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Abstract

Noise degrades the performance of systems in most cases. However, noise can be

used to improve the performance compared to the case of the absence of noise. This

thesis studies the noise-based methods for the global asymptotic stabilization and the

optimization problem in control theory. For the asymptotic stabilization problem, this

study establishes the method for designing feedback controllers using Wiener processes.

For the optimization problem, this study proposes an extremum seeking method that

guarantees the convergence of estimation variables to optimum values.

Although the global asymptotic stabilization problem is the one of the fundamental

problems in the literature of control theory, there exist systems that cannot be stabilized

by any smooth time-invariant feedback controllers. This study employs a method using

stochastic feedback controllers to stabilize such systems. When the stochastic feedback

controllers are used to stabilize deterministic nonlinear systems, the closed-loop systems

are often modeled as Stratonovich stochastic differential equations. In the stabilization

method using a stochastic feedback controller, the constructive method for designing

controllers for general nonlinear affine systems has not been established when closed-

loop systems are given by Stratonovich stochastic differential equations. This thesis

proposes a constructive design method based on stochastic control Lyapunov functions.

For the optimization problem, this study considers a stochastic extremum seeking

method. In extremum seeking methods, dither signals are added to given systems to

approximate the gradient of objective functions, and the optimum is estimated by updat-

ing the estimation variable based on the approximated gradient. In previous extremum

seeking methods, although the estimation variables approach the optimum sufficiently,

the estimation variables do not converge to the optimum. This thesis shows a stochastic

extremum seeking method that can guarantee the convergence of the estimation vari-

ables to the optimum by introducing the updating mechanism of the estimation variables

based on the stochastic Lyapunov stability theory.

Chapter 1 states the backgrounds and the objectives of this thesis, and Chapter 2

introduces the mathematical preliminaries, which includes the fundamentals of stochastic

process, manifolds.

∗Doctoral Thesis, Division of Systems Science and Informatics, Graduate School of Informa-
tion Science and Technology, Hokkaido University, SSI-DT79115042, March 25, 2014.
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Chapter 3 shows the noise-based stabilization method and the method for designing

stochastic feedback controllers. This chapter first shows the problem setting of the global

asymptotic stabilization and the design of the controller. Then, we define a stochastic

control Lyapunov function for the design of stochastic controllers. The design method

is shown based on the stochastic control Lyapunov function. Further, this chapter gives

the proof that the designed controllers by the proposed method globally asymptotically

stabilize given systems. Moreover, the numerical examples show the global asymptotic

stabilization of a nonholonomic system and non-Euclidean systems. In addition, since

the designed controller can be seen as an extension of the Sontag-type controller, the

designed controllers satisfy inverse optimality. By the inverse optimality, the controllers

have a stability margin.

Chapter 4 considers homogeneous stochastic systems and discusses their stability,

which can be applied to improve the convergence of the stabilization by the noise-based

stabilization. This chapter first explains the homogeneity, and then gives the definition of

homogeneous stochastic systems as an extension of homogeneous deterministic systems.

Then, the author shows the relation between the homogeneity and the convergence speed

of stable homogeneous stochastic systems. Further, a homogeneous feedback controller

is shown to preserve the homogeneity of systems and to guarantee the convergence speed

of the closed-loop systems. Finally, this chapter also shows the redesign method of the

controllers designed by the method described in Chapter 3 to improve the convergence

speed in the stabilization of driftless systems.

Chapter 5 shows a stochastic extremum seeking method that can guarantee the con-

vergence of estimation variables to an optimum value. After showing the objective of

the stochastic extremum seeking method and the problem setting of the optimization

problem, the proposed method is shown, which uses the Wiener process to approximate

the gradients of objective functions. The proposed method uses a high-pass filter with

a state-dependent parameter obtained from the stochastic Lyapunov stability analysis.

Also, this chapter gives the proof of the convergence of the estimation variables by the

stochastic Lyapunov theory.

Chapter 6 states the conclusion of this thesis.

Keywords: Stochastic systems, Global asymptotic stabilization, optimization, Noise-

based stabilization
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Chapter 1. Introduction

Generally speaking, noise is regarded as disturbance in the most cases. On the other

hand, unexpectedly, noise can cause beneficial effects on systems. We call methods

using such beneficial effects of noise as noise-based methods in this thesis. The one

of such methods in engineering is a method using stochastic resonance [49]. Roughly

speaking, stochastic resonance is a phenomenon where a nonlinear system shows better

performance by the existence of stochastic noise. The stochastic resonance, especially

in the area of signal processing, has attracted attention because small analogue noise

is digitally encoded with noise better than the case of the absence of noise. From the

perspective of the effect of randomness, we can consider algorithms using noise, such as

the simulated annealing and the genetic algorithm, as the noise-based method.

In this thesis, we study noised-based methods for the global asymptotic stabiliza-

tion and the optimization problem. In the stabilization problem, there exist nonlinear

dynamical systems such that when we stabilize an equilibrium by using a state feed-

back controller, there might exist equilibria that are obstructions for stabilizing the

desired equilibrium. To solve this, we deal with noise-based stabilization, which intro-

duces noise into a continuous feedback controller [54, 55]. The noise can have effects

for removing the equilibria and the feedback controller can asymptotically stabilize the

desired equilibrium. Also, we study an optimization method called extremum seeking

method [2, 53, 67], which has received attention in the literature of control engineer-

ing. The extremum seeking method estimates the optimal solution by approximating

the gradient of an objective function by using dither signals. In recent years, extremum

seeking methods using stochastic signal for the dither signal have been studied for the

case of many optimization parameters, which are called as stochastic extremum seeking

methods [44, 40]. In this thesis, we consider a stochastic extremum seeking method that

guarantees the convergence of optimization parameters. In the following, we state back-

grounds, motivations, and outlines of both the global asymptotic stabilization method

and the optimization method.

1.1 Global Asymptotic Stabilization Method: Noise-Based

Stabilization

Many dynamical systems are modeled by differential equations. When a dynamical

system has inputs, the subject is to steer the state of the dynamical system from a given

value to a desired value. In the control theory, we consider how we give inputs to steer

1
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the state of dynamical systems depending on purposes. There are many purposes of

control, such as stabilization, servo control, optimal control and many other controls.

In such problems, the asymptotic stabilization problem is the one of the most funda-

mental problems in control theory. The asymptotic stabilization is to give an input to

steer given initial state to an equilibrium of a system. When we consider the stabiliza-

tion for any initial state, the problem is called global asymptotic stabilization. For linear

systems, the stabilization has been extensively studied, and the stabilization method has

been established by many researchers. Linear systems are stabilized by continuous state

feedback laws, and the feedback controller is designed by well-established methods such

as the pole assignment. Further, asymptotic stability in linear systems also means global

asymptotic stability.

For nonlinear systems, there exist systems that cannot be stabilized by any continuous

state feedback laws. The fact is shown by Brockett [13] and Sontag [64]. Brockett [13]

shows a necessary condition for asymptotic stabilization of general nonlinear systems.

The systems not satisfying the condition include nonholonomic systems. The well-known

examples of such nonholonomic systems are the models of vehicles and unicycles and

many other models [12]. Also, Sontag [64] shows that the systems whose state space

is noncontractible cannot be asymptotically stabilized by any continuous feedback laws.

Systems whose state includes angular displacement can be modeled as noncontractible

systems.

To stabilize the systems that cannot be stabilized by any continuous time-invariant

feedback laws, such as nonholonomic systems and non-Euclidean systems, discontinuous

feedback laws and time-varying feedback laws have been studied [16, 17, 57, 51]. In

the literature of discontinuous feedback laws, the stability analysis is conducted by the

theory of discontinuous dynamical systems [16, 17]. Although the discontinuous feedback

methods are powerful for the stabilization, they sometimes need the effort in the analysis

or synthesis. Also, time-varying feedback laws are studied in [57, 51]. The time-varying

feedback methods do not have a constructive design method of stabilizing feedback laws,

except for the design method of time-varying controllers for driftless systems [57], to the

best knowledge of the author.

In recent years, Nishimura et al. have proposed global asymptotic stabilization

method using continuous feedback laws with Wiener processes [54, 55]. This method can

be applied to the stabilization of general deterministic nonlinear affine systems, includ-

ing nonholonomic systems and non-Euclidean systems. Roughly speaking, the noise has

effect to remove equilibria, except for a desired equilibrium, which might appear when

continuous time-invariant feedback control laws are used. The method using Wiener

processes can be considered as an extension of the time-varying feedback control meth-

ods. In the time-varying feedback control methods, a periodic function is employed as

a time-varying component. On the other hand, Gaussian white noise is employed as a

time-varying component, and the closed-loop system is modeled by a stochastic differen-

tial equation. Since this method uses noise, we call this method a noise-based method.

2



Chapter 1. Introduction 1.1. Noise-Based Stabilization

For this method, the constructive design method of controllers has been proposed when

closed-loop systems are model as Itô stochastic differential equations [54]. Some studies

have shown that deterministic nonlinear dynamical systems driven by white noise are

modeled as Stratonovich stochastic differential equations in general [33, 3]. Then, in

[55], a design method of a control law for nonholonomic systems is shown in the case

of Stratonovich stochastic differential equations. For general nonlinear affine systems,

a constructive design method has not been proposed for the case where the closed-loop

systems are modeled as Stratonovich stochastic differential equations.

This thesis studies a constructive design method for systems given by Stratonovich

stochastic differential equation based on the results in [54, 55]. The design method of

noise-based controller is based on the notion of a stochastic control Lyapunov function,

which is a common policy of the stabilization of nonlinear systems in the literature of

nonlinear control theory. This thesis proposes a definition of stochastic control Lyapunov

functions fitted with the noise-based stabilization method. Based on the stochastic con-

trol Lyapunov function, a constructive method is given to design a stabilizing controller,

which can be seen as an extension of Sontag-type controller [63]. A main result shows

that if there exists a stochastic control Lyapunov function for a given system, a designed

controller globally asymptotically stabilizes the origin of the system with probability

one. The proposed design method can be used to stabilize nonholonomic systems and

non-Euclidean systems, and numerical examples of the stabilization of such systems are

shown.

Besides the design method, this thesis shows the robustness of the designed con-

trollers, and considers stochastic Lyapunov stability theory on manifold for non-Euclidean

systems. This thesis shows a stability margin of the designed controllers based on their

inverse optimality. In addition, this thesis considers stochastic Lyapunov stability theory

on manifold because, to the author’s best knowledge, there does not exist the study on

the global asymptotic stability in probability for systems on a manifold.

Moreover, this thesis considers the method for the improvement of the convergence

speed of the noise-based method for driftless systems. In the noise-based stabilization

method, the state of a closed-loop system sometimes shows the slow convergence. To

avoid such problem, this thesis shows the redesign method of the noise-based controller

for driftless systems. The redesign method uses the homogeneity as seen in the redesign

method of time-varying feedback laws [50]. To develop the method, we need to consider

the stochastic homogeneous systems and their stability. Thus, this thesis also shows the

results of the stochastic homogeneous systems.

The noise-based stabilization methods have been studied before Nishimura et al. [54,

55]. First, the stabilization of linear systems by using noise was studied by Khasminskii

[37]. Arnold [5, 4] showed a condition of linear systems that can be stabilized by noise.

The stabilization of nonlinear systems was first studied by Mao [45]. In [45], the sufficient

condition of nonlinear systems for noise-based stabilization was shown. After the study

of Mao, Appleby et al. [1] generalized Mao’s results by relaxing the restrictions on

3
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control systems. The noise-based method of Nishimura et al. and that in this thesis can

be seen as a generalization of these noise-based stabilization methods.

1.2 Optimization Method: Stochastic Extremum Seeking

In engineering, the one of the most common issues is designing or operating systems

to obtain the best performance under a given performance measure. The problem is

called optimization problem, which we often encounter in the field of engineering. The

performance measure is called an objective function in optimization. When a param-

eter and an objective function are continuous, the most common strategy to solve a

optimization problem is to use a gradient of the objective function. However, in real

problems, to obtain an exact model needs considerable effort. Thus, we often cannot

obtain the gradient of the objective function. To address the optimization without exact

information of models, many non-model based optimization methods have been studied,

such as hill climbing method, and genetic algorithm.

Extremum seeking methods have been much studied in the literature of control engi-

neering [2, 53, 67, 8, 58]. These methods solve the optimization problem in continuous-

time systems. In addition, the methods can be applied to the real-time optimization of

dynamical systems. Extremum seeking methods are able to solve optimization problems

by using only the values of inputs and outputs. Thus, extremumm seeking is categorized

as a non-model based algorithm. To be more precise, in order to solve an optimization

problem, the method approximates the value of the gradient of an objective function by

adding a dither signal to a given system.

In recent years, stochastic extremum seeking methods are studied by some researchers

[44, 40, 65]. Although previous extremum seeking methods use periodic signals for

dither signal, the estimation of the gradients might be difficult due to the interaction

between the periodic signals when the number of parameters is large. Stochastic noise is

introduced into the dither signal to avoid such problems. In addition, one of the features

of stochastic extremum seeking is the possibility of the implementation by using noise

existing in a given system. This feature can lead to simplifying the device implementing

optimization.

This thesis considers an extension of stochastic extremum seeking methods such that

the estimation variable of optimal solution converges to the optimum. In previous meth-

ods using periodic signal and stochastic noise, the residual of the estimation variable to

the optimal value remains after sufficient time has elapsed due to the persisting effect of

dither signal. Previous methods improve the convergence of the estimation variable by

introducing a high-pass filter into the mechanism updating the estimation variable. How-

ever, the strict convergence of the estimation variable is not guaranteed even if high-pass

filters are introduced in the existing literature. To address this problem, we introduce a

high-pass filter with a state-dependent parameter determined from the stochastic Lya-

punov stability analysis. It guarantees the convergence of the estimation parameters.

4



Chapter 1. Introduction 1.3. Outline

In addition, if an objective function is smooth and unimodal, the estimation variable

convergences with probability one for any initial value. The proposed method can be

applied for static systems, and the application to dynamical systems is included in future

works.

1.3 Outline

This thesis is organized as follows. Following this section, Section 2 introduces the

mathematical preliminaries, including the fundamentals of stochastic systems, the Lya-

punov stability theory, and manifolds.

Chapter 3 shows the noise-based stabilization and the method for designing stochas-

tic feedback controllers. We use the noise-based stabilization method to stabilize mainly

nonholonomic systems and non-Euclidean systems. Since we aim to stabilize non-

Euclidean systems, we need the stability analysis of stochastic systems on manifolds.

Thus, first, this chapter discusses the stochastic systems on manifolds and the stabiliza-

tion of the systems. Further, the stochastic Lyapunov stability theory on the manifolds

is shown. Then, this chapter defines stochastic control Lyapunov function, and shows

the design method of the stochastic controllers. This chapter gives the proof of the

convergence of the closed-loop system with the designed controller. Numerical examples

are shown for the stabilization of a nonholonomic system and non-Euclidean systems.

Further, the inverse optimality and the stability margin of the designed controllers are

shown.

Chapter 4 discusses stochastic homogeneous systems and their stability. The defi-

nition of homogeneous stochastic systems is introduced, and the relation between the

homogeneity and the convergence speed of stable homogeneous systems are shown. Fur-

ther, a homogeneous feedback controller is shown to stabilize homogeneous systems and

to guarantee the homogeneity. The results on the stability is used in the improvement of

the slow convergence in the noise-based stabilization. This chapter shows the redesign

method of the noise-based controller for driftless systems.

Chapter 5 shows a stochastic extremum seeking method that guarantees the conver-

gence of the estimation variables to the optimum. This chapter first shows the prob-

lems settings of the optimization problem. Then, we show tree scheme of the proposed

stochastic extremum seeking method. We also give the proof of the convergence of the

estimation variable to the optimum when we use the one of the proposed schemes.

Chapter 6 gives the conclusion of this thesis.
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Chapter 2. Mathematical Preliminaries

2.1 General Notation and Definition

This section introduces the mathematical notation used in this thesis.

The symbol R denotes a Euclidean space. Thus, the symbol Rn denotes an n-

dimensional Euclidean space. The superscript T denotes the transpose of a vector or

matrix. The expression ∥ · ∥ denotes a 2-norm. Lastly, LFV denotes the Lie derivative

of a function V : M → R along a vector field F on M .

2.2 Stochastic Systems

This section introduces fundamentals of stochastic systems, such as stochastic process

and stochastic differential equation. In this thesis, we consider the noise-based methods

for a global asymptotic stabilization method, and an optimization method. In these

methods, variables are under the effect of stochastic noise. Therefore, we focus on

stochastic systems to analyze these methods. This section introduces the fundamentals

of stochastic systems along the line of [37, 3, 39, 56].

First, a probability space is introduced as the basis of the analysis of stochastic

systems.

Definition 2.1 (σ-algebra)

A family of subsets of a set Ω, F , is called a σ-algebra if

1. Ω ∈ F ,

2. A ∈ F ⇒ Ω \A ∈ F ,

3. A1, A2, · · · ∈ F ⇒ ∪∞
i=1Ai ∈ F .

Definition 2.2 (probability space)

For a set Ω and a σ-algebra F on Ω, a function P : F → [0, 1] is said to be a probability

if the conditions

1. Ai ∩Aj = ∅ ⇒ P (∩∞
i=1Ai) =

∑∞
i=1 P(Ai) for ∀ i, j,

2. P (∅) = 0,

3. P (Ω) = 1,

are satisfied. A tuple (Ω,F , P ) is called a probability space.

7
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Definition 2.3 (expectation)

For a probability space (Ω,F , P ), the expectation of a random variable X(ω) is defined

to be an integral

E{X} =

∫
Ω
X(ω)P (dω).

Then, we introduce the conditional expectation and conditional probability. Let us

to define a indicator function.

Definition 2.4 (indicator function)

For a set A, a function IA : Ω → {0, 1} defined by

IA(ω) =

1 for ω ∈ A,

0 for ω /∈ A,
(2.1)

is said to be a indicator function.

Definition 2.5 (conditional expectation and conditional probability)

For a probability space (Ω,F ,P), consider a sub-σ-algebra G. Let X be a F-measurable.

A G-measurable random variable Y is said to be a conditional expectation of C on G if

a equation ∫
C
Y dP =

∫
C
XdP for all C ∈ G

are satisfied. The conditional expectation is denoted as

Y = E{X|G}.

Furthermore, a conditional probability of A on G is defined to be

P(A|G) = E {IA|G} .

Next, we consider a stochastic process, which is a set of random variables parame-

terized by a time variable. The definition is given in the following.

Definition 2.6 (stochastic process)

Let (Ω,F , P ) be a probability space, and let I be a interval (I ⊂ R). The function

X : I × Ω → Rd is said to be a stochastic process.

For a fixed ω, the stochastic process is a function of time, and X(·, ω) is called a sample

path. For each t, X(t, ·) is a random variable.

Definition 2.7 (filtration)

For a set Ω and a σ-algebra F on Ω, a sequence of σ-algebras {Ft}t≥0 is said to be a

filtration if for s < t, Fs ⊂ Ft.

Then, martingale is introduced, which is a basis of stochastic Lyapunov stability

theory.

8
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Definition 2.8 (martingale)

Let X(t, ω) be a stochastic process, and let {Ft}t≥0 be a filtration. Assume that for

any t ∈ R, X(t, ω) is measurable on Ft and that E{X(t, ω)} has finite-value. A tuple

(X(t, ω),Ft) is said to be a martingale if for any s < t, E{X(t)|Fs} = X(s) holds almost

surely. Further, (X(t, ω),Ft) is said to be a supermartingale if for any s < t,

E{X(t)|Fs} ≤ X(s) a.s.

is satisfied. On the other hand, when E{X(t)|Fs} ≥ X(s) holds almost surely for any

s < t, (X(t, ω),Ft) is said to be a submartingale.

The well-known results on a supermartingle are introduced without proof.

Theorem 2.1 ([20])

Assume that (X(t, ω),Ft, t ≥ 0) is continuous a.s. supermartingale. Then, for any ϵ > 0

and p ≥ 1,

P

{
sup

t0≤t≤T
|X(t, ω)| > ϵ

}
≤ E{|X(T, ω)|p}

ϵp

holds.

Theorem 2.2 ([20])

Assume that (X(t, ω),Ft, t ≥ 0) is supermartingale and that X(t, ω) has positive value.

Then, there exists a limitX∞ = limt→∞X(t, ω) almost surely, andX∞ is finite. Further,

E{X∞} = lim
t→∞

E{X(t, ω)}

holds.

These results are the basis for the stochastic Lyapunov stability theory.

Then, the Wiener process is introduced.

Definition 2.9 (Wiener process)

A stochastic process W (t, ω) is said to be a Wiener process if it satisfies that

1. W (t, ω) has independent increments,

2. the increment W (t)−W (s) has normal distribution, and

E{W (t)−W (s)} = 0 E{(W (t)−W (s))2} = σ2|t− s|

hold, where σ > 0.

