<table>
<thead>
<tr>
<th>Title</th>
<th>INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS ON A BERGMAN SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NAKAZI, TAKAHIKO; OSAWA, TOMOKO</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings of the Edinburgh Mathematical Society, 48, 479-484</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/5822</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright © 2005 Cambridge University Press</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>PEMS48.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS
ON A BERGMAN SPACE

TAKAHIKO NAKAZI1 AND TOMOKO OSAWA2

1Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan (nakazi@math.sci.hokudai.ac.jp)
2Mathematical and Scientific Subjects, Asahikawa National College of Technology, Asahikawa 071-8142, Japan (ohsawa@asahikawa-nct.ac.jp)

(Received 29 April 2004)

Abstract Let $L^2 = L^2(D, r dr d\theta / \pi)$ be the Lebesgue space on the open unit disc D and let $L^2_a = L^2 \cap \text{Hol}(D)$ be a Bergman space on D. In this paper, we are interested in a closed subspace \mathcal{M} of L^2 which is invariant under the multiplication by the coordinate function z, and a Hankel-type operator from L^2_a to \mathcal{M}^\perp. In particular, we study an invariant subspace \mathcal{M} such that there does not exist a finite-rank Hankel-type operator except a zero operator.

Keywords: Bergman space; invariant subspace; Hankel-type operator

2000 Mathematics subject classification: Primary 47B35; 47A15

1. Introduction

Let D be the open unit disc in \mathbb{C} and $\text{Hol}(D)$ be the set of all holomorphic functions on D. Let $d\mu = r dr d\theta / \pi$ and $L^2 = L^2(D, d\mu)$ the Lebesgue space. The Bergman space L^2_a on D is defined by $L^2_a = L^2 \cap \text{Hol}(D)$. Then L^2_a is the closed subspace of L^2. When \mathcal{M} is a closed subspace of L^2 and $z\mathcal{M} \subseteq \mathcal{M}$, \mathcal{M} is called an invariant subspace. For φ in $L^\infty = L^\infty(D, d\mu)$, a Hankel-type operator is defined by

$$H_\varphi^\mathcal{M} f = (I - P^\mathcal{M})(\varphi f) \quad (f \in L^2_a),$$

where $P^\mathcal{M}$ is the orthogonal projection from L^2 onto \mathcal{M}. When $\mathcal{M} = L^2_a$, $H_\varphi^\mathcal{M}$ is called a big Hankel operator and when $\mathcal{M} = (z \overline{L^2_a})^\perp$, $H_\varphi^\mathcal{M}$ is called a small Hankel operator. When $L^2_a \subseteq \mathcal{M} \subseteq (z \overline{L^2_a})^\perp$, $H_\varphi^\mathcal{M}$ is called an intermediate Hankel operator.

It is easy to see that there does not exist a finite-rank big Hankel operator except a zero one (see [3, 6]). On the other hand, there exist a lot of finite-rank non-zero small Hankel operators (see [6]). In fact, it is easy to see the results. Strouse [7] described completely all finite-rank intermediate Hankel operators for some invariant subspace. In the previous paper [6], we began to study finite-rank intermediate Hankel operators for arbitrary invariant subspace. In [6, Theorem 3.2], we gave three necessary and sufficient
conditions for \mathcal{M} such that there does not exist a finite-rank intermediate Hankel operator except a zero one. In this paper, without the hypothesis on an invariant subspace \mathcal{M}, we give a new necessary and sufficient condition for \mathcal{M} which have a finite-rank Hankel-type operator except a zero one.

For an invariant subspace \mathcal{M} in L^2, $H_\varphi^\mathcal{M}$ denotes the kernel of $H_\varphi^\mathcal{M}$ and then $\ker H_\varphi^\mathcal{M} = \{ f \in L^2; \varphi f \in \mathcal{M} \}$. Hence $\ker H_\varphi^\mathcal{M}$ is also an invariant subspace in L^2_a. Thus each invariant subspace \mathcal{M} in L^2 is related to an invariant subspace in L^2_a by a Hankel-type operator. In this paper, the following property of invariant subspaces in L^2 is important.

