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Backstepping observer design for parabolic PDEs
with measurement of weighted spatial averagesI

Daisuke Tsubakinoa,1, Shinji Harab

aDivision of Systems Science and Informatics, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
bDepartment of Information Physics and Computing, The University of Tokyo, Tokyo 113-8656, Japan

Abstract

This paper is concerned with the observer design for one-dimensional linear parabolic partial differential equations whose output
is a weighted spatial average of the state over the entire spatial domain. We focus on the backstepping approach, which provides a
systematic procedure to design an observer gain for systems with boundary measurement. If the output is not a boundary value of the
state, the backstepping approach is not directly applicable to obtaining an observer gain that stabilizes the error dynamics. Therefore,
we attempt to convert the error system into another system to which backstepping is applicable. The conversion is successfully
achieved for a class of weighting functions, and the resultant observer realizes exponential convergence of the estimation error with
an arbitrary decay rate in terms of the L2 norm. In addition, an explicit expression of the observer gain is available in a special case.
The effectiveness of the proposed observer is also confirmed by numerical simulations.
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1. Introduction

The observer design for systems modeled by partial differen-
tial equations (PDEs) is a classical but still important problem
in control engineering. The estimated state can be used not
only to implement state feedback controllers but also to mon-
itor an invisible state distribution such as the concentration of
some chemical species in process engineering (Delattre et al.,
2004). The theory of the Luenberger observer for linear infi-
nite dimensional systems was established by replacing matrices
with linear operators (Curtain and Zwart, 1995; Lasiecka and
Triggiani, 2000), see also the recent survey paper Hidayat et al.
(2011). Hence, the observer design is reduced to determining
a gain operator that stabilizes the associated error dynamics.
Unlike finite dimensional systems, it is not easy to find such a
gain even numerically because operators are not generally rep-
resented with a finite number of parameters. A well-known sys-
tematic approach to designing a stabilizing gain is the infinite
dimensional optimal filtering theory (Curtain, 1978), where a
stabilizing gain is constructed by using a solution of the op-
erator Riccati equation (Bensoussan et al., 2007). However,
solving the Riccati equation is generally difficult. Besides, nu-
merical methods require a solution of a very high order matrix
Riccati equation (Lasiecka and Triggiani, 1991). Therefore, we
need to develop a computationally light design method that also
guarantees some prescribed performance.

IThis paper was partially presented at the 18th IFAC World Congress, Mi-
lano, August, 2011.
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Tsubakino), shinji_hara@ipc.i.u-tokyo.ac.jp (Shinji Hara)
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Recently, another framework was proposed in Smyshlyaev
and Krstic (2005, 2010) for systems described by a one-
dimensional parabolic PDE whose output is a boundary value
of the state. The proposed framework is based on the infinite
dimensional backstepping approach (Balogh and Krstic, 2002;
Liu, 2003; Smyshlyaev and Krstic, 2004), which is a systematic
design tool for state feedback gains. The observer gain is de-
termined so that the error system is converted into an exponen-
tially stable target system by a state transformation called the
backstepping transformation. The resulting observer gain stabi-
lizes the error system exponentially with a given decay rate, and
it is characterized by the solution of a linear hyperbolic PDE.
Since this equation is linear, a symbolic or numerical approxi-
mate solution is easily obtained. In particular, explicit solutions
can be obtained in some special cases. The backstepping ob-
server has been extended to systems described by other types of
PDEs (Krstic et al., 2008b,a; Vazquez and Krstic, 2010; Krstic
et al., 2011).

These practical advantages are attractive enough to expect
that the backstepping approach can be applied to systems with
other kinds of observation. An important class of measurement
for the distributed state is the weighted spatial average. Strictly
speaking, all sensors measure some averaged value of the state
around them, because there is no infinitesimal sensor. This pa-
per, therefore, considers observer design based on the backstep-
ping approach when the output is a weighted spatial average of
the state. As the first study on this issue, we restrict the scope
to the systems described by a one-dimensional parabolic PDE.
Moreover, the output is assumed to be a spatial average of the
state over the entire spatial domain. In other words, the output is
an integral of the product of a weighting function and the state
over the spatial domain. Such sensing can be approximately
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realized by distributing a number of sensors and applying con-
sensus algorithms (Olfati-Saber et al., 2007).

Contrary to our expectations, the backstepping approach is
not directly applicable if the output is not a boundary value.
This is due to the spatial structure of the error dynamics.
The backstepping transformation exploits a structure of PDEs.
However, the structure of the output error feedback term is not
compatible with that desired in the backstepping framework.
We introduce an auxiliary transformation to circumvent this
problem. It will be shown that, under a certain condition for the
weighting function, the proposed transformation converts the
error system into a system for which the backstepping method
provides an exponentially stabilizing gain. Once a gain for the
transformed system is obtained, we can construct gains for the
original error system by using the inverse transformation. In ad-
dition, the original error system inherits the exponential stabil-
ity with a given decay rate from the transformed system. Noted
that the proposed transformation is completely different from
the backstepping transformation. In particular, its inverse is a
discontinuous map.

The idea and the approach presented in this paper are the
same as those in our conference paper Tsubakino and Hara
(2011). However, there are substantial differences. The deriva-
tion of the observer is simplified by assembling the transfor-
mations used in the previous paper. Moreover, we succeed in
deriving an observer that estimates the original state directly in
this paper, whereas the previous observer estimated the trans-
formed state. Although this seems a minor change, a new dif-
ficulty regarding the regularity arises, because the inverse of
our transformation is discontinuous. Explicit observer gains are
obtained in a more general case. The omitted proofs are fully
included in the present paper.

