A remark on the Steenrod representation of \(B(\mathbb{Z}_p \times \mathbb{Z}_p) \)

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Hiroaki Koshikawa

§1. Introduction

For a topological space \(X, z \in H_n(X; \mathbb{Z}) \) is Steenrod representable if there exists a closed oriented smooth \(n \)-manifold \(M \) and a continuous map \(f: M \to X \) such that \(f_*(\sigma) = z \), where \(\sigma \) is a fundamental homology class of \(M \). In [4], Thom showed that for a finite polyhedron \(X \) any \(z \in H_n(X; \mathbb{Z}) \) is representable if \(n \leq 6 \), but if \(n \geq 7 \) not everything is representable. He exhibited a class in \(H_7(L'(3) \times L'(3); \mathbb{Z}) \) which was not, where \(L'(3) \) is 7-dimesional lens space mod 3. Moreover Burdick [1] extended to \(B(\mathbb{Z}_p \times \mathbb{Z}_p) \), classifying space of \(\mathbb{Z}_p \times \mathbb{Z}_p \), and computed all representable elements. He determined \(E^\infty \) terms of bordism spectral sequence of \(B(\mathbb{Z}_3 \times \mathbb{Z}_3) \) and used necessary condition of representability of Thom [4].

In this note we show the case \(p = 2 \) and any odd prime \(p \). Latter case we use the same methods as Burdick's.

The author wishes to express his thanks to Professors H. Suzuki and F. Uchida for their many valuable suggestions.

§2. Homology groups of \(B(\mathbb{Z}_p \times \mathbb{Z}_p) \)

Let \(X = B(\mathbb{Z}_p \times \mathbb{Z}_p) \), \(Y = B(\mathbb{Z}_p) \).

Case (a): \(p = 2 \).

Let \(RP^n \) be the \(n \) dimensional real projective space, \(RP^\infty \) be the direct limit of it. Then we can consider \(Y = RP^\infty \), and so \(X = Y \times Y \). The cell structure of \(RP^n \) and its boundary operations are given as follows:

\[
RP^n = e_0 \cup e_1 \cup \cdots \cup e_n,
\]
(1.1) \[\partial e_{2i} = 2e_{2i-1}, \quad \partial e_{2i+1} = 0, \]
where \(e_i \) is the \(i \) dimensional cell. \(Y \) is a CW complex with one cell \(e_i \) in each dimension. We will use the same symbol \(e_i \) for the homology class containing \(e_i \).

Let \(C_\ast(X) \) and \(C_\ast(Y) \) be the chain complexes as CW complex \(X \) and \(Y \) respectively. \(C_\ast(X) \cong C_\ast(Y) \otimes C_\ast(Y) \) by cross product, thus \(C_n(X) = H_n(X^n; X^{n-1}; Z) \otimes H_j(Y^j, Y^{j-1}; Z) \), where \(X^n \) and \(Y^n \) are \(n \)-skeleton of \(X \) and \(Y \) respectively. Therefore \(C_n(X) \) is generated by \(e_i \) for \(i = 0, 1, \ldots, n \) and \(\partial_n : C_n(X) \to C_{n-1}(X) \) is given as follows:

\[
(1.2) \quad \begin{align*}
\partial_n(e_{2i-1} \otimes e_{2j-1}) &= 0, \\
\partial_n(e_{2i} \otimes e_{2j-1}) &= 2e_{2i-1} \otimes e_{2j-1}, \\
\partial_n(e_{2i-1} \otimes e_{2j}) &= -2e_{2i-1} \otimes e_{2j-1}, \\
\partial_n(e_{2i} \otimes e_{2j}) &= 2e_{2i-1} \otimes e_{2j} + e_{2i} \otimes e_{2j-1}.
\end{align*}
\]

Then we have

(1.3) \(H_{2n}(X; Z) \) is generated by \(e_{2i-1} \otimes e_{2n-2i+1} \) for \(i = 1, \ldots, n \) and \(H_{2n-1}(X; Z) \) is generated by \(e_{2i-1} \otimes e_{2n-2i} + e_{2i} \otimes e_{2n-2i-1} \) for \(i = 0, 1, \ldots, n \) and every elements are order 2. \(H_n(X; Z) \cong \mathbb{Z} \) generated by \(e_0 \otimes e_0 \).

Case (b): \(p \) is the odd prime.