Definition 1.1. Let \mathcal{M} be an invariant subspace of L^2. \mathcal{M} is called weakly divisible if whenever $f \in \mathcal{M}$ and $|f(z)| \leq \gamma |z - a|$ for some $a \in D$ and some $\gamma \geq 0$ then $f(z) = (z - a)g(z)$ and g is a function in \mathcal{M}.

In §2, we generalize a theorem of Axler and Bourdon [1], which will be used later on. In §3, we show that there does not exist a finite-rank Hankel-type operator $H_\varphi^\mathcal{M}$ except a zero one if and only if \mathcal{M} is weakly divisible. In §4, we give several examples of weakly divisible invariant subspaces.

In this paper $[S]_a$ denotes the weak* closed linear span of a subset S in L^∞ and $[S]_2$ denotes the closed linear span of a subset S in L^2.

2. An invariant subspace and the index

In this section, for a given invariant subspace \mathcal{M} we are interested in two invariant subspaces \mathcal{M}' and \mathcal{M}'' such that $\mathcal{M}' \subseteq \mathcal{M} \subseteq \mathcal{M}''$, $\dim \mathcal{M} \cap \mathcal{M}' < \infty$ and $\dim \mathcal{M}'' \cap \mathcal{M} < \infty$. Under some conditions on \mathcal{M}, \mathcal{M}' and \mathcal{M}'', we describe \mathcal{M}' and \mathcal{M}'' using \mathcal{M}. Corollary 2.4 will be used in §§3 and 4. Corollary 2.4 (i) is known from [1].

When \mathcal{M} is an invariant subspace of L^2, for $a \in \mathbb{C}$ put $\text{ind}_a \mathcal{M} = \dim \{ \mathcal{M} \cap (z - a) \mathcal{M} \}$. $\text{ind}_a \mathcal{M}$ is called the index of \mathcal{M} at a. It is known (cf. [1]) that for each n ($0 \leq n \leq \infty$) and for any $a \in D$ there exists an invariant subspace \mathcal{M} with $\text{ind}_a \mathcal{M} = n$.

Theorem 2.1. Let \mathcal{M}, \mathcal{M}_1 and \mathcal{M}_2 be invariant subspaces of L^2 and $\mathcal{M}_1 \subseteq \mathcal{M}_2$.

(i) $\text{ind}_a \mathcal{M} = 0$ for any $a \notin D$.

(ii) If $\dim \mathcal{M}_2 \cap \mathcal{M}_1 < \infty$, then there exists a polynomial b such that $b \mathcal{M}_2 \subseteq \mathcal{M}_1$, $Z(b) \subseteq D$ and the degree of $b \leq \dim \mathcal{M}_2 \cap \mathcal{M}_1$ and

$$\sum (\text{ind}_a \mathcal{M}_2; a \in Z(b)) \geq \dim \mathcal{M}_2 \cap \mathcal{M}_1.$$

Proof. (i) If $|a| > 1$, then $(z - a)^{-1} \in H^\infty$ and $\mathcal{M} = (z - a) \mathcal{M}$. Hence $\text{ind}_a \mathcal{M} = 0$. If $|a| = 1$, then $(z - a) \mathcal{M} = (z - a) \mathcal{M} \{ z - a(1 + \varepsilon) \}^{-1} \mathcal{M}$. For any $f \in \mathcal{M}$, it is easy to see that

$$\int_D \left| \frac{z - a}{z - a(1 + \varepsilon)} f - f \right|^2 d\mu \to 0 \quad (\varepsilon \to 0)$$

by Lebesgue’s convergence theorem. This implies that $(z - a) \mathcal{M}$ is dense in \mathcal{M} and so $\text{ind}_a \mathcal{M} = 0$ for $|a| = 1$.
(ii) Put $N = M_2 \ominus M_1$ and $S_z = PM_z|N$, where M_2 is a multiplication operator on L^2 by the coordinate function z and P is the orthogonal projection from L^2 to N. If $n = \dim N < \infty$, then there exists a polynomial b of degree n such that $S_b = b(S_z) = 0$ and so $bM_2 \subseteq M_1$. By (i), we may assume that $Z(b) \subset D$. We will prove that $\sum (\ind_a M_2 ; a \in Z(b)) \geq n$. We can write that $b = a_0 \prod_{j=1}^n (z - a_j)$ and so $Z(b) = \{a_1, a_2, \ldots, a_n\}$, where $a_0 \in \mathbb{C}$. If $\sum (\ind_a M_2 ; a \in Z(b)) \leq n - 1$, then we may assume $\ind_a M_2 = 0$. Since $[(z - a_1)M_2]_2 = M_2$,
\[\prod_{j=2}^n (z - a_j)M_2 \subseteq M_1 \subset M_2.\]