3. P{W (0) = 0} = 1

The Wiener process is martingale, and differentiable nowhere. Roughly speaking, for an

increment of the Wiener process dW , and a white noise ξ(t), we have dW ≈ ξdt.

When we consider systems driven by white noise, we use stochastic differential equa-

tions to model such systems. Stochastic differential equations have two definitions, Itô

9
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stochastic differential equations, and Stratonovich stochastic differential equations. In

this thesis, the both two definitions are used, and the definitions are given as below.

To discuss stochastic differential equations, we present the definitions of stochastic

integrals.

Definition 2.10 (Itô stochastic integral)

Let W (t) be a standard Wiener process defined on a probabitlity space (Ω,F , P ). Con-

sider a function f : B×F → R. Assume that f(t, ω) is B×F -measurable,

E

[∫ t

t0

f(t, ω)2dt

]
< ∞

holds, and for almost all ω ∈ Ω, t 7→ f(t, ω) is continuous. An Itô stochastic integral is

defined as ∫ T

t0

f(t, ω)dW (t) = l.i.m.
maxi(ti+1−ti)→0

N−1∑
i=0

f(ti, ω)[W (ti+1)−W (ti)],

where ti are partitions of an interval [t0, T ], and l.i.m. means limit in the mean.

Definition 2.11 (Stratonovich stochastic integral)

Let W (t) be a standard Wiener process defined on a probabitlity space (Ω,F , P ). Con-

sider a function f : B×F → R. Assume that f(t, ω) is B×F -measurable,

E

[∫ t

t0

f(t, ω)2dt

]
< ∞

holds, and for almost all ω ∈ Ω, t 7→ f(t, ω) is continuous. A Stratonovich stochastic

integral is defined as∫ T

t0

f(t, ω) ◦ dW (t) = l.i.m.
maxi(ti+1−ti)→0

N−1∑
i=0

f(
ti+1 − ti

2
, ω)[W (ti+1)−W (ti)],

where ti are partitions of an interval [t0, T ].

Then, we present the definitions of stochastic differential equations. Denote the

increments of a stochastic process X(t) as dX(t).

Definition 2.12

Consider vector fields F : Rn → Rn, G : Rn → Rn×m, and a m-dimensional standard

Wiener process W (t). A stochastic process is said to be a solution of an Itô stochastic

differential equation

dX(t) = F (X(t))dt+G(X(t))dW (t),

if the stochastic process X(t) satisfies

X(t) = X(t0) +

∫ t

t0

F (X(s))ds+

∫ t

t0

G(X(s))dW (s).

10
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Definition 2.13

Consider vector fields F : Rn → Rn, G : Rn → Rn×m, and a m-dimensional standard

Wiener process W (t). A stochastic process is said to be a solution of a Stratonovich

stochastic differential equation

dX(t) = F (X(t))dt+G(X(t)) ◦ dW (t),

if the stochastic process X(t) satisfies

X(t) = X(t0) +

∫ t

t0

F (X(s))ds+

∫ t

t0

G(X(s)) ◦ dW (s).

A Stratonovich stochastic differential equation

dX(t) = F (X(t))dt+G(X(t)) ◦ dW (t)

is converted into an equivalent Itô stochastic differential equation as

dX(t) = F (X(t))dt+G(X(t)) ◦ dW (t)

=

{
F (X(t)) +

1

2

∂G

∂x
(X(t))G(X(t))

}
dt+G(X(t))dW (t),

(see [66]).

Theorem 2.3 ([56])

Let X(t) be a solution of a stochastic differential equation given by

dX(t) = F (X(t))dt+G(X(t))dW (t).

Consider a function W : Rn → R, and assume that W (x) is twice continuously differen-

tiable. Then, Z(X(t)) is a solution of a stochastic differential equation given by

dZ(t) = LFZ(X(t))dt+
1

2
tr

{
G(X(t))T

∂

∂x

(
∂Z

∂x

)
(X(t))G(X(t))

}
dt

+
∂Z

∂x
(X(t))G(X(t))dW (t).

(2.2)

The infinitesimal generator is used in the stochastic Lyapunov stability theory.

Definition 2.14

Let X(t) be n-dimensional stochastic process, and consider a function Z : Rn → R. A

infinitesimal generator of X(t) is given by

LZ(x) = lim
δ→0

E{Z(X(t+ δ))|X(t) = x} − Z(x)

δ
.

Theorem 2.4 ([56])

Consider a stochastic processX(t) which is a solution of a stochastic differential equation

dX(t) = F (X(t))dt+G(X(t))dW (t).

11
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For a twice continuously differentiable function Z : Rn → R, an infinitesimal generator

of X(t) is given by

LZ(x) = LFZ(x) +
1

2
tr

{
G(x)T

∂

∂x

(
∂Z

∂x

)
(x)G(x)

}
. (2.3)

By an infinitesimal generator L(·), the equation (2.2) is rewritten as

dZ(t) = LZ(X(t))dt+
∂Z

∂x
(X(t))G(X(t))dW (t).

We also introduce the following theorem, which is known as the Dynkin’s formula.

Theorem 2.5 ([56])

Suppose that xt is a right continuous strong Markov process and τ is a random time with

E {τ |X(0) = x} < ∞. Let Z : Rn → R be a twice continuously differentiable function

LZ(x) = V (x). Then

E {Z(X(τ)) | X(0) = x} −W (x) = E

{∫ τ

0
V (X(s))ds | X(0) = x

}
= E

{∫ τ

0
LZ(X(s))ds | X(0) = x

}
Finally, we shows the following relation between the solution of a stochastic differen-

tial equation and a transition probability density.

Theorem 2.6 ([56])

Consider an Itô stochastic differential equation

dX(t) = F (X(t))dt+G(X(t))dW (t), (2.4)

where F : Rn → Rn, G : Rn → Rn×m and W is a m-dimensional standard Wiener pro-

cess. The probability density of the solution of (2.4), p(t, x) follows a partial differential

equation

∂p

∂t
(x, t) = −

∑
i

∂

∂xi
(Fi(x)p(x, t)) +

1

2

∑
i,j,k

∂2

∂xixj
(Gik(x)Gjk(x)p(x, t)) . (2.5)

The partial differential equation is called Fokker-Planck equation.

2.3 Lyapunov stability theory

This section introduces stochastic Lyapunov stability theory. The Lyapunov theory is

used for the stability analysis of dynamical systems without knowing any analytic solu-

tions. Lyapunov studied the case of dynamical systems given by deterministic differential

equations [41]. For stochastic systems, Khasminkii [37] and Kushner [39] contributed to

the stochastic Lyapunov stability theory (See also [46, 19]). Since this thesis deals with

12
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the noise-based method, this section introduces the stochastic Lyapunov stability theory

along the line of Khasminskii [37].

Before introducing the stochastic Lyapunov stability theory, we show the Lyapunov

stability theory for deterministic dynamical systems (See [36, 64]).

First, Consider a deterministic dynamical system

ẋ(t) = F (x(t)), x(0) = x0 (2.6)

where x ∈ Rn, x0 ∈ Rn and F (0) = 0.

Then, the stability of the equilibrium point x = 0 of (2.6) is defined as follows.

Definition 2.15 (stability)

The equilibrium point x = 0 of (2.6) is said to be stable if, for ∀ϵ > 0, there exists

δ = δ(ϵ) such that if ∥x(0)∥ < δ then

∥x(t)∥ < ϵ, ∀t ≥ 0.

Definition 2.16 (asymptotic stability)

The equilibrium point x = 0 of (2.6) is said to be asymptotically stable if it is stable

and δ can be chosen such that if ∥x(0)∥ < δ then

lim
t→∞

∥x(t)∥ = 0. (2.7)

Further, if the equation (2.7) holds for any x(0) ∈ Rn, the equilibrium is said to be

globally asymptotically stable.

To discuss Lyapunov theory, some technical terminology are introduced.

Definition 2.17 (positive definiteness)

A function W : U ⊂ Rn → R is said to be positive definite when W (0) = 0 and W (x) > 0

for ∀x ̸= 0.

Definition 2.18 (properness)

A function W : U ⊂ Rn → R is said to be proper if, for each small c > 0, the level sets

{x ∈ U |W (x) ≤ c} are compact.

The Lyapunov theory of deterministic systems are shown as bellow.

Definition 2.19

A function V : U ⊂ Rn → R is said to be a local Lyapunov function for (2.6) if V is

differentiable, positive definite on U , proper, and it satisfies

LFV (x) < 0 for x ∈ U \ 0.

Definition 2.20

A function V : Rn → R is said to be a global Lyapunov function for (2.6) if V is

differentiable, positive definite on Rn, proper, and if satisfies

LFV (x) < 0 for x ∈ Rn \ 0.

13
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Theorem 2.7 ([36])

If there exists a local (respectively, global) Lyapunov function for (2.6), then the equi-

librium x = 0 of (2.6) is locally (respectively, globally) asymptotically stable.

In the following, the stochastic Lyapunov theory are introduced. Let us consider a

stochastic system given by

dx(t) = F (x(t))dt+Σ(x(t))dw, x(0) = x0, (2.8)

where x ∈ Rn, F : Rn → Rn and Σ : Rm×n → Rn satisfying F (0) = 0 and Σ(0) = 0, and

w is a m-dimensional standard Wiener process on a probability space (Ω,F ,P).

First, stability in probability is defined as follows.

Definition 2.21 (stability in probability)

The origin x = 0 of the system (2.8) is said to be stable in probability if for any ϵ > 0,

lim
x0→0

P

(
sup
t≥0

∥x(t)∥ > ϵ

)
= 0 (2.9)

holds.

Next, the asymptotic stability in probability and global asymptotic stability in prob-

ability are introduced.

Definition 2.22 (asymptotic stability in probability)

The origin of (2.8) is said to be asymptotically stable in probability if the equilibrium

x = 0 is stable in probability, and

lim
x0→0

P
(
lim
t→∞

∥x(t)∥ = 0
)
= 1. (2.10)

Definition 2.23 (global asymptotic stability in probability)

The origin of (2.8) is said to be globally asymptotically stable in probability if the

equilibrium x = 0 is stable in probability, and

P
(
lim
t→∞

∥x(t)∥ = 0
)
= 1, (2.11)

holds for any x0 ∈ Rn.

Definition 2.24 (local stochastic Lyapunov function)

A function W : U ⊂ Rn → R is said to be a stochastic Lyapunov function of the system

(2.8) if W (x) is C2, positive definite, and proper, and LW (x) is negative definite.

Definition 2.25 (global stochastic Lyapunov function)

A function W : Rn → R is said to be a global stochastic Lyapunov function of the system

(2.8) if W (x) is C2, positive definite, and proper, and LW (x) is negative definite.

In the stochastic Lyapunov stability theory, the main results are stated as follows.
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Theorem 2.8 ([37])

If a local stochastic Lyapunov function of the system (2.8) exists, the origin is asymp-

totically stable in probability.

Theorem 2.9 ([37])

If a global stochastic Lyapunov function of the system (2.8) exists, the origin is globally

asymptotically stable in probability.

The proof of Theorem 2.9 is given in Section 3.2, which includes the case of systems on

manifolds.

2.4 Manifolds

This section introduces the notion of manifolds to address the stabilization problem

of systems on manifolds in this thesis (See Chapter 3). Related notions, such as a

topological space, and a Hausdorff space, are also introduced along the line of [48, 47].

First, the definition of a topological space is given as follows.

Definition 2.26 (topological space)

Let S be a non-empty set. Let O be a collection of subsets of S. The tuple (S,O) is

said to be a topological space if following conditions.

1. S ∈ O, and ∅ ∈ O.

2. For O1, O2 ∈ O, O1 ∩O2 ∈ O.

3. For any finite collection of sets (Oλ)λ∈Λ, ∪λ∈ΛOλ ∈ O.

Definition 2.27 (neighborhood)

A set in O is said to be an open set. For x ∈ S, a subset V ⊂ S is said to be a

neighborhood of x if there exists an open set U such that

x ∈ U, U ⊂ V.

We denote the collection of all neighborhoods of x as N(x). The collection N(x) is called

as the neighborhood system.

Next, the definition of a Hausdorff space is shown.

Definition 2.28 (Hausdorff space)

A topological space (S,O) is said to be a Hausdorff space if for any x, y ∈ S, there exist

neighborhoods of x and y, U ∈ N(x) and V ∈ N(y), such that

U ∩ V = ∅,

where N(x) and N(y) denote the neighborhood systems of x and y.

Under the definition of a Hausdorff space, the definition of a manifold is given as

follows.
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Definition 2.29 (differentiable manifold)

The topological space M is said to be a n-dimensional differentiable manifold if M is a

Hausdorff space, and there exist a collection of open neighborhoods and a collection of

homeomorphisms ϕi : Ui → ϕi(Ui) ⊂ Rn such that

• ∪iUi = M

• For any open subsets Ui, Uj satisfying Ui ∩ Uj ̸= ∅, the following map is smooth

map.

φi ◦
(
φ−1
j |φj(Ui ∩ Uj)

)
: φj(Ui ∩ Uj) → φi(Ui ∩ Uj)

.

We call (Ui, φi) as a local coordinate. The set {(Ui, φi)} is said to be a local coordinate

system.
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Chapter 3. Noise-Based Stabilization

Method

3.1 Introduction

This chapter presents a noise-based stabilization method and a method for designing

a stabilizing controller with noise [28]. The method can be used for stabilizing nonholo-

nomic systems and non-Euclidean systems. Previous studies showed that these systems

cannot be stabilized by any continuous feedback laws. The results are stated as follows.

Consider a system given by

ẋ = f(x) + g(x)u, (3.1)

where x ∈ X, u ∈ U , f : X → TX, g : X → TX.

Proposition 3.1 (Sontag [64])

If the state space X is not contractible, no continuously differentiable feedback laws exist

such that the origin of the system (3.1) becomes globally asymptotically stable.

Proposition 3.2 (Brockett [13])

Let a mapping γ : X × U → Rn be defined by

γ(x, u) = f(x) + g(x)u.

A necessary condition for the existence of a continuously differentiable feedback law that

makes the origin of (3.1) asymptotically stable is that the mapping γ should be onto an

open set containing 0.

These results imply that peculiar feedback laws are needed for the stabilization of

such systems. For such systems, discontinuous feedback laws [6, 42, 52, 43, 16] and

time-varying feedback laws [57, 69, 50] have been studied. Although the discontinuous

feedback methods are effective for the stabilization of such systems (See [17, 16]), the

methods might need effort in the analysis or the synthesis in individual problems. More-

over, the time-varying feedback methods do not have any constructive design methods

of stabilizing feedback laws, except for the design method for driftless nonlinear systems

in [57].

Noise-based stabilization for such systems has been developed by Nishimura et al.

[54, 55]. The method can be basically considered as an extension of a time-varying

feedback law, where a time-varying component is replaced with noise. In [54], the

noise-based stabilization method, and the constructive design method of feedback laws
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have been proposed in the case that the closed-loop systems are given by Itô stochastic

differential equations. In [55], they showed the stabilization of a nonholonomic system

by using a noise-based feedback controller when the closed-loop systems are given by

Stratonovich stochastic differential equations.

This chapter considers the stabilization of the nonlinear affine system by using a noise-

based controller when the closed-loop system is modeled as a Stratonovich stochastic

differential equation. Some studies have been discussed which stochastic differential

equation should be used when deterministic systems are driven by white noise [33, 3,

56]. In [33, 3], it is stated that Stratonovich stochastic differential equations are more

appropriate for deterministic systems driven by white noise. Further, a representative

result by Wong and Zakai [70] is stated as follows. Consider an ordinary differential

equation that approximates a stochastic differential equation, such as

ẋ(t) = f(x(t)) + σ(x(t))γ(t),

where γ(t) is white noise. Roughly speaking, we may say that γ(t) = ẇ(t). Let w(n)(t)

be an approximation of a one-dimensional Wiener process w(t) defined by

w(n)(t) := w(n)(ti) +
w(n)(ti+1)− w(n)(ti)

t
(n)
i+1 − t

(n)
i

(t− t
(n)
i )

ti ≤ t ≤ ti+1 i = 1, 2, . . . , n− 1.

Under these settings, let us denote a solution of an ordinary differential equation

dx(n)(t) = f(x(n)(t))dt+ σ(x(n)(t))dw(n)(t) (3.2)

by x(n)(t). The Wong–Zakai theorem is stated as follows.

Theorem 3.1 (Wong and Zakai [70])

Consider the equation (3.2), and assume the following conditions:

• σ′(x)∂σ(x)∂x is continuous in x.

• There exists K > 0 such that

– |f(x)− f(x0)| ≤ K |x− x0|,

– |σ(x)− σ(x0)| ≤ K |x− x0|,

– |σ′(x)σ(x)− σ′(x0)σ(x0)| ≤ K |x− x0|.

Then, consider the limit n → ∞ in order that maxi

(
t
(n)
i+1 − t

(n)
i

)
→ 0. The sequence of

solutions x(n)(t) of (3.2) converges to x(t) that is the solution of an Itô-type stochastic

differential equation

dx(t) = f(x(t))dt+ σ(x(t))dw(t) +
1

2
σ′(x(t))σ(x(t))dt, (3.3)

in the mean.
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The system is equivalent to the system given by the Stratonovich stochastic differential

equation

dx(t) = f(x(t))dt+ σ(x(t)) ◦ dw(t). (3.4)

This result shows that an approximated ordinary differential equation by (3.2) gives the

system (3.4) as its limit. Thus, in the remainder of this chapter, we deal with systems

given by Stratonovich stochastic differential equations.

This chapter presents a constructive design method for designing a stabilizing con-

troller when closed-loop systems are modeled by Stratonovich stochastic differential

equations based on the results in [55]. The design method is based on the notion of

a stochastic control Lyapunov function, and a stabilizing controller is designed by using

the Sontag’s formula [63]. In this thesis, we propose a definition of stochastic control

Lyapunov function for designing noise-based feedback laws. A proposed stochastic con-

trol Lyapunov function is a smooth strict Lyapunov function for a closed-loop system

in the sense of stochastic systems. In general, it is difficult or impossible to obtain a

smooth strict control Lyapunov function for nonholonomic systems and non-Euclidean

systems. As in the stabilization methods using Sontag’s formula, the method shows that

if the stochastic control Lyapunov function satisfies a small control property, a designed

feedback laws can globally asymptotically stabilize a given system with probability one.

The proposed method can stabilize nonholonomic systems and non-Euclidean systems,

and the numerical examples shows the effectiveness of the method.

Some kind of robustness can be guaranteed when there exists a strict Lyapunov func-

tion for a given system. In addition to the design method of the controller, this chapter

also shows the robustness of the proposed controller based on its inverse optimality.

Inverse optimality of a controller means that the controller minimizes some cost func-

tionals. Using the inverse optimality, Sepulchre et al. [61] showed that the stability

margin of the Sontag-type controller for deterministic nonlinear control systems. For

stochastic systems, Deng et al. showed the inverse optimality of the Sontag-type con-

troller [18]. In the following, the inverse optimality and stability margin of the proposed

controller are shown. This chapter considers the margin in the diffusion coefficient as

well as in the feedback term. The diffusion coefficient appears in the expected value of

the time derivative of the Lyapunov function with a quadratic form, which is different

from that in [61, 18]. Since most time-varying controllers with a periodic signal use

weak Lyapunov functions, the guarantee of robustness is an advantage of the proposed

method over those methods.

3.2 Stability of Stochastic Systems on a Manifold

Since a controller with white noise transforms a given deterministic system into a

stochastic system, we introduce a stochastic differential equation on a manifold [32] and

its stability issues.
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Let a triple (Ω,F ,P) denote a probability space, where Ω is a sample space, F is a

σ-field, and P is a probability measure. Let M be a connected σ-compact n-dimensional

C∞-manifold.

Consider a Stratonovich stochastic differential equation

dZ(t) = A0(Z(t))dt+A1(Z(t)) ◦ dw, (3.5)

where Z(t) ∈ M , A0, A1 are smooth vector fields on M , and w is a one-dimensional

standard Wiener process. We assume that (4.1) has a unique equilibrium, and we denote

it by Z = 0, i.e., A0(0) = 0 and A1(0) = 0. We express local coordinate representations

of vector fields in local coordinates z = (z1, z2, . . . , zn) as

Ai =

n∑
j=1

aji (z)
∂

∂zj
, i = 0, 1.

Their vector expressions are denoted by

ai(z) =
(
a1i (z), . . . , a

n
i (z)

)T
, i = 0, 1.

