Nickel(0)-Promoted Carboxylation of Allenamides with Carbon Dioxide via a Nickelalactone Intermediate

Nozomi Saito,a,* Yasuyuki Sugimura,a Yoshihiro Satoa,b*.

a Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and b ACT-C, Japan Science and Technology Agency (JST), Sapporo 060-0812, Japan
Fax: +81-11-706-4982
E-mail: bio@pharm.hokudai.ac.jp
Received: The date will be inserted once the manuscript is accepted.

Abstract: Nickel(0)-promoted carboxylation of N-allenylamides (allenamides) with carbon dioxide proceeded via a nickelalactone intermediate to give β-amino acid derivatives. It was also found that the regioselectivity at the oxidative addition stage was strongly affected by the substituents on the allene part.

Key words: nickel, allenamide, carbon dioxide, fixation, β-amino acid

Carbon dioxide is an abundant, ubiquitous, cheap and relatively nontoxic C1 source in synthetic organic chemistry, and various methods for incorporation of carbon dioxide into organic compounds have been demonstrated. Recently, transition metal-promoted direct carboxylation of organic compounds has attracted much attention due to its high efficiency.1,2 In particular, zero-valent nickel complex has been widely used for carboxylation of carbon-carbon unsaturated compounds (Scheme 1).3 The reaction proceeds via nickelalactone intermediate 2, which is generated by oxidative cycloaddition of unsaturated compound 1 and carbon dioxide to a nickel(0) complex, and hydrolysis of the nickelalactone affords the corresponding carboxylic acid 3. Thus, the nickelalactone can be regarded as a useful intermediate for synthesis of various carboxylic acids in synthetic organic chemistry. From the viewpoint of development of a new synthetic methodology using an atmospheric pressure of carbon dioxide, several synthetic utilisations of carboxylation via nickelalactone have recently been demonstrated using alkynes,1,3-dienes, ‘allenes,’ and dinyynes’ as well as enynes’ as platforms.

Scheme 1 Synthesis of carboxylic acids from unsaturated compounds and carbon dioxide via a nickelalactone intermediate

N-allenylamides (allenamides, Figure 1, 4) have been recognized as versatile synthetic units in recent organic synthesis.9 Due to delocalization of lone-pair electrons of a nitrogen atom to a double bond of the allene moiety depicted as 4’, the sp carbon atom of allenamide has a partial negative charge. Therefore, allenamide could act as a polarized allene, and various organic transformations of allenamide using its unique electronic property have been reported in the past decade.

In this context, we planned nickel-promoted carboxylation of allenamides (Scheme 2). Thus, if oxidative cycloaddition of the allenamide 4 and CO2 to a nickel(0)-complex proceeds in a manner similar to that of previously reported carboxylation of allene,7,10 carbon-carbon bond formation would occur between the negatively polarized sp carbon atom of 4 and the positive sp carbon atom of CO2 to give nickelalactone 5 or 7. Finally, hydrolysis of the nickelalactone could give β-amino acid derivative 6 or 8, the structure of which is often found in some important biologically active compounds.

Scheme 2 Plan for carboxylation of allenamide with CO2 via nickelalactone intermediate

To examine the feasibility of the plan, we set out to conduct condition screening of the carboxylation of allenamide (Table 1). According to previous reports on carboxylation of allene,7 tosylamide-derived terminal allenamide 4a was reacted with an atmospheric pressure of CO2 in the presence of a stoichiometric amount of Ni(cod)2 and 2 equivalents of DBU as a ligand (run 1). After acidic work up with 10% aqueous HCl solution followed by methylation by CH2N2, CO2-incorporated compound 6a was produced in 76% yield as a single regio- and stereoisomer.11 When the amount of DBU was
increased to 4 equivalents, the yield of $6a$ increased to 89% (run 2). The use of 1,10-phenanthroline and 1,2-bis(dicyclohexylphosphino)ethane (DCPE) gave $6a$ in low yields (runs 3 and 4). Furthermore, TMEDA ligand was applicable to the carboxylation of $4a$, giving $6a$ in 82% yield (run 5).