Let \(S^{2n+1} \) be the unit \((2n+1)\)-sphere. A point of \(S^{2n+1} \) is represented by a \((n+1)\)-tuple of complex numbers \((z_0, z_1, \ldots, z_n)\) with \(\sum_{i=0}^{n} |z_i|^2 = 1 \). Let \(T \) be the rotation of \(S^{2n+1} \) defined by \(T(z_0, z_1, \ldots, z_n) = (\lambda z_0, \lambda z_1, \ldots, \lambda z_n) \), where \(\lambda = \exp(2\pi i/p) \). \(T \) generates a fixed point free topological transformation group of \(S^{2n+1} \) of order \(p \), so we will say it \(Z_p \) action on \(S^{2n+1} \). Then the lens space mod \(p \) is defined to be the orbit space \(L^{2n+1}(p) = S^{2n+1}/Z_p \). This is the closed orientable \((2n+1)\) smooth manifold. For \(m < n \) consider \(S^{2m+1} \) as contained in \(S^{2n+1} \) with \((z_0, \ldots, z_m) = (z_0, \ldots, z_m, 0, 0, \ldots) \). Then \(L^1(p) \subset L^2(p) \subset \ldots \). Let \(L^\infty(p) \) be the direct limit of this sequence, then we can consider \(Y = L^\infty(p) \), and so \(X = Y \times Y \). The cell structure of \(L^{2n+1}(p) \), and its boundary relations are given as follows:

\[
L^{2n+1}(p) = e_0 \cup e_1 \cup \cdots \cup e_{2n+1},
\]

(1.4) \[\partial e_{2i} = pe_{2i-1}, \quad \partial e_{2i+1} = 0. \]

\(Y \) is a CW complex with one cell \(e_i \) in each dimension and the \((2n+1)\)-skeleton is \(L^{2n+1}(p) \). \(C_n(X) \) is generated by \(e_i \otimes e_{n-i} \) \((i = 0, 1, \ldots, n)\) and \(\partial_n : C_n(X) \to C_{n-1}(X) \) is given as follows:
(1. 5) \[\partial_n(e_{2t-1} \otimes e_{2j-1}) = 0, \]
\[\partial_n(e_{2t} \otimes e_{2j-1}) = p e_{2t-1} \otimes e_{2j-1}, \]
\[\partial_n(e_{2t-1} \otimes e_{2j}) = -p e_{2t-1} \otimes e_{2j-1}, \]
\[\partial_n(e_{2t} \otimes e_{2j}) = p e_{2t-1} \otimes e_{2j} + p e_{2t} \otimes e_{2j-1}. \]

Then we have

\[(1. 6) \quad H_{2n}(X; Z) \text{ is generated by } e_{2t-1} \otimes e_{2n-2t+1} \text{ (} i = 1, \ldots, n), \quad H_{2n-1}(X; Z) \text{ is generated by } e_{2t-1} \otimes e_{2n-2t+1} \text{ (} i = 0, 1, \ldots, n) \] and every elements are order p. $H_0(X; Z) \cong \mathbb{Z}$ generated by $e_0 \otimes e_0$.

§ 3. Theorems

Let $\Omega_n(X, A)$ be n-dimensional oriented bordism group of (X, A). There is a natural homomorphism $\mu : \Omega_n(X, A) \to H_n(X, A; \mathbb{Z})$. Given $[B^n, f] \in \Omega_n(X, A)$, let $\sigma_n \in H_n(B^n, \partial B^n; \mathbb{Z})$ denote the fundamental homology class of B^n. Then μ is defined $\mu([B^n, f]) = f_\# (\sigma_n) \in H_n(X, A; \mathbb{Z})$. The image of μ is the subgroup of integral homology classes representable in the sense of Steenrod. μ has following properties which are proved by Conner-Floyd.

Theorem 2. (Conner-Floyd) ([2], (7. 2))

The edge homomorphism $\Omega_n(X, A) = J_{n, 0} \to E_{n, 0} \to E_{n, 0}^2 = H_n(X, A; \mathbb{Z})$ of the bordism spectral sequence coincides with the homomorphism $\mu : \Omega_n(X, A) \to H_n(X, A; \mathbb{Z})$.

Theorem 3. (Conner-Floyd) ([2], (15. 1))

If (X, A) is a CW pair then the bordism spectral sequence is trivial if and only if $\mu : \Omega_n(X, A) \to H_n(X, A; \mathbb{Z})$ is an epimorphism for all $n \geq 0$.

Theorem 4. (Conner-Floyd) ([2], (15. 2))

If (X, A) is a CW pair such that each $H_n(X, A; \mathbb{Z})$ is finitely generated and has no odd torsion, then the bordism spectral sequence is trivial.

