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We report on the restoration of gray-scale image when it is decomposed into a binary form before trans-
mission. We assume that a gray-scale image expressed by a set ofQ-Ising spins is first decomposed into an
expression using Ising~binary! spins by means of the threshold division, namely, we produce (Q21) binary
Ising spins from aQ-Ising spin by the functionF(s i2m)51 if the input datas iP$0, . . . ,Q21% is s i>m
and 0 otherwise, wherem P$1, . . . ,Q21% is the threshold value. The effects of noise are different from the
case where the rawQ-Ising values are sent. We investigate whether it is more effective to use the binary data
for transmission, or to send the rawQ-Ising values. By using the mean-field model, we analyze the perfor-
mance of our method quantitatively. In order to investigate what kind of original picture is efficiently restored
by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we
compare the performance of our method with that using theQ-Ising form. We show that our method is more
efficient than the one using theQ-Ising form when the original picture has large parts in which the nearest-
neighboring pixels take close values.

DOI: 10.1103/PhysRevE.65.016101 PACS number~s!: 02.50.2r, 05.20.2y, 05.50.1q

I. INTRODUCTION

Statistical-mechanical approaches to the problems in in-
formation science are employed frequently, and it is now
known that such methods are very useful in various problems
@1#. Among such problems, the image restoration problem
has been investigated both theoretically and practically
@2–4#. We usually send and receive the information by
means of various networks. The information is the data of
document, sound, picture, and so on. However, it is generally
impossible for a receiver to receive complete transmitted
data when a sender transmits something, because the data are
transmitted through a noisy channel. If we restrict the type of
data to that of the picture, the original image is affected by
some kind of noise when it is sent by a defective fax, a fickle
email, etc. When we receive such a corrupted image, we
have to convert it using some kind of filter to obtain the
original image. Basically, it is the image restoration problem
to estimate the original data~the original image! from the
received, corrupted data~the degraded image!. We may re-
gard the digital picture as a discrete spin system. For ex-
ample, a black and white image corresponds to an Ising spin
system by identifying the white color with11 and the black
with 21. Furthermore, the theory of image restoration is
constructed by considering that two axes of the plane, thex
andy axis, correspond to two axes of time in the stochastic
process. That is, the Markov process that the event occurs at
a specific time is affected by what happened at neighboring
pixels at a one-time step before.

There are mainly two standard approaches to the image
restoration by means of the method of statistical mechanics.
One is called the maximuma posteriori ~MAP! estimation,
in which the estimation of the original image is given by
maximizing a posterior probability distribution. This estima-
tion will be seen to correspond to a search of the ground state

of a spin system described by the effective Hamiltonian in
the context of statistical mechanics. Another is the estimation
in which we regard the expectation value with respect to the
maximized marginal posterior probability at each site in ther-
mal equilibrium as the original image and is called the maxi-
mumposteriorimarginal~MPM! estimation. This estimation
is also called the finite-temperature restoration. Therefore,
the MPM estimation includes the MAP estimation. Among
the two estimations, it was proposed by Marroquinet al. @5#
that the MPM estimation gives better performance than the
MAP estimation. Nishimori and Wong@6# proved this fact
for black and white images using a rigorous inequality. With
respect to the gray-scale image, the same has been shown by
Tanaka@7# from a different viewpoint.

Not only black and white images but also gray-scale im-
ages are actively investigated by many people in the field of
statistical mechanics. Restoration of gray-scale image using
chiral Potts spin@9# may not be appropriate since chiral Potts
spin cannot express the distance among different states.
However,Q-Ising spin@8# may express the gray-scale level
at least. Restoration of gray-scale image usingQ-Ising spin
was first investigated by Inoue and Carlucci@10#.

Inspired by their studies, we investigate the restoration of
the gray-scale image expressed by theQ-Ising spin when it is
decomposed into the Ising spin before transmission. In this
method, the gray-scale image is decomposed into binary data
by means of the method of threshold division before it is
transmitted. Then the bit-decomposed data is transmitted
through a noisy channel. Therefore, the effects of noise are
different from those in theQ-Ising form. We show how well
the original image is restored in our method in comparison to
the restoration using theQ-Ising form.

This paper is organized as follows. In the next section, we
explain the general formulation of image restoration and the
method of threshold division. In Sec. III, we analyze the
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static properties of image restoration in the infinite-range
model. In Sec. IV, we verify the result of the infinite-range
model in realistic pictures by means of Monte Carlo simula-
tion. In Sec. V, standard image is restored by the method of
mean-field annealing. The performance of restoration in our
method is compared with that using theQ-Ising form. The
final section is denoted to summary and discussions.

II. GENERAL FORMULATION

A. Image restoration

A gray-scale image is represented by a set$j% i 51, . . . ,N of
fixed values. The variablej i takes an integer value between
0 andQ21. Even in black and white image, in addition to
gray-scale image, most of the natural images have nontrivial
structures generally. Therefore, it is impossible to discuss the
property of a given specific natural image, exactly. Neverthe-
less, we may notice that an eminent property of natural im-
ages is local smoothness. Therefore, we assume that the
original image is generated by the Boltzmann probability
represented by the following:

Ps~$j%!5
1

Z~bs!
expF2

bs

2z (
( i j )

~j i2j j !
2G , ~1!

where (i j ) represents interacting sites andz is the coordina-
tion number.Z(bs) is the normalization constant, andbs

(5Ts
21) is the inverse temperature to generate the original

image. If bs is large, an original image with many clusters
consisting of the same value is generated.

