<table>
<thead>
<tr>
<th>Title</th>
<th>SOME PROPERTIES OF KURAMOCHI BOUNDARIES OF HYPERBOLIC RIEMANN SURFACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tanaka, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 21(2): 129-132</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1971</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/58097</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFS_HU_v21n2-129.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
SOME PROPERTIES OF KURAMOCHI BOUNDARIES
OF HYPERBOLIC RIEMANN SURFACES

By

Hiroshi TANAKA

1. Constantinescu and Cornea [1] remarked that Kuramochi boundary points share many properties enjoyed by interior points. Let F and K be mutually disjoint compact sets in a hyperbolic Riemann surface and let μ be a positive measure on K. It is known that the balayaged measure (with respect to the Green potential) of μ onto F is supported by the boundary of F. In this paper, we shall prove that a similar result is also valid for a closed set F on the Kuramochi compactification by considering Kuramochi boundary points like interior points (Theorem 1).

As an application, we shall prove that if the set of all non-minimal Kuramochi boundary points is non-empty, then it is uncountable (Theorem 2). A corresponding result for the Martin boundary was proved by Ikegami [2] and Toda [5].

2. Let R be a hyperbolic Riemann surface. We shall use the same notation as in [1], for instance, \mathcal{A}_ϕ, \mathcal{P}_μ, \mathcal{F}_μ, R^*_μ, \mathcal{A}_μ etc. For a subset A of R, we denote by ∂A the relative boundary of A in R and by \bar{A} the closure of A in R^*_μ. Let K_0 be a closed disk in R and $R_0^* = R^*_\mu - K_0$. The Kuramochi boundary \mathcal{A}_μ is decomposed into two mutually disjoint parts, the minimal part \mathcal{A}_μ and the non-minimal part \mathcal{A}_0. By a measure μ on R^*_μ, we always mean a positive measure μ on R^*_μ such that $\mu(K_0) = 0$. For a measure μ on R^*_μ, we shall denote by $S\mu$ the support of μ. If a measure μ on R^*_μ satisfies $\mu(\mathcal{A}_0) = 0$, then it is called canonical. It is known that if μ is a measure on R^*_μ, then there exists a unique canonical measure ν such that $\mathcal{P}_\nu = \mathcal{P}_\mu$. For a closed set F in R and a measure μ, we denote by μ_F the canonical measure associated with μ_F. We note that $S\mu_F \subseteq F$.

The following properties are known ([1]).

(A) Let F be a non-polar\(^1\) closed set in R and f a Dirichlet function\(^2\)

\(^1\) A subset A of R is called polar if there exists a positive superharmonic function s on R such that $s(a) = +\infty$ at every point a of A.

\(^2\) This is called eine Dirichletsche Funktion in [1].
on R. If G is a component of $R-F$, then $f^F=f^{aG}$ on G.

(B) Let F be a closed set in R. If s is a Dirichlet function on R, $s=0$ on K_0 and s is a non-negative full-superharmonic function\(^3\) on R_0, then

$$s_F = s_{R \cup F}$$
on R_0-F.

(C) Let b be any point of $R_0 \cup A$. If F is a closed set in R such that \bar{F} is a neighborhood of b in R^*_y, then $(\bar{\sigma}_b)_F = \bar{\sigma}_b$.

(D) Let μ be a measure on R_0^*. If F is a closed set in R, then

$$\left(\int \bar{\sigma}_b d\mu(b) \right)_F = \int \bar{\sigma}_b d\mu(b).$$

(E) Let $\{\mu_n\}_{n=1}^\infty$ be a sequence of canonical measures on R_0^*. If μ_n converges vaguely to a measure μ as $n \to \infty$ and each $\bar{\mu}_n$ is dominated by a fixed full-superharmonic function, then μ is canonical.

We shall prove

Theorem 1. Let F be a closed subset of R_0 and let μ be a measure on R_0^* such that $S\mu \cap (\bar{F} \cup K_0) = \emptyset$. Then $S\mu_F \subset R \cap R-F$.