Next theorem is useful to obtain the manifold with \mathbb{Z}_p action.

Theorem 5. (Conner-Floyd) ([2], (46. 1))

Consider the generating set $\alpha_{2k-1}; k = 1, 2, \ldots$ for $\Omega_*(\mathbb{Z}_p)$, p an odd prime, where $\alpha_{2k-1} = [T, S^{2k-1}]$. Then there exist closed oriented manifolds M^{4k}, $k = 1, 2, \ldots$, such that for each k, $p \alpha_{2k-1} + [M^4] \alpha_{2k-5} + [M^8] \alpha_{2k-9} + \cdots = 0$ in $\Omega_*(\mathbb{Z}_p)$.

§ 4. Proof of Theorem 1.

Case (a): $p = 2$.

This case follows immediately from Theorems 3 and 4. Because each
$H_n(B(Z_4 \times Z_2); Z)$ is finitely generated and has no odd torsion from (1, 3).

REMARK. $e_0 \otimes e_0$, $e_{2i-1} \otimes e_0$, $e_0 \otimes e_{2j-1}$ and $e_{2i-1} \otimes e_{2j-1}$ are explicitly represented by $RP^0 \times RP^0$, $RP^{2i-1} \times RP^0$, $RP^0 \times RP^{2j-1}$ and $RP^{2i-1} \times RP^{2j-1}$ respectively. $e_{2i-1} \otimes e_{2n-2i} + e_{2i} \otimes e_{2n-1-2i}$ is represented by $H_{2i, 2n-2i}$ which is the subset in $RP^{2i} \times RP^{2n-2i}$ defined by the equation

$$x_0 y_0 + x_1 y_1 + \cdots + x_m y_m = 0,$$

where $m = \min(2i, 2n-2i)$, and (x_0, \cdots, x_{2i}) and (y_0, \cdots, y_{2n-2i}) are the standard homogeneous coordinates in RP^{2i} and RP^{2n-2i} respectively. It is a smooth submanifold of codimension 1, and orientable because its first Stiefel-Whitney class $w_1 = 0$. Consider the intersection of $H_{2i, 2n-2i}$ and 1 cycles of $RP^{2i} \times RP^{2n-2i}$ we can see that $i_\ast: H_{2n-1}(H_{2i, 2n-2i}; Z) \rightarrow H_{2n-1}(RP^{2i} \times RP^{2n-2i}; Z)$ is non-trivial, that is onto.

Case (b): p an odd prime.

By Theorem 5 there exists compact orientable $2n$ dimensional manifold V^{2n} with $\partial V^{2n} = \partial S^{2n-1} \cup M^4 \times S^{2n-5} \cup M^8 \times S^{2n-9} \cup \cdots$ and an action of Z_p restricted to $M^{4k} \times S^{2n-4k-1}$ is $id \times T$. We can chose following classifying maps from the property of classifying space:

$$f_{2n}: V^{2n}/Z_p \rightarrow Y = B(Z_p)$$

such that $f_{2n}(V^{2n}/Z_p) \subseteq Y^{2n}$, $f_{2n}(M^{4k} \times S^{2n-4k-1}/Z_p) \subseteq Y^{2n-4k-1}$

and $f_{2n\ast}(\sigma_{2n}) = e_{2n}$, where σ_{2n} is fundamental homology class of V^{2n}/Z_p.

Let $f_{0}: V^{0}/Z_p \rightarrow Y^0$ and let $f_{2n-1}: S^{2n-1}/Z_p \rightarrow Y^{2n-1}$ be inclusion, then $f_{2n-1\ast}(\sigma'_{2n-1}) = e_{2n-1}$, where σ'_{2n-1} is fundamental class of S^{2n-1}/Z_p.

Next let $G = Z_p \times Z_p$ and choose classifying maps

$$g_j: S^{2j-1} \times S^{2n-2j+1}/G \rightarrow X^{2n},$$

$$h_j: V^{2j} \times S^{2n-2j-1}/G \rightarrow X^{2n-1},$$

$$k_j: S^{2j-1} \times V^{2n-2j}/G \rightarrow X^{2n-1},$$

$$l_j: V^{2j} \times V^{2n-2j}/G \rightarrow X^{2n}$$

such that $h_j(M^{4k} \times S^{2j-4k-1} \times S^{2n-2j-1}/G) \subseteq X^{2n-4k-2}$,

$k_j(M^{4k} \times S^{2j-1} \times S^{2n-2j-4k-1}/G) \subseteq X^{2n-4k-2}$,

and $l_j\left(\{M^{4k} \times V^{2j} \times S^{2n-2j-4k-1}/G\} \cup \{M^{4k} \times S^{2j-4k-1} \times V^{2n-2j}/G\}\right) \subseteq X^{2n-4k-1}$.