A solution Z(t) of (4.1) with Z(0) = Z0 is given by patching local solutions in local

coordinates. Let (U,φ) be a chart, where U is an open subset of M containing the

initial state Z0, and φ is a homeomorphism from U to an open subset of a Euclidean

space with local coordinates. By a Stratonovich stochastic differential equation

dz(t) = a0(z(t))dt+ a1(z(t)) ◦ dw (3.6)

under the local coordinates z = (z1, z2, . . . , zn), we obtain a unique solution z(t) of (3.6)

in the local coordinates, which specifies a local solution on M as Z(t) = φ−1(z(t)) for

0 ≤ t < τU = inf{t;Z(t) /∈ U}. Then, we choose another chart (Ũ , φ̃), where Ũ includes

the point limt↑τU φ−1(z(t)). We can construct a unique solution z̃(t) in Ũ , which defines

a local solution of Z(t) for τU ≤ t < τŨ = inf{t; t > τU and Z(t) /∈ Ũ}. We repeat the

above procedure to patch local solutions together into a global solution (with respect to

the state space) [32].

Given a twice-differentiable function W : M → R, the infinitesimal generator L of

the solution of (4.1) for W (Z) is given by

LW (Z) = LA0W (Z) +
1

2
LA1LA1W (Z).

The above equation does not seem to be in agreement with the definition of that for an

Itô stochastic differential equation, but we can show that both definitions are essentially

equivalent by using Itô-Stratonovich drift conversion. Then, we define the stability of

the equilibrium of (4.1). Although the stability of stochastic systems has been studied

by Khasminskii [37], Kushner [39], Mao [46], and Deng et al. [19] for Euclidean-space

cases, we define a stability suitable for stochastic differential equations on manifolds by

adapting the results of [39] to our case. Let Z0 be an initial value of the solution of Z(t)

at t = 0.
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Definition 3.1 (stability in probability)

The equilibrium of the system (4.1) is said to be stable in probability if for any open

set Q ⊂ M containing the equilibrium Z = 0 and any ρ > 0, there exists an open set

S ⊂ M such that

P {Z(t) ∈ Q for all 0 ≤ t < ∞ | Z(0) = Z0} ≥ 1− ρ ∀Z0 ∈ S.

Definition 3.2 (global asymptotic stability in probability)

The equilibrium of the system (4.1) is said to be globally asymptotically stable in prob-

ability if it is stable in probability and for any Z0 ∈ M ,

P
{
lim
t→∞

Z(t) = 0 | Z(0) = Z0

}
= 1.

The Lyapunov stability theory for stochastic systems is discussed below.

Definition 3.3 (global Lyapunov function)

A function V : M → R of the system (4.1) is said to be a global Lyapunov function if

V (Z) is twice continuously differentiable, positive definite, and proper, and there exists

a continuous positive definite function W : M → R such that

LV (Z) = −W (Z), ∀Z ∈ M.

For global asymptotic stability in probability, we can obtain the following stochastic

Lyapunov theorem.

Theorem 3.2

If a global Lyapunov function of the system (4.1) exists, then the equilibrium of (4.1) is

globally asymptotically stable in probability.

Proof

We essentially follow the proofs presented by Kushner [39] and Khasminskii [37]. We

modify the proof such that we do not use the norm of the variable Z and we make some

modifications. The notation t1 ∩ t2 is used to denote min(t1, t2) in the following.

Consider two level sets of the Lyapunov function

Qr = {Z ∈ M | V (Z) < r} , Qm = {Z ∈ M | V (Z) < m} ,

for m > r > 0. Assume that Z(0) ∈ Qm. Let τm be the first exit time from Qm of the

solution Z(t) of (4.1). By the condition of the theorem,

LV (Z) = −W (Z) ≤ 0

holds. By Dynkin’s formula,

E {V (Z(t ∩ τm)) | Z(0) = Z0} − V (Z0) = E

{∫ t∩τm

0
LV (Z(τ))dτ | Z(0) = Z0

}
= −E

{∫ t∩τm

0
W (Z(τ))dτ | Z(0) = Z0

}
≤ 0
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is satisfied, and therefore,

E {V (Z(t ∩ τm)) | Z(0) = Z0} ≤ V (Z0)

holds. Thus, it is concluded that V (Z(t ∩ τm)) is a supermartingale. By the super-

martingale inequality,

P

{
sup

0≤t<∞
V (Z(t ∩ τm)) ≥ λ | Z(0) = Z0

}
≤ V (Z0)

λ

holds, where 0 < λ ≤ m. By considering the case of λ = m, we obtain

P {Z(t ∩ τm) ∈ Qm, for all t < ∞ | Z(0) = Z0} > 1− r

m
,

for the initial state in Qr. This shows the stability in probability of the equilibrium

Z = 0.

Let Bm be a set given by

Bm = {ω ∈ Ω | Z(t) ∈ Qm for all t < ∞} .

We can conclude that for almost all ω ∈ Bm, there exists a stochastic variable c(ω)

such that 0 ≤ c(ω) ≤ m and limt→∞ V (Z(t)) = c(ω) according to the supermartingale

convergence theorem.

We will prove that c(ω) = 0 by showing lim inft→∞ V (Z(t∩τm)) = 0 with probability

one relative to Bm. Consider

Qϵ = {Z ∈ M | V (Z) < ϵ} ,

where ϵ > 0 such that ϵ < m. Because of the continuity and positive definiteness of

W (Z), there exists b > 0 such that

LV (Z) = −W (Z) ≤ −b < 0, ∀Z ∈ Qm \Qϵ.

Let Iξ0(τ, ω,Qϵ) be the indicator function that takes one if Z(τ, ω) ∈ Qm \Qϵ and zero

otherwise. Define

Tξ0(t, Qϵ) =

∫ τm

t∩τm
Iξ0(τ, ω,Qϵ)dτ,

which represents the total time that Z(τ, ω) ∈ Qm \Qϵ from t to τm (≤ ∞). Note that

Tξ0(t,Qϵ) = 0 if τm ≤ t. Then, we obtain

E {V (Z(t ∩ τm)) | Z(0) = Z0} − E {V (Z(τm)) | Z(0) = Z0}

= −E

{∫ τm

t∩τm
LV (Z(τ))dτ | Z(0) = Z0

}
≥ bE

{∫ τm

t∩τm
I(τ, ω,Qϵ)dτ | Z(0) = Z0

}
= bE {Tξ0(t,Qϵ) | Z(0) = Z0} ,
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and

E {Tξ0(t,Qϵ) | Z(0) = Z0} ≤ E {V (Z(t ∩ τm)) | Z(0) = Z0}
b

≤ V (Z(0))

b
< ∞,

from the positive definiteness of V (Z). This implies that Tξ0(t,Qϵ) < ∞ with probability

one. Therefore,

lim
t→∞

Tξ0(t,Qϵ) = 0 (3.7)

holds. Since (3.7) holds for any ϵ > 0 such that ϵ < m,

lim inf
t→∞

V (Z(t)) = 0 (3.8)

holds with probability one relative to Bm. We can conclude that

lim
t→∞

V (Z(t)) = 0,

since there exists limt→∞ V (Z(t)) = c(ω). Since we can choose any value of m > 0, we

obtain

P
{
lim
t→∞

V (Z(t)) = 0 | Z(0) = Z0

}
= 1 for any Z0 ∈ M.

Recalling the positive definiteness of V (Z),

P
{
lim
t→∞

Z(t) = 0 | Z(0) = Z0

}
= 1 for any Z0 ∈ M

holds. This completes the proof.

3.3 Problem Statement

This section presents the problem setting of the global asymptotic stabilization of

deterministic nonlinear affine systems using noise-based controllers. The noise-based

controller consists of an ordinary term and a noise term.

Let M be a smooth n-dimensional manifold and consider a deterministic control

system given by

Ẋ(t) = F (X(t)) +
m∑
i

uiGi(X(t)), (3.9)

where X(t) ∈ M is the state, ui ∈ R, i = 1, . . . ,m are the inputs, and F and Gi,

i = 1, . . . ,m, are smooth vector fields on M with F (0) = 0. This chapter considers

the global asymptotic stabilization of the equilibrium of the deterministic system (3.3).

Nonholonomic systems and non-Euclidean systems can be represented by (3.3) According

to Proposition 3.1 and 3.2, such systems cannot not be stabilized by any smooth time-

invariant feedback laws. Thus, we use an input with noise to stabilize such systems,

which is given by

uidt = vidt+Bi(X(t)) ◦ dw, i = 1, . . . ,m, (3.10)
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where vi ∈ R are the new inputs, Bi : X → R are the diffusion coefficient functions

satisfying Bi(0) = 0 for all i = 1, . . . ,m, and w is a one-dimensional standard Wiener

process. The system with the input (3.10) is given by a Stratonovich stochastic differ-

ential equation

dX(t) = F (X(t))dt+

m∑
i=1

viGi(X(t))dt+

m∑
i=1

Bi(X(t))Gi(X(t)) ◦ dw. (3.11)

To stabilize the system, we consider a design method that gives the functions vi and

Bi(X) (i = 1, . . . ,m) stabilizing the equilibrium of the system (3.11).

Given a chart (U,φ), in a local coordinate x = (x1, . . . , xn), the vector fields are

expressed as

F (φ−1(x)) =

n∑
j=1

f j(x)
∂

∂xj
, Gi(φ

−1(x)) =

n∑
j=1

gj(x)
∂

∂xj
. (3.12)

Further, using notations,

f(x) =

f1(x)
...

fn(x)

 ,

g(x) = (g1(x), . . . , gm(x)) , gi(x) =

g1i (x)
...

gni (x)

 ,

v =

v1,
...,

vm

 , B(x) =

B1(φ
−1(x))
...

Bm(φ−1(x))

 ,

the system (3.11) is expressed as

dx(t) = f(x(t))dt+ g(x(t))vdt+ g(x(t))B(x(t)) ◦ dw. (3.13)

In the following, for the simplicity, we use the expression (3.13).

Remark 3.1

We may be able to use an Itô stochastic differential equation to express the system

with noise inputs [54]. In the case, the system is given by an Itô stochastic differential

equation

dx(t) = f(x(t))dt+ g(x)vdt+ g(x)B(x)dw. (3.14)

The equivalent system of (3.13) by Itô formulation given by

dx(t) = f(x(t))dt+ g(x)vdt+
1

2

{
∂

∂x
(g(x)B(x)) g(x)B(x)

}
dt+ g(x)B(x)dw, (3.15)

which is different from (3.14).
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control system

ẋ = f(x) + g(x)u

feedback controller

u = k(x) + B(x)γ

white noise γ

x
u

Fig. 3.1: Noise-based stabilization

3.4 Main Results: Design Method of Stabilizing Controller

This section presents a method for designing a stabilizing noise-based controller.

The design method is based on the notion of a control Lyapunov function, which is

a common notion in the literature of the stabilization of nonlinear systems [7]. After

designing a control Lyapunov function, the method can obtain a stabilizing controller

by using Sontag’s formula [63]. The obtained controller can be seen as an extension of

the Sontag controller [63].

3.4.1 Stochastic Control Lyapunov Function

This subsection provides the notion and definition of stochastic control Lyapunov

function. Let V : M → R be a twice continuously differentiable Lyapunov function

candidate for the closed loop system (3.11), and let L denote the generator of (3.11).

Then, we obtain

LV (x) = LfV (x) + LgV (x)v + L(g·B)L(g·B)V (x)

= LfV (x) + LgV (x)v +
1

2
LgV (x)

∂B

∂x
(x)g(x)B(x)

+
1

2

m∑
i,j=1

LgiLgjV (x)Bi(x)Bj(x).

Considering a symmetric-matrix-valued function H(x) whose elements are given by

Hij(x) =
1

2

(
LgiLgjV (x) + LgjLgiV (x)

)
, (3.16)

we have

LV (x) = LfV (x) + LgV (x)v +
1

2
LgV (x)

∂B

∂x
(x)g(x)B(x) +

1

2
B(x)TH(x)B(x).
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Further, for v, we use a minor feedback [55],

v = v′ − 1

2

∂B

∂x
(x)g(x)B(x) (3.17)

where v′ is a new input, given by v′ = (v′1, . . . , v
′
m), and v′i ∈ R, i = 1, . . . ,m. Then, we

obtain

LV (x) = LfV (x) + LgV (x)v′ +
1

2
B(x)TH(x)B(x). (3.18)

We find from (3.18) that LV (x) may be negative even when LfV (x) ≥ 0 and

LgV (x) = 0 if the last term on the right-hand side of (3.18) is negative. In (3.18),

the last term 1/2B(x)TH(x)B(x) is a quadratic form with respect to B(x). Thus, if

the matrix H(x) has a negative eigenvalue and we choose B(x) properly. we can make

LV (x) negative. A discussion similar to the above was done in [55], and it is gener-

alized and clarified here. A contribution here is the establishment of the expression of

(3.18). Based on the above discussion, a stochastic control Lyapunov function is defined

as follows.

Definition 3.4 (stochastic control Lyapunov function)

A function V : M → R is said to be a stochastic control Lyapunov function of (3.11)

if V (x) is twice continuously differentiable except at the origin, positive definite, and

proper, and V (x) satisfies that

LfV (x) < 0

for x ∈ {x ∈ M | x ̸= 0, LgV (x) = 0, and λi(x) ≥ 0, ∀ (i = 1, . . . ,m)},

where λi(x) is the i-th eigenvalue of the matrix H(x) given by (3.16).

Remark 3.2

Although a stochastic control Lyapunov function is used to stabilize nonlinear stochastic

systems [21], Definition 3.4 is different from that of [21]. The stochastic control Lyapunov

function here is defined to be suitable for our problem setting, that is, to design the

diffusion coefficient in addition to the ordinary inputs.

3.4.2 Design of Controller with Noise

A design method is presented here for a stabilizing controller of a noise-based stabi-

lization. The existence of a stochastic control Lyapunov function implies that a given

system can be stabilized by a noise-based feedback controller. Then, the problem to

be solved is the design of a stabilizing controller. This subsection addresses the design

problem.

As seen from the choice of the input vi in (3.17), the proposed method requires the

differentiability of B(x). To ensure the differentiability, we make the following assump-

tions.
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Assumption 3.1

All the eigenvalues of the matrix H(x) are distinctive on M .

Assumption 3.2

The eigenvalues λi(x), i = 1, 2, . . . ,m of the matrix H(x) are locally bounded.

Lemma 3.1

If Assumption 3.1 holds, then the eigenvalues and eigenvectors are continuously differ-

entiable.

Appendix A gives the proof of Lemma 3.1.

As a first step of the design procedure, we first put the input v as the minor feedback

controllers (3.17). Then, let V (x) be a stochastic control Lyapunov function of (3.11).

We put the diffusion coefficient in a form

B(x) = α(x)P (x)Ξ(x)


√

K1(x)
...√

Km(x)

 , (3.19)

where the matrix-valued function P (x) satisfies

H(x) = P (x)

λi(x)
. . .

λm(x)


and

P (x)P (x)T = I.

Since the matrix-valued function H(x) is symmetric, the columns of P (x) are unit eigen-

vectors of H(x). According to Lemma 3.1, the functions λi(x) and the components of

P (x) are differentiable. We set the function Ξ : M → Rm×n as

Ξ(x) =
√
2

ξ(λ1(x))
. . .

ξ(λm(x))


where ξ : R → R. The functions α(x) and ξ(λ) are functions properly chosen by

the designer of the controller. The function α(x) should satisfy a positive definiteness

and a differentiability of α2(x) except at the origin. The function ξ : R → R should

satisfy ξ(λ) = 0 for λ ≥ 0, ξ(λ) for λ < 0, and a differentiability of
√

− λξ2(λ). We

will determine the feedback v′ = β(x) = (β1(x), . . . , βm(x))T and the function K(x) =

(K1(x), . . . ,Km(x))T later. By using (3.19), (3.18) can be expressed as

LV (x) = LfV (x) +G(x)µ(x) (3.20)
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where

G(x) = (LgV (x), GB(x)) , (3.21)

µ(x) =

(
β(x)

K(x)

)
, (3.22)

with

GB(x) = α2(x)
(
λ1(x)

2, . . . , λm(x)2
)
.

The stability of the system (3.11) is guaranteed if the function µ(x) is designed properly

so that LV (x) is negative definite. One of such function µ(x) is obtained by using

Sontag’s formula [63] as

µ(x) =

(
β(x)

K(x)

)
=

(
βs(x)

Ks(x)

)
= −k(x)G(x) = −k(x)

(
LgV (x)T

GB(x)
T

)
, (3.23)

where the gain function k(x) is given by

k(x) =


LfV (x) +

√
(LfV (x))2 + (G(x)G(x)T )2

G(x)G(x)T
(G(x) ̸= 0)

0 (G(x) = 0).

(3.24)

The function k(x) is differentiable because of the differentiability of G(x)G(x)T and the

nature of the Sontag-type controller. The elements of Ks(x) are nonnegative because

k(x) is nonnegative and the elements of GB(x) are nonpositive.

The small control property is introduced to discuss the continuity of the feedbacks

(3.23) with (3.24).

Definition 3.5 (small control property)

A stochastic control Lyapunov function of (3.11) is said to satisfy the small control

property if there exist βc(x) andKc(x) such that LV (x) < 0 for x ̸= 0 with β(x) = βc(x),

K(x) = Kc(x), and βc(x) → 0, Kc(x) → 0 as x → 0.

Then, the main results of the proposed noise-based stabilization are stated as follows.

Theorem 3.3

Let V : M → R be a stochastic control Lyapunov function of (3.11), and assume

that the matrix-valued function H(x) satisfies Assumption 3.1. By using the controller

(3.10) with (3.17), (3.19), and (3.23), the equilibrium of the system (3.11) is globally

asymptotically stable in probability. Furthermore, suppose that Assumption 3.2 holds.

If V (X) satisfies the small control property, then the functions of the controller defined

by (3.23) also satisfy β(x) → 0, K(x) → 0 as x → 0.
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Proof

When the controller is given by (3.19) and (3.23), the infinitesimal generator of the

closed-loop system (3.11) for V (x) is obtained as

LV (x) = LfV (x)− k(x)G(x)G(x)T

= −
√

(LfV (x))2 + (G(x)G(x)T )2 < 0,

for x ̸= 0. Thus, according to Theorem 3.2, the origin of the closed-loop system is

globally asymptotically stable in probability.

Next, we prove that β(x) → 0 and K(x) → 0 as t → 0 under the small control

property of the stochastic control Lyapunov function V (x). According to the nature of

the Sontag-type controller and the assumption of V (x), it is obvious that the function

k(x) is locally bounded, except at the origin. Thus, the local-boundedness of k(x)

in the neighborhood of the origin is not guaranteed in general. When the stochastic

control Lyapunov function V (x) satisfies the small control property, there exist functions

v = βc(x) and K(x) = Kc(x) such that βc(x) and Kc(x) make the function LV (x)

negative definite, and

βc(x) → 0, Kc(x) → 0 as x → 0.

Then, we show that the functions v′ = β(x) = −k(x)(LgV (x))T andK(x) = −k(x)GB(x)
T

in (3.23) satisfies

β(x) → 0, K(x) → 0 as x → 0.

When LfV (x) ≤ 0,

|β(x)| ≤ |LgV (x)| (3.25)

|K(x)| ≤ |GB(x)| (3.26)

holds, so we can see that β(x) → 0, K(x) → 0 as x → 0 in this case. When LfV (x) ≥ 0,

|LfV (x)| ≤ |G(x)| ·

∣∣∣∣∣
(
βc(x)

Kc(x)

)∣∣∣∣∣ . (3.27)

should be satisfied due to (3.20) and LV (x) < 0 for x ̸= 0. By substituting (3.27) into

(3.23) and (3.24), we obtain∣∣∣∣∣
(
β(x)

K(x)

)∣∣∣∣∣ ≤
∣∣∣∣∣
(
βc(x)

Kc(x)

)∣∣∣∣∣+
√√√√∣∣∣∣∣
(
βc(x)

Kc(x)

)∣∣∣∣∣
2

+G(x)G(x)2 (3.28)

from the fact LfV (x) ≥ 0. Since the right-hand side of (3.28) converges to 0 as x → 0,

we have

β(x) → 0, K(x) → 0 as x → 0.

Thus, the proof is complete.
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Remark 3.3

Since the minor feedback in (3.17) includes the partial derivative B(x) and
√

k(x) is

not differentiable at x = 0, one might expect that the minor feedback is not well-

defined. However, the minor feedback is well-defined because B(x) = 0 at x = 0. This

is confirmed by

∂B

∂x
g(x)B(x) = k(x)

∂Ξ′(x)

∂x
g(x)Ξ′(x)−

√
k(x)Ξ′(x)

∂k(x)

∂x
g(x)Ξ′(x).

Remark 3.4

The small control property is defined as the property of a stochastic control Lyapunov

function for simplicity. However, strictly speaking, the small control property depends

on the choice of the functions ξ(λ) and α(x) as well as the stochastic control Lyapunov

function.