A degraded image is generated by sending data of the
original image through a noisy channel. We consider two
kinds of noise. One is the binary noise caused by a binary
symmetric channel and another is the Gaussian noise caused
by the Gaussian channel.

1. Gaussian channel

In the Gaussian channel, the outputt i for an inputj i is a
Gaussian random variable with meant0j i and variancet2.
The probability distribution of output given the input$j% is
written as

P~$t%u$j%!5
1

A2pt
expF2

1

2t2 (
i

~t i2t0j i !
2G . ~2!

The degraded image$t% i 51, . . . ,N is generated by this prob-
ability distribution.

According to the Bayes formula, the posterior probability
P($s%u$t%) that the estimate of source sequence, namely, the
restored image, is$s% i 51, . . . ,N , provided that the output is
$t%, is given as

P~$s%u$t%!5
P~$t%u$s%!Pm~$s%!

tr$s%P~$t%u$s%!Pm~$s%!

;expS 2h(
i

~s i2t i !
22

bm

2z (
i j

~s i2s j !
2D

[exp~2HG!. ~3!

Since we may use the degraded image only and do not
know the other information of the original image, we intro-
duced the model priorPm($s%) to representa priori knowl-
edge on natural image:Ps($j%) represented by Eq.~1!. Fur-
thermore, prior parametersbs and t0 /t2 to control the
generation of original image and degraded image, respec-
tively, are unknown quantities. Accordingly, we have to use
the so-called hyperparametersbm andh instead of prior pa-
rametersbs andt0 /t2. Then, controlling these hyperparam-
eters, we may obtain the optimal restored image.

2. Binary symmetric channel

When binary data$jb% (Q52) takes 0 or 1, the type of
noise may also be binary. In such a case, a pixel of the
original image is flipped with the probabilityp, the error rate.
The error probabilities of flipping the signal11 to 0 and 0 to
11 are the same. The probability distribution of this output
$tb%P$0,1% is expressed as follows:

P~$tb%u$jb%!5
1

Zt
expF2bt(

i
~t i ,b2j i ,b!2G , ~4!

where

Zt5Trtb
expF2bt(

i
~t i ,b2j i ,b!2G5@11ebt#N.

The parameterbt is defined byp becomes

bt5 ln
12p

p
. ~5!

The posterior probability in this case is

P~$sb%u$tb%!5
P~$tb%u$sb%!Pm~$sb%!

trsb
P~$tb%u$sb%!Pm~$sb%!

;expS 2h(
i

~s i ,b2t i ,b!2

2
bm

2z (
i j

~s i ,b2s j ,b!2D
[exp~2HB!. ~6!

B. MPM estimation and mean-square error

Next, we discuss the method to estimate the original im-
age from the preceding posterior probability distribution and
to evaluate the restored image that is obtained by such esti-
mations.

We consider the marginal distribution obtained from the
posterior probability distribution Eq.~3! @or Eq. ~6!# to esti-
mate the original image

P̄~s i u$t%![ (
sÞs i

P~$s%u$t%!. ~7!
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Using this marginal probability distribution, we calculate the
local magnetization at a sitei as given by

^s i&bm ,h[ (
s i50

Q21

s i P̄~s i u$t%!. ~8!

Since the above expectation value is a continuous real num-
ber, we need to change it into an integer by means of the
following functionV: because the original image consists of
the discrete value in digital images, the restored image is the
estimation of original image should, properly, take the dis-
crete value

V~^s i&bm ,h![(
k51

Q

kFQS ^s i&bm ,h2
2k21

2 D
2QS ^s i&bm ,h2

2k11

2 D G . ~9!

A real number̂ s i&bm ,h is translated into the closest integer.

Then we regard the above discrete valueV(^s i&) as the
value ofi th pixel for restored image at finitebm andh in the
finite-temperature process.

In the MAP estimation, the estimation of the original im-
age is regarded as the set$s i% that maximizes the posterior
probability distribution@Eqs.~3!,~6!#. In other words, it is the
set that minimizes the energy of the system described by the
HamiltonianHG or HB and is actually the ground state. Con-
sequently, the above estimation corresponds to the MAP es-
timation when Tm→0 (bm→`), keeping H5h/bm con-
stant.

It is very important to evaluate the performance of resto-
ration by means of these estimations. For this purpose, we
assume that we know the original image and evaluate the
performance of restoration by measuring the distance be-
tween the original and the restored images given by the
above estimation. In order to measure the distance between
the original and the restored images, we use the following
mean square error as the distance:

HD5
1

N (
i

@j i2V~^s i&bm ,h!#2, ~10!

whose value depends on the hyperparametersh andbm ap-
pearing in the thermal average.

C. Method of threshold division

We next discuss the restoration of the gray-scale image
using bit-decomposed data. It is expected that the effects of
noise on the binary data is lower than that on theQ-value
data for image restoration: the binary data is estimated easily
compared with theQ-value data because of the explicit rep-
resentation. Since the original image is estimated by using
the information of degraded image, the performance of res-
toration ought to be deeply affected by the effects of noise.
Therefore, we expect that the performance of restoration is
improved by using the binary data instead of theQ-value
data.