Proof. (i) First suppose $S\mu$ is compact in R_0. Since $S\mu_F \subset \bar{F}$, it is sufficient to prove that $S\mu_F \subset R-F$. Let b_0 be an arbitrary point of A_0-R-F. Let U be an open neighborhood of b_0 in R^*_y such that $U \cap \bar{R} \cap R-F = \emptyset$ and let $G = U \cap R$. We shall prove that $\mu_s(U) = 0$. Let D be a relatively compact open set in R such that $D \cap (K_0 \cup \bar{F}) = \emptyset$ and ∂D consists of a finite number of analytic Jordan curves. We set $s = \bar{\mu}_s$ and $f = s$ on R_0 and 0 on K_0. Then we see that f is a bounded continuous Dirichlet function on R. Since $(\bar{\sigma}_b)_F = \bar{\sigma}_b$ on R_0-D for $b \in D$, it follows from (D) that $s = \bar{\mu}_s = \bar{\mu}_s$ on R_0-D. Hence $\bar{\mu}_s = \bar{s}_s$ and $\bar{\mu}^{\bar{s}} = s_{\bar{s}}$. Since the measure associated with s is supported by ∂D and $\partial D \subset R-G$, by (C) and (D), we obtain that $s_{\bar{s}} = s$ on R_0. By (B) and (A), we have that $s_{\bar{s}} = f_{\bar{s}} \cap (F-G) = f^{aG}$ on G. Thus $\bar{\mu}_s = s_{\bar{s}} = f^{aG} = \tilde{\mu}_s$ on G. Similarly, by (A) and (B), we obtain that $\bar{\mu}_s = \tilde{\mu}_s$ on R_0. On the other hand, since $\bar{\mu}_s = \bar{\mu}_s = \tilde{\mu}_s = \tilde{\mu}_s$, on $F-G$, we see that $\bar{\mu}_s = \tilde{\mu}_s$ on R_0. Therefore it follows from the uniqueness of canonical measure that $\mu_{\bar{s}} = \mu_{\tilde{\mu}}$. Hence $S\mu_{\bar{s}} \subset F-G = F-U$, so that $\mu_{\bar{s}}(U) = 0$.

(ii) Next suppose $S\mu$ is not necessarily compact in R_0. By the as-

\(^3\) This is called _superharmonic_ by Kuramochi ([3]) and "positive vollsuperharmonisch" in [1].

\(^4\) We shall say that a property holds _q.p._ on a set E if it holds on E except for a polar set; cf. footnote 1).
Some Properties of Kuranouchi Boundaries of Hyperbolic Riemann Surfaces

Some Properties of Kuranouchi Boundaries of Hyperbolic Riemann Surfaces

By a discussion similar to the proof of Théorème 14 in [4], we shall prove

Lemma. Let F be a closed subset of R_0 and let $b_0 \in A_F \subset R$. Then there exists a measure μ such that $S\mu \subset \overline{F} \cap R - F$ and $(\bar{\sigma}_{b_0})_{\overline{F}} \leq \bar{\sigma}^* \leq \sigma_{b_0}$.

Proof: First we note the following. Let b be an arbitrary point of R_0. Let σ_0 be a positive real number such that $\{z; \bar{\sigma}_b(z) \leq \sigma_0 \}$ is a compact set in R. For each $\sigma_0 \geq 1$, we define $\bar{\sigma}_b(\sigma) = \sigma$, say, μ_0 is a potential and the associated measure, say ν, is supported by $\{z; \bar{\sigma}_b(\zeta) = \sigma \}$. Then $\bar{\sigma}_b$ can be continuously extended over R_0^*. We denote by $\bar{\sigma}_b = \min(\bar{\sigma}_b, \sigma)$ the continuous extension again. Let ν be a measure on R_0^*. Since $\int \bar{\sigma}_b^* d\nu = \int \min(\bar{\sigma}_b, \sigma) d\nu$, by letting $\sigma \to \infty$, we have that $\lim_{\sigma \to \infty} \int \bar{\sigma}_b^* d\nu = \bar{\sigma}_b(b)$.