Then each fundamental class is mapped onto $e_{2j-1} \otimes e_{2n-2j-1}$, $e_{2j} \otimes e_{2n-2j-1}$, $e_{2j-1} \otimes e_{2n-2j}$ and $e_{2j} \otimes e_{2n-2j}$ by $g_{j\ast}$, $h_{j\ast}$, $k_{j\ast}$ and $l_{j\ast}$ respectively.
A remark on the Steenrod representation of $B(Z_p \times Z_p)$

Let
\[
\alpha_j = [g_j, S^{2j-1} \times S^{2n-2j+1}/G], \quad j = 1, \ldots, n,
\]
\[
\delta_j = [l_j, V^{2j} \times V^{2n-2j}/G], \quad j = 0, \ldots, n,
\]
\[
\beta_j^{2n-1} = [h_j, V^{2j} \times S^{2n-2j-1}/G], \quad j = 0, \ldots, n-1,
\]
\[
\gamma_j^{n-1} = [k_j, S^{2j} \times V^{2n-2j}/G], \quad j = 1, \ldots, n.
\]

Then α_j and δ_j generate $\Omega_*(X^{2n}, X^{2n-1})$ freely over Ω_*, and β_j^{2n-1} and γ_j^{n-1} generate $\Omega_*(X^{2n-1}, X^{2n-2})$ freely over Ω_*, because $\mu : \Omega_*(X^r, X^{r-1}) \rightarrow H_*(X^r, X^{r-1}; \Omega_*)$ is an Ω_* isomorphism.

Lemma.

C^2-term of bordism spectral sequence of $X = B(Z_p \times Z_p)$ is generated over Ω_* by δ_0, α_j, β_j^{2n-1}, γ_j^{n-1}, and $\langle \beta_j^{2n-1} + \gamma_j^{n-1} \rangle$, $(n = 1, 2, \ldots; i = 1, \ldots, n; j = 1, \ldots, n-1)$ and B^2-term is generated over Ω_* by $p\alpha_j$, $p\beta_j^{2n-1}$, $p\gamma_j^{n-1}$ and $p(\beta_j^{2n-1} + \gamma_j^{n-1})$, $(n = 1, 2, \ldots; i = 1, \ldots, n; j = 1, \ldots, n-1)$.

Proof.

\[
C_n^2 = \text{Ker}(\partial : \Omega_*(X^r, X^{r-1}) \rightarrow \Omega_*(X^{r-1}, X^{r-2}))
\]
\[
= \mu^{-1}(\text{Ker}\ \partial : H_*(X^r, X^{r-1}; \Omega_*) \rightarrow H_*(X^{r-1}, X^{r-2}; \Omega_*))
\]
and
\[
\partial \mu(\delta_j) = p e_{2j-1} \otimes e_{2n-2j} + p e_{2j} \otimes e_{2n-2j-1},
\]
\[
\partial \mu(\alpha_j) = 0,
\]
and
\[
\partial \mu(\gamma_j^{n-1}) = -p e_{2j-1} \otimes e_{2n-2j-1} \quad \text{therefore C^2-term follows.}
\]
\[
B_2 = \text{Im}(\partial : \Omega_*(X^{r-1}, X^r) \rightarrow \Omega_*(X^r, X^{r-1}))
\]
\[
= \mu^{-1}(\text{Im}(\partial : H_*(X^{r-1}, X^r; \Omega_*) \rightarrow H_*(X^r, X^{r-1}; \Omega_*))
\]
and
\[
\mu^{-1}(e_{2j} \otimes e_{2n-2j}) = p \alpha_j, \quad \mu^{-1}(e_{2j} \otimes e_{2n-2j+2}) = -p \alpha_j, \quad \mu^{-1}(e_{2j} \otimes e_{2n-2j-2}) = p \gamma_j^{n-1},
\]
and
\[
\mu^{-1}(e_0 \otimes e_n) = p \alpha_1^n, \quad \mu^{-1}(e_0 \otimes e_0) = p \gamma_n^{n-1} \quad \text{and} \quad \mu^{-1}(e_{2j-1} \otimes e_{2n+1-2j}) = 0,
\]
so we have B^2-term.