We generate binary data from theQ-value data using the
Q-Ising form by means of the following function:

Q~j i2k!5j i ,k51~j i>k!, 0~j i,k!, ~11!

where k(P$1,2, . . . ,Q21%) is the threshold value andj i
(P$0,1, . . . ,Q21%) is the input data. We obtain (Q21)
sets of binary data from aQ-value data by using this function
with threshold value changed from 1 toQ21. This method
is called thethreshold division. For example, we consider a
set withQ53 (0, or 1, or 2) and six pixels:$1,2,1,1,0,2%. If
we insert this set into the above function with the threshold
valuek52, the binary set$0,1,0,0,0,1% is generated. The set
$1,1,1,1,0,1% is also generated whenk51. Thus, two binary
sets $0,1,0,0,0,1% and $1,1,1,1,0,1% are generated from the
three-value set$1,2,1,1,0,2%. These operations are depicted
in Fig. 1. The expression of binary dataj i ,k(P$0,1%) pro-
duced by this method is different from the usual binary no-
tation because the relation between aQ-value data and (Q
21) sets of binary data becomes

j i5j i ,11j i ,21•••1j i ,Q215 (
k51

Q21

j i ,k . ~12!

We call binary data generated by this threshold division the
bit-decomposed data~BDD!.

Next, the process in the restoration of gray-scale image
using the bit-decomposed data becomes the following:

~1! Decompose aQ-value data~original image! into (Q
21) sets of binary data before transmission.

~2! Send (Q21) sets of binary data through a noisy chan-
nel.

~3! Receive (Q21) sets of corrupted binary data~de-
graded image!.

~4! Restore the original image from the degraded image.
Obviously, this procedure is different from the method in

which the rawQ-value data are sent.
Following the general formulation mentioned in the pre-

vious section, we formulate the above process. The posterior
probability necessary for restoration is the following:

P~$s%u$t1%,$t2%, . . . ,$tQ21%!

5
P~$t1%,$t2%, . . . $tQ21%u$s%!Pm~$s%!

tr$s%P~$t1%,$t2%, . . . $tQ21%u$s%!Pm~$s%!

;expS 2h(
i

(
k

~s i ,k2t i ,k!
22

bm

2z (
i , j

~s i2s j !
2D ,

~13!

FIG. 1. The example of decomposition by means of the method
of threshold division in theQ53 and six-site case.
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where we used$s% to denote the dynamical variables used to
estimate$j%. The notations i ,kP$0,1% is the estimation of
decomposed dataj i ,k . The notationt i ,kP$0,1% is the de-
graded binary data. The relation betweens i ,k ,t i ,k , and
s i ,t i is the same as that betweenj i andj i ,k @Eq. ~12!#.

In the restoration of gray-scale image using theQ-Ising
form, the posterior probability distribution is given by

P~$s%u$t%!;expS 2h(
i

~s i2t i !
22

bm

2z (
i j

~s i2s j !
2D .

~14!

The difference of the posterior probability between our
method~13! and theQ-Ising form~14! is only in the random-
field term. That is to say, the effects of noise in our method
are different from the case where the rawQ-Ising data are
sent.

III. ANALYSIS OF THE INFINITE-RANGE MODEL

In this section, we discuss the restoration of the gray-scale
image in the infinite-range model~mean-field model!. Since
the infinite-range model is the model in which all pixels
interact mutually, it is not useful for restoration of real im-
ages directly. However, the analysis of image restoration in
the infinite-range model is very useful in understanding
qualitatively the property of macroscopic quantities. For this
reason, we investigate the averaged performance of our
method by using the infinite-range model.

Suppose that the prior probability generates the original
image in the infinite-range model like Eq.~1!. Then thei th
pixel interacts all other pixels and the prior probability dis-
tribution is represented as

Ps~$j%!5
1

Z~bs!
expF2

bs

2N (
i j

~j i2j j !
2G , ~15!

whereN is the system size andZ(bs) is the partition func-
tion of the ferromagneticQ-Ising model. We assume that the
original image is generated by this probability both in the
bit-decomposed data case and theQ-Ising case. In this sec-
tion, we adopt as the original image a snap shot of the system
produced by the above probability.

We treat the Gaussian channel for simplicity. In our
method, the Gaussian channel in which input data are ex-
pressed in a binary form is given by

Pk~$t i ,k%u$j i ,k%!5
1

A2pt
expF2

1

2t2 (
i

~t i ,k2t0j i ,k!
2G ,

~16!

wheret i ,k is a Gaussian random variable with meant0j i ,k
and variancet2. The inputj i ,k takes 0 or 1. For comparison,
the Q-Ising case is denoted

P~$t i%u$j i%!5
1

A2pt8
expF2

1

2t82 (
i

~t i2t08j i !
2G ,

~17!

where j i takes a value between 0 andQ21, and t i is a
Gaussian random variable with meant08j i and variancet82.
We calculate the posterior probability using Eqs.~16! and
~17!. In the bit-decomposed data case,

P~$s%u$t1%,$t2%, . . . ,$tQ21%!

; )
k

Q21

Pk~$tk%u$sk%!Pm~$s%!

;expS 2h(
i

(
k

~s i ,k2t i ,k!
22

bm

2N (
i , j

~s i2s j !
2D

[exp~2Heff!. ~18!

In the Q-Ising case,

P~$s%u$t%!;expS 2h(
i

~s i2t i !
22

bm

2N (
i , j

~s i2s j !
2D .

~19!

The difference of these expressions and Eqs.~13!, ~14! in the
previous section is only that the coordination numberz be-
cameN.