Table 1. Nickel-Promoted Carboxylation of Allenamide $4a$

<table>
<thead>
<tr>
<th>run</th>
<th>ligand (X equiv)</th>
<th>time (h)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DBU (2)</td>
<td>2</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>DBU (4)</td>
<td>1</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>1,10-phenanthroline (1)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>DCPEb (1)</td>
<td>1</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>TMEDA (1)</td>
<td>1</td>
<td>82</td>
</tr>
</tbody>
</table>

a The reaction was carried out in THF at 0 °C. b DCPE = 1,2-bis(dicyclohexylphosphino)ethane

With optimal conditions in hand, carboxylation of other terminal allenamides was investigated (Scheme 3). Thus, oxazolidione-derived allenamide $4b$ was reacted with CO$_2$ followed by methylation to give the corresponding $6b$ in 51% yield (Eq 1). On the other hand, the carboxylation of methylcarbamate-derived allenamide $4c$ gave the desired $6c$ in 21% yield, and its regioisomer $8c$ was also produced in 6% yield (Eq 2).

Scheme 3 Nickel-mediated carboxylation of carbamate-derived terminal allenamide

Next, we turned our attention to the carboxylation of allenamide bearing a tert-butyl group on the allene moiety (Scheme 4). Thus, the reaction of $4d$ and CO$_2$ (1 atm) in the presence of Ni(cod)$_2$ and DBU followed by methylation gave $8d$ in 88% yield as a mixture of geometrical isomers with respect to the alkene moiety.

Carboxylation of various substituted allenamides was investigated, and the results are shown in Table 2. Boc group-protected allenamide $4e$ could react with CO$_2$, and the desired carboxylation product $8e$ was obtained in 91% yield (run 1). Oxazolidinone-derived allenamide $4f$ was also applicable to the carboxylation, giving the corresponding coupling product $8f$ in 88% yield (run 2). Carboxylation of 2-pyridone derivative $4g$ proceeded to give $8g$ in good yield as a single isomer (run 3). Tosylamide-derived allenamides $4h$ having a benzyl group was reacted with CO$_2$ to give the desired CO$_2$-incorporated product $8h$ in 27% yield along with diene 9, which would be formed from $8h$ by debenzylation (run 4). A similar result was obtained in the carboxylation of $4i$, carboxylation compounds $8i$ and 9 being produced in a total yield of 42% (run 5). On the other hand, the reaction of silyloxethyl group-substituted allenamide $4j$ with CO$_2$ followed by methylation afforded the corresponding product $8j$ in 68% yield as a single isomer (run 6).

Table 2. Carboxylation of Various Substituted Allenamides

<table>
<thead>
<tr>
<th>run</th>
<th>allenamide 4</th>
<th>time (h)</th>
<th>product 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$4e$</td>
<td>15</td>
<td>$8e$ (91% (E,Z = 89:11))</td>
</tr>
<tr>
<td>2</td>
<td>$4f$</td>
<td>15</td>
<td>$8f$ (88% (E,Z = 95:5))</td>
</tr>
<tr>
<td>3</td>
<td>$4g$</td>
<td>17</td>
<td>$8g$ (60% (E,Z = 95:5))</td>
</tr>
<tr>
<td>4</td>
<td>$4h$ (R = Bn)</td>
<td>15</td>
<td>$8h$ (41% (E,Z = 85:15))</td>
</tr>
<tr>
<td>5</td>
<td>$4i$ (R = TBS)</td>
<td>18</td>
<td>$8i$ (13% (E,Z = 95:5))</td>
</tr>
<tr>
<td>6</td>
<td>$4j$ (OTBDPS)</td>
<td>16</td>
<td>$8j$ (68% (E,Z = 95:5))</td>
</tr>
</tbody>
</table>

d The reaction of allnamide 4 was carried out in the presence of Ni(cod)$_2$ (1 equiv) and DBU (4 equiv) in THF at 0 °C under CO$_2$ (1 atm). After acidic work-up with 10% HCl, the crude product was treated with CH$_3$N$_2$.