The paper is organized as follows. In Section 2, we formulate
the system and problem to be considered. Section 3 presents
our approach using an additional transformation to resolve the
problem and an analysis of the properties of the transformation
as a linear operator. Section 4 deals with the design of observer
gains based on backstepping. The convergence property of the
estimation error is revealed. Section 5 explains the design pro-
cedure of the proposed framework. We also show that explicit
observer gains can be obtained in a special case. We demon-
strate the performance of the proposed observer by a numerical
simulation in Section 6. Finally, we conclude the paper in Sec-
tion 7.

Notation. Throughout this paper, we write I for the open
interval (0, 1) ⊂ R. Its closure in R, that is, the closed interval
[0, 1], is denoted by I. Let L2(I) be a set of (equivalent classes
of) square integrable real-valued functions over I with respect
to the Lebesgue measure. For k ∈ N, Hk(I) stands for the kth
order Sobolev space, in other words, a vector space consisting
of elements in L2(I) whose distributional derivative up to order
k can be identified with an element of L2(I). We always assume
that L2(I) and Hk(I) are Hilbert spaces equipped with the inner

products

( f , g)L2(I) =

∫ 1

0
f (x)g(x)dx, f , g ∈ L2(I),

( f , g)Hk(I) =

k∑
i=0

(
f (i), g(i)

)
L2(I)

, f , g ∈ Hk(I),

where f (i) is the ith order (distributional) derivative of f and
f (0) = f . In the remaining sections, the notations (·)′, (·)′′, and
(·)′′′ are used instead of (·)(1), (·)(2), and (·)(3), respectively. The
associated norms with the above inner products are denoted by
‖ f ‖X =

√
( f , f )X for each f ∈ X, where X is L2(I) or Hk(I).

2. Problem setting

Consider a system described by the parabolic PDE equation

ut(x, t) = auxx(x, t) + λ(x)u(x, t) (1)

with boundary conditions

ux(0, t) + αu(0, t) = 0, (2)
u(1, t) = U(t), (3)

where u : I × [0,+∞) → R is the state, U(t) ∈ R is the
control input, and the coefficients are assumed to be a > 0,
λ ∈ C1(I), and α ∈ R. Although the control input acts at the
right end-point, the place of the input is not important to the
observer design. More general parabolic equations that con-
tain a term proportional to the spatial derivative of the state,
such as b(x)ux(x, t), can be transformed into (1) as shown in
Smyshlyaev and Krstic (2004, 2005).

We assume that a weighted average of the state over the spa-
tial domain I is measured. Namely, the output is given by

Y(t) =

∫ 1

0
h(ξ)u(ξ, t)dξ, (4)

where h is a positive spatially weighting function2. In practice,
the function h is determined by the sensor properties. However,
as a first step toward general weighting functions, we restrict
the class of weighting functions to solutions of the following
ordinary differential equation (ODE) with the parameter γ ∈ R:

ah′′(x) + λ(x)h(x) = γh(x), x ∈ I (5)

under the single initial condition

h′(0) + αh(0) = 0. (6)

The parameter γ and initial value h(0) are not specified. For
appropriate γ, there always exist positive functions that satis-
fies the initial value problem (5)–(6). We call such a solution
positive. Positive solutions to (5)–(6) do not cause a lack of
observability. These topics are discussed in Appendix A.

2In this paper, we call a real-valued function f positive if the range of f is
contained in (0,+∞).
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The main purpose of this paper is to develop a systematic de-
sign procedure of the state observer for the system (1)–(4). To
this end, we focus on the backstepping observer (Smyshlyaev
and Krstic, 2005). In the backstepping framework, we first
construct a standard Luenberger-type observer and then apply
backstepping in order to obtain an observer gain that stabilizes
the resulting error system. Such an observer for (1)–(4) can be
written as

ût(x, t) = aûxx(x, t) + λ(x)û(x, t)

− l(x)
(
Y(t) −

∫ 1

0
h(ξ)û(ξ, t)dξ

) (7)

ûx(0, t) + αû(0, t) = 0, (8)

û(1, t) − lb

(
Y(t) −

∫ 1

0
h(ξ)û(ξ, t)dξ

)
= U(t) (9)

where l : I → R and lb ∈ R are observer gains. Subtracting (7)–
(9) from the system equation (1)–(3), we obtain the following
error system:

ũt(x, t) = aũxx(x, t) + λ(x)ũ(x, t)

+ l(x)
∫ 1

0
h(ξ)ũ(ξ, t)dξ,

(10)

ũx(0, t) + αũ(0, t) = 0, (11)

ũ(1, t) + lb

∫ 1

0
h(ξ)ũ(ξ, t)dξ = 0, (12)

where ũ is the estimation error defined by ũ(x, t) = u(x, t) −
û(x, t). For any x ∈ I, the terms containing the observer gains
depend on the value of ũ at (almost) all points in the spatial
domain I. This fact prevents us from directly applying the
backstepping method because, in the backstepping observer de-
sign, the error system is required to have triangular terms only.
Namely, all the terms in the equation must depend only on the
value of ũ or its derivatives at some points greater than or equal
to x for the upper-triangular case and less than or equal to x for
the lower-triangular case. This is the most crucial problem that
we need to solve.

Remark 1. We can restrict the output error feedback to the
right boundary value only, that is, l(x) ≡ 0 as in Vries et al.
(2010). Then, the observer gain to be designed is a scalar con-
stant. However, to analyze the stability and the convergence
rate of the error system, we must calculate an eigenfunction
many times for different lb, which is generally not obtained in a
closed form. In addition, for certain h and λ, there is no lb such
that the error system with l(x) ≡ 0 is stable.