We calculate the free energy from these probability distri-
butions to clarify the behavior of macroscopic quantities.
Since there is randomness in the field for the spin system
described by the effective HamiltonianHeff in Eqs.~18! and
~19!, the free energy must be averaged over the probability
distribution of the random field in addition to the thermal
average. Accordingly, we calculate the free energy per site by

f 5F/N52
1

Nbm
@ ln Z#. ~20!

By using the replica method, we obtain the following repli-
cated partition function:

@Zn#5(
j

(
t

Ps~$j%!P~$t%u$j%!Trs e2Heff
rep

5TrjE )
i ,k

dt i
(k) 1

~A2pt!(Q21)N

3expF2
1

2t2 (
i

~t i2t0j i !
2G

3expF2
bs

2N (
i j

~j i2j j !
2GTrs

3expF2h(
i

(
k

(
a

~t i ,k2s i ,k
a !2

2
bm

2N (
i j

(
a

~s i
a2s j

a!2G , ~21!

wherea is the label ofn dummy replicas. Assuming replica
symmetric ansatzma5m (;a), the following expressions
of the order parameters are derived:
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@j i #5m05
1

Z~bs!
trj je2m0bsj2bsj

2
, ~22!

@^s i
a&#5m5

1

Z~bs!
trje

2m0bsj2bsj
2

3E Du1 . . . ,E DuQ21

trss exp~H̃eff!

trs exp~H̃eff!
, ~23!

where we definedDu[(du/A2p)e2u2/2 and

H̃eff[2bmms2bms22h(
k

sk
212ht(

k
uksk

12ht0(
k

jksk . ~24!

Equation ~22! represents the magnetization of the original
image in the infinite-range model. The behavior of the source
magnetizationm0 as a function of the temperaturebs is
shown in Fig. 2. Equation~23! is the equation of state for the
magnetization of the restored image. In the limitN→`, the
mean-square error@Eq. ~10!# is rewritten as

HD5
1

Z~bs!
trj e2m0bsj2bsj

2E Du1 . . . ,E DuQ21

3$j i2V~^s i
a&!%2. ~25!

We next assume a condition to compare the performance
of restoration between using the bit-decomposed data and the
Q-Ising form. The condition is that the distance between the
original and the degraded images in our method is equal to
that in theQ-Ising form. We may compare the difference of
performance in disparate noisy channels by this condition.
The distance between the original and degraded images in
our methodHD

t (BDD) is expressed similarly to the above

expression. It turns out that the distanceHD
t (BDD) becomes

simple in the thermodynamic limitN→`

HD
t ~BDD!5

1

N (
i

$~j i ,11j i ,21•••1j i ,Q21!

2~t i ,11t i ,21•••1t i ,Q21!%2

5K S (
k

jk2(
k

tkD 2L
t1 , . . . ,tQ21 ,j1 , . . . ,jQ21

5~Q21!t21
~t021!2

Z~bs!

3trj1 , . . . ,jQ21F (
k51

Q21

jke
2bsm0(

k
jk2bs((

k
jk)2G

5~Q21!t2. ~26!

When the meant0 of the Gaussian noise is one, the distance
HD

t (BDD) depends on the variancet2 only. In theQ-Ising
form, HD

t (Q Ising) is

HD
t ~Q Ising!5

1

N (
i

$j i2t i%
2

5t821
~t0821!2

Z~bs!
trj@je2bsm0j2bsj

2
#

5t82, ~27!

where t82 is the variance of a Gaussian channel in the
Q-Ising form and is different fromt in the bit-decomposed
data. Whent0850, HD

t (Q Ising)5t82 similarly to the bit-
decomposed data case. As the rate of degradation is equal to
each other, namelyHD

t (BDD)5HD
t (Q Ising), the variance

of a noisy channel between in our method~26! and that in
the Q-Ising form ~27! satisfies the following relation:

t5
t8

AQ21
. ~28!

Next, we calculate the restoration of the gray-scale image
whenQ53. We plot the magnetizationm0 of original image
as a function of source temperatureTs for Q53 in Fig. 2. In
the high-temperature regionTs→`, the magnetization be-
comesm05(01112)/351, since each spin takes all the
values with the same probability 1/3. We see that two locally
stable states are generated in the middle range of tempera-
ture. The globally stable state is the line ofm051. The tran-
sition temperature between the paramagnetic phase and the
ferromagnetic phase isTc;0.9. These locally stable states
become more stable with the decrease of temperature and
correspond to the globally stable statesm050 andm052 in
Ts50. That is, the system of the ferromagneticQ-Ising
model forQ53 has triple degeneracy.

We use a snapshot of the system when the magnetization
is m051 at Ts50.75 as the original image. When the dis-
tance between the original image and the degraded image is

FIG. 2. Magnetization of the original image as a function of the
source temperature forQ53. The solid line corresponds to a glo-
bally stable solutionm051 and the dotted lines correspond to lo-
cally stable solutionsm050 andm051.
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HD
t 51.0, macroscopic quantities behave as in Fig. 3. The

magnetizationm of Eq. ~23! at the ratio of hyperparameters
H[h/bm50.25 has three stable states atTm50 asm0 we
see in the original image. At low temperature, the system has
one globally stable statem51 and two locally stable states
m50 and 2. However, these locally stable states vanish as
the ratio of hyperparametersH becomes large. Seeing the
free energy in Fig. 3, we find that the state of system
branches out into a global minimum and local minima at
Tm50.27.