The mechanism of the noise-based stabilization is described as follows. We often

encounter the absence of a smooth control Lyapunov function in the stabilization of

nonholonomic systems and non-Euclidean systems by time-invariant feedback. In such

cases, we may have a weak smooth Lyapunov function V , i.e., there exists a set where

V̇ = 0 for all inputs, except the origin. When we find a weak Lyapunov function and

obtain a feedback law such as the Jurdjevic-Quinn like feedback, such set becomes an

invariant manifold in many cases. In the noise-based stabilization, noise is injected into

a system to cause the state to escape from such set (Fig. 3.2). The diffusion coefficient

function B(x) of the proposed controller is designed to have nonzero values on the set.

The proposed method uses the eigenvalues of matrix H(x), and H(x) coincides with

H(x) = g(x)T
∂

∂x

(
∂V

∂x

)T

(x)g(x).

when LgV (x) = 0. This shows that the stochastic control Lyapunov function is given

to be partially concave along a direction in span (g1(x), . . . , gm(x)) on the set. In the

design method, since the matrix H(x) has some negative eigenvalues on the set where

V (x) is partially concave, B(x) has nonzero values on such set. Thus, as shown in

Fig. 3.2, the noise affect the evolution of the state, and the state escape from the sets.

We can expect that the expected value of the function V (x) will decrease due to the

partial concavity of V (x) along the direction of the effect of noise. Since the diffusion

coefficient B(x) is given by such mechanisms, LV (x) can be negative definite by using

the designed controller. Then, according to Theorem 3.2, the origin becomes globally

asymptotically stable in probability.

Remark 3.5

Discontinuous feedback methods have been studied for nonholonomic systems [6, 42]

and non-Euclidean systems [43, 52]. Moreover, time-varying feedback methods have

been developed in [57, 69, 50]. The noise-based stabilization method can be seen as

a variation of time-varying feedback methods, where the time-varying signal, such as
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equilibrium 

Stochastic control 

Lyapunov  function V(x) 

Noise 

Fig. 3.2: Conceptual illustration of the stabilization mechanism

periodic signal, in the feedback is replaced with the white noise. Thus, the functions

v′ = β(x) and B(x) can be continuous with respect to the state variable.

Remark 3.6

As shown in Definition 3.4, the control Lyapunov function can be a smooth strict con-

trol Lyapunov function in the sense of stochastic systems. This fact shows that out

method is superior to discontinuous feedback methods and time-varying feedback meth-

ods. The discontinuous feedback methods use non-smooth control Lyapunov functions.

We might encounter the difficulty in the analysis of the feedback controller due to the

non-smoothness. Moreover, the time-varying feedback methods often use weak control

Lyapunov functions. On the other hand, the control Lyapunov function defined by Def-

inition 3.4 can be a smooth strict control Lyapunov function. This difference is related

to whether the controllers guarantee a kind of robustness, which is discussed in Section

3.5.

3.4.3 Numerical Examples

This subsection presents numerical examples of stabilization of non-Euclidean systems

and a nonholonomic system by noise-based stabilization.
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Non-Euclidean System

Consider a system

ẋ1 = x2,

ẋ2 = a1 sin(x1)− a2x2 + u,
(3.29)

where (x1, x2) ∈ S × R is the state, u ∈ R is the input, and a1, a2 are constant param-

eters where a1 = 10.0, a2 = 0.1. The state x1 is a point on a circle S, which means

that we equate x1 = 0 with x1 = 2iπ (i = . . . ,−1, 0, 1, . . . ). The state space S × R is

noncontractible. Thus, according to Proposition 3.1, no continuous time-invariant feed-

back law stabilize this system. Thus, we stabilize the system (3.29) by the noise-based

stabilization method. A stochastic control Lyapunov function of (3.29) is designed as

V (x) = log

(
2− cos(x1) +

1

2
(x2 + sin(x1))

2 +
1

4
(x22 − 1)2(1− cos(x1))

)
. (3.30)

Figure 3.3 shows the shape of the stochastic control Lyapunov function (3.30). The

system (3.29) has LFV (x) = 0 and LGV (x) = 0 at (x1, x2) = (π, 0), where F = x2
∂

∂x1
+

(a1 sin(x1)− a2x2)
∂

∂x2
and G = ∂

∂x2
. However, since H(x) = −1 at (x1, x2) = (π, 0), the

system (3.29) can be stabilized by the proposed method. Thus, we obtain a stabilizing

controller by using stochastic control Lyapunov function and by following the proposed

method. In the design of the controller, we use the following functions,

ξ(λ)2 =

tanh(−λ3), if λ < 0

0, if λ ≥ 0

α(x)2 = c(x21 + x22), (3.31)

where c = 0.5.

Figure 3.4 shows the trajectory of the state variable on the state space S×R embedded

in R3 with initial value (x1, x2) = (π, 0). The figure shows that the state variable

converges to the equilibrium. Figure 3.5 shows the values of the input v and the diffusion

coefficient B(x). The results indicates that the values of v and B(x) tend to zero as the

state variable converges to the equilibrium. The diffusion coefficient B(x) has nonzero

value on the set {x | H(x) < 0} only when the state escape from the neighborhood of

critical points other than the equilibrium. Thus, the diffusion coefficient is zero in most

cases.

Nonholonomic System

Then, the proposed designed method is applied to stabilize a nonholnomic system

called Brockett integrator. The system is given by

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = −2x1u2 + 2x2u1.

(3.32)
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Fig. 3.3: Shape of the stochastic control Lyapunov function (3.30)

According to Proposition 3.2, any smooth time-invariant controller cannot stabilize the

Brockett integrator. Indeed, let us set x = (x1, x2, x3), u = (u1, u2), and consider the

map given by

γ(x, u) =

 u1

u2

−2x1u2 + 2x2u1

 .

Let ϵ ̸= 0, then, the point given by

γ(x, u) =

0

0

ϵ


is not contained in the image of γ. Thus, the Brockett integrator does not satisfy the

necessary condition in Proposition 3.2. However, the proposed method can stabilize the

Brockett integrator. A stochastic control Lyapunov function is designed as

V (x) = 2
∣∣x21 + 2x22

∣∣1+x2
3 − 1

2
(x21 + 2x22)(1 + x23) + 10x23. (3.33)

When x1 = x2 = 0 and x3 ̸= 0, LgV (x) = 0 holds. The value of the matrix H(x)

becomes

H(x) =

(
−2(1 + x23) 0

0 −4(1 + x23)

)
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Fig. 3.4: Trajectory of state variables of (3.29) with proposed controller on the state

space S× R embed in R3
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Fig. 3.5: Time responses of the ordinary input term and the diffusion coefficient
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Fig. 3.6: Time responses of state variables of (3.32) with the proposed controller

when x1 = x2 = 0 and x3 ̸= 0. Thus, we can design a stabilizing controller by the design

procedure. In the design of the controller, the function ξ(λ) is given by

ξ(λ)2 =

0.1λ2, if λ < 0

0, if λ ≥ 0

and the function α(x) is given by (3.31) with c = 0.01. Figure 3.6 shows time responses

of the state variable with the initial value (x1, x2, x3) = (0, 0, 3.5). The result shows that

the sample path of the state variable converges to the origin.

The result shows the effect of the introduction of noise into a controller. When the

noise is absent in input term with the initial values x1 = x2 = 0 and x3 ̸= 0, the state

variables will stay at the initial values. Figure 3.7 shows the values of x1 and x2 around

the initial time, which are shown in Fig.3.6. The noise has the effect to change the value

of the state variable at x1 = x2 = 0 and x3 ̸= 0, then the state can escape from the

initial values. Finally, the state converges to the equilibrium.

Figure 3.8 and 3.9 show the time responses of an ordinary feedback term v(t) and the

diffusion coefficient B(x(t)). As seen in the previous example, the diffusion coefficient

has nonzero value around the initial time, and the noise is effective to stabilize the

equilibrium.
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Fig. 3.7: Time responses of state variables around initial time
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Fig. 3.8: Time responses of the ordinary input term
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Fig. 3.9: Time responses of the diffusion coefficient

Rigid-Body Control

The proposed method can be used for the global attitude stabilization. The following

discussion is based on the results of [15, 14].

The attitude of the rigid body is represented as the element of SO(3). We denote the

attitude of the rigid body relative to a reference frame as R ∈ SO(3), and the angular

velocity of the rigid body relative to a reference frame as ω ∈ R3. Then, the time rate

of change of R is given by

Ṙ = Rω̃, (3.34)

where

ω̃ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

In the following, consider the stabilization of R = I, and consider the angular velocity

ω as the input. According to the proposed method, we consider the feedback in the form

ωidt = vidt+Bi(x) ◦ dw, for i = 1, 2, 3,

where w is a one-dimensional standard Wiener process. The candidate of a stochastic

control Lyapunov function is given by

V (R) = trace(A−ART ), (3.35)
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where

A = diag(a1, a2, a3)

with positive integers a1, a2, a3. Then, the derivative of V (R) along the vector fields of

(3.34) becomes

DV (R) = −Ωa(R)Tω,

where

Ωa(R) =
3∑

i=1

aiei ×Rei,

and [e1, e2, e3] is the identity matrix. The elements of SO(3),

R1 = diag(1, 1, 1), R2 = diag(−1, 1,−1),

R3 = diag(1,−1,−1), R4 = diag(−1,−1, 1),

satisfy Ωa(R) = 0 [14]. Thus, the function DV (R) cannot be negative definite.

Denoting the elements of R as ri,j (i, j = 1, 2, 3), the function H(R) is given as

H(R) =

 −a2r2,2 − a3r3,3
1
2 (a2r2,1 − a1r1,2)

1
2 (a1r1,3 − a3r3,1)

1
2 (a2r2,1 − a1r1,2) a1r1,1 + a3r3,3

1
2 (−a2r2,3 − a3r3,2)

1
2 (a1r1,3 − a3r3,1)

1
2 (−a2r2,3 − a3r3,2) a1r1,1 + a2r2,2

 .

For Ri (i = 2, 3, 4), we obtain

H(R2) =

a3 − a2 0 0

0 −a1 − a3 0

0 0 a2 − a1

 ,

H(R3) =

a2 + a3 0 0

0 a1 − a3 0

0 0 a1 − a2

 ,

H(R4) =

a2 − a3 0 0

0 a3 − a1 0

0 0 −a1 − a2

 .

Thus, H(R) has negative eigenvalues for Ri (i = 2, 3, 4) if a1 < a2 or a1 < a3 holds.

Therefore, V (R) of (3.35) is a stochastic control Lyapunov function for (3.34).

We can construct the stabilizing feedback with noise by using the stochastic control

Lyapunov function with

ξ(λ) =

0.001 tanh(−λ3) if λ < 0

0, if λ ≥ 0

α(R) = trace(A−AR),

a1 = 5, a2 = 1 and a3 = 6, and we set

v′ = −k(x)Ωa(R),
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Fig. 3.10: Time responses of the diagonal elements of R(t) with the proposed controller
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Fig. 3.11: Time responses of the off-diagonal elements of R(t) with the proposed con-

troller
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Fig. 3.12: Time responses of v in the proposed controller
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Fig. 3.13: Time responses of B(x) in the proposed controller
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Fig. 3.14: Visualization of rotation by R(t) in Fig. 3.10 and 3.11 with 3D space shuttle

model
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in (3.17).

Figure 3.10 and 3.11 show the stabilization results with R(0) = R3. When the noise

is absent, R3 is an equilibrium of the closed-loop system, and the value of R(t) will stay

at R3. The diagonal elements of R(t) in Fig.3.10 converge to one, and the off-diagonal

elements of R(t) in Fig.3.11 converge to zero. That is, the value of R(t) converges to

the identity matrix. Figure 3.12 and 3.13 show the time responses of v and B(x) of

the controller, respectively. The values of v and B(x) converge to zero. For better

understanding, Fig. 3.14 shows the rotation of a 3D space shuttle model1 by the time

responses of R(t) in Fig. 3.10 and 3.11.

3.5 Inverse Optimality and Robustness of Stabilizing Con-

trollers

This section presents an inverse optimality and robustness of the proposed controller.

In general, controllers obtained by Sontag’s formula satisfy the inverse optimality [61].

Since a proposed noise-based controller is designed by using Sontag’s formula, we expect

that the controller satisfies the inverse optimality, and we show the inverse optimatlity

of noise-based controller. Moreover, inverse optimality often implies the robustness of a

controller. We also show the robustness of the noise-based controller, which is derived

from the inverse optimality in this section. We restrict our discussion to the case in

which the state space is a Euclidean space, that is, M = Rn.

3.5.1 Inverse Optimality of the Proposed Controller

First, this subsection shows the inverse optimality of the proposed controller. The in-

verse optimality of the Sontag-type controller for deterministic systems has been studied

by Sepulchre et al.[61], and Freeman and Kokotović [23] Further, the inverse optimality

of the Sontag-type controller for stochastic systems also has been studied by Deng and

Krstić [18]. In contrast to [18], the noise-based stabilization method designs the diffu-

sion coefficient in addition to the ordinary feedback term. Thus, we cannot apply their

results [18] directly, and it is not apparent that the proposed controller possesses inverse

optimality. This subsection discusses the inverse optimality of the proposed noise-based

controller below. In the following discussions, the gain function of the controller k(x) is

replaced with

k(x) =

c0 +
LfV (x) +

√
(LfV (x))2+(G(x)G(x)T )2

G(x)G(x)T
(G(x) ̸= 0)

0 (G(x) = 0)

, (3.36)

where c0 is a positive parameter.

1The example of Fig. 3.14 is made by using Mathematica R⃝ and the 3D model in the software.
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The inverse optimality of z = µ(x) of (3.23) is shown.

Theorem 3.4

Let V (x) be a stochastic control Lyapunov function of (3.11) satisfying the small control

property. The feedback z = µ(x) of (3.23) with (3.36) minimizes the cost functional

J(z) = E

{∫ ∞

0

(
Q(x) +

1

4
zTR(x)z

)
dτ

}
, (3.37)

where

Q(x) = G(x)R−1(x)G(x)T − LfV (x), (3.38)

R(x) =
2

k(x)
I, (3.39)

and I is the 2m× 2m identity matrix.

Proof

First, we prove that the function Q(x) is positive definite. Substituting (3.39) into (3.38),

we have

Q(x) =
1

2
k(x)G(x)G(x)T − LfV (x)

=
1

2

√
(LfV (x))2 + (G(x)G(x)T )2 − 1

2
LfV (x) + c0G(x)G(x)T

> 0 for x ̸= 0.

(3.40)

If G(x) = 0, k(x) = 0 and −LfV (x) > 0 for x ̸= 0 hold according to the nature of the

stochastic control Lyapunov function. Thus, the function Q(x) is positive definite.

We show the optimality of z = µ(x) for the cost functional in the following. The

equation

E

{
V (x(0))− V (x(t)) +

∫ t

0
LV (x(τ))dτ

}
= 0 (3.41)

holds according to Dynkin’s formula. Using (3.41), we obtain

J(z) = E

{∫ ∞

0

(
Q(x(τ)) +

1

4
zTR(x(τ))z

)
dτ

}
+ E

{
V (x(0))− lim

t→∞
V (x(t))+

∫ ∞

0
LV (x(τ))dτ

}
= EV (x(0))− lim

t→∞
EV (x(t))

+ E

{∫ ∞

0

(
G(x(τ))z +G(x(τ))R−1(x(τ))G(x(τ))T+

1

4
zTR(x(τ))z

)
dτ

}
= EV (x(0))− lim

t→∞
EV (x(t))

+ E

{∫ ∞

0

1

4

∣∣∣R1/2(x(τ))z + 2R−1/2(x(τ))G(x(τ))T
∣∣∣2 dτ} .

Therefore, we see that

z = −2R−1(x)G(x)T = −k(x)G(x)T = µ(x) (3.42)
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control system

ẋ = f(x) + g(x)u

v

B(x)

uncertainty

∆v′

uncertainty

∆K

v′

K(x)

Fig. 3.15: Control system with input uncertainty

minimizes the cost functional (3.37). Since z globally asymptotically stabilizes the sys-

tem, we obtain

lim
t→∞

EV (x(t)) = 0.

This completes the proof.

3.5.2 Stability Margin of the Proposed Controller

The inverse optimality derives robustness of the controller. The robustness of the

noise-based controller is shown, which is called the stability margin, based the inverse

optimality shown above. Although the inverse optimality of the proposed controller

requires the condition c0 > 0 in (3.36) to ensure the local boundedness of R(x), the

following discussion on the stability margin holds when c0 = 0 in (3.36).

The effect of input uncertainties of z = µ(X) is modeled by following [61]. Figure. 3.15

shows the illustration of the uncertainties, ∆v′ and ∆K having the effects on the input

v′ and the function K(x). The effects of the uncertainties are modeled by the functions

given in the following. Let ϕ : R2m → R2m be a map

ϕ(µ(x)) =

(
ϕv′(β(x))

ϕK(K(x))

)
,

ϕv′(β(x)) =


ϕv′1

(β1(x))
...

ϕv′m(βm(x))

 , ϕK(K(x)) =

 ϕK1(K1(x))
...

ϕKm(Km(x))


where functions ϕv′i

, ϕKi : R → R, i = 1, . . . ,m satisfy, for each s ̸= 0,

ϵs2 < sϕv′i
(s) < δs2,

ϵs2 < sϕKi(s) < δs2,
(3.43)

where ϵ, δ are given parameters satisfying 0 < ϵ < δ, and ϕv′i
(0) = 0, ϕKi(0) = 0. This

means that these functions are linearly bounded. With these conditions, the function ϕ

is said to belong to a sector (ϵ, δ) [61].
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Definition 3.6

Let µ(x) be a function given in (3.23) for the system (3.11). A function µ(x) is said to

satisfy a sector margin (ϵ, δ) if the function ϕ(µ(x)) stabilizes the system (3.11) in the

sense of global asymptotic stability in probability.

Theorem 3.5

Consider the system (3.11). Let V (x) be a stochastic control Lyapunov function of (3.11)

satisfying the small control property. Let a function z = µ(x) be given by (3.23). Then,

the function z = µ(x) achieves the sector margin (1/2,∞).

Proof

The proof of this theorem follows that of [61]. Let ϕ be the function belonging to a

sector (1/2,∞). The infinitesimal generator of the stochastic control Lyapunov function

V (x) becomes

LV (x) = LfV (x) +G(x)ϕ(z)

= LfV (x) +G(x)z +G(x)ϕ(z)−G(x)z

= −Q(x) +
1

4
zTR(x)z − 1

2
zTR(x)ϕ(z).

(3.44)

The last equality follows by (3.38) and (3.42). Further, with (3.23), (3.39), and (3.43),

we obtain

LV (x) = −Q(x) +
1

2
zTR(x)

{
1

2
z − ϕ(z)

}
= −Q(x) +

1

k(x)

m∑
i=1

{
1

2
z2i − ziϕi(zi)

}

= −Q(x) +
2m∑
i=1

{
1

2
k(x)Gi(x)

2 −Gi(x)ϕi(k(x)Gi(x))

}
≤ −Q(x).

(3.45)

The last inequality follows from (3.43). When k(x) = 0, since

1

2
k(x)Gi(x)

2 −Gi(x)ϕi(k(x)Gi(x)) = 0,

holds, the last inequlity in (3.45) also holds. In addition, Q(x) is positive definite even

when c0 = 0 from the defintion. Thus, we can conclude that the globally asymptotic

stability in probability holds even when the control law ϕ(µ(x)) is used.

The above sector margin does not imply a sector margin of the diffusion coefficient

B(x). Although we can use the sector margin for the input v′ directly, it seems difficult to

introduce a sector margin of the diffusion coefficient B(x) for the nonlinear uncertainty

because B(x) includes the matrix P (x) to orthogonalize the matrix H(x) in (3.18).

To introduce robustness of the diffusion coefficient directly, we consider simpler input

uncertainties. We define a function γi : R → R (i = 1, . . . ,m) to model the uncertainties

such that

ϕK(K(x)) = diag(γ1(K1(x)), . . . , γm(Km(x)))K(x),
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where 0 ≤ ϵ ≤ γi(s) ≤ δ for s ∈ R (i = 1, . . . ,m). When ϕK(K(x)) is given, the diffusion

coefficient is transformed into diag
(√

γ1(K1(x)), . . . ,
√

γm(Km(x))
)
B(x). Then, a gain

margin of the diffusion coefficient can be defined.

Definition 3.7

Let z = µ(x) be a function of (3.23). An input v′ = β(x) is said to satisfy a sector

margin (ϵ, δ) and a diffusion coefficient B(x) is said to satisfy a gain margin
(√

ϵ,
√
δ
)
if

the system (3.11) is stabilized in the sense of global asymptotic stability in probability

by z = (ϕv′(β(x)), ϕK(K(x)))T for all ϕv′ and ϕK satisfying (3.43).