3. Approach using auxiliary transformation

In this section, we introduce the key idea to design an ob-
server for (1)–(4) based on the backstepping approach. As dis-
cussed in the previous section, the main difficulty with applying
backstepping is the presence of the non-triangular terms caused
by the dependence of the output Y on values of the state u at
(almost) all x ∈ I. Hence, we will attempt to convert the error
system (10)–(12) into a system to which backstepping is appli-
cable.

system: ũ-system
transformation (13)
−−−−−−−−−−−−−→ ṽ-systemybackstepping

design

gains: l, lb ←−−−−−−−−−−
inverse

transformation

m, mb

Figure 1: Diagram of proposed framework.

3.1. Integral transform

We introduce the new variable ṽ defined by

ṽ(x, t) =
1

h(x)

∫ x

0
h(ξ)ũ(ξ, t)dξ. (13)

The motivation for introducing this transformation comes from
a quite simple fact. If the tilde is dropped in (13), we can re-
gard the resulting equation as a state transformation from u to
v. Then, the output equation for this new state v becomes

Y(t) =

∫ 1

0
h(ξ)u(ξ, t)dξ = h(1)v(1, t). (14)

This means that the output is a boundary value of v. Hence, it
is expected that backstepping is applicable to the transformed
system. This expectation holds true for our class of weighting
functions. The transformation (13) maps a solution ũ of (10)–
(12) into a solution of

ṽt(x, t) = aṽxx(x, t) + µ(x)ṽ(x, t) + m(x)ṽ(1, t), (15)
ṽ(0, t) = 0, (16)
ṽx(1, t) + (β + mb) ṽ(1, t) = 0, (17)

where we set β = h′(1)/h(1) and

µ(x) = λ(x) + 2a
d
dx

(
h′(x)
h(x)

)
, (18)

respectively. Note that µ ∈ C1(I) whenever h is a positive so-
lution to (5)–(6). The transformed observer gains m and mb are
defined as

m(x) =
h(1)
h(x)

∫ x

0
h(ξ)l(ξ)dξ, (19)

mb = h(1)lb. (20)

Since (15) is a parabolic PDE that contains triangular terms
only, the backstepping method provides the observer gains m
and mb that stabilize (15)–(17) exponentially as in Smyshlyaev
and Krstic (2005). Then, we can obtain the observer gains l and
lb for the original system through inverse transformation. This
is our strategy (see Fig. 1). Of course, this is possible only if
the designed interior gain m is compatible with (19). Namely,
m is differentiable and satisfies m(0) = 0.

Let us derive (15)–(17). Suppose that h is a positive solu-
tion of (5)–(6). The left boundary condition (16) easily follows
from the definition (13). Differentiating both sides of (13) with
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respect to the spatial variable x yields

ṽx(x, t) = −
h′(x)
h(x)2

∫ x

0
h(ξ)ũ(ξ, t)dξ + ũ(x, t)

= −
h′(x)
h(x)

ṽ(x, t) + ũ(x, t).

By substituting x = 1, we see that ṽ must satisfy the right
boundary condition (17). It also follows from the above rela-
tion that

ũ(x, t) = ṽx(x, t) +
h′(x)
h(x)

ṽ(x, t), (21)

which gives an explicit formula for the inverse transformation.
Differentiating (21) with respect to x leads to the expression of
ũx in terms of ṽ:

ũx(x, t) = ṽxx(x, t) +
h′(x)
h(x)

ṽx(x, t)

+
d
dx

(
h′(x)
h(x)

)
ṽ(x, t). (22)

The temporal derivative of ṽ is computed as

ṽt(x, t) =
1

h(x)

∫ x

0
h(ξ)

(
aũξξ(ξ, t) + λ(ξ)ũ(ξ, t)

)
dξ

+
1

h(x)

∫ x

0
h(ξ)l(ξ)dξ

∫ 1

0
h(ξ)ũ(ξ, t)dξ

= aũx(x, t) − a
h′(x)
h(x)

ũ(x, t)

+ a
1

h(x)

(
h′(0) + αh(0)

)
ũ(0, t)

+
1

h(x)

∫ x

0

(
ah′′(ξ) + λ(ξ)h(ξ)

)
ũ(ξ, t)dξ

+ m(x)ṽ(1, t),

where we use integration by parts twice. Then, substituting (5),
(6), (21), and (22) into the right hand side of the above equation
gives (15).

Remark 2. The left boundary condition (11) for the original
error variable ũ seems to be lost. However, it can be recovered
from (15) and (16) if, for each t > 0, ṽ(·, t) can be continuously
extended to a function on I up to the second partial derivative
with respect to x. In this case, it follows from (21) and (22) that

ũx(0, t) + αũ(0, t)

= ṽxx(0, t) +
h′(0)
h(0)

ṽx(0, t) + αṽx(0, t) = ṽxx(0, t),

where α = −h′(0)/h(0) is used. To evaluate ṽxx(0, t), note that
ṽt(0, t) = 0 because ṽ(0, t) = 0. Substituting x = 0 into (15)
gives

0 = ṽt(0, t) = aṽxx(0, t) + µ(0)ṽ(0, t) + m(0)ṽ(1, t)
= aṽxx(0, t).

Thus, we have ṽxx(0, t) = 0, and (11) holds. The extension of ṽ
is possible if ṽ(·, t) ∈ H3(I) due to the fact that every element in

H3(I) has a representative in C2(I). This regularity is also nec-
essary to guarantee that ũ(·, t) ∈ H2(I) because the right hand
side of (21) contains the spatial derivative of ṽ. The regularity
of ṽ will be justified later.

3.2. Continuity and invertibility
In this subsection, we consider the continuity and invertibil-

ity of the proposed transformation (13) as a linear operator on
L2(I). Both play an important role in the analysis of the conver-
gence property of the error system (10)–(12). Proofs of all the
results in this subsection are given in Appendix B.