The mean-square errorHD using m of the global mini-
mum is smaller than that usingm of local minimum in all
temperature regions and gives the optimal value for the ratio

of hyperparametersH. The mean-square errorHD between
them of global minimum and the original imagem0 in some
ratio of hyperparametersH are described in Fig. 4. The
smallest mean-square error is given atTm50.75 and H
50.75. When the distance between the original and degraded
images is 1.0 (HD

t 51.0), we see that the deviationt of
Gaussian noise becomes 1/AQ2151/A2 by Eq. ~26!.
Therefore, when the ratio of hyperparameters corresponds to
that of the prior parameters@H5h/bm5(t0/2t2)/bs
50.75#, the optimal restoration is given at the temperature
corresponding to the source temperature (Tm5Ts50.75)
similarly to the Ising model. At high temperaturesTm→`,
all states appear with equal probability. Then the thermal

FIG. 3. The magnetizationm and correspond-
ing free-energyf RS are plotted in the upper-left
and upper-right figures. The mean-square error is
plotted in the lower-left figure. The lower-right
figure represents an enhancement of the mean-
square error around the optimal values. The solid
line corresponds to the globally stable solution.

FIG. 4. Left figure is the mean-square error as
a function of temperature for severalH. The solid
line corresponds to the optimal value,Tm5Ts .
Right figure represents a comparison between the
mean-square error in the bit-decomposed data
and theQ-Ising form for the optimal hyperparam-
etersH5Hopt. The solid line is that for the BDD
case and the dotted line is theQ-Ising case.
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average of a spins becomeŝ s&5(01112)/351 at all
pixels. The mean square error is

HD~Tm→`!5

(
j50

3

~j21!2e2m0bsj2bsj
2

(
j50

3

e2m0bsj2bsj
2

;0.3452.

~29!

If the distance between the original and degraded images,
HD

t (BDD) or HD
t (Q Ising), is extremely large, the perfor-

mance of restoration does not become smaller than this
value.

We compare the optimal performance of restoration using
our method with that using theQ-Ising form under the con-
dition that the degradation of image in our method is equiva-
lent to the one in theQ-Ising form, namely,HD

t (BDD)
5HD

t (Q-Ising form!. In theQ-Ising form case, the deviation
is t51.0 by Eq.~27! whenHD

t 51.0. The optimal restoration
in theQ-Ising form is also given in the ratio of hyperparam-
eters corresponding to that of source parameters@H5h/bm
5(t0/2t2)/bm50.375#. The optimal performance of resto-
ration in both our method and theQ-Ising form is shown in
Fig. 4. We see that the restoration by our method gives a
better performance than that of theQ-Ising form.

IV. MONTE CARLO SIMULATION

In this section, we investigate realistic pictures in two
dimensions and check the results obtained in the infinite-
range model. It is, however, difficult to investigate the resto-
ration of real images by analytical methods. We discuss the
restoration of two-dimensional images by means of Monte
Carlo simulations.

We suppose that the original image is generated by the
Boltzmann probability distribution as we did in the infinite-
range model case and we use a snap shot of theQ-Ising
model at a temperature as the original image.

In digital images, the pixel takes discrete values. Even if
real-valued Gaussian noise is added in the degradation pro-
cess, we have to regard such a noise as the discrete noise~for
example, binary noise! when both the original and the de-
graded images are digital.~This is essentially the same situ-
ation as in a error-correcting codes@11#!. Therefore, we con-
sider the binary noise caused by the binary symmetric
channel with the error probabilitiesp50.10 (Q54) andp
50.15 (Q58), which correspond to the parametersbt
;2.2 andbt;1.7 by Eq.~5!. The size of digital image is
1003100 and averages over ten samples are taken at each
data point.

Figure 5 ~the upper figure! represents the mean-square
error of several H when Q54, Ts50.35, m0;1.2, p

FIG. 5. The mean-square error in theQ54
case is calculated by Monte Carlo simulation~the
upper figure!. Averages over ten samples that
~system size is 1003100) are taken at each data
point. The ratio of hyperparametersH is chosen
to beH50.6, 0.75~optimal!, and 1.0. The mean-
square error whenQ58, p50.15, HD

t ;1.0 ~the
lower figures!. The lower-left figure represents
the mean-square error inTs50.4, and the ratio of
hyperparameters H is chosen to be H
50.6, 0.68 ~optimal!, and 0.8. The lower-right
figure represents the mean-square error inTs

50.6, and the ratio of hyperparametersH is cho-
sen to beH50.8, 1.0~optimal!, and 1.2.
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50.10, andHD
t ;0.30. The optimal restoration is given at

Tm5Ts , H5h/bm5bt /bs;0.75, similar to in the infinite-
range model.

The mean square errors forQ58, Ts50.4, ~0.6!, m0

;2.2, ~3.0!, p50.15, andHD
t ;1.0 are also shown in Fig. 5

~the lower two figures.!. We see that the best performance of
restoration at each temperature is obtained at the ratio of
hyperparametersH corresponding to that of the prior param-
eters, and the performance of restoration inTs50.4 ~the
lower left! is better than that inTs50.6 ~the lower right! as
written before.

V. MEAN-FIELD ANNEALING

The amount of computation required for restoration by
means of Monte Carlo simulation is enormous. Hence, in the
present section, we reconstruct the original image from bi-
nary degraded images by means of the mean-field annealing
@12,13# with periodic boundary conditions. This method en-
ables us to search for the optimal solution quickly. We apply
the mean-field approximation to the posterior probability dis-
tribution

P~$s%u$t1%,$t2%, . . . ,$tQ21%!