Under this definition, the following result is obtained immediately from Theorem 3.5.

Theorem 3.6

Consider the system (3.11). Let V (x) be a stochastic control Lyapunov function of (3.11)

satisfying small control property. Let the control law z = µ(x) be given by (3.23). Then,

the input v′ = β(x) achieves the sector margin (1/2,∞) and the diffusion coefficient B(x)

achieves the gain margin (
√

1/2,∞).

3.5.3 Numerical Example of Inverse Optimality

We confirm the stability margin of the controller designed by the proposed method.

Consider the Brockett integrator given by (3.32). Further, the same stochastic control

Lyapunov function given by (3.33) is used to construct a stabilizing controller. To

describe a input uncertainty to the designed controller, we use the function

µ(x) =

(
ϕv′(β(x))

φK(K(x))

)
, (3.46)

where

ϕv′(β(x)) =

(
β1(x) + 0.2 sin(β1(x))

β2(x) + 0.3 sin(β2(x))

)
φK(K(x)) = 2.0K(x).

Then, we substitute the function µ(x) into (3.23), and construct the controller perturbed

by the input uncertainty.

Figure 3.16 shows the time responses of the closed-loop system with the input uncer-

tainty. The result shows that the states of the closed-loop system converge to the origin,

and that the designed controller provides the robustness to the input uncertainty.

3.6 Summary

This section presented the constructive design method of the noise-based controller

for the stabilization of systems such as nonholonomic systems and non-Euclidean sys-

tems. The design method was developed as a generalization of the result in [55], and
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Fig. 3.16: Time responses of state variables of (3.32) with input uncertainty (3.46)

the stochastic control Lyapunov function is defined for the case where the closed-loop

system with the noise-based controller is modeled by a Stratonovich stochastic differen-

tial equation. The main result in this chapter is that the noise-based controller given by

the proposed design method globally asymptotically stabilizes the equilibrium of a given

system if a stochastic control Lyapunov function exists for the system. Moreover, in this

chapter, the proposed method was applied to the stabilization of the non-Euclidean sys-

tems and the nonholnomic systems. These numerical examples showed the effectiveness

of the proposed method for the stabilization of the systems that cannot be stabilized by

any smooth feedback controllers.

Moreover, this section also showed the stability margin of the controller given by

the design method. The stability margin is due to the fact that the stochastic control

Lyapunov function is a smooth strict control Lyapunov function in the sense of stochas-

tic systems. The stability margin due to strict control Lyapunov function can be an

advantage over other stabilization method for systems that cannot be stabilized by any

smooth feedback controllers. Since time-varying feedback methods use non-strict Lya-

punov functions in the stability analysis, the stability margin might not be guaranteed.

Moreover, since the control Lyapunov function is smooth in this method, the proposed

method can be superior to discontinuous feedback methods. Non-smoothness of control

Lyapunov functions in discontinuous feedback methods often causes the difficulty in the

calculation of the time derivative of the control Lyapunov functions. The smoothness of

the control Lyapunov function leads the simplicity in the analysis. On the other hand,
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the design of the control Lyapunov function for this method becomes difficult in some

cases. The design method of the control Lyapunov function is included in the future

works.

Since the noise-based stabilization method is a variant of the time-varying feedback

methods, slow convergence sometimes occurs in the stabilization. To address the slow

convergence, Chapter 4 studies stochastic homogeneous systems and shows the noise-

based stabilization method which can guarantee the stability similar to exponential

stability for driftless systems.
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Chapter 4. Stochastic Homogeneous

Systems

4.1 Introduction

Homogeneous systems are key gradients for the analysis of nonlinear dynamical sys-

tems [7, 60, 62, 9, 26, 24, 34, 35, 10]. In a short, homogeneous systems are systems that

preserve some properties with respect to a scaling operation in the state space. The

systems have many interesting features, and therefore have many applications.

One of these is that an index, called a homogeneous degree, implies the convergence

speed of asymptotically stable systems. Bhat and Bernstein [10] have shown the rela-

tions between homogeneous systems and finite-time stability. Regarding the Lyapunov

stability theory, Rosier [60] has shown the converse Lyapunov theorem of homogeneous

systems. By this converse Lyapunov theorem, it can be shown that asymptotically sta-

ble homogeneous systems can show exponential convergence, or finite-time convergence,

depending on their homogeneous degrees. Further, M’closkey and Murray [50] showed

the design of homogeneous feedbacks to improve the convergence speed of time-varying

feedbacks for nonlinear driftless systems including nonholonomic systems.

Further, homogeneous systems are useful for the analysis of general nonlinear systems.

In the analysis of nonlinear systems, homogeneous approximation has been developed

(See [25]). When a linearization of a nonlinear system is insufficient to analyze the

original system, the approximation can be used. Using higher order terms, this method

approximates the original systems with homogeneous systems. For the stability analysis,

it has been shown that, if an approximated system is asymptotically stable, the original

system is also locally asymptotically stable, as the case in linearization. The same is

true for small-time local controllability in this approximation.

This chapter presents homogeneous stochastic systems and their stability [31]. To

the best of the author’s knowledge, except for [22], homogeneous stochastic systems

have not been studied. Florchinger [22] have shown the stabilization of homogeneous

stochastic systems defined by the standard dilation. However, recent studies on homo-

geneous systems deal with a larger class of systems, which is given by weighted dilations

including the standard dilation. Thus, this chapter considers homogeneous stochastic

systems with weighted dilation, which can be seen as an extension of deterministic ho-

mogeneous systems with weighted dilations to stochastic systems. Further, as seen in the

literature of deterministic homogeneous systems, this chapter investigates the relations

between their stability and their homogeneity. this chapter shows that stable homoge-
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neous systems whose degree is zero exhibit exponential convergence, and those whose

degree is negative converge to the origin in finite time. Further, this chapter considers

homogeneous stochastic control systems and shows their stabilization. The analysis and

synthesis are shown by using stochastic Lyapunov theory.

The possible application of the results on homogeneous stochastic systems is the

noise-based stabilization. In the noise-based stabilization method, the closed-loop system

sometimes shows slow convergence. As seen in the study of M’closkey and Murray [50],

the homogeneity can be used to improve the convergence of the stabilization. Thus, this

chapter presents a method for designing a controller which guarantees almost sure ρ-

exponential stability. The controller is obtained by redesigning the stochastic controller

given by the method described in Chapter 3.

The remainder of this chapter is organized as follows. Section 4.2 introduces a re-

sult on stochastic systems having non-Lipschitz vector fields. Subsequently, Section 4.3

shows the definition of homogeneous functions and homogeneous vector fields, and their

properties. Then, Section 4.4 presents the definition of homogeneous stochastic systems

in this thesis and the relation between the homogeneity of systems and the convergence

speed of asymptotic stable systems. Section 4.5 presents the stabilization of homoge-

neous stochastic control systems. This section shows a feedback controller that preserves

the homogeneity of the control systems. Section 4.6 shows the improvement method of

the convergence of the stochastic feedback controller given by the method in Chapter 3

for homogeneous driftless systems.

4.2 non-Lipschitz Stochastic Systems

This section introduces a sufficient condition of the existence of a unique solution of

stochastic differential equation whose vector fields are non-Lipschitz. It is well known

that the uniqueness of the solution of a stochastic differential equation is guaranteed

when its vector fields are Lipschitz functions. However, a homogeneous vector field is

sometimes non-Lipschitz. Further, the finite-time convergence of the solution of (4.1)

occurs only if a vector field of a system is a non-Lipschitz [71].

Consider a stochastic system given by

dx = F (x)dt+Σ(x)dw, x(0) = x0, (4.1)

where x ∈ Rn, F : Rn → Rn and Σ : Rn → Rn satisfying F (0) = 0 and Σ(0) = 0, and

w is a one-dimensional standard Wiener process on a probability space (Ω,F ,P). We

show the result in the case of time-invariant systems, which is fitted with our problem

setting. For time-varying systems, see [59].
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Theorem 4.1 ([59])

Suppose that F and Σ are continuous in x. Assume that for N = 1, 2, . . . ,

∥F (x)∥ ≤ c(1 + ∥x∥),
∥Σ(x)∥2 ≤ c(1 + ∥x∥2),
2⟨x1 − x2, F (x1)− F (x2)⟩+ ∥Σ(x1)− Σ(x2)∥2

≤ ρN (∥x1 − x2∥2),

for ∥xi∥ ≤ N , i = 1, 2, where c is a positive constant. The function ρN (u) ≥ 0 (u ≥ 0)

is assumed to be nonrandom, strictly increasing, continuous, and concave such that∫
0+ du/ρN (u) = ∞. Then, for any given x0 ∈ Rn, (4.1) has a pathwise unique strong

solution.

Note that we consider only forward solutions of stochastic differential equations and

this theorem does not guarantee the uniqueness of backward solutions.

4.3 Homogeneity

This section introduces a homogeneous function, a homogeneous vector field, and

their properties. Homogeneous systems are defined by homogeneous vector fields, and

their properties will be the basis of the later results. We consider the homogeneity with

weighted dilation, which is a generalization of the homogeneity with standard dilation.

Let x = (x1, . . . , xn) be an n-dimensional vector, and consider n positive real numbers

r = (r1, r2, . . . rn).

Definition 4.1 (dilation)

Let λ be a positive parameter. A dilation ∆r
λ : Rn → Rn is a mapping such that

∆r
λx = (λr1x1, . . . , λ

rnxn), λ > 0. (4.2)

When ri = 1 for i = 1, . . . , n, the dilation is called a standard dilation, which gives the

standard homogeneity.

Given x ∈ Rn and r = (r1, . . . , rm), the function of λ ∈ R+, ∆r
· x : R → Rn, draws a

curve in Rn, which is called a homogeneous ray. In another view, x is mapped to ∆r
λx by

the scaling operation with respect to λ. Figure 4.1 shows an example of homogeneous

rays in the plane by a dilation ∆r
λx with r = (1, 3).

Then, the definition of a homogeneous function is introduced.

Definition 4.2 (homogeneous function)

A function h : Rn → R is said to be a homogeneous function of degree l with respect to

a dilation ∆r
λ if

h(∆r
λx) = λlh(x) (4.3)

holds.
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Fig. 4.1: Example of homogeneous ray

In a nutshell, a homogeneous function is scaled by the dilation along a homogeneous ray

passing through x with a parameter λ.

We show an example of a homogeneous function.

Example 4.1

Consider a function h : R2 → R given by

h(x1, x2) = x41 + x22. (4.4)

The function is a homogeneous of degree four with r = (1, 2). Indeed,

h(∆r
λ(x1, x2)) = (λx1)

4 + (λ2x2)
2 = λ4(x41 + x22) = λ4h(x1, x2) (4.5)

holds.

Definition 4.3 (homgeneous norm, [50])

A function ρ : Rn → R is called a homogeneous norm with respect to a dilation ∆r
λ if

ρ is a homogeneous function of degree one with respect to ∆r
λ such that ρ(0) = 0 and

ρ(x) > 0 for x ̸= 0.

In general, the homogeneous norm does not satisfy the norm axiom, and this is a pseudo

norm.
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Fig. 4.2: Example of homogeneous norm

Example 4.2

An example of a homogeneous norm is given by

ρ(x) =
(
|x1|

c
r1 + |x2|

c
r2 + · · ·+ |xn|

c
rn

) 1
c
, (4.6)

where c ≥ 1.

Figure 4.2 shows the level sets of a homogeneous norm with r = (1, 3) and c = 6,

which is given by

ρ(x) =
(
|x1|6 + |x2|2

) 1
6
.

Then, the properties of homogeneous functions are shown.

Proposition 4.1 ([60])

Let h : Rn → R be a homogeneous function of degree l with respect to a dilation ∆r
λ.

Then, for x ∈ Rn and i = 1, . . . , n,

∂h

∂xi
(∆r

λx) = λl−ri
∂h

∂xi
(x) (4.7)

holds. Similarly,
∂2h

∂xixj
(∆r

λx) = λl−(ri+rj)
∂h

∂xixj
(x) (4.8)
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is also true for i, j = 1, . . . , n.

Proof

Since the function h(x) is homogeneous of degree l,

h(∆r
λx) = λlh(x) (4.9)

holds. Differentiating the both sides of (4.9) with respect to xi, we obtain

λri
∂h

∂xi
(∆r

λx) = λl ∂h

∂xi
(x) (4.10)

by the chain rule. Then, we obtain the equation (4.7) from the equation (4.10) immedi-

ately. The equation (4.8) is obtained in a similar way.

Proposition 4.2 ([10])

Let h : Rn → R be a continuous and homogeneous function with respect to a dilation

∆r
λ. If h is positive (negative) definite, then h is radially unbounded. Furthermore, if

n > 1 and h is proper, then h is positive (negative) definite.

The next proposition is used in the stability analysis for homogeneous stochastic

systems in this chapter.

Proposition 4.3 ([10])

Suppose that h1, h2 : Rn → R are continuous and homogeneous with degree l1 and l2,

respectively, with respect to a dilation ∆r
λ, and h1 is positive definite. Then, for all

x ∈ Rn,

k1h1(x)
l2
l1 ≤ h2(x) ≤ k2h1(x)

l2
l1 (4.11)

holds, where k1 = min{z:h1(z)=1} h2(z) and k2 = max{z:h1(z)=1} h2(z).

Proof

Choosing a parameter λ as

λ = (h1(x))
− 1

l1 ,

the equation

h1(∆
r
λx) = λl1h1(x) = 1

holds. Then, consider the level set h−1
1 ({1}). Since h1(x) is a continuous and homo-

geneous, then, by Proposition 4.2, the level set h−1
1 ({1}) is compact. Thus, we obtain

that

min
{z:h1(z)=1}

h2(z) ≤ h2(∆
r
λx) ≤ max

{z:h1(z)=1}
h2(z). (4.12)

Recalling that

h2(∆
r
λx) = λl2h2(x) = (h1(x))

− l2
l1 h2(x), (4.13)

we obtain the inequality (4.11) from (4.12) and (4.13). This completes the proof.
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We introduce a homogeneous vector field, which is used to define homogeneous sys-

tems.

Definition 4.4 (homogeneous vector field)

A vector field f : Rn → Rn is said to be homogeneous with degree l with respect to a

dilation ∆r
λ if each fi, i = 1, . . . , n, is a homogeneous function of degree l + ri, i.e.,

fi(∆
r
λx) = λri+lfi(x).

We can obtain the following proposition from the definition of homogeneous vector

fields and Proposition 4.1.

Proposition 4.4

If a vector field f : Rn → Rn is a homogeneous vector field of degree l with respect to

∆r
λ and h : Rn → Rn is a homogeneous function of degree m with respect to ∆r

λ, then

Lfh(x) is a homogeneous function of degree l +m with respect to ∆r
λ.

4.4 Homogeneous Stochastic System and its Stability

This section defines a homogeneous stochastic system, using homogeneous vector

fields, and shows the relations between the homogeneity and the stability of homogeneous

stochastic systems. Further, examples of asymptotically stable homogeneous systems are

also shown.

4.4.1 Definition of Homogeneous Stochastic System

Homogeneous stochastic systems are defined as follows.

Definition 4.5 (homogeneous Itô stochastic system)

Consider a stochastic system given by an Itô stochastic differential equation

dx = f(x)dt+ σ(x)dw, (4.14)

where x ∈ Rn, f : Rn → Rn, σ : Rn → Rn, and w is a one-dimensional standard Wiener

process. The system (4.14) is said to be a homogeneous Itô stochastic system of degree

l with respect to a dilation ∆r
λ if the vector fields f and σ are homogeneous with respect

to the dilation ∆r
λ of degree l and l/2, respectively.

Definition 4.6 (homogeneous Stratonovich stochastic system)

Consider a stochastic system given by a Stratonovich stochastic differential equation

dx = f(x)dt+ σ(x) ◦ dw, (4.15)

where x ∈ Rn, and f , g, σ, w are same as Definition 4.5. The system (4.15) is said to be

a homogeneous Stratonovich stochastic system of degree l with respect to a dilation ∆r
λ

if the vector fields f and σ are homogeneous with respect to the dilation ∆r
λ of degree l

and l/2, respectively.
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Remark 4.1

Definition 4.5 with a weighted dilation is a generalization of a homogeneous stochastic

system with standard dilation as described in [22]. This thesis also considers homoge-

neous stochastic systems defined by a Stratonovich stochastic differential equation.

Remark 4.2

In the following, we mainly consider homogeneous Itô stochastic homogeneous systems.

Further, the term, a homogeneous stochastic system, means a homogeneous Itô stochas-

tic system unless mentioned otherwise. Note that the following results for homogeneous

Itô stochastic homogeneous systems also hold for homogeneous Stratonovich stochastic

homogeneous systems.

4.4.2 Stability of Stochastic Homogeneous System

This subsection presents relations between the homogeneity of stable systems and

their convergence speed. This subsection first provides two definitions of stability con-

cerned with convergence speed of systems, almost surely ρ-exponential stability and

finite-time stability in probability. Then, this subsection shows that stable homoge-

neous systems can exhibit these stabilities depending on their degree of homogeneity.

The results presented here can be seen as counterparts to existing results of homogeneous

deterministic systems [7, 10].

Definitions of Stability

First, two definitions of stability are presented, which relate to the convergence of

speed of systems. The following definitions are not restricted to homogeneous systems,

thus, the definitions are stated for the general stochastic system (4.1).

Definition 4.7 (almost sure ρ-exponential stability)

The origin of (4.1) is said to be almost surely ρ-exponentially stable if there exists γ > 0

such that for ∀x0 ∈ Rn,

ρ(x(t)) < Kx0e
−γt for ∀t ≥ 0, a.s.

holds, where ρ(x) is a homogeneous norm with respect to a dilation ∆r
λ, and Kx0 is an

almost-surely finite random variable.

The stability for stochastic systems is a counterpart to ρ-exponential stability of deter-

ministic systems [50]. This stability also can be seen as a generalization of almost sure

exponential stability with homogeneous norms [37].

Then, we define the finite-time stability in probability.

Definition 4.8 (finite-time stability in probability [71])

The origin of (4.1) is said to be finite-time stable in probability if the origin is stable in
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probability, and for any initial value x0 ∈ Rn \ {0},

Tx0 = inf {t : x(t) = 0}

is finite almost surely.

Results on Stability of Homogeneous System and Homogeneity

We suppose that f and σ in (4.14) are C0 and satisfy f(0) = 0 and σ(0) = 0 in the

following.

To discuss the relation between the stability of homogeneous stochastic systems and

their homogeneity, we define homogeneous Lyapunov functions.

Definition 4.9 (homogeneous Lyapunov function)

A function V : Rn → R is said to be a (stochastic) homogeneous Lyapunov function of

the system (4.1) if V (x) is a global Lyapunov function of (4.1) in the sense of Definition

2.25 and is also a homogeneous function with respect to a dilation ∆r
λ.

We can obtain the following result on the stability of homogeneous systems whose

degree is zero.

Theorem 4.2

Consider a homogeneous stochastic systems of degree zero with respect to a dilation

∆r
λ, which is given by (4.14). Further, assume that there exists a homogeneous Lya-

punov function V (x) of the system (4.14) of degree m with respect to ∆r
λ, and LV (x) is

continuous. Then, the origin of the system (4.14) is almost surely ρ-exponentially stable.

To prove this theorem, we use the following lemma in the proof.

Lemma 4.1

Assume that there exists a Lyapunov function V (x) of a stochastic system (4.1) such

that

k1ρ(x)
p ≤ V (x) ≤ k2ρ(x)

p, (4.16)

LV (x) ≤ −k3ρ(x)
p, (4.17)

where k1, k2, k3 > 0, p > 0, and ρ(x) is a homogeneous norm with respect to the dilation

∆r
λ. Then, the origin of the system (4.1) is almost surely ρ-exponentially stable.

Remark 4.3

This lemma can be seen as a generalization of Theorem 5.15 in [37] on almost sure

exponential stability to almost surely ρ-exponential stability.

Proof

First, define a function

W (t, x) = V (x) exp

(
k3t

k2

)
. (4.18)
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From (4.16) and (4.17), we have

LW (t, x) =
k3
k2

exp

(
k3t

k2

)
V (x) + exp

(
k3t

k2

)
LV (x)

≤ 0.

This implies that W (t, x) is a supermartingale. Noting that W (t, x) > 0, x ̸= 0, for

all x0 ∈ Rn, according to the supermartingale convergence theorem (Theorem 2.2),

W (t, x(t)) converges to a finite limit almost surely. Thus, there exists an almost surely

finite random variable A′
x0

> 0 such that

A′
x0

= sup
t

W (t, x(t)) < ∞. (4.19)

It follows from (4.18) and (4.19) that

V (x(t)) ≤ A′
x0

exp

(
−k3t

k2

)
.