Define a closed subspace V of H1(I) by

V = { f ∈ H1(I) | f (0) = 0}, (23)

where the boundary value of an element in H1(I) indicates that
of its absolutely continuous representative as usual. This con-
vention is used throughout the paper. We equip V with an inner
product. Set, for f , g ∈ V ,

( f , g)V = ( f ′, g′)L2(I) =

∫ 1

0
f ′(x)g′(x)dx.

This gives an inner product for V that induces the norm ‖ f ‖V =√
( f , f )V = ‖ f ′‖L2(I) that is equivalent to the H1 norm by virtue

of the Poincaré-type inequality (Hardy et al., 1952)

‖ f ‖L2(I) ≤
2
π
‖ f ′‖L2(I)

for all f ∈ V . Since V is a closed subspace of H1(I), the inner
product (·, ·)V turns V into a Hilbert space.

Lemma 1. Consider the linear operator T on L2(I) defined by

(T f )(x) =
1

h(x)

∫ x

0
h(ξ) f (ξ)dξ, (24)

where h ∈ C1(I) and h(x) > 0 for all x ∈ I. Then, the range
of T is contained in V, and there exists a constant C > 0 such
that, for all f ∈ L2(I),

‖T f ‖V ≤ C‖ f ‖L2(I)

The next lemma deals with the inverse of (24) and its conti-
nuity.

Lemma 2. Consider the linear operator T on L2(I) defined by
(24) for some h ∈ C1(I) that satisfies h(x) > 0 for all x ∈ I.
Then, T is a bijection from L2(I) to V, and the inverse operator
T−1 is given by

(T−1g)(x) =
1

h(x)
d
dx

(
h(x)g(x)

)
= g′(x) +

h′(x)
h(x)

g(x)

with the domain D(T−1) = V ⊂ L2(I). Furthermore, there exists
a constant C > 0 such that, for any g ∈ V,

‖T−1g‖L2(I) ≤ C‖g‖V .

We emphasize that T−1 is a discontinuous operator on L2(I).
Therefore, the inequality in Lemma 2 no longer holds if ‖ · ‖V is
replaced by the L2 norm ‖ · ‖L2(I). The situation is summarized
in Fig. 2. This complicates the discussion in a later section.
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Figure 2: Continuity of proposed transformation

4. Backstepping observer design

In this section, we design the observer gains l and lb for (10)–
(12) based on the backstepping method. We also prove the ex-
ponential stability under the obtained gains.

4.1. Observer gains
As alluded to earlier, we apply backstepping to the ṽ-system

(15)–(17). In accordance with Smyshlyaev and Krstic (2005),
we can find a state transformation of the form

ṽ(x, t) = w̃(x, t) −
∫ 1

x
p(x, y)w̃(y, t)dy (25)

that, with suitably selected observer gains, converts the ṽ-
system (15)–(17) into the exponentially stable target system

w̃t(x, t) = aw̃xx(x, t) − cw̃(x, t), (26)
w̃(0, t) = 0, (27)

w̃x(1, t) = 0, (28)

where c > 0 is a design parameter that determines the conver-
gence rate. The exponential stability will be clarified later. The
state transformation (25) is called the backstepping transforma-
tion. The conversion is possible if the observer gains m and mb

satisfy

m(x) = apy(x, 1), (29)
mb = − (p(1, 1) + β) (30)

and the integral kernel p is a solution of

apyy(x, y) = apxx(x, y) + (µ(x) + c) p(x, y), (31)
p(0, y) = 0, (32)

p(x, x) = −
1

2a

∫ x

0
(µ(ξ) + c) dξ. (33)

The transformation (25) with the integral kernel satisfying
(31)–(33) is continuously invertible on L2(I) and H1(I). Thus,
the error system (15)–(17) inherits the exponential stability with
respect to such norms from the target system (26)–(28). This is
the essence of the backstepping method. We need to keep in
mind that the boundary value problem (31)–(33) is well-posed
for any µ ∈ C1(I). Namely, there exists a unique solution p to
(31)–(33) that is twice continuously differentiable on the closed
domain T := {(x, y) ∈ R2 | 0 ≤ x ≤ y ≤ 1}. See Smyshlyaev and
Krstic (2005, 2010), for details on the derivation of (29)–(33).
The well-posedness of (31)–(33) is also proved there through
the conversion of (31)–(33) into an integral equation and the
application of the successive approximation.

Remark 3. Recalling that µ is defined by (18), we can rewrite
the boundary value p(x, x) in (33) as

p(x, x) = −
1
2a

∫ x

0
(λ(ξ) + c) dξ −

[
h′(ξ)
h(ξ)

]x

0

= −
1
2a

∫ x

0
(λ(ξ) + c) dξ −

h′(x)
h(x)

− α.

Since β = h′(1)/h(1), the boundary gain mb becomes

mb = −

(
p(1, 1) +

h′(1)
h(1)

)
=

1
2a

∫ 1

0
(λ(ξ) + c) dξ + α,

which means that mb does not depend on h.

Once the observer gains that stabilize (15)–(17) exponen-
tially are obtained, the ones for the original error system (10)–
(12) are determined by the relation (19)–(20). Indeed, the
boundary condition (32) gives py(0, y) = 0 for all y ∈ I. Hence,
we have m(0) = apy(0, 1) = 0. This fact allows us to calculate l
and lb as

l(x) =
a

h(1)

(
h′(x)
h(x)

py(x, 1) + pxy(x, 1)
)
, (34)

lb =
1

h(1)

(
1

2a

∫ 1

0
(λ(ξ) + c) dξ + α

)
. (35)

Interestingly, except for 1/h(1), the boundary gain lb is the
same as the boundary gain of the backstepping observer for the
system (1)–(3) with the boundary measurement Y(t) = u(1, t)
rather than (4).