5
1

Z~bm ,h!
expS 2h(

i
(

k
~s i ,k2t i ,k!

2

2
bm

2N (
i , j

~s i2s j !
2D . ~30!

In order to treat each site separately, we trace out with re-
spect to all pixels besides thei th pixel in the above probabil-
ity distribution

r i j ~n!5 )
klÞ i j

trs1 , . . . ,sQ21
P~$s%u$t1%,$t2%, . . . ,$tQ21%!

5Trs1 , . . . ,sQ21
P~$s%u$t1%,$t2%, . . . ,$tQ21%!

3d~n,s i j !, ~31!

where (i j ) represents the site index in two dimensions:i and
j are the coordinates ofx and y axes, respectively. This ex-
pression is called the marginal probability distribution. Ac-
cording to mean-field approximation, the posterior probabil-
ity distribution ~30! is approximated by the product of the
marginal probability distribution~31! as follows

P~$s%u$t1%,$t2%, . . . ,$tQ21%!.)
( i j )

r i j ~n!. ~32!

The recursion relation for the iterative algorithm is de-
rived from a variational principle. To derive the recursion
relation, we substitute the expression of approximation~32!
to the free energy

F~r!5E~r!2TmS~r!. ~33!

The variation of the above free energy is calculated with
respect to the marginal probability distribution at a certain
site: r i j . Finally, the recursion relation with respect to the
local magnetization for the iteration algorithm is obtained as

mi j
t115

(
s i j 50

Q21

s i j exp~HMF
t !

ZMF
, ~34!

HMF
t 5

bm

2
~mi , j 11

t 1mi , j 21
t 1mi 11,j

t 1mi 21,j
t !s i j 2bms i j

2

2h(
k

~s i j ,(k)!
212h(

k
t i j ,(k)s i j ,(k) , ~35!

where ZMF is the normalization constant in the mean-field
approximation. We solve the above relations numerically un-
der the convergence condition

e (t)[
1

N (
( i j )

N

umi j
(t11)2mi j

(t)u,1028, ~36!

and obtain approximately the restored image at each tem-
perature. The annealing schedule is set atDTm50.01.

We compare the performance of restoration using our
method with that using theQ-Ising form for five kinds of
standard images@14#. We chooseQ58, system size5200
3200, andHD

t .1.00. The result is shown in Table I. The
original versions of these five standard image are shown in
Fig. 6.

The original, degraded, and optimal restored images in
our method and theQ-Ising form are shown in Fig. 7 for the
case of ‘‘lena.’’

In Table I, the ratio of pixels at which the nearest-
neighboring pixels take the same value is also represented.
We see that the performance of restoration using our method
is better than that using theQ-Ising form in the standard
pictures ‘‘chair’’ and ‘‘girl.’’ However, theQ-Ising form is
better in ‘‘house,’’ ‘‘lena,’’ and ‘‘mandrill.’’ One of the dif-
ferences is that ‘‘chair’’ and ‘‘girl’’ have a lot of large parts

TABLE I. Comparison of performance between our method and
the Q-Ising form. The ratios of pixels at which the nearest-
neighboring pixels take the same value in the original image, the
degraded image and restored image are represented as ‘‘NNP1.’’

Original Image HD
opt. NNP1-O NNP1-D NNP1-R

Chair ~BDD! 0.104 675 00 0.827 925 0.023 925 0.870 800
Chair (Q-Ising! 0.139 675 00 0.827 925 0.127 746 0.849 700
Girl ~BDD! 0.229 600 00 0.552 725 0.019 000 0.636 575
Girl (Q-Ising! 0.266 575 00 0.552 725 0.092 100 0.452 850
House~BDD! 0.380 375 00 0.538 375 0.018 000 0.374 400
House (Q-Ising! 0.368 400 00 0.538 375 0.079 225 0.469 675
Lena ~BDD! 0.353 175 00 0.450 500 0.016 575 0.467 425
Lena (Q-Ising! 0.458 000 00 0.450 500 0.056 086 0.449 450
Mandrill ~BDD! 0.644 000 00 0.147 900 0.008 950 0.136 975
Mandrill (Q-Ising! 0.551 200 00 0.147 900 0.021 750 0.111 100
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and do not have short edges compared with the other pictures
as we see intuitively. In Table I, the ‘‘chair’’ that has obvi-
ously large parts is quantitatively expressed by the ratio of
pixels at which the nearest-neighboring pixels take the same
value. However, the ratio in ‘‘girl’’ is as much as that in
‘‘house’’ and ‘‘lena.’’

In order to investigate this aspect in more detail, we show
the ratio of pixels at which the difference among the value of
the nearest-neighboring pixels is smaller than two in Table II.
As seen in Table II, ‘‘girl’’ is similar to ‘‘chair’’ rather than
‘‘house’’ and ‘‘lena.’’ The effects of noise in the bit-
decomposed data and theQ-Ising form are clarified by com-
paring the NNP1-D in Table I and NNP2-D in Table II.
NNP1-D in our method is smaller than that in theQ-Ising
form for all kinds of standard images, but the decrease of
NNP2 from the original image to the degraded image in our
method is small compared with that in theQ-Ising form for
five standard images. That is, the noise in our method affects
the original image widely, but the shift of value in a site is
small. On the other hand, the shift of value in a site is large

in the Q-Ising form. Therefore, the noise in our method has
the effect of smoothing, and the restoration using our method
is efficient for original images in which eliminating noise is
more significant rather than preserving informations of origi-
nal image as ‘‘chair’’ and ‘‘girl.’’