Using (4.16) and (4.17) again, there exist Ax0 > 0 and γ > 0 such that

ρ(x(t)) ≤ Ax0 exp(−γt),

which completes the proof.

We give the proof of Theorem 4.2.

Proof

Since the function V (x) is homogeneous of degree m and continuous, it follows from

Proposition 4.3 that

k1ρ(x)
m ≤ V (x) ≤ k2ρ(x)

m,

where k1 = min{z:ρ(z)=1} V (z) and k2 = max{z:ρ(z)=1} V (z). Further, since the system

is homogeneous of degree zero, according to Proposition 4.4, LV (x) is a homogeneous

function of degreem. In addition, from the condition of the theorem, LV (x) is continuous

and negative definite. Thus, according to Proposition 4.3, since the homogeneous norm

ρ(x) is also continuous, there exists a constant k3 = −max{z:ρ(z)=1} LV (z) > 0, and

LV (x) ≤ −k3ρ(x)
m

holds. Then, it follows from Lemma 4.1 that the origin is almost surely ρ-exponentially

stable.

Theorem 4.3

Consider a homogeneous system whose degree is negative, l < 0, with respect to a

dilation ∆r
λ, which is given by (4.14). Assume that there exists a homogeneous Lyapunov

function V (x) of (4.14) of degree m (> −l) with respect to the dilation ∆r
λ, and LV (x)

is continuous. Then, the origin of the system (4.14) is finite-time stable in probability.

58



Chapter 4. Homogeneous Systems 4.4. Stability

We use the following lemma in the proof of Theorem 4.3.

Lemma 4.2 ([71])

Suppose that there exists a Lyapunov function of the system (4.1), c > 0, and 0 < q < 1

such that

LV (x) ≤ −cV (x)q.

Then, the origin of the system (4.1) is finite-time stable in probability.

Then, the proof of Theorem 4.3 are presented.

Proof

Since the homogeneous degree of the system (4.14) is l ( < 0) and the homogeneous

degree of V (x) is m ( > −l), it follows from Propositions 4.1 and 4.4 that LV (x) is a

homogeneous function of degree l + m. Recalling that LV (x) is continuous, according

to Proposition 4.3, there exists a constant k4 = −max{z:V (z)=1} LV (z) > 0 and

LV (x) ≤ −k4V (x)
l+m
m

holds. Because 0 < (l + m)/m < 1, according to Lemma 4.2, the origin is finite-time

stable in probability.

4.4.3 Examples of Almost Sure ρ-Exponentially Stable System and

Finite-Time Stable System

This subsection shows examples of systems that are almost sure ρ-exponentially stable

or finite-time stable in probability.

First, a simple example of a one-dimensional system is shown, which can exhibit both

stabilities depending on its parameter.

Example 4.3

Consider a system

dx = −sgn(x)|x|αdt+ 0.4|x|βdw, (4.20)

where x ∈ R and w is a one-dimensional standard Wiener process. For the system (4.20),

there exists a Lyapunov function candidate V : R → R

V (x) =
1

2
x2.

Assume that α = 1/2 and β = 3/4. Then, the system becomes homogeneous with degree

−1/2 with repect to the standard dilation, because f and σ have the degree of −1/2

and −1/4, respectively. Thus,

LV (x) = −0.92|x|
3
2

holds. According to Theorem 4.3, the origin of this system is finite-time stable in

probability. In this case, although the vector fields are not Lipschitz, a unique solution
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Fig. 4.3: Time responses of states of (4.20) in Example 4.3

exists according to Theorem 4.1. In addition, consider the case when α = 1 and β = 1.

In this case, the system (4.20) becomes homogeneous of degree zero with respect to

the standard dilation. Thus, according to Theorem 4.2, the origin is almost surely ρ-

exponentially stable when α = 1 and β = 1. Figure 4.3 shows sample trajectories of x(t)

for the both cases with x(0) = 2.

Then, a system exhibiting almost sure ρ-exponential stability is presented in the next

example.

Example 4.4

Consider a system given by

dx1 = −x1dt+ 0.1x1dw,

dx2 = (x31 − x2)dt+ 0.5x31dw,

where (x1, x2) ∈ R2 and w is a one-dimensional standard Wiener process. This system

is a homogeneous system of degree zero with respect to r = (1, 3). There exists a

homogeneous Lyapunov function given by

V (x1, x2) = x61 − x31x2 + x22.

Therefore, the origin of this system is almost surely ρ-exponentially stable. A sample

trajectory with (x1(0), x2(0)) = (2, 1) is shown in Fig. 4.4.

Although the following example is somewhat artificial, the system exhibits finite time

stability in probability.
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Fig. 4.4: ρ-exponential stable system in Example 4.4

Example 4.5

Consider a homogeneous systems whose degree is −1/2 for r = (1, 1), which is given by

dx1 =− sgn(x1 − x2)|x1 − x2|
1
2dt+ 0.3| − x1 + 2x2|

3
4dw,

dx2 =− sgn(−x1 + 2x2)| − x1 + 2x2|
1
2dt+ 0.2|x1 − x2|

3
4dw,

(4.21)

where (x1, x2) ∈ R2 and w is a one-dimensional standard Wiener process. We can obtain

a homogeneous Lyapunov function of this system, given by

V (x1, x2) = x21 − 2x1x2 + 2x22.

This function is homogeneous of degree two. Since the degree of system is negative and

a homogeneous Lyapunov function exists, according to Theorem 4.3, the origin of this

system is finite-time stable in probability. The state x converges to the origin in finite

time with (x1(0), x2(0)) = (1, 1.2) as shown in Fig. 4.5.

4.5 Stabilization of Homogeneous Stochastic System

By the results on the stability of homogeneous stochastic systems in the previous

section, we can consider the stabilization of homogeneous stochastic control systems. In

the following results, we show a stabilizing controller preserving homogeneity of systems.

By the homogeneity, closed-loop systems with the controller can exhibit almost surely

ρ-exponential stabilization or finite-time stabilization in probability depending on the

homogeneous degree.
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Fig. 4.5: Time responses of states of (4.21) in Example 4.5

4.5.1 Definition of Homogeneous Stochastic Control System

First, homogeneous stochastic control systems are defined.

Definition 4.10 (homogeneous stochastic control system)

Consider a stochastic control system

dx = f(x)dt+ g(x)udt+ σ(x)dw, (4.22)

where x ∈ Rn, u ∈ R is a input, f : Rn → Rn, g : Rn → Rn, σ : Rn → Rn, and w is a one-

dimensional standard Wiener process. The system (4.22) is said to be a homogeneous

Itô stochastic control system of degree (l, k) with respect to a dilation ∆r
λ if the vector

fields f , g, and σ are homogeneous with respect to the dilation ∆r
λ of degree of l, k, and

l/2, respectively. With the same settings, a stochastic system given by a Stratonovich

stochastic system

dx = f(x)dt+ g(x)udt+ σ(x) ◦ dw, (4.23)

is said to be a homogeneous Stratonvich stochastic system.

In the remainder of this section, as in Section 4.4, we mainly consider homogeneous

Itô stochastic control systems, and the word, a homogeneous stochastic control system,

means homogeneous Itô stochastic control systems unless mentioned otherwise.

4.5.2 Results on Stabilization of Homogeneous Stochastic System

In this subsection and the following subsections, we consider a homogeneous stochas-

tic control system given by (4.22), with the vector fields f , g, and σ are C0 and satisfy

f(0) = 0 and σ(0) = 0.
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To discuss the stabilization of homogeneous control systems, we define homogeneous

control Lyapunov functions.

Definition 4.11 (homogeneous control Lyapunov function)

A function V : Rn → R is said to be a homogeneous control Lyapunov function of the

stochastic control system (4.22) if V (x) is homogeneous with respect to a dilation ∆r
λ,

C2, positive definite, and radially unbounded, and if it satisfies

L0V (x) < 0 if LgV (x) = 0,

where

L0V (x) = LfV (x) +
1

2
σ(x)T

∂

∂x

[
∂V

∂x

]T
σ(x).

The function is a control Lyapunov function which is homogeneous. Although ho-

mogeneous stochastic systems can be stabilized by using general control Lyapunov

functions, homogeneous systems can be stabilized in the sense of almost surely ρ-

exponentially stable or finite-time stable, depending on their homogeneous degree, by

using homogeneous control Lyapunov function. Then, we can obtain the following result.

Theorem 4.4

Consider a stochastic homogeneous control system given by (4.22) where the degrees of

the vector fields f , g, and σ are l, k (< l), and l/2, respectively, with respect to a dilation

∆r
λ. Suppose that there exists a homogeneous control Lyapunov function of (4.22) of

degree m with respect to the dilation ∆r
λ. Then, there exists a constant β > 0 such that

the feedback law

u = α(x) = −βρ(x)pLgV (x),

where p = l − m − 2k, stabilizes the origin of the system of (4.22) in the sense of

global asymptotic stability in probability. Further, if l = 0, the origin of the closed-loop

system of (4.22) becomes almost surely ρ-exponentially stable. If l < 0, the origin of the

closed-loop system of (4.22) becomes finite-time stable in probability.

Remark 4.4

The feedback law α(x) in Theorem 4.4 is continuous since it is homogeneous of degree

l − k (> 0).

Proof

Considering a feedback law given by

u = α(x) = −βρ(x)pLgV (x),

where β > 0, the infinitesimal generator of a homogeneous control Lyapunov function

V (x) for the closed-loop system becomes

LV (x) = L0V (x)− βρ(x)pLgV (x)2. (4.24)
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If L0V (x) is negative definite, for any value of β > 0, the origin of the closed-loop system

is globally asymptotically stable in probability. In the following, we consider the case

that L0V (x) is not negative definite. By the condition of the theorem, L0V (x) and

ρ(x)pLgV (x)2 are homogeneous functions of degree l+m. According to Proposition 4.3,

L0V (x) ≤ k1ρ(x)
m+l

hold, where k1 = max{z:ρ(z)=1} L0V (z). In addition, there exists a negative constant c

such that

max
{z:ρ(z)=1 and LgV (z)=0}

L0V (z) < c < 0.

Note that max{z:ρ(z)=1 and LgV (z)=0} L0V (z) < 0 holds by the definition of a homogeneous

control Lyapunov function. Further, there exists a positive constant

k2 = min
{z:ρ(z)=1 and L0V (z)≥c}

ρ(z)p(LgV (z))2.

Thus, there exists the parameter β > k1/k2 such that LV (x) becomes negative definite

on the compact set {x : ρ(x) = 1}. It follows from the nature of homogeneous functions

that for any x ∈ Rn \ {0}, LV (x) < 0 with β > k1/k2, and the origin of the closed-

loop system is globally asymptotically stable in probability owing to Theorem 2.8. The

second part of the theorem follows from Theorems 4.2 and 4.3, and the proof is complete.

4.5.3 Example of Stabilization of Homogeneous System

We show two examples of the stabilization of homogeneous stochastic control systems

by using the feedback law presented above.

Example 4.6

Consider a control system given by

dx1 = (x1 − 14x32)dt,

dx2 = udt+ 0.5x2dw,
(4.25)

where (x1, x2) ∈ R2, u ∈ R is the input, and w is a one-dimensional standard Wiener

process. This system is homogeneous with degree (0,−1) for r = (3, 1). A homogeneous

control Lyapunov function is given by

V (x1, x2) = 3x
4
3
1 − 2x1x2 + 4x42.

Then, we obtain a feedback law

u = α(x) = −β

(
−2x1 + 16x32

)
|x1|

2
3 + x22

, (4.26)

where β = 145. Under the feedback law, the origin becomes almost surely ρ-exponentially

stable. Fig. 4.6 shows that x(t) of the closed-loop system converge to the origin when

(x1(0), x2(0)) = (1.0, 0.5).
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Fig. 4.6: Time responses of states of (4.25) with (4.26) in Example 4.6

Remark 4.5

The system in example 4.6 is obtained by adding a diffusion term to a system in [27]. A

system without a diffusion term in (4.25) is often discussed in the literature of homoge-

neous deterministic systems [34].

Then, the example of finite-time stabilization is shown.

Example 4.7

In this example, we consider a control system given by

dx1 = |x1|
3
4dt+ udt+ 0.1|x1|

7
8dw

dx2 =
(
0.5sgn(x1)|x1|

1
4 − sgn(x2)|x2|

1
2

)
dt+ 0.1|x2|

3
4dw

(4.27)

where (x1, x2) ∈ R2, u ∈ R is the input, and w is a one-dimensional standard Wiener

process. The system (4.27) is degree (−1/2,−1/4) homogeneous system with respect to

r = (2, 1). A homogeneous control Lyapunov function for (4.27) is a function given by

V (x1, x2) = x21 − 2x1x
2
2 + 2x42,

whose degree is four. Since a degree of the system (4.27) is less than zero, we can obtain

a finite-time stabilizing controller,

α(x) =
4(2x1 − 2x22)

(|x1|+ |x2|2)
1
4

Figure 4.7 shows the finite-time stabilization of the closed-loop system with the initial

value (x1(0), x2(0)) = (1.0,−1.5).
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Fig. 4.7: Time responses of (4.27) with 4.7 in Example 4.7

4.6 Almost Sure ρ-Exponential Stabilization Using Homo-

geneity

This section presents a method for designing stabilizing controllers with noise for

nonlinear driftless systems, which guarantee almost sure ρ-exponential stability by using

homogeneity, for the noise-based stabilization method in Chapter 3. For time-varying

feedback controllers, M’Closkey and Murray [50] showed a method for exponential stabi-

lization of nonlinear driftless systems to improve the convergence speed. In their method,

a stabilizing feedback controller is converted to a homogeneous feedback controller. As in

the case of time-varying feedback controllers, stochastic feedback controllers described in

Chapter 3 sometimes show slow convergence. Therefore, this section presents a design

method of stochastic feedback controllers guaranteeing the almost sure ρ-exponential

stability based on the method of [50].

In this section, we consider the stabilization of a homogeneous driftless system

ẋ = g(x)u, (4.28)

where g : Rn → Rn×m, each column of g(x) is homogeneous vector field of degree −1

with respect to ∆r
λ, and u ∈ Rm . A class of nonholonomic systems such as the Brockett

integrator and chained systems is modeled by (4.28). As in Chapter 3, we consider the

stabilization of (4.28) by using the feedback controller with noise

udt = v(x)dt+B(x) ◦ dw, (4.29)

where v : Rn → Rm, B : Rn → Rm, and w is a one-dimensional standard Wiener process.

The closed-loop system is given by

dx = g(x)v(x)dt+ g(x)B(x) ◦ dw, (4.30)
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and the functions v(x) and B(x) is designed to almost surely ρ-exponentially stabilize

the origin of (4.30)

To show the design method, we make the following assumption.

Assumption 4.1

There exists a stochastic control Lyapunov function V (x) for the system (4.28) such

that, for each x in some level surface of V (x), LνV (x) > 0 holds.

Almost surely ρ-exponentially stabilizing controller is designed as follows. We first

obtain a feedback controller with noise by using (3.10) with (3.17), (3.19), and (3.23) in

Chapter 3. Then, using obtained functions v′ = β(x) and B(x) in (3.10), we obtain the

following functions

β̃(x) =

ϕ(x)β(∆r
γ(x)x) x ̸= 0

0 x = 0
, (4.31)

B̃(x) =

ϕ(x)B(∆r
γ(x)x) x ̸= 0

0 x = 0,
(4.32)

where γ(x) is obtained by solving the following equation

F (λ, x) = V (∆r
λx)− C = 0, (4.33)

with respect to λ, and ϕ(x) is defined as

ϕ(x) =

 1
γ(x) x ̸= 0

0 x = 0
. (4.34)

Furthermore, we use the notation

x̄ = ∆γ(x)x,

in the following. Then, the feedback guaranteeing almost sure ρ-exponential stability is

given as

udt = ṽ(x)dt+ B̃(x) ◦ dw,
ṽ(x) = β̃(x) +R(x),

R(x) =
1

2

(
− 1

LνV (x̄)
L(g·B)V (x̄)− LνLνV (x̄)

LνV (x̄)2
L(g·B)V (x̄) +

L(g·B)LνV (x̄)

LνV (x̄)

+
LνL(g·B)V (x̄)

LνV (x̄)

)
B̃(x)− 1

2
ϕ(x)

∂B

∂x
(x̄)g(x̄)B(x̄).

(4.35)

Using the feedback given by (4.35), we obtain the following the result.

Theorem 4.5

If the system (4.28) satisfies Assumption 4.1, the feedback (4.35) with (4.31) and (4.32)

almost surely ρ-exponentially stabilizes the origin.
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Proof

We first show that ϕ(x) is twice continuously differentiable except at the origin, positive

definite, and proper, as shown in [50]. From the equation (4.33) and Assumption 4.1,

we obtain
∂F

∂λ
(λ, x) =

1

λ
LνV (x̄) > 0. (4.36)

Since V (x) is twice continuously differentiable, by using the implicit function theorem,

it is shown that γ(x) is twice continuously differentiable except at the origin. Thus, we

can conclude that ϕ(x) is twice continuously differentiable except at the origin.

Then, we show the positive definiteness and radial unboundedness of ϕ(x). By the

definition of dilation, γ(x) > 0 for x ̸= 0. Since ϕ(x) is given by (4.34), ϕ(x) is positive

definite. Moreover, according to Proposition 4.2, ϕ(x) is radially unbounded.

Next, we show the homogeneity of ϕ(x) by the homogeneity of γ(x). Assume that,

for some x ∈ Rn, γ(x) is obtained by solving

F (λ, x) = 0,

that is, λ = γ(x). Then, for some σ > 0, we consider x′ ∈ Rn so that x′ = ∆r
σx. Solving

F (λ′, x′) = 0,

we obtain λ′ = γ(x′). When we set x̄ = ∆r
λx, we also have x̄ = ∆r

λ′x′ = ∆r
λ′∆r

σx. Thus,

we obtain
∆r

λx = ∆r
λ′∆r

σx

= ∆r
λ′·σx,

and λ = λ′ · σ. This shows
γ(∆r

σx) = σ−1γ(x). (4.37)

By using (4.37), we can conclude that γ(x) is homogeneous of degree −1, and that ϕ(x)

is homogeneous of degree one.

Finally, we show that L̃ϕ(x) becomes negative definite and homogeneous of degree

one, where L̃ denotes the infinitesimal generator of the closed-loop system. By using the

feedback (4.35), we obtain

L̃ϕ(x) = ϕ(x)

LνV (x̄)

(
LgV (x̄)β(x̄) +

1

2
B(x̄)TH(x̄)B(x̄)

)
.

According to Theorem 3.3,

LgV (x̄)β(x̄) +
1

2
B(x̄)TH(x̄)B(x̄) < 0

holds. Thus, we can conclude that L̃ϕ(x) is negative definite. Moreover, since the

functions in (4.35) are homogeneous of degree one, the closed-loop system becomes

homogeneous of degree zero. Therefore, the origin is almost surely ρ-exponentially stable

according to Theorem 4.2. This completes the proof.
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A numerical example is shown for almost sure ρ-exponential stabilization of Brockett

integrator (3.32) by using the design method. The vector fields of the Brockett integrator

is homogeneous of degree −1 with respect to r = (1, 1, 2). Using the stochastic control

Lyapunov function given by (3.33), we obtain the stabilizing feedback (3.10) with (3.17),

(3.19), and (3.23). To obtain the feedback, we use the functions

ξ(α)2 =

tanh(−λ3), if λ < 0

0, if λ ≥ 0

α(x)2 = x21 + x22 + x23.

Finally, by using this feedback, we obtain the feedback (4.35) with (4.31) and (4.32).

Figure 4.8 shows the numerical result using the designed feedback. In Fig. 4.8, the

state variables converge to the origin when x(0) = (0, 0, 1.5). For comparison, the

stabilization results by (3.10) is shown in Fig. 4.9 with the same settings. In this case,

the state variables show the slow convergence. Thus, we can confirm the effectiveness of

the feedback by the design method. Figure 4.10 shows the time responses of ṽ(x) and

B̃(x), and these values converge to zero.

4.7 Summary

This chapter considered the homogeneous stochastic systems, and showed the rela-

tion between the homogeneous degree and the convergence speed of stable homogeneous

systems. The homogeneous stochastic systems are defined as the counterpart of the

homogeneous deterministic systems. As a main result, this chapter showed that asymp-

totically stable systems whose homogeneous degree is zero converge to the origin in

the sense of almost surely ρ-exponentially stable, and those whose degree is negative

converge to the origin in finite time.

Moreover, this chapter also presented the stabilization of homogeneous stochastic

control systems by using a feedback law that preserves the homogeneity. By the stability

results, the feedback law can guarantee the convergence speed, such as almost surely ρ-

exponentially stable and finite-time stability in probability.