4.2. Convergence of error

We discuss the convergence of the estimation error in this
subsection. The main result is summarized as follows:

Theorem 4. Let a > 0, λ ∈ C1(I), c > 0 and let h be a positive
solution of (5)–(6) for some γ ∈ R. Assume that l and lb are
given by (34)–(35) for the solution p of (31)–(33). Then, for
any initial error ũ0 ∈ L2(I), there exists a unique solution ũ ∈
C([0,+∞); L2(I))∩C1((0,+∞); L2(I)) to the error system (10)–
(12) with ũ(·, 0) = ũ0. Furthermore, for all t ≥ 0, the following
estimate holds

‖ũ(·, t)‖L2(I) ≤ Me
−

(
π2
4 a+c

)
t
‖ũ0‖L2(I), (36)

where M ≥ 1 is a constant independent of ũ0.

To prove the theorem, careful attention should be paid to the
state space. In Theorem 4, L2(I) is regarded as the state space
for the first error system (10)–(12). Recall that the linear op-
erator (24) corresponding to the proposed transformation (13)
is a continuous and invertible map from L2(I) onto V and that
its inverse is not a continuous operator defined everywhere on
L2(I). Consequently, if we employ L2(I) as the state space for
the ṽ- and w̃-systems, a continuous relationship to ũ can not be
established. For this reason, we lift up the state space for ṽ and
w̃ to the Hilbert space V endowed with the inner product (·, ·)V .
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We begin by analyzing the ṽ- and w̃-systems. Define a linear
operator Aw on V by

(Aw f ) (x) = a f ′′(x) − c f (x), (37)

with the domain

D(Aw) = { f ∈ H3(I) | f (0) = 0, f ′(1) = 0, f ′′(0) = 0}.

Of course, we assume that a, c > 0. Obviously, Aw is the system
operator of the target system (26)–(28). The condition on the
second derivative is necessary to ensure that Aw f ∈ V when-
ever f ∈ D(Aw). It is not difficult to show that Aw is a self-
adjoint maximal dissipative operator3 on V . In other words, the
operator Aw satisfies the following three conditions:

1. (Aw f , f )V ≤ 0 for all f ∈ D(Aw),
2. for each g ∈ V, there exists f ∈ D(Aw) such that f −Aw f =

g, and
3. (Aw f , g)V = ( f , Awg)V for all f , g ∈ D(Aw).

Indeed, for any f ∈ D(Aw), we get

(Aw f , f )V =

∫ 1

0

(
a f ′′′(x) − c f ′(x)

)
f ′(x)dx

=
[
a f ′′(x) f ′(x)

]1
0 − a‖ f ′′‖2L2(I) − c‖ f ′‖2L2(I)

≤ −

(
π2

4
a + c

)
‖ f ‖2V ≤ 0, (38)

where we utilize integration by parts and the Poincaré-type in-
equality ‖ f ′‖L2(I) ≤ (2/π) ‖ f ′′‖L2(I). In addition, for a given
g ∈ V , the boundary value problem

f − Aw f = −a f ′′ + (c + 1) f = g,

f (0) = 0,
f ′(1) = 0

has a solution in H2(I). The second derivative of such a solution
f satisfies f ′′ = ((c + 1)/a) f − (1/a)g. Since f , g ∈ V , we can
deduce that f ′′ ∈ V , which implies f ∈ D(Aw). Finally, the
third condition can be checked directly by using integration by
parts twice.

Based on the maximal dissipativity of Aw, we can show the
well-posedness of the ṽ-system (15)–(17) as well as the target
system (26)–(28). The following lemma is almost the same as
Theorem 3 in Smyshlyaev and Krstic (2005), but the state space
is different, and we also mention the higher order regularity of
a solution to (15)–(17). The regularity is necessary in the pro-
posed framework, as described in Remark 2.

Lemma 3. Assume that a > 0, β ∈ R, µ ∈ C1(I) and that p
satisfies (31)–(33). Let m ∈ C(I) and mb ∈ R be given by (29)
and (30), respectively. Then, for any initial data ṽ0 ∈ V, there
exists a unique solution ṽ ∈ C ([0,+∞); V) ∩C1 ((0,+∞); V) to
(15)–(17) such that ṽ(·, 0) = ṽ0 and ṽ(·, t) ∈ H3(I) for any t > 0.

3Equivalently, −Aw is a self-adjoint maximal monotone operator.

We prove the lemma in Appendix B.
Once the existence of a solution ṽ that belongs to an appro-

priate solution space is clarified, we can show the exponential
stability of the ṽ-system (15)–(17) with respect to the V norm
‖ · ‖V in a similar manner to Smyshlyaev and Krstic (2010);
Liu (2003). Indeed, the temporal derivative of (1/2)‖w̃(·, t)‖2V
is given by (Aww̃(·, t), w̃(·, t))V for all t > 0. Then, the inequal-
ity (38) implies the exponential stability of the w̃-system along
with Gronwall’s inequality. The continuous invertibility of the
backstepping transformation gives

‖ṽ(·, t)‖V ≤ Mve
−

(
π2
4 a+c

)
t
‖ṽ0‖V (39)

for all t ≥ 0, where the constant Mv ≥ 1 depends only on p, that
is, a, c, β, and µ.

We prove Theorem 4 based on the foregoing discussion.

Proof (Theorem 4). Given ũ0 ∈ L2(I), we set ṽ0 = Tũ0, where
T is the operator defined by (24). From Lemma 1, ṽ0 ∈ V .
Then, Lemma 3 guarantees the existence of a unique solu-
tion ṽ ∈ C([0,+∞); V) ∩ C1((0,+∞); V) for the initial value
ṽ0. Moreover, ṽ(·, t) ∈ H3(I) for all t > 0. Hence, the
unique solution ũ to the error system (10)–(12) is constructed
as ũ(·, t) = T−1ṽ(·, t). The continuity of T−1 as a map from V to
L2(I), which is proved in Lemma 2, confirms that ũ belongs to
C([0,+∞); L2(I)) ∩C1((0,+∞); L2(I)).