Furthermore, we compare the performance using our
method and in theQ-Ising form for theHD

t ;2.0 case. Other
conditions are the same as the previous case. We may simply
investigate the tolerance of our method and theQ-Ising form
against noise by comparingHD

t ;1.0 and 2.0 cases. The per-
formance of restoration is shown in Table III and the result-
ant image is presented in Fig. 8 for the case of ‘‘lena.’’ The
performance of restoration is clearly worse than that in the
previous case for all pictures, and the difference of perfor-
mance between our method and theQ-Ising form is clear.
Moreover, the restoration using our method gives a better
performance than that using theQ-Ising form in the standard
image ‘‘house.’’ The result is different from that whenHD

t

;1.0. In theQ-Ising form, large clusters remain in the re-

FIG. 6. Standard images: ‘‘chair,’’ ‘‘girl,’’
‘‘house,’’ ‘‘lena,’’ and ‘‘mandrill.’’
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FIG. 7. Standard image ‘‘lena.’’ Left-side fig-
ures represent the restoration using the bit-
decomposed data, and right-side figures represent
the restoration using theQ-Ising form for HD

t

;1.0.

TABLE II. Ratio of pixel at which the difference among the
value of the nearest-neighboring pixels is smaller than two in the
original, degraded, and restored images.

Original Image NNP2-O NNP2-D NNP2-R HD
opt.

Chair ~BDD! 0.955 475 0.522 025 0.998 600 0.104 675 00
Chair (Q-Ising! 0.955 475 0.476 000 0.999 750 0.139 675 00
Girl ~BDD! 0.945 025 0.450 400 0.993 850 0.229 600 00
Girl (Q-Ising! 0.945 025 0.438 650 0.979 750 0.266 575 00
House~BDD! 0.838 400 0.442 450 0.959 600 0.380 375 00
House (Q-Ising! 0.838 400 0.430 775 0.967 225 0.368 400 00
Lena ~BDD! 0.879 325 0.413 950 0.989 825 0.353 175 00
Lena (Q-Ising! 0.879 325 0.402 920 0.981 625 0.348 000 00
Mandrill ~BDD! 0.615 325 0.298 100 0.934 050 0.644 000 00
Mandrill (Q-Ising! 0.615 325 0.272 400 0.801 025 0.551 200 00

TABLE III. Comparison of performance between using our
method and theQ-Ising form for five standard images whenHD

t

;2.0. In this case, the restoration using our method is more effi-
cient than that using theQ-Ising form in three standard images:
‘‘chair,’’ ‘‘girl,’’ and ‘‘house.’’

Original Image HD
opt. NNP-O NNP-D NNP-R

Chair ~BDD! 0.155 125 00 0.827 925 0.006 525 0.873 225
Chair (Q-Ising! 0.348 625 00 0.827 925 0.050 550 0.629 175
Girl ~BDD! 0.349 075 00 0.552 725 0.007 175 0.653 800
Girl (Q-Ising! 0.512 500 00 0.552 725 0.044 300 0.519 775
House~BDD! 0.535 775 00 0.538 375 0.006 625 0.485 500
House (Q-Ising! 0.627 775 00 0.538 375 0.034 900 0.276 275
Lena ~BDD! 0.547 200 00 0.450 500 0.005 400 0.507 025
Lena (Q-Ising! 0.488 400 00 0.450 500 0.024 625 0.543 100
Mandrill ~BDD! 0.892 275 00 0.147 900 0.004 225 0.469 375
Mandrill (Q-Ising! 0.764 950 00 0.147 900 0.008 175 0.254 500
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stored image as in Fig. 8. Accordingly, we conclude that the
restoration using the bit-decomposed data is not affected by
the noise compared with that using theQ-Ising form in this
case.

Consequently, we found that the restoration using our
method is more efficient than that in theQ-Ising form in
original images where the nearest-neighboring pixels take
the close values. The reason is that to eliminate the added
noise is more significant than the information of the original
image in such images. Regardless of theQ-Ising form and
our method, the restoration of such images tend to give good
performance compared with that of other images in the im-
age restoration using the method of statistical mechanics.
Moreover, our method may give the adequate restored image
in the original images ‘‘chair,’’ ‘‘girl,’’ and ‘‘house’’ even if
the noise is strong to a certain extent: for example,HD

t

;2.0.
Finally, we try to restore the original image by using the

composition of our method and theQ-Ising form. Two pro-
cesses are considered in restoration using the composition.

One is the method of restoration where the original image is
restored fromQ21 sets of binary degraded images, which
are generated from the received, degradedQ-value image by
the method of threshold division. Another is the method of
restoration where the original image is restored by using the
Q-Ising form after translatingQ21 sets of binary degraded
images into aQ-value degraded image. These restoration
processes are shown in Fig. 9.