Next theorem essentially is the same as the case $p=3$ proved by Burdick [1].

Theorem 6. The bordism spectral sequence of $X = B(Z_p \times Z_p)$ is as follows:

\[
E^2 \cong \cdots \cong E^5, \quad E^6 \cong \cdots \cong E^\infty
\]

E^∞ is generated by δ_0, α_j, β_j^{2n-1}, γ_j^{n-1} $(n = 1, 2, \ldots; i = 1, 2, \ldots, n)$, \{$(\beta_j^{2n-1} + \gamma_j^{n-1})$ \}
and \{$(\beta_j^{2n-1} + \gamma_j^{n-1} + \cdots) \}$ with relations

$[M^q][\alpha_i - \alpha_{i-2}] = 0$, and every element except δ_0 has order p.

Proof.

Every elements of $H_*(X; Z)$ have order p (odd prime). Ω_n is free group
if \(n \equiv 0 \pmod{4} \) and 2-torsion groups if \(n \not\equiv 0 \pmod{4} \).

\[
E^2_{m,n} = H_m(X; \Omega_n) = H_m(X; \mathbb{Z}) \otimes \Omega_n + H_{m-1}(X; \mathbb{Z}) \ast \Omega_n.
\]

Therefore we have \(d^2 = d^3 = d^4 = 0 \), so \(E^2 \simeq \cdots \simeq E^5 \). Now recall the definition of \(d^r_{m,n} : \)

\[
\begin{align*}
\Omega_{m+n}(X^{m-1}, X^{m-r}) & \xrightarrow{i_*} \Omega_{m+n}(X^m, X^{m-r}) \\
& \quad \downarrow \partial_2
\end{align*}
\]

\[
\begin{align*}
\Omega_{m+n}(X^m, X^{m-r}) & \xrightarrow{j_*} \Omega_{m+n}(X^m, X^{m-1}) \\
& \quad \downarrow \partial_1
\end{align*}
\]

where \(i, j, i', j' \) are inclusion maps and \(\partial_1, \partial_2, \partial_3 \) are boundary homomorphisms of triple, then there exist homomorphism \(\psi \) such that \(\psi = \partial_1 \cdot j_* = i'_* \cdot \partial_2 \), every triangles are commutative.

Let \(C_{r,n} = \text{Im} j_* \), \(C_{r+1,n} = \text{Im} j'_* \), \(B_{m-r,n+r-1} = \text{Im} \partial_2 \) and \(B_{m-r,n+r-1} = \text{Im} \partial_3 \). Then the definition of \(d^r_{m,n} \) is composition of \(d^r_{m,n} : E^r_{m,n} = C^r_{m,n}/B^r_{m,n} \rightarrow C^r_{m,n}/C^r_{m+1,n} \xrightarrow{\partial_1} \)

\[
\text{Im} \psi \xrightarrow{i_*^{-1}} B^r_{m-r,n+r-1}/B^r_{m-r,n+r-1} \rightarrow C^r_{m-r,n+r-1}/B^r_{m-r,n+r-1} = E^r_{m-r,n+r-1}.
\]

Here let \(r = 5 \) then \(d^5(\partial_0) = d^5(\alpha_2^n) = d^5(\beta_2^n) = d^5(\gamma_2^n) = 0 \). Because \(\partial_0, \alpha_2^n, \beta_2^n, \gamma_2^n \) are represented by closed manifolds \(\partial_1 \) will kill them.

For \(j = 1, \ldots, n - 1 \) let \(N^n_{2j-1} \) be the manifold obtained from \(V^{2j} \times S^{2n-2j-1} \cup S^{2j-1} \times V^{2n-2j} \) by joining \(pS^{2j-1} \times S^{2n-2j-1} \) in \(\partial(V^{2j} \times S^{2n-2j-1}) \) to \(-pS^{2j-1} \times S^{2n-2j-1} \) in \(\partial(S^{2j-1} \times V^{2n-2j}) \).