Finally, Section 4.6 presented the design method of a stochastic feedback controller

for driftless homogeneous systems, which guarantees the almost sure ρ-exponential sta-

bility. The design method converts a stochastic feedback controller given by the method

in Chapter 3 into a controller using the homogeneity, based on the method of M’Closkey

and Murray [50]. This method was developed to improve the convergence speed when a

stochastic feedback controller given by the method in Chapter 3 provides slow conver-

gence. The numerical example of the stabilization of the Brockett integrator showed the

effectiveness of the proposed method compared with the method in Chapter 3.
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Fig. 4.8: Time responses of state variables of (3.32) with (4.35)
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Fig. 4.9: Time responses of state variables of (3.32) with (3.10)
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Chapter 5. Stochastic Extremum

Seeking

5.1 Introduction

This chapter shows a stochastic extremum seeking method as a noise-based method

[30, 29].

Extremum seeking method is a non-model based method for real-time optimization

[2, 53, 67]. The method solves the optimization problem in continuous time. The ex-

tremum seeking method is a non-model based optimization method, that is, the method

estimates the optimum value of objective functions using the input values and the out-

put values of the systems. Since the exact models are not required, the method can

be applied to the real-time optimization. The method can also be applied to the op-

timization with uncertainties, such as parameter changes due to the the aging of the

system. Although extremum seeking method is an old-established method [11], it has

again received attention in the literature of the control engineering after the stability

analysis by Krstić and Wang [38]. The methods add dither signal to systems to ap-

proximate the gradients of the objective functions. Previous methods use the periodic

signals to approximate the gradients as a dither signal. However, the estimation of the

gradients might become difficult because the interaction between periodic signals when

the number of optimization parameters becomes large.

In recent years, stochastic extremum seeking methods have been studied [40, 44]. The

first study of a stochastic extremum seeking was related to discrete systems [44] and a

discrete extremum seeking algorithm in stochastic environments was applied to mobile

networks in other studies [65]. An extremum seeking algorithm for continuous time

systems with stochastic dither signal is also proposed in [40]. The stochastic extremum

seeking methods are expected to deal with the optimization with many optimization

parameters. In addition to the motivation, another motivation is the use of stochastic

noise associated with systems for extremum seeking algorithms. The use of noise associ-

ated with systems leads to the simplification of the implementation of extremum seeking

algorithms.

We propose a stochastic extremum seeking method that can guarantee the conver-

gence of the estimation variable of the optimum. In previous extremum seeking meth-

ods, the residuals remain even when the estimation variables approach the optimum

sufficiently. In this study, we use a Wiener process to approximate the gradients of the

objective function. Further, we introduce a state-dependent parameter into the update
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mechanism in the proposed method based on the stochastic Lyapunov stability analysis.

Thus, the proposed method can guarantee the convergence of the estimation variable.

In the remainder of this chapter, followed by the problem setting of the optimization,

the proposed method is shown. The three schemes are proposed, the basic scheme, the

annealing scheme, and the high-pass filter scheme. The basic scheme is a fundamental

scheme of other two schemes, and the high-pass filter scheme can guarantee the con-

vergence. Then, Section 5.5 presents the convergence analysis based on the stochastic

Lyapunov stability theory. Further, Section 5.6 extends the proposed method for the

multivariate problems. Section 5.7 shows numerical examples, and Section 5.8 gives the

conclusion.

5.2 Problem Setting

This chapter deal with the optimization problem. In the extremum seeking meth-

ods, the optimum value of a unknown objective function is estimated by adding the

dither signal. We deal with single parameter problems in the following, and deal with

multivariate problem in Section 5.6. Moreover, in the following, we deal with the opti-

mization of static systems, while previous extremum seeking methods can deal with the

optimization of dynamical systems.

Consider a parameter θ ∈ R, and an objective function φ(θ) : R → R. Suppose that

the objective function has an optimum value θ∗, that is,

θ∗ = max
θ∈R

φ(θ),

and we make the following assumption.

Assumption 5.1

The objective function φ(θ) is twice continuously differentiable, and moreover,

∂φ(θ∗)

∂θ
= 0 and

∂φ(θ)

∂θ
̸= 0 for θ ̸= θ∗ (5.1)

hold.

The objective of extremum seeking methods is to estimate the optimum value θ∗ by

updating the estimation parameter θ̂ based on the approximation of the gradient of the

objective function φ(θ).

Remark 5.1

These assumptions are natural, as required in hill-climbing-like methods. Although

hill-climbing methods are used in optimization problems in discrete time, the proposed

method is developed for problems in continuous time.
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5.3 Previous Extremum Seeking Algorithms

This section reviews the previous extremum seeking methods for the comparison to

the proposed method. Although these methods can be applied to dynamical systems,

methods for the static systems are shown for the comparison to the proposed method.

A standard deterministic extremum seeking method [2] is summarized as follows.

This method uses periodic signals to approximate the gradients of objective functions.

In this method, an update law of the estimation variable θ̂ is given by

dθ̂

dt
= K1

(
φ(θ̂ +K2 sin(ωt))− P

)
sin(ωt),

dP

dt
= −aP + aφ

(
θ̂ +K2 sin(ωt)

)
,

where K1,K2, a, ω > 0. The variable P acts as a variable of a high-pass filter in this

update law, which is introduced to approximate the gradients more accurately.

A stochastic extremum seeking method [40] is described as follows. In contrast with

the deterministic algorithms, this method uses a stochastic process to estimate the gra-

dients of objective functions. The update law of the estimation variable in the stochastic

extremum seeking method of [40] is given by

dθ̂

dt
= K1

(
φ(θ̂ +K2 sin(η))− P

)
sin(η),

dP

dt
= −aP + aφ(θ̂ +K2 sin(η)),

where K1,K2, a > 0, and P is a variable of a high-pass filter as with the above. The

dither signal η is the Ornstein-Uhlenbeck process which is the solution of the equation

ϵdη = −ηdt+
√

ϵqdW

with ϵ, q > 0, and W is a one-dimensional standard Wiener process. In the following,

an update mechanism is shown, which uses a state-dependent parameter in a high-pass

filter to guarantee the convergence of the estimation variable, in contrast with the above

methods.

5.4 Proposed Extremum Seeking Algorithms

This section presents there schemes, which are a basic scheme, an annealing parameter

scheme, and a high-pass filter (HPF) scheme. Extremum seeking methods approximates

the gradient of objective functions by using dither signal. To approximate the gradient,

the proposed methods use Wiener processes. The basic scheme is a simple scheme

to approximate the gradient, and is a basis of the other two schemes. Moreover, the

annealing parameter scheme is developed by introducing an annealing parameter to the

simple scheme in order to reduce the residuals of the estimation parameter. The HPF

scheme can guarantee the convergence of a estimation parameter to the optimum value

by using a high-pass filter with variable parameters.
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5.4.1 Basic Scheme

The system of the basic scheme is shown in Figure 5.1. In this method, we use a

one-dimensional standard Wiener process W to extract the gradient of the objective

function. The update law of the estimation variable θ̂ is given by

dθ̂ = K1φ(θ̂ +K2dW )dW, (5.2)

where K1,K2 > 0 are design parameters, and W is a one-dimensional standard Wiener

process.

The following indicates that the update law can extract the gradients of the objective

functions. We obtain the Taylor expansion of (5.2) as

dθ̂ = K1φ(θ̂)dW +K1K2
∂φ

∂θ

∣∣∣∣
θ=θ̂

(dW )2 + · · · . (5.3)

Moreover, we have

dθ̂ = K1K2
∂φ

∂θ

∣∣∣∣
θ=θ̂

dt+K1φ(θ̂)dW, (5.4)

using Itô’s rules ((dW )2 = dt and (dW )(dt) = 0). Thus, we have the stochastic differ-

ential equation (5.4) from the parameter update law.

Equation (5.4) implies the approximation of the gradient of the objective function

φ(θ). The first term on the right hand side of (5.4), called the drift term, consists of

the gradient the objective function. The second term, called the diffusion term, consists

of the objective function. The drift term drives the estimation parameter θ̂ to the

optimum. Thus, this implies that the estimation variable is updated based on the value

of the gradient of the objective function.

Further, note that the parameter K1 should be small and the parameter K2 should

be large. In (5.4), since the diffusion term determines the effect of noise, the update of

the estimation variable is disturbed by its value. Thus, the parameters K1, K2 should

be determined so that the diffusion term has little effect on the update law because the

function φ(θ̂) is assumed to be unknown.

Although the estimation variable θ̂ does not converged to the optimum in general,

we can obtain the probability density of θ̂ instead. The Fokker-Planck equation of (5.4)

is given by

∂p

∂t
= − ∂

∂θ

(
K1K2

∂φ

∂θ
p(t, θ̂)

)
+

1

2

∂2

∂θ2

((
K1φ(θ̂)

)2
p(t, θ̂)

)
. (5.5)

Remark 5.2

The update law (5.2) is considered as the limit of the following discrete time system.

For an interval of time [a, b] and its partition a = t0 < t1 < t2 < · · · < tn−1 = b, the

parameter update law in the discrete time system is given by

∆θ̂i = K1φ(θ̂i +K2∆Wi)∆Wi, (5.6)
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system

φ(θ)

1

s
+ ×

dW dW

φ(θ)

θ̂

θ

Fig. 5.1: Basic Scheme of Extremum Seeking Method

where ∆θ̂i = θ̂(ti+1) − θ̂(ti) and ∆Wi = W (ti+1) − W (ti). We see that the parameter

update law (5.2) is the limit of (5.6) as the limit n → ∞ so that maxi(ti+1 − ti) → 0.

5.4.2 Annealing Parameter Scheme

We developed an annealing parameter scheme to reduce fluctuations in the basic

scheme. The parameter K1 in (5.2), which was a constant, is the time-varying parameter

decreasing with time in the annealing parameter scheme. Decreasing the value of K1

makes the effect of noise small in time in the update law.

Figure 5.2 shows the system of the annealing parameter scheme. The parameter

update law of the estimation parameter θ̂ in the annealing parameter scheme is given by

dθ̂ = K1φ(θ̂ +K2dW )dW, (5.7)

dK1

dt
= −ϵK1, (5.8)

where K2, ϵ are the constant parameters. The parameter ϵ determines the attenuation

rate of the value K1, and it should be much smaller than K1, K2 to avoid the early

suspension of the estimation variable. However, since the function φ(θ) is unknown, we

do not have an adequate criteria to determine the value of ϵ.

5.4.3 High-Pass Filter Scheme

Extremum seeking methods often use a high-pass filter for the better approximation

of the gradient of the objective function, because the high-pass filter washes out the DC

component of the output. Although the high-pass filter leads the better approximation,

the previous methods often show residuals after the sufficient estimation time has passed.
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system

φ(θ)

1

s
+ ×

dW dW

×

K̇1 = −ϵK1

φ(θ)

θ̂

θ

Fig. 5.2: Annealing Scheme of Extremum Seeking Method

The HPF shceme in this study is proposed to guarantee the convergence of the estimation

parameter θ̂, introducing a state-dependent parameter in a high-pass filter.

We make the following assumption to ensure the convergence.

Assumption 5.2

There exists a constant M > 0 such that∣∣∣∣∂2φ

∂θ2
(θ)

∣∣∣∣ ≤ M for ∀θ ∈ R. (5.9)

Furthermore, there exist positive constants α, β such that

−α(θ − θ∗)2<φ(θ)− φ(θ∗)<−β(θ − θ∗)2 for ∀θ ∈ R \ {0} (5.10)

We assume that the constants M , α, and β are obtained a priori, and that we know the

upper/lower bounds of θ∗ and φ(θ∗), i.e.,

θ̂l ≤ θ∗ ≤ θ̂u, Pl ≤ φ(θ∗) ≤ Pu. (5.11)

We have ∣∣∣∣∂φ∂θ (θ)
∣∣∣∣ ≤ M |θ − θ∗| (5.12)

from Assumptions 5.1 and 5.2.

The proposed HPF scheme is presented below. Figure 5.3 shows the system of the

HPF scheme. The parameter update law of the HPF scheme is given by

dθ̂ = K1(φ(θ̂ +K2dW )− P )dW (5.13)

dP = −a(θ̂, P )Pdt+ a(θ̂, P )φ(θ̂ +K2dW )dt, (5.14)

76



Chapter 5. Exremum Seeking 5.4. Proposed Method
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φ(θ)

1

s
+ ×

HPF with

variable

parameters

dW dW

θ̂

θ
φ(θ)

Fig. 5.3: HPF Scheme of Extremum Seeking Method

where P is the HPF variable and the function a(θ̂, P ) is the state-dependent coefficient

of the HPF. The function a(θ̂, P ) is given by

a(θ̂, P ) = a0+
K2

1

2

[{
K1K2η

3

2a0ξ
(ρ+ η) + η2

}
f(θ̂)+ηg(θ̂, P )

]
, (5.15)

where a0 is an arbitrary positive constant, η, ρ, and ξ are constant parameters such that

ρ ≥ α, η ≥ M , and ξ ≤ β, and the functions f and g are defined as

f(θ̂) = 2

(
θ̂ − θ̂u + θ̂l

2

)2

+ 2

(
θ̂u − θ̂l

2

)2

+ 1 (5.16)

g(θ̂, P ) =

(
P − φu(θ̂)+φl(θ̂)

2

)2
√

1 +
(
P − φu(θ̂)+φl(θ̂)

2

)2 +
φu(θ̂)− φl(θ̂)

2
+ 1. (5.17)

The functions φl(θ̂) and φu(θ̂) in (5.17) are given by

φl(θ̂) = −ρf(θ̂) + Pl,

φu(θ̂) = −ξh(θ̂) + Pu,
(5.18)

where the function h(θ̂) is defined as

h(θ̂) =
1

2

(
θ̂ − θ̂u + θ̂l

2

)2

−

(
θ̂u − θ̂l

2

)2

− 1. (5.19)

By using a state-dependent coefficient in the HPF, the HPF scheme can guarantee the

convergence because the the cutoff frequency of the HPF is automatically tuned.

The criteria in the determination of the free parameters are stated as follows. The

sufficiently large value of the parameter η and ρ and the sufficiently small values of
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the parameter ξ can guarantee the convergence if the tight bounds of M , α, and β are

unknown. Similarly, the sufficiently wide ranges of θ̂l, θ̂u and Pl, Pu will guarantee the

convergence even if the tight upper/lower bounds of θ and φ(θ∗) are unknown.

The functions in (5.15)- (5.19) are determined from the Lyapunov stability analysis.

The next section shows the analysis.

5.5 Convergence Analysis of Proposed Scheme

This section presents the proof of the convergence of the proposed HPF scheme by

using the stochastic Lyapunov stability theory.

We first derive the error system as the difference between (θ̂, P ) and (θ∗, φ(θ̂)). Con-

sider the error variables given by

θ̃ = θ̂ − θ∗, (5.20)

P̃ = P − φ(θ̂). (5.21)

By expanding (5.13) and (5.14) using Itô’s rule, we obtain

dθ̂ = K1K2
∂φ(θ̂)

∂θ̂
dt+K1(φ(θ̂)− P )dW, (5.22)

dP = −a(θ̂, P )
(
P − φ(θ̂)

)
dt. (5.23)

Then, by using the Itô rule again, the error dynamics is obtained as

dθ̃ = K1K2
∂φ(θ̂)

∂θ̂
dt−K1P̃ dW, (5.24)

dP̃ = −

a(θ̂, P )P̃ +K1K2

(
∂φ(θ̂)

∂θ̂

)2

+
1

2
K2

1

∂2φ(θ̂)

∂θ̂2
P̃ 2

 dt+K1
∂φ(θ̂)

∂θ̂
P̃ dW. (5.25)

Then, the convergence result is shown.

Theorem 5.1

If Assumptions 5.1 and 5.2 hold, then the origin of the system defined by (5.24), (5.25)

with (5.15) is globally asymptotically stable in probability.

In the proof of Theorem 5.1, we use the following lemma.

Lemma 5.1

Under Assumption 5.2, both

f(θ̂) > θ̃2, (5.26)

g(θ̂, P ) > P̃ (5.27)

hold.
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This lemma is proved in Appendix B.

Now, we prove Theorem 5.1.

Proof

Consider a1(θ̂, P ) = a(θ̂, P )− a0, and it satisfies

a1(θ̂, P ) := a(θ̂, P )− a0

>
K2

1

2

[{
K1K2M

3

2a0β
(α+M) +M2

}
f(θ̂) +Mg(θ̂, P )

]
. (5.28)

Then, a Lyapunov function candidate is given as

V (θ̃, P̃ ) =
(
φ(θ̃ + θ∗)− φ(θ∗)

)2
+ λP̃ 2, (5.29)

where λ = (2a0β)/(K1K2M
2). The infinitesimal generator of the error dynamics given

by (5.24) and (5.25) for the Lyapunov function candidate V (θ̃, P̃ ) becomes

LV (θ̃, P̃ ) = 2K1K2

(
∂φ

∂θ̂
(θ̂)

)2

(φ(θ̃ + θ∗)− φ(θ∗))

+K2
1 P̃

2

{(
∂2φ

∂θ̂2
(θ̂)

)(
φ(θ̃ + θ∗)− φ(θ∗)

)
+

(
∂φ

∂θ̂
(θ̂)

)2
}

− 2λa(θ̂, P )P̃ 2 − 2λK1K2

(
∂φ

∂θ̂
(θ̂)

)2

P̃ − λK2
1

∂2φ

∂θ̂2
(θ̂)P̃ 3

+ λK2
1

(
∂φ

∂θ̂
(θ̂)

)2

P̃ 2

= 2K1K2

(
∂φ

∂θ̂
(θ̂)

)2

(φ(θ̃ + θ∗)− φ(θ∗)) +
λK2

1K
2
2

2a0

(
∂φ

∂θ̂
(θ̂)

)4

− 2λa0

(
P̃ +

K1K2

2a0

(
∂φ

∂θ̂
(θ̂)

)2
)2

− 2λa1(θ̂, P )P̃ 2

+K2
1 P̃

2

{(
∂2φ

∂θ̂2
(θ̂)

)(
φ(θ̃ + θ∗)− φ(θ∗)

)
+

(
∂φ

∂θ̂
(θ̂)

)2
}

− λK2
1

∂2φ

∂θ̂2
(θ̂)P̃ 3 + λK2

1

(
∂φ

∂θ̂
(θ̂)

)2

P̃ 2.

(5.30)

Since φ(θ̃ + θ∗) < φ(θ∗) for θ̃ ̸= 0, the first term on the right-hand side of (5.30)

is negative definite with respect to θ̃. Then, the sum of the first two terms on the

right-hand side of (5.30) can be evaluated as

2K1K2

(
∂φ(θ̂)

∂θ̂

)2

(φ(θ̃ + θ∗)− φ(θ∗)) +
λK2

1K
2
2

2a0

(
∂φ(θ̂)

∂θ̂

)4

= 2K1K2

(
∂φ(θ̂)

∂θ̂

)2
(φ(θ̃ + θ∗)− φ(θ∗)) +

β

2M2

(
∂φ(θ̂)

∂θ̂

)2


< 0 for θ̂ ̸= θ∗ (5.31)
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by (5.10), (5.12), and λ = (2a0β)/(K1K2M
2).

For the third term in the right-hand side of (5.30), it is obvious that

−2λa0

P̃ +
K1K2

2a0

(
∂φ(θ̂)

∂θ̂

)2
2

≤ 0. (5.32)

Finally, for the last four terms in the right-hand side of (5.30), we show that the term

−2λa1(θ̂, P )P̃ 2 cancels the last three terms. By (5.9), (5.10), (5.26), and (5.27), the last

four terms are evaluated as

− 2λa1(θ̂, P )P̃ 2 +K2
1 P̃

2

{(
∂2φ

∂θ̂2
(θ̂)

)(
φ(θ̃ + θ∗)− φ(θ∗)

)
+

(
∂φ

∂θ̂
(θ̂)

)2
}

− λK2
1

∂2φ

∂θ̂2
(θ̂)P̃ 3 + λK2

1

(
∂φ

∂θ̂
(θ̂)

)2

P̃ 2

< K2
1

[
−
(
Mα+M2

)
f(θ̂) +

(
∂2φ

∂θ̂2
(θ̂)

)(
φ(θ̃ + θ∗)− φ(θ∗)

)
+

(
∂φ

∂θ̂
(θ̂)

)2

+ λ

{
−M2f(θ̂) +

(
∂φ

∂θ̂
(θ̂)

)2

−Mg(θ̂, P )− ∂2φ

∂θ̂2
(θ̂)P̃

}]
P̃ 2

< 0 for P̃ ̸= 0.

(5.33)

Thus, the last four terms in the right-hand side of (5.30) are semi-negative definite.