The second process is not efficient in the restoration of the
gray-scale image because the performance of restoration is
worse than that both using our method and theQ-Ising form.
On the other hand, the first process gives interesting results
as in Table IV whenHD

t ;1.0. Noting Table IV, we find that
this method gives a better performance than our method and
the Q-Ising form for all standard images: ‘‘chair,’’ ‘‘girl,’’
‘‘house,’’ ‘‘lena,’’ and ‘‘mandrill.’’ The restoration of stan-
dard images using this method for the case of ‘‘lena’’ is
shown in Fig. 10. This idea that, after aQ-value data are
received, they are decomposed into binary data has been al-
ready used in the field of engineering. The filter is called the

FIG. 8. Standard image ‘‘lena.’’ Left-side fig-
ures represent the restoration using the bit-
decomposed data, and right-side figures represent
the restoration using theQ-Ising form for HD

t

;2.0.
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Stack filter @15# which works on decomposed binary data
after reception.

The Stack filter, by means of the method of statistical
mechanics as the first process, gives a better performance
than the other two methods, but the theoretical framework is
not clear. Because we have to assume the noisy process
matching the degraded data in the Bayesian viewpoint, it is
very difficult for us to estimate the noisy channel matching
such binary data. Accordingly, it is very well possible that
the hyperparameterh cannot be estimated appropriately for
the hyperparameters estimation in the Stack filter by means
of the method of statistical mechanics.

VI. SUMMARY AND DISCUSSIONS

In this paper, we investigated the restoration of the gray-
scale image using the bit-decomposed data instead of the
conventionalQ-Ising form and found the conditions to show
that our method is more efficient than the method of the
Q-Ising form.

In the infinite-range model, we analyzed the image resto-
ration when the original image is affected by the Gaussian
noise, and obtained the static properties of image restoration.

In order to obtain the averaged performance, we calculated
the restoration of the gray-scale image by means of the rep-
lica method. Then we found that the mean-square error has a
minimum at the finite temperature for any ratio of the hyper-
parametersH. However, when the noise rate is extremely
large, the minimum sinks under the mean-square error
HD(Tm→`) in the high-temperature limit. In other words,
we may only obtain the restored image in which all states
appear with equal probability as the optimal restored image
when the original image is very corrupted. The best perfor-
mance of restoration is given at the temperature at which the
original image is generated, when the ratio of hyperparam-
eters corresponds to that of the prior parameters. This result
is also common between the Ising spin and theQ-Ising spin
cases. Furthermore, we obtained the quantitative result that
the performance of restoration using our method is better
than that using the Q-Ising form when HD

t (BDD)
5HD

t (Q Ising).
We analyzed the restoration of realistic images in two

dimensions by means of the Monte Carlo method and the
mean-field annealing approximately. Using the Monte Carlo
method, we confirmed the result of the infinite-range model
that the mean-square error gives the optimal minimum value
at the temperature corresponding to the source temperature
when the ratio of hyperparameters corresponds to prior pa-
rameters for a snapshot of theQ-Ising model forQ54 and 8.
We restored five standard images by means of the mean-field
annealing and found that the restoration using our method is
better than that using theQ-Ising form in the original images,
where keeping the information of original image is not sig-
nificant compared with eliminating the added noise as
‘‘chair’’ and ‘‘girl.’’ The reason is that the effects of noise in
our method contain the effect of smoothing. However, our

FIG. 9. Restoration processes using the composition of both our
method and theQ-Ising form. In the upper process~first process!,
we decompose aQ-value degraded image intoQ21 sets of binary
degraded images after we received aQ-value degraded image. Us-
ing the binary degraded images, we restore the original image. On
the other hand, in the lower process~second process!, we received
Q21 sets of binary degraded images. After they are translated into
a Q-value degraded image, we restore the original image using the
Q-Ising form.

FIG. 10. Standard image ‘‘lena.’’ The left, center, and right fig-
ures are the original, degraded, and restored images, respectively, in
the composition process whenHD

t ;1.0.

TABLE IV. Comparison of performance among using our
method, theQ-Ising form, and the composition for five standard
images whenHD

t ;1.0. In this case, the restoration using the com-
position is more efficient than that using our method and the
Q-Ising form in all standard images.

Original Image Composition BDD Q-Ising

Chair 0.094 275 00 0.104 675 00 0.139 675 00
Girl 0.181 900 00 0.229 600 00 0.266 575 00
House 0.327 175 00 0.380 375 00 0.368 400 00
Lena 0.257 425 00 0.353 175 00 0.348 000 00
Mandrill 0.521 475 00 0.644 000 00 0.551 200 00
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method is not efficient in images that need information of the
original image strongly.

Thus, there are simply two types in natural images. One is
the image that consists of a little long edges and large sur-
faces, and those images depend on a basic and common
property of natural image strongly. Another is the image that
has many short edges and small clusters, and it is difficult to
distinguish whether the original or degraded images in such
images. Therefore, not only corrupted parts but correct parts
may be destroyed by the effect of smoothing in such images.
In restoration of images by means of the method of statistical
mechanics, the effect of smoothing is strong compared with
keeping the information of the original image that the de-
graded image contains because we use it as common prop-
erty of natural images. Therefore, we need some additional
information on the original image.

Furthermore, we found also that the restoration using our

method is not affected by noise compared with that using the
Q-Ising form. One of the reasons is due to the output, namely
the degraded data, which takes the close value to input data
by the effects of noise in our method. This is the most sig-
nificant property of our method. We expect that the restora-
tion using our method gives a further better performance
when theQ value is large. Because we could not distinguish
visually the difference between close values with increasing
the gray-scale level (Q value!, the effect of noise may be
suppressed visually. Accordingly, we may be able to obtain
the restored image that looks closer to the original image
intuitively.
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