Template for SYNLETT and SYNTHESIS © Thieme Stuttgart · New York 2014-08-04
To gain insights into the reaction mechanism, a deuterium incorporation experiment was carried out (Scheme 5). Thus, after the reaction of terminal allenamide 4a and CO₂, acidic work-up with 10% DCI/D₂O followed by methylation by CH₂N₂ was conducted (Eq 3). As a result, compound 6a-D, the allylic methyl group of which was deuterated, was obtained in 90% yield as a single regio- and stereoisomer. On the other hand, when allenamide 4d having a tert-butyl group was reacted under reaction conditions similar to those of 4a, the allylic methylene position of 8d-D was deuterated (Eq 4).

Based on the above results, possible reaction mechanisms of the carboxylation of allenamides were considered (Scheme 6). When terminal allenamides 4 (R² = H) were used, the less-hindered distal double bond of the allene part and CO₂ would coordinate to the nickel center to give 9 first, from which oxidative cycloaddition would proceed to afford nickelalactone 10. Hydrolysis of 10 followed by methylation would afford 6. On the other hand, in the reaction of allenamides having a tertiary-alkyl group (R² = CMe₂R), the less-hindered nitrogen-substituted double bond of 4 would coordinate to the nickel center to give 12. In this step, two types of coordinated complex could be formed. That is, if oxidative cycloaddition of the re-face of the nitrogen-substituted double bond of allenamide and CO₂ proceeded, nickelalactone 13 could be formed. On the other hand, oxidative cycloaddition of the si-face of the double bond and CO₂ would give nickelalactone 14. Obviously, the formation of 14 from 12 seems to be less favorable than the formation of 13 because of steric repulsion between the bulky tertiary-alkyl group in the allenamide and CO₂. Thus, nickelalactone 13 would be formed preferably as compared with 14, resulting in E-8 being obtained as a major product after hydrolysis followed by methylation.

In summary, we have demonstrated nickel-promoted carboxylation of allenamide with an atmospheric pressure of carbon dioxide. The reaction proceeds via a nickelalactone intermediate from allenamide and carbon dioxide to give the corresponding β-amino acid derivatives. It was also found that the regioselectivity at the oxidative addition stage was strongly affected by substituents on the allene part. Further studies including development of the carboxylation to a catalytic reaction are in progress.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
Acknowledgment

This work was partly supported by a Grant-in-Aid for Young Scientists (B) (No. 24790002) and a Grant-in-Aid for Scientific Research (B) (No. 23390001) from JSPS and by a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Activation Directed toward Straightforward Synthesis” (Nos. 23105501 and 25105701) from MEXT, Japan. N.S. acknowledges Takeda Science Foundation for financial support.

References and Notes

(10) It is known that oxidative cyclodaddition of allene and a CO2 to a zero-valent nickel center proceeded in a regioselective manner to give α-alkylidenenickelalactone, see: Hoberg, H.; Oster, B. W. J. Organomet. Chem. 1984, 266, 321.

(11) Regio- and stereochemistry of the carboxylation compound was determined by NOE experiments, see Supporting Information.
Nickel-Promoted Carboxylation of Allenamides

\[
\begin{align*}
\text{EWG} & \quad \text{N}^{\text{R}_1} & + & \quad \text{Ni(cod)}_2 & \quad \text{ligand} \quad \text{R}_2 = \text{H} & \quad \text{CO}_2 \quad \text{(1 atm)} \quad \text{L}_3\text{Ni}_n \\
\text{EWG} & \quad \text{N}^{\text{R}_1} & \quad \text{Ni} & \quad \text{R}_2 = \text{Bu} & \quad \text{O} \quad \text{R}_1 \\
1) & \quad \text{H}_2\text{O}^+ & & \quad \text{EWG} & \quad \text{N}^{\text{R}_1} & \quad \text{O} \quad \text{Me} \\
2) & \quad \text{CH}_3\text{N}_2 & & \quad \text{EWG} & \quad \text{N}^{\text{R}_1} & \quad \text{O} \quad \text{Me} \\
1) & \quad \text{H}_2\text{O}^+ & & \quad \text{EWG} & \quad \text{N}^{\text{R}_1} & \quad \text{O} \quad \text{Me} \\
2) & \quad \text{CH}_3\text{N}_2 & & \quad \text{EWG} & \quad \text{N}^{\text{R}_1} & \quad \text{O} \quad \text{Me}
\end{align*}
\]