Then \(\partial N^n_{2j-1} = M^4 \times S^{2j-5} \times S^{2n-2j-1} \cup M^4 \times S^{2j-1} \times S^{2n-2j-5} \)

\[
\cup M^8 \times S^{2j-9} \times S^{2n-2j-1} \cup M^8 \times S^{2j-1} \times S^{2n-2j-9} \cup \cdots
\]

There is an induced action of \(G = \mathbb{Z}_p \times \mathbb{Z}_p \) on \(N^n_{2j-1} \). Choose classifying maps \(\phi_j : N^n_{2j-1}/G \rightarrow X^{2n-1} \) such that \(\phi_j(\partial(N^n_{2j-1}/G)) \subseteq X^{2n-6} \) and such that

\[
\begin{align*}
N^n_{2j-1}/G & \xrightarrow{\phi_j} X^{2n-1} \\
& \quad \downarrow h_j \cup k_j
\end{align*}
\]

\[
(V^{2j} \times S^{2n-2j-1}/G) \cup (S^{2j-1} \times V^{2n-2j}/G)
\]

commutes up to homotopy.

Then \(\phi_j(\sigma) = e_{2j} \otimes e_{2n-2j-1} + e_{2j-1} \otimes e_{2n-2j} \), where \(\sigma \) is a fundamental class of
A remark on the Steenrod representation of $B(Z_p \times Z_p)$

N^{2n-1}_j/G. Thus $[\phi_j, N^{2n-1}_j/G] = \beta^{2n-1}_j + \gamma^{2n-1}_j$ in $\Omega_* (X^{2n-1}, X^{2n-2})$.

By the definition of d^5, $d^5(\beta^{2n-1}_j + \gamma^{2n-1}_j) = [M'] [\alpha^{2n-6}_j - \alpha^{2n-6}_3]$. Therefore $\text{Ker } d^5$ is generated by $\alpha^{2n}_0, \alpha^{2n}_1, \beta^{2n-1}_n, \gamma^{2n-1}_n$ and $(\beta^{2n-1}_1 + \gamma^{2n-1}_1), (\beta^{2n-1}_3 + \gamma^{2n-1}_3) + \ldots$ and $(\beta^{2n-1}_4 + \gamma^{2n-1}_4 + \ldots)$.

Let K^{-1} be the identification manifold obtained from $V^2 \times S^{2n-3} \cup S^1 \times V^{2n-2} \cup V^6 \times S^{2n-7} \cup S^5 \times V^{2n-6} \cup V^{10} \times S^{2n-11} \cup \ldots$

by identifying pair-wise of boundary components of this manifold.

Then K^{-1} is an orientable closed $(2n-1)$-manifold with induced natural action of $G = Z_p \times Z_p$.

Let $\Psi_1 : K^{-1}/G \rightarrow X^{2n-1}$ be a classifying map, then $[\Psi_1, K^{-1}/G] = (\beta^{2n-1}_1 + \gamma^{2n-1}_1) + (\beta^{2n-1}_3 + \gamma^{2n-1}_3) + \ldots$ in $\Omega_*(X^{2n-1}, X^{2n-2})$. Likewise construct K^{-1} from $V^4 \times S^{2n-5} \cup S^3 \times V^{2n-4} \cup V^8 \times S^{2n-9} \cup S^7 \times V^{2n-8} \cup \ldots$

and $\Psi_2 : K^{-1}/G \rightarrow X^{2n-1}$ with $[\Psi_2, K^{-1}/G] = (\beta^{2n-1}_1 + \gamma^{2n-1}_1) + (\beta^{2n-1}_4 + \gamma^{2n-1}_4) + \ldots$

Therefore every generator of E^6 can be represented by a closed manifolds, so $d^8 = d^7 = \ldots = 0$ and hence $E^6 \cong \cdots \cong E^{\infty}$.

Proof of Theorem 1.

The classes listed in Theorem 6 really belong to $E_*, 0$. Therefore from Theorems 2 and 6 $e_0 \otimes e_0$, $e_0 \otimes e_{2j-1}$, $e_{2j-1} \otimes e_0$ and $e_{2j-1} \otimes e_{2j-1}$ are represented by $V^0 \times V^0/G$, $V^0 \times S^{2j-1}/G$, $S^{2n-1} \times V^0/G$ and $V^{2n-1} \times V^{2j-1}/G$ respectively.

$$(e_0 \otimes e_{2j-1} + e_0 \otimes e_{2j}) + (e_0 \otimes e_{2j-1} + e_{2j} \otimes e_0) + \ldots$$

and

$$(e_0 \otimes e_{2j-2} + e_0 \otimes e_{2j-3}) + (e_0 \otimes e_{2j-7} + e_1 \otimes e_{2j-6}) + \ldots$$

are represented by K^{-1}_{2j+1}/G and K^{-1}_{2j+1}/G respectively.

The proof of Theorem 1 is completed.

Department of Mathematics, Hokkaido University

References

(Received, August 2, 1971)