Now we shall prove the lemma. Let $\{b_n\}_{n=1}^{\infty}$ be a sequence of points in $R_0 - F$ such that $b_n \to b_0$ as $n \to \infty$. We denote by μ_n the canonical measure associated with $(\bar{\sigma}_{b_n})_{\overline{F}}$. By Theorem 1, we see that $S\mu_n$ is contained in $\overline{F} \cap R - F$ as $n \to \infty$. Since $\mu_n(\overline{F} \cap R - F) \leq 1 (n=1, 2, \ldots)$, we can find a subsequence $\{\mu_{n_k}\}_{k=1}^{\infty}$ of $\{\mu_n\}_{n=1}^{\infty}$ such that μ_{n_k} converges vaguely to a measure μ supported by $\overline{F} \cap R - F$ as $k \to \infty$. Since $\int \bar{\sigma}_b^* d\mu = \int \bar{\sigma}_b d\lambda_b$ and $\int \bar{\sigma}_b^* d\mu_n = \int \bar{\sigma}_b^* d\lambda_b (n=1, 2, \ldots)$, we obtain that $\lim_{n \to \infty} \int \bar{\sigma}_b^* d\lambda_b = \int \bar{\sigma}_b^* d\lambda_b$. Since $(\bar{\sigma}_{b_0})_{\overline{F}} \leq \lim_{n \to \infty} (\bar{\sigma}_{b_n})_{\overline{F}} \leq \sigma_{b_n}$, we obtain that

$$\int (\bar{\sigma}_{b_n})_{\overline{F}} d\lambda_b \leq \lim_{k \to \infty} (\bar{\sigma}_{b_n})_{\overline{F}} d\lambda_b \leq \lim_{k \to \infty} (\bar{\sigma}_{b_n})_{\overline{F}} d\lambda_b = \lim_{k \to \infty} \int (\bar{\sigma}_{b_n})_{\overline{F}} d\lambda_b = \int (\bar{\sigma}_{b_n})_{\overline{F}} d\lambda_b \leq \int (\bar{\sigma}_{b_n})_{\overline{F}} d\lambda_b.$$
Theorem 2. If the set Δ_0 of all non-minimal Kuramochi boundary points is non-empty, then it is uncountable.

Proof. Let b_0 be an arbitrary point of Δ_0. We set $D(r)=\{b \in \mathbb{R}^*_+; \, d(b, b_0)<r\}$ and $C(r)=\{b \in \mathbb{R}^*_+; \, d(b, b_0)=r\}$ for $r>0$, where d is a metric on \mathbb{R}^*_+. Suppose there exists a sequence of positive real numbers $\{r_n\}_{n=1}^{\infty}$ such that $C(r_n) \cap \Delta_0 = \emptyset$, $r_n > r_{n+1}$ ($n=1, 2, \ldots$) and $\lim_{n \to \infty} r_n = 0$. For each n, if we apply the Lemma to $F=R-D(r_n) \cap R$ and the above b_0, then we obtain a measure μ_n supported by $F \cap R-\overline{F} \subset C(r_n)$ such that

\[
(\ast) \quad (\widehat{\mu}_n)_F \preceq \overline{\mu}_n \preceq \widehat{\mu}_n.
\]

Since $\mu_n(R^*_+ \leq 1$ and $S\mu_n \subset C(r_n) \subset D(r_1) \cup C(r_1)$ for each n, we can choose a subsequence $\{\mu_n\}_{n=1}^{\infty}$ of $\{\mu_n\}_{n=1}^{\infty}$ such that μ_{n_k} converges vaguely to a measure μ supported by $\bigcap_{n=1}^{\infty} (D(r_n) \cup C(r_n))=\{b_0\}$ as $k \to \infty$. Since b_0 is non-minimal and μ is not identically equal to zero by (\ast), μ is not canonical. On the other hand, since each μ_n is canonical, it follows from (E) that μ is canonical. This is a contradiction. Hence there exists an $r_0>0$ such that $C(r) \cap \Delta_0 = \emptyset$ for all $r(0<r<r_0)$. If $r \neq r'$, then $C(r) \cap C(r') = \emptyset$. Thus Δ_0 is uncountable.

Corollary. If the set Δ_0 is non-empty, then no point of Δ_0 is isolated in Δ.

References

Department of Mathematics, Hokkaido University

(Received April 13, 1970)