Consequently, we can conclude that

LV < 0 for (θ̃, P ) ̸= 0. (5.34)

from (5.30), (5.31), (5.32), and (5.33). Thus, the origin of the system is globally asymp-

totically stable in probability.

This theorem implies the convergence of θ̂ and P in (5.13) and (5.14) to the optimum

value θ∗ and the value of φ(θ̂).

5.6 Proposed Method for Multivariate Problem

This section shows a generalization of the proposed stochastic extremum seeking

algorithms to the multivariate problem. One of the motivations of the study on stochastic

extremum seeking algorithms is to avoid the difficulty of deterministic algorithms in

multivariate optimization problems, which comes from the interaction between dither

signals. Stochastic extremum seeking algorithms are expected to overcome the problem.

In this section, a multivariate HPF scheme and the convergence analysis are shown.

The problem setting of the multivariate problem is stated as follows. Let θ ∈ Rn

denote the parameter, and let φ(θ) : Rn → R denote the objective function. As seen in

the previous section, the stochastic extremum seeking algorithms estimate the optimum

of the objective function. In this section, the following assumptions are made.

80



Chapter 5. Exremum Seeking 5.6. Proposed Method

Assumption 5.3

There exists a unique variable θ∗ such that

θ∗ = max
θ∈Rn

φ(θ).

Moreover,

∂φ(θ∗)

∂θ
= 0 and

∂φ(θ)

∂θ
̸= 0 for θ ̸= θ∗ (5.35)

hold.

In the following, the norm of a matrix is defined as its maximum singular value.

Assumption 5.4

There exists a supremum of the norm of the Hessian matrix of φ(θ), M , that is,∥∥∥∥∥ ∂

∂θ

(
∂φ(θ)

∂θ

)T
∥∥∥∥∥ ≤ M. (5.36)

Moreover, the function φ(θ) satisfies

−α∥θ − θ∗∥2<φ(θ)− φ(θ∗)<−β∥θ − θ∗∥2 for θ ̸= θ∗. (5.37)

Assume that we know the upper/lower bounds of φ(θ∗), Pl and Pu, satisfying

Pl ≤ φ(θ∗) ≤ Pu. (5.38)

and that we know the range of θ∗, that is, we know the center c ∈ Rn and the radius

r ∈ R of the pre-estimated range of θ∗ satisfying

∥θ∗ − c∥ ≤ r. (5.39)

We can obtain that ∥∥∥∥∂φ∂θ (θ)
∥∥∥∥ ≤ M∥θ − θ∗∥ (5.40)

from Assumption 5.3 and (5.36),

Denoting θ̂ ∈ Rn as the estimation variable for θ∗, the parameter update law for

multivariate problems is given by

dθ̂ = K1

(
φ
(
θ̂ +K2dW

)
− P

)
dW, (5.41)

dP = −a(θ̂, P )
(
P − φ

(
θ̂ +K2dW

))
dt, (5.42)

where K1,K2 are constant parameters, P ∈ R is the HPF variable, and W is the n-

dimensional standard Wiener process whose components are mutually independent. As
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in the one-dimensional case, the state-dependent parameter a in the HPF scheme for

multivariate problems is defined as

a(θ̂, P )=a0+
K2

1

2

[{
K1K2η

3

2a0ξ
(nρ+η)+η2

}
p(θ̂)+nηg(θ̂, P )

]
, (5.43)

where a0 is an arbitrary positive parameter, and η, ρ, and ξ are constant parameters

satisfying η ≥ M , ρ ≥ α, and ξ ≤ β. The function p(θ̂) is given by

p(θ̂) = 2
∥∥∥θ̂ − c

∥∥∥2 + 2r2 + 1, (5.44)

and g(θ̂, P ) is similar to the single-variable case of (5.17) except that

φl(θ̂) = −ρp(θ̂) + Pl,

φu(θ̂) = −ξq(θ̂) + Pu,
(5.45)

where

q(θ̂) =
1

2

∥∥∥θ̂ − c
∥∥∥2 − r2 − 1. (5.46)

Then, the convergence analysis is presented. Define the error variables as

θ̃ = θ̂ − θ∗, (5.47)

P̃ = P − φ(θ̂). (5.48)

From (5.41) and (5.42), the update law is converted to

dθ̂ = K1K2
∂φ(θ̂)

∂θ̂
dt+K1

(
φ(θ̂)− P

)
dW, (5.49)

dP = −a(θ̂, P )
(
P − φ(θ̂)

)
dt. (5.50)

These are obtained by taking the Taylor expansion around θ̂ and using Itô’s rule,

(dWi)
2 = dt, (dWi)dt = 0, dWidWj = 0. Thus, the error dynamics is obtained as

dθ̃ = K1K2
∂φ(θ̂)

∂θ̂
dt−K1P̃ dW (5.51)

dP̃ =

−a(θ̂, P )P̃−
∑
i

K1K2

(
∂φ(θ̂)

∂θ̂i

)2

+
K2

1 P̃
2

2

∂2φ(θ̂)

∂θ̂2i

 dt+
∑
i

K1P̃
∂φ(θ̂)

∂θ̂i
dWi,

(5.52)

by again using Itô’s formula.

Then, the convergence result is stated as follows.

Theorem 5.2

If Assumptions 5.3 and 5.4 hold, then the origin of the system given by (5.51), (5.52)

with (5.43) is globally asymptotically stable in probability.
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Proof

Consider a Lyapunov function candidate V (θ̃, P̃ ) given by

V (θ̃, P̃ ) =
(
φ(θ̃ + θ∗)− φ(θ∗)

)2
+ λP̃ 2, (5.53)

where λ = (2a0β)/(K1K2M
2). The infinitesimal generator of the error dynamics for the

Lyapunov function candidate V (θ̃, P̃ ) is calculated as

LV (θ̃, P̃ ) = 2K1K2

∥∥∥∥∂φ∂θ̂ (θ̂)
∥∥∥∥2 (φ(θ̃ + θ∗)− φ(θ∗))

+K2
1

(φ(θ̃ + θ∗)− φ(θ∗)
) n∑

i

∂2φ(θ̂)

∂θ̂2i
+

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2
 P̃ 2

− 2λa(θ̂, P )P̃ 2 − 2λK1K2

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2

P̃ − λK2
1 P̃

3
∑
i

∂2φ(θ̂)

∂θ̂2i
+ λK2

1 P̃
2

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2

= 2K1K2

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2

(φ(θ̃+θ∗)−φ(θ∗)) +
λK2

1K
2
2

2a0

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
4

− 2λa0

P̃ − K1K2

2a0

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2
2

− 2λa1(θ̂, P )P̃ 2

− λK2
1 P̃

3
∑
i

∂2φ(θ̂)

∂θ̂2i
+ (λ+ 1)K2

1 P̃
2

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2

+K2
1

(
φ(θ̃+θ∗)−φ(θ∗)

)
P̃ 2

n∑
i

∂2φ(θ̂)

∂θ̂2i
,

(5.54)

where a1(θ̂, P ) = a(θ̂, P )− a0. Since the inequality

−2K1K2

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2

(φ(θ̃ + θ∗)− φ(θ∗)) > λ
K2

1K
2
2

2a0

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
4

(5.55)

holds for θ̂ ̸= θ∗ according to (5.37), (5.40), and the definition of λ, the inequality with

respect to the first two terms of the right-hand side of (5.54)

2K1K2

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
2

(φ(θ̃ + θ∗)− φ(θ∗)) + λ
K2

1K
2
2

2a0

∥∥∥∥∥∂φ(θ̂)∂θ̂

∥∥∥∥∥
4

< 0 for θ ̸= θ∗. (5.56)

holds. This implies negative definiteness of the first two terms of the right-hand side of

(5.54) with respect to θ̂.

We have the inequalities

K2
1

(φ(θ̃+θ∗)−φ(θ∗)
) n∑

i

∂2φ(θ̂)

∂θ̂2i
+ (λ+ 1)

∥∥∥∥∥∂φ(θ̂)∂θ

∥∥∥∥∥
2


< λK2
1

{
K1K2M

3

2a0β
(nα+M) +M2

}
p(θ̂)

(5.57)
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and

λK2
1 P̃
∑
i

∂2φ(θ̂)

∂θ̂2i
≤ λK2

1nMg(θ̂, P ), (5.58)

according to (5.36), (5.37), and the definition of p(θ̂). According to the definition of

a(θ̂, P ), a1(θ̂, P ) satisfies

a1(θ̂, P ) ≥ K2
1

2

[{
K1K2M

3

2a0β
(nα+M)+M2

}
p(θ̂)+nMg(θ̂, P )

]
. (5.59)

Thus, by (5.54), (5.56), (5.57), (5.58), LV (θ̃, P̃ ) is negative definite with respect to

(θ̃, P̃ ). Therefore, we can conclude that the origin of (5.51), (5.52) is globally asymptot-

ically stable in probability. This completes the proof.

5.7 Numerical Examples

The numerical examples of the proposed method are shown. The basic scheme and

the annealing scheme show that we can obtain the approximate value of the optimum of a

given objective function. Further, the HPF scheme shows the convergence of the estima-

tion variable to the optimum solution. In addition to the single parameter optimization

problem, the multivariate optimization problem is shown.

5.7.1 Simulation Settings

In the next three subsections, we deal with a maximization problem of the objective

function

φ(θ) = −2(θ − 0.5)2 + 5(cos(θ − 0.5)− 1) + 1. (5.60)

This objective function has a maximum value of φ(θ∗) = 1 at θ∗ = 0.5.

5.7.2 Results Using the Basic Scheme

First, the basic scheme is applied to this example problem.

Ten sample solutions of the estimation variable by the update law (5.2) are shown in

Fig. 5.4. The values of free parameters, K1 = 0.01,K2 = 2.0, are used in the simulation.

And the initial value of the estimation variable is set as θ̂ = 0.35. Figure 5.5 shows the

value of φ(θ̂) for a sample path. In Fig. 5.4, the solutions of the estimation parameter

θ̂ approach the optimum value θ∗ = 0.5. However, some fluctuations remain because

the effect of dither signals does not vanish at the optimum. The annealing parameter

scheme and the HPF scheme are proposed to reduce such fluctuation.

We can estimate the probability density by using (5.5). Figure 5.6 shows the temporal

transition of the probability density under the same settings with the initial density
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p(0, θ̂) = δ(0.35), where δ denotes the Dirac delta function. The probability density

becomes steady state whose center is located at the optimum value θ∗ = 0.5. This

corresponds to the result in Fig. 5.4.

5.7.3 Results Using the Annealing Scheme

This subsection shows the numerical example of the annealing scheme. The annealing

scheme is developed to reduce the residual between the estimation variable and the

optimum value.

Figure 5.7 shows ten sample solutions obtained by using the annealing scheme. The

initial values of θ̂ and K1 are set as 0.35, and 0.01, respectively. The values of the free

parameters are K2 = 2.0 and ϵ = 0.05. Figure 5.8 shows the time response of φ(θ̂) for a

solution.

Figure 5.7 shows that each estimation parameter approaches the optimum value.

They have less residual between the solution and the optimum value than in the basic

scheme. However, in general, the problem of early convergence might happen in the

optimization process. That is, when the annealing parameter becomes too small for the

solution θ̂ to converge to the optimal point in the early stage of the estimation, the

update law stops the estimation. Some sample solutions shows the early convergence

in Fig. 5.7. Despite this disadvantage, the introduction of annealing parameters is a

convenient way to reduce the residual error.

5.7.4 Results Using the HPF Scheme

The HPF scheme guarantees the convergence of the estimation variable, unlike the

other schemes. Figure 5.9 shows ten sample solutions of θ̂ whose initial values are

θ = 0.35. Figures 5.10 and 5.11 also give the evolution of φ(θ̂) and P where the initial

value of P is −0.5. The free parameters are set to K1 = 0.01, K2 = 2.0, a0 = 0.5,

ρ = 5.0, η = 20.0, ξ = 0.5, θ̂l = 0.0, θ̂u = 2.0, Pl = 0.0, and Pu = 2.0. Figure 5.9 shows

the convergence of the estimation variable θ̂ to the optimum value θ∗ = 0.5.

5.7.5 Results for the Multivariate Problem

This subsection shows the results of the numerical example of the multivariate prob-

lem. A two-parameter problem is considered, and the objective function is given by

φ(θ) = −0.5((θ1 − 0.1)2 + θ22) + 2.5 (cos((θ1 − 0.1) + θ2)− 1) + 1,

where θ = (θ1, θ2) denotes the parameter vector. The objective function has the a

maximum value at a unique optimal point θ∗ = (0.1, 0). A solution obtained by the

proposed method is shown in the trajectory of a solution from t = 0 to t = 100 in

Fig. 5.12. In the simulation, the initial values of our variables are θ̂ = (0.4, 0.6) and
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P = 0, and the design parameters are chosen as K1 = 0.01, K2 = 2.0, a0 = 0.5, ρ = 5.0,

η = 4.0, ξ = 0.1, c = (0.5, 0.5), r = 4.0, Pl = 0.0, and Pu = 2.0. We can see that the

solution converges to the optimum value in the case of the multivariable optimization

problem.

5.8 Summary

This section presented the extremum seeking algorithms that include the basic scheme,

the annealing scheme, and the high-pass filter scheme. The basic scheme can estimate the

gradient of a given objective function which is unknown to the optimizer. The annealing

scheme is proposed to reduce the fluctuations in the basic scheme. In the proposed al-

gorithms, the HPF scheme can guarantee the convergence of the estimation variable. In

the HPF scheme, we incorporate the state-dependent parameter in the high-pass filter,

which is determined from the Lyapunov stability analysis unlike the previous extremum

seeking methods. Previous extremum seeking methods can obtain the approximate op-

timum value of a given objective function. However, the estimation variable does not

converge to the optimum. On the other hand, the proposed HPF scheme can guarantee

the convergence of the estimation variable. Moreover, this section extended the proposed

HPF scheme to multivariate problems. As in the case of the single-variable problems,

the convergence of the estimation parameters is guaranteed.

The future work includes the investigation of the determination method of the free

parameters, the extension to dynamical systems, and the extension to the optimization

of multimodal objective functions. Since the proposed HPF scheme has a lot of free

parameters, it might require the adjustment of these parameters. Thus, we need the

more detailed criteria in the determination of the free parameters. Moreover, since other

extremum seeking methods can be applied to the dynamical systems, another future

work is to develop a method that can make the estimation variable to converge to the

optimum in the optimization in dynamical systems by using noise for the dither signal.

Since the original motivation of this study is to develop the extremum seeking method for

the global optimization of the multimodal objective function as in an extremum seeking

method [68], we will address to develop the stochastic extremum seeking method such

that the method uses the stochastic effect to obtain the global optimum as seen in the

simulated annealing.
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Fig. 5.4: Values of θ̂ in the proposed extremum-seeking scheme
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Chapter 6. Conclusion

This thesis showed the noise-based methods for the global asymptotic stabilization and

the optimization problem in control engineering. These methods were proposed to show

the new insight for the control engineering from the point of the effective use of noise.

In the global asymptotic stabilization, the noise-based stabilization method was em-

ployed for the stabilization of nonholonomic systems and non-Euclidean systems. This

thesis addressed the design problem of noise-based controllers when closed-loop systems

are given by Stratonovich stochastic differential equations. The design method uses the

stochastic control Lyapunov function, and gives a controller which is a generalization of

Sontag-type controller. The one of the main results of this thesis is that if there exists a

stochastic control Lyapunov function satisfying small control property, the designed con-

troller globally asymptotically stabilizes a given system in the sense of global asymptotic

stability in probability. Further, the proposed stochastic control Lyapunov function is

a strict control Lyapunov function in the sense of stochastic system, which can be an

advantage over other stabilization methods, such as time-varying feedback methods and

discontinuous feedback methods. This implies the robustness of the controller given

by the proposed design method. In this thesis, the stability margin of the designed

controllers was shown from the inverse optimality of the controllers. This thesis also

studied homogeneous stochastic systems, and showed the relations between the homo-

geneity and the convergence speed of the asymptotically stable homogeneous systems.

Moreover, the method improving the convergence of the noise-based stabilization was

developed by using the homogeneity. As a summary of the above discussion, this thesis

presented the constructive design method of the noise-based controller, investigates the

robustness, and shows the improvement of the convergence for driftless systems, for the

noise-based stabilization.

In optimization problems, this thesis dealt with a stochastic extremum seeking method.

In this thesis, we proposed a stochastic extremum seeking methods for static systems.

The proposed method uses Wiener processes to approximate the gradients of objective

functions. One of the proposed schemes, the HPF scheme, ensures the convergence of

the estimation variables to the optimum value. The scheme uses the high-pass filter

with state-dependent parameters obtained from the stochastic Lyapunov stability anal-

ysis. Based on the Lyapunov analysis, we show the global convergence of the estimation

variable with probability one.
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Appendix A Proof of Proposition 3.1

We give the proof of the lemma in local coordinates. Considering the characteristic

polynomial of H(x)

ρ(x, λ̃) = det
(
λ̃I −H(x)

)
,

an eigenvalue λi(x) is given as a solution of the equation

ρ(x, λ) = 0.

From the assumption, each eigenvalue is simple, and we have

∂ρ

∂λ
(x, λi(x)) ̸= 0.

Thus, according to the implicit function theorem, we can conclude the continuous dif-

ferentiability of the eigenvalue λi(x).

Then, we show the differentiability of the eigenvectors of the matrix H(x). Consider

a vector-valued function

ϕi(x, z) =

[
(λi(x)I −H(x)) z

zT z − 1

]
.

For a eigenvalue λi(x), the normalized orthogonal eigenvector of H(x) is a solution of

ϕi(x, z) = 0 with respect to z. Let z(x) be the solution of ϕi(x, z) = 0. Then, since z is

orthogonal to all rows of λi(x)I −H(x) and λi is a simple eigenvalue,

rank

[
∂ϕi

∂z
(x, z)

]
= rank

[
λi(x)I −H(x)

2zT

]
= m

holds. We use the implicit function theorem again, and this implies the continuous

differentiability of the eigenvectors. This completes the proof.
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Appendix B Proof of Lemma 5.1

To show the inequality f(θ̂)− θ̃2 > 0, we obtain

f(θ̂)−θ̃2=2

(
θ̂− θ̂u+θ̂l

2

)2

+2

(
θ̂u−θ̂l

2

)2

+1−θ̃2

=2

(
θ̃−

(
θ̂u+θ̂l

2
−θ∗

))2

+2

(
θ̂u−θ̂l

2

)2

+1−θ̃2

=

(
θ̃−2

(
θ̂u+θ̂l

2
−θ∗

))2

+2


(
θ̂u−θ̂l

2

)2

−

(
θ̂u+θ̂l

2
−θ∗

)2
+1.

According to the fact that θ̂u and θ̂l satisfy θ̂l ≤ θ∗ ≤ θ̂u, we have(
θ̂u − θ̂l

2

)2

−

(
θ̂u + θ̂l

2
− θ∗

)2

≥ 0. (B.1)

According to (B.1), we obtain

f(θ̂)− θ̃2 > 0. (B.2)

Then, we give the proof of the inequality g(θ, P ) > P̃ . The function h(θ̂) in (5.19)

satisfies

h(θ̂) < θ̃2. (B.3)

We can prove this inequality in a similar way to the proof of f(θ̂)− θ̃2 > 0. According

to (5.18), (B.2), (B.3), and Assumption 5.2, we obtain

φl(θ̂) ≤ φ(θ̂) ≤ φu(θ̂). (B.4)
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Then, using (B.4), we have

g(θ̂, P )− P̃ =

(
P− φu(θ̂)+φl(θ̂)

2

)2
√

1 +
(
P− φu(θ̂)+φl(θ̂)

2

)2+φu(θ̂)−φl(θ̂)

2
+1−P̃

=1− 1√
1 +

(
P− φu(θ̂)+φl(θ̂)

2

)2+
√√√√1 +

(
P−φu(θ̂)+φl(θ̂)

2

)2

+
φu(θ̂)−φl(θ̂)

2
− P̃

>

√√√√1 +

(
P−φu(θ̂)+φl(θ̂)

2

)2

+
φu(θ̂)−φl(θ̂)

2
− P̃

>

∣∣∣∣∣P − φu(θ̂)+φl(θ̂)

2

∣∣∣∣∣+ φu(θ̂)−φl(θ̂)

2
− P̃

=

∣∣∣∣∣P − φu(θ̂)+φl(θ̂)

2

∣∣∣∣∣+ φu(θ̂)−φl(θ̂)

2
−
(
P − φ(θ̂)

)
≥ φu(θ̂)−φl(θ̂)

2
−

(
φu(θ̂)+φl(θ̂)

2
− φ(θ̂)

)
≥ 0.

Thus, we have g(θ, P ) > P̃ .
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