The exponential convergence of ũ is easily follows from that
of ṽ. From Lemmas 1 and 2, there exist constants C1, C2 > 0
such that

‖ṽ0‖V ≤ C1‖ũ0‖L2(I),

‖ũ(·, t)‖L2(I) ≤ C2‖ṽ(·, t)‖V

for all t ≥ 0. These constants depend on h, that is, a, α, γ, and
λ. Combining these inequalities and (39) leads to (36), and the
theorem follows. �

In our conference paper Tsubakino and Hara (2011), we had
not succeeded in proving the higher order regularity of the
transformed error ṽ. Thus, we could only conclude the conver-
gence of the image of ṽ under T−1. Neither the fact that T−1ṽ
is definitely the original error ũ nor the well-posedness of the
original error system are direct consequences of our previous
result.

5. Design procedure

We summarize the design procedure in the proposed frame-
work. Explicit observer gains are also provided for a special
class of systems.

5.1. General cases
For the system (1)–(3), suppose that the measurement can be

modeled by (4) with a positive function h satisfying (5)–(6) for
some γ. Then, the design procedure consists of three steps:

1. Set the parameter c based on the desired rate of conver-
gence.
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2. Solve the resulting kernel PDE (31)–(33) by some method.
3. Calculate the observer gains l and lb for (7)–(9) by using

(34) and (35), respectively.

The obtained gains ensure the exponential convergence of the
estimation error with the decay rate π2a/4 + c in terms of the L2

norm. Although we introduce two transformations and the as-
sociated systems, neither is necessary in the actual design pro-
cedure.

5.2. Explicit observer gains
In the second step, we need to solve the kernel PDE (31)–

(33) to compute the observer gains. Generally, this step requires
numerical or symbolic computation. If the coefficient λ(x) is a
constant function, an explicit solution is available.

Let λ(x) = λ0 ∈ R for all x ∈ I. For a given initial value
h0 > 0, the solution of the ODE (5)-(6) can be written as

h(x) = h0

(
cosh

(
ωγx

)
−

α

ωγ
sinh

(
ωγx

))
, (40)

where ωγ := ((γ − λ0) /a)1/2. If γ − λ0 < 0, then ωγ is a purely
imaginary number. The lower bound of the possible γ is given
by λ0 + aω2, where ω is the largest4 real or purely imaginary
root of the nonlinear equation

coshω =
α

ω
sinhω.

For example, ω = iπ/2 for α = 0 and ω = 0 for α = 1. In
general, ω2 is greater than −π2 and increases monotonically as
α increases.

With the aid of the method explained in Smyshlyaev and
Krstic (2010), we can obtain the solution to the kernel PDE
(31)–(33) for λ0 and h given by (40) as

p(x, y) = −λ̄x
I1(φ(x, y))
φ(x, y)

−

(
h′(x)
h(x)

+ α

)
I0(φ(x, y))

− α

(
h′(x)
h(x)

+ α

) ∫ y

x
eα(ξ−x)I0 (φ(ξ, y)) dξ,

where λ̄ := (λ0 + c)/a, φ(x, y) = (λ̄(y2 − x2))1/2, and Ik is the
kth order modified Bessel function of the first kind. Then, from
(34) and (35), the observer gains can be calculated as

l(x) =
a

h(1)

(
λ̄2 (αx − 1)

I2(φ(x, 1))
φ(x, 1)2 + λ̄3x2 I3(φ(x, 1))

φ(x, 1)3

+
(
α2 − ω2

γ

) (
λ̄

I1(φ(x, 1))
φ(x, 1)

+ αeα(1−x)

+ αλ̄

∫ 1

x
eα(ξ−x) I1(φ(ξ, 1))

φ(ξ, 1)
dξ

))
,

lb =
1

h(1)

(
λ̄

2
+ α

)
,

where h(1) = h0

(
coshωγ − (α/ωγ) sinhωγ

)
.

4Here, the word largest means the squared value is maximum.
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Figure 3: Weighting functions for some γ’s.
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Figure 4: Distributed observer gains for some γ’s.

These explicit expressions tell us that the weighting func-
tion h itself is involved with the gains l(x) and lb merely as a
multiplier. In particular, only the value taken by h at the right
end-point x = 1 is important. When γ approaches γ0, h(1) tends
to 0. Accordingly, the gains drastically increase. We can also
observe that the spatial shape of l(x) is essentially determined
by the three parameters λ̄, α, and ωγ. If ω2

γ = α2 or α = 0, the
resultant interior gain l(x) has a comparatively simple form.

6. Numerical simulation

We confirm the effectiveness of the proposed observer by
numerical simulation. Let the system parameters be given by
a = 1, α = 3/4, and

λ(x) =
9
2

tanh
(
20

(
x −

1
3

))
+

7
2
.

The system (1)–(3) with U(t) ≡ 0 is unstable under these con-
ditions. To begin with, we find out weighting functions that are
admissible in the proposed framework. The lower bound γ0 is
located between 0 and 1. The numerical solutions of the ODE
(5)–(6) can be computed as shown in Fig. 3. The initial value
h(0) is determined so that the L1 norm of the resultant solution
is 1. This is a natural choice since h is a weighting function.
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Figure 5: State response of system.
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Figure 6: Estimated state û.

If we set the design parameter c = 4, the corresponding ob-
server gains are calculated as those shown in Fig. 4. As γ ap-
proaches γ0, the value of l(x) increases. This can be easily un-
derstood from the definition (34) because l(x) contains 1/h(1)
and h(1) tends to 0 as γ goes to γ0. On the other hand, the abso-
lute value of l at each point in I also increases gradually when γ
increases, even though h(1) takes large values. It can be inferred
that the terms in the parentheses in (34) grow more rapidly than
h(1). Here we present an intuitive understanding. The output
contains much information about the state u around the right
end-point x = 1 as γ increases. However, the value of u at the
right end-point is determined by the boundary condition, and
we assume that it is a known quantity. Hence, such an output
is less informative from the viewpoint of state estimation, and
more gain would be required.

