September 2012. Shades indicate the trap depths (180–190 m). SML: Surface Mixed Layer (0–25 m), PSW: Pacific Summer Water (25–100 m), PWW: Pacific Winter Water (100–250 m), AW: Atlantic Water (>250 m).

Fig. 3. Seasonal changes in sea ice concentration for the investigation area during the sampling period (http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/, data from Reynolds et al., 2002), total mass flux (<1 mm size fraction) collected by sediment trap, surface chl. a from satellite (a) and daylight hours (b) at St. NAPt during 4 October 2010 to 28 September 2011.

Fig. 4. Results of cluster analysis based on the flux of zooplankton swimmers. Twenty six samples were clustered into three groups from Bray-Curtis dissimilarity (a). Seasonal changes in zooplankton swimmer flux, species composition and clustered groups collected by sediment trap moored at 184 m of St. NAPt during 4 October 2010 to 28 September 2011 (b).

Fig. 5. Seasonal changes in flux and copepodid stage composition of the four dominant copepods: *Calanus hyperboreus* (a), *Metridia longa* (b), *Paraeuchaeta glacialis* (c), *Heterorhabdus norvegicus* (d), at 184 m of St. NAPt during 4 October 2010 to 28 September 2011.

Fig. 6. Seasonal changes in flux, lipid accumulation (upper panels) and gonad maturation (lower panels) compositions (stage I–III) of C6Fs of *Calanus hyperboreus* (whole n = 232) (a, d),
Metridia longa (n = 234) (b, e) and Paraeuchaeta glacialis (n = 166) (c, f) at 184 m of St. NAPt during 4 October 2010 to 28 September 2011. *: Egg sac attached individual was occurred.

Fig. 7. Seasonal changes in flux and lipid accumulation composition (I–III) of the Pacific Neocalanus cristatus C5 collected by sediment trap moored at 184 m of St. NAPt during 4 October 2010 to 28 September 2011.

Fig. 8. Schematic diagram on seasonal changes in daylight hours, sea ice concentration, chl. a, total mass flux (upper panel), swimmer community, population structure and reproduction period of copepods (C. hyperboreus, M. longa, P. glacialis and H. norvegicus), and occurrences of the Pacific N. cristatus collected by sediment trap at 184 m of St. NAPt during 4 October 2010 to 28 September 2011 (lower panel). For C. hyperboreus, M. longa and P. glacialis, reproduction period was evaluated by C6F gonad maturation (Fig. 6d–f). For H. norvegicus, their reproduction period was estimated by the occurrence of early copepodid stages (Fig. 5d).
<table>
<thead>
<tr>
<th>Region (position)</th>
<th>Period</th>
<th>Depth (m)</th>
<th>Dominant taxa/species (percentage to total zooplankton flux in number)</th>
<th>References</th>
</tr>
</thead>
</table>
Fig. 2 (Matsuno et al.)

Current velocity (\(\text{cm s}^{-1}\))

Temperature (\(^\circ\text{C}\))

Salinity

Depth (m)
Fig. 3 (Matsuno et al.)

(a) Total mass flux (mg DM m$^{-2}$ day$^{-1}$)

(b) Surface chl. a (mg chl. a m$^{-3}$)
Fig. 4 (Matsuno et al.)

Flux

C. hyperboreus
M. longa
P. glacialis
H. norvegicus

Other copepods
Amphipods
Other zooplankton

NAP10t 200m trap swimmer
Group average

Transform: Log(X+1)
Resemblance: S17 Bray Curtis similarity

Bray-Curtis dissimilarity (%)

Composition (%)
Fig. 5 (Matsuno et al.)
Fig. 6 (Matsuno et al.)
Fig. 7 (Matsuno et al.)

N. cristatus C5

Flux (ind. m$^{-2}$ day$^{-1}$)

Composition (%)
Fig. 8 (Matsuno et al.)