We then perform the simulation. In order to imitate prac-
tical situations, we disturb the output with additive noise and
discretize the the system PDE (1) and observer PDE (7) by
different methods. More precisely, the fourth order explicit
Runge-Kutta method and sixth order compact finite difference
scheme (Lele, 1992) are applied to (1) for temporal and spatial
discretization, respectively, while (7) is discretized through a
simple second order method consisting of the midpoint method
in time and the central difference in space. The latter simple
scheme is preferable in the implementation stage because of its
lower computational cost.

Fig. 5 shows the state response of the system (1)–(3) to the
input U(t) = (1/5) sin(30t) under the initial condition u(x, 0) =

x sin(2πx2). The observer state û and error variable ũ are plot-
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Figure 7: Estimation error ũ.
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Figure 8: Measured output and estimated outputs.
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Figure 9: The L2 norm of the error ũ.

ted in Figs. 6 and 7, respectively. The initial estimate is set to
û(x, 0) ≡ 0. We can see that the error distribution immediately
converges to 0 except at the right end-point x = 1. The behav-
ior at the right end-point arises from the presence of observation
noise. In the simulation, the observer generates the estimate û
of u based on the disturbed output in Fig. 8. The effect of the
noise on the internal state is mitigated by time integration. At
the right end-point, however, the estimate û is directly affected
by the noise through the output error feedback under the right
boundary condition (9). Hence, we need to take care of the
value of the boundary gain to avoid the resultant observer being
sensitive to the noise. Nonetheless, Fig. 9 indicates that the L2

norm of the estimation error ũ still decays exponentially except
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for tiny perturbations due to the observation noise. Therefore,
the results demonstrate the effectiveness of the proposed ob-
server.

7. Conclusion

We have developed a design method of the observer for sys-
tems modeled by a one-dimensional PDE when the output is a
weighted spatial average of the state over the spatial domain.
We proposed a novel state transformation to exploit the back-
stepping method. This successfully results in a systematic de-
sign procedure that ensures a given performance regarding the
convergence of the estimation error for a class of weighting
functions. The proposed transformation has a discontinuous in-
verse. Hence, it is also interesting from a system theoretic point
of view.

In future work, we will extend the class of weighting func-
tions. In particular, functions with small support are important
in practice.

Appendix A. Weighting functions and observability

We begin by showing the existence of a positive solution to
(5)–(6).

Proposition 1. Let a > 0, λ ∈ C(I), and α ∈ R. Then, there
exists a constant γ0 ∈ R such that, for any h0 > 0, a solution
to (5)-(6) with h(0) = h0 is a positive function on I whenever
γ > γ0.

Proof. By adding the homogeneous Dirichlet boundary con-
dition at the right end-point x = 1 to (5)–(6), we define the
following boundary value problem:

a f ′′(x) + λ(x) f (x) = γ f (x), x ∈ I (A.1)
f ′(0) + α f (0) = 0, (A.2)

f (1) = 0. (A.3)

There is a major difference between (5)–(6) and (A.1)–(A.3).
The original problem (5)–(6) has a non-trivial solution for any
γ ∈ R. However, the problem (A.1)–(A.3) has a non-trivial
solution if and only if γ is an eigenvalue. According to the
Sturm-Liouville theory (Zettl, 2005; Coddington and Levinson,
1955), there exist countably many eigenvalues {γi}

∞
i=0 ⊂ R such

that γ0 < +∞ and γi > γi+1 for any i ∈ N ∪ {0}. Moreover,
eigenfunctions associated with the largest eigenvalue γ0 have
no zero in I.

Let f be an eigenfunction associated with γ0 and let h be a
solution of (5)–(6) with h(0) = h0 for some γ ∈ R. Without
loss of generality, we can let f (0) = h0. In this case, we have
f (x) > 0 for all x ∈ I \ {1} and f ′(0) = −αh0 = h′(0). We prove
the positivity of h by showing that h(x) > f (x) for all x ∈ I \ {0}
whenever γ > γ0.

Since γ0 is the largest eigenvalue, the condition γ > γ0 im-
plies h(1) , 0 = f (1). Hence, it suffices to show the inequality

for x ∈ I. Suppose, contrary to our claim, that h(x) ≤ f (x) for
some x ∈ I. If γ > γ0, we obtain

h′′(0) =
γ − λ(0)

a
h(0) >

γ0 − λ(0)
a

f (0) = f ′′(0).

Thus, there exists x0 ∈ I such that

h(x) > f (x), h′(x) > f ′(x) for all x ∈ (0, x0)

and h(x0) = f (x0). We use an argument similar to the one used
in the proof of the Sturm comparison theorem (Coddington and
Levinson, 1955) to obtain a contradiction. Simple computation
gives

d
dx

(
h′(x) f (x) − h(x)g′(x)

)
= h′′(x) f (x) − h(x) f ′′(x)

=
γ − γ0

a
h(x) f (x).

Integrating the above from 0 to x0 yields(
h′(x0) − f ′(x0)

)
h(x0) =

γ − γ0

a

∫ x0

0
h(x) f (x)dx > 0.

Since h(x0) > 0, we have h′(x0) > f ′(x0). On the other hand, it
follows from the inequality h(x) > f (x) that

h(x0) − h(x)
x0 − x

<
f (x0) − f (x)

x0 − x
for all x ∈ (0, x0).

Letting x → x0− gives h′(x0) ≤ f ′(x0), which is impossible.
Therefore, h(x) > f (x) for all x ∈ I, which is the desired con-
clusion. �

Non-trivial solutions to the boundary value problem (A.1)–
(A.3) are nothing but eigenfunctions of the operator character-
izing the original system (1)–(3) with U(t) ≡ 0. Therefore,
if there exists a non-trivial solution fi to (A.1)–(A.3) for some
eigenvalue γi that is orthogonal to the weighting function h in
the sense of the L2(I) inner product, the observability is lost.
We can show that this is not the case for a positive solution of
(5)–(6).

Assume that an eigenfunction fi associated with an eigen-
value γi is orthogonal to h, that is,∫ 1

0
fi(ξ)h(ξ)dξ = 0.

Then, it follows from (5)–(6) and (A.1)–(A.3) that

0 = γ

∫ 1

0
fi(ξ)h(ξ)dξ

=

∫ 1

0
fi(ξ)

(
ah′′(ξ) + λ(ξ)h(ξ)

)
dξ

= −a f ′i (1)h(1) +

∫ 1

0

(
a f ′′i (ξ) + λ(ξ) fi(ξ)

)
h(ξ)dξ

= −a f ′i (1)h(1) + γi

∫ 1

0
fi(ξ)h(ξ)dξ = −a f ′i (1)h(1).

Since ah(1) > 0, fi must satisfy f ′i (1) = 0 in addition to (A.1)–
(A.3). This implies that fi(x) ≡ 0, which contradicts the fact
that fi is an eigenfunction. Therefore, h is not orthogonal to
any eigenfunctions of the system operator.
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Appendix B. Proofs of lemmas

Proof (Lemma 1). It is evident that T f ∈ V for any f ∈ L2(I)
whenever h ∈ C1(I) and h(x) > 0 in I. Hence, we show the
latter assertion. We check at once that T is continuous with
respect to the L2 norm. Namely, there exists a constant C′ > 0
such that

‖T f ‖L2(I) ≤ C′‖ f ‖L2(I)

for all f ∈ L2(I). Let g := T f for a fixed f ∈ L2(I). Since the
derivative of g′ satisfies

g′(x) = −
h′(x)
h(x)

g(x) + f (x),

we have the following estimate:

‖g‖V = ‖g′‖L2(I) ≤

∥∥∥∥∥h′

h
T f

∥∥∥∥∥
L2(I)

+ ‖ f ‖L2(I)

≤

(
C′max

x∈I

∣∣∣∣∣h′(x)
h(x)

∣∣∣∣∣ + 1
)
‖ f ‖L2(I),

which completes the proof. �

Proof (Lemma 2). Let f1, f2 ∈ L2(I) be such that T f1 = T f2.
This is equivalent to stating that, for almost all x ∈ I,∫ x

0
h(ξ) ( f1(ξ) − f2(ξ)) dξ = 0.

As an immediate consequence, we have h(x)( f1(x) − f2(x)) = 0
for almost all x ∈ I. Then, it follows that f1(x) = f2(x) for
almost all x ∈ I because h(x) > 0 in I. Thus, T is injective.
Recall that Lemma 1 states that the range of T is contained in
V . Hence, we only need to show that, for any g ∈ V , there
exists f ∈ L2(I) such that T f = g. Take arbitrary g ∈ V and
define f = (hg)′ /h = g′ + (h′/h)g. It is obvious that T f = g.
Since g ∈ V ⊂ H1(I), we see that g′ ∈ L2(I). This together with
the fact that h′/h ∈ C(I) ensures that f ∈ L2(I), which is our
claim. Note that we have also proved a formula of the inverse
transformation.

Our next task is to estimate the L2 norm of f = T−1g. Since
f = T−1 f = g′ + (h′/h)g,

‖ f ‖L2(I) ≤ ‖g′‖L2(I) +

∥∥∥∥∥h′

h
g
∥∥∥∥∥

L2(I)

≤

(
1 +

2
π

max
x∈I

∣∣∣∣∣h′(x)
h(x)

∣∣∣∣∣) ‖g‖V .
This completes the proof. �

Proof (Lemma 3). The proof is divided into three steps. We
first prove the existence and the uniqueness of ṽ by a standard
argument used in the backstepping approach. Then, the regu-
larity of ṽ at each instant of time is shown.

Let w̃0 be the image of ṽ0 under the backstepping transfor-
mation (25). Since ṽ0 ∈ V and the integral kernel p satis-
fies (32), we have w̃0 ∈ V . Hence, owing to the fact that
Aw is a self-adjoint maximal dissipative operator, we can con-
clude that there exists a unique solution w̃ ∈ C ([0,+∞); V) ∩

C1 ((0,+∞); V) ∩ C ((0,+∞); D(Aw)) that satisfies w̃(·, 0) = w̃0
to the target system (26)–(28) (Brezis, 2010). We can now
define the inverse image ṽ of w̃ under the backstepping trans-
formation. Then, it is a solution to (15)–(17) with ṽ(·, 0) =

ṽ0. The continuity of the inverse backstepping transformation
with respect to the H1 norm guarantees ṽ ∈ C ([0,+∞); V) ∩
C1 ((0,+∞); V). The uniqueness follows from that of w̃.

We next show the regularity of ṽ. Rearranging (15) yields

ṽxx(x, t) =
1
a

(ṽt(x, t) − µ(x)ṽ(x, t) − m(x)ṽ(1, t)) ,

for any t > 0. It should be noted that ṽt(t) ∈ V ⊂ H1(I) if t > 0,
because we have shown that ṽ ∈ C1 ((0,+∞); V). In view of
the fact that µ, m ∈ C1(I), the second partial derivative ṽxx(·, t)
must belong to H1(I). Therefore, we conclude that ṽ(·, t) is in
at least H3(I) for any t > 0. This completes the proof. �
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