Then it is easy to see that $\dim M_2 \ominus [\prod_{j=2}^n (z - a_j)M_2]_2 \leq n - 1$ because $\ind_a M_2 \leq 1$ for $2 \leq j \leq n$. This contradicts that $\dim M_2 \ominus M_1 = n$.

Corollary 2.2. Let M_1 and M_2 be invariant subspaces of L^2 and $M_1 \subseteq M_2$. If $\dim M_2 \ominus M_1 = 1$, then $(z - a)M_2 \subseteq M_1 \subset M_2$ for some $a \in D$ and $\ind_a M_2 \geq 1$. If $\ind_a M_1 = 1$ or $\ind_a M_2 = 1$, then $M_1 = [(z - a)M_2]_2$.

Proof. By Theorem 2.1, $(z - a)M_2 \subseteq M_1$ for some $a \in D$ and so $\ind_a M_2 \geq 1$. Since $(z - a)M_1 \subseteq (z - a)M_2 \subseteq M_1 \subset M_2$, $M_1 = [(z - a)M_2]_2$ if $\ind_a M_1 = 1$ or $\ind_a M_2 = 1$.

Corollary 2.3. Let M_1 and M_2 be invariant subspaces such that $M_1 \subseteq M_2$ and $\dim M_2 \ominus M_1 = n < \infty$. Suppose that $(z - a)M_j$ is closed for any $a \in D$ when $j = 1, 2$.
If $\ind_a M_1 = 1$ for any $a \in D$ or $\ind_a M_2 = 1$ for any $a \in D$, then $M_1 = bM_2$ and $M_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus M_1$, where $b = \prod_{j=1}^n (z - a_j), \{a_j\} \subset D$ and $\{f_j\} \subset M_1$.

Proof. By Theorem 2.1 there exists a polynomial b such that $bM_2 \subseteq M_1$ and $Z(b) \subset D$ and the degree of $b \leq n$. Hence $b = \prod_{j=1}^\ell (z - a_j)$ and $\{a_j\} \subset D$ and $\ell \leq n$. When $\ind_a M_2 = 1$ for any $a \in D$, $\dim M_2 \ominus bM_2 = \ell$ because $(z - a_j)M_2$ is closed for $1 \leq j \leq \ell$ and so $\ell = n$. Hence $M_1 = bM_2$. If $\ind_a M_1 = 1$ for any $a \in D$, $\dim M_1 \ominus bM_1 = \ell$ by the same reason. Since $bM_1 \subseteq bM_2 \subseteq M_1$ and $\dim bM_2 \ominus bM_1 = n$, $\ell = n$ and so $M_1 = bM_2$. Put $M_2 = \langle \varphi_1, \ldots, \varphi_n \rangle \oplus M_1$, where $\{\varphi_j\}$ are orthogonal to M_1. What was just proved above, $bM_2 = M_1$ and so $bM_2 = \langle b\varphi_1, \ldots, b\varphi_n \rangle \oplus bM_1 = M_1$. Put $f_j = b\varphi_j$ for $j = 1, \ldots, n$, then $\{f_j\}$ are in M_1 and $M_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus M_1$.

Corollary 2.4. Let M be an invariant subspace of L^2.

(i) If $\dim L^2_M = n < \infty$ and $n \neq 0$, then $M = bL^2_{a}$, where $b = \prod_{j=1}^n (z - a_j)$ and $\{a_j\} \subset D$.

(ii) If $\dim M \ominus L^2_{a} = n < \infty$, then $M = L^2_{a}$.

Proof. It is known that $\ind_a L^2_{a} = 1$ and $(z - a)L^2_{a}$ is closed for each $a \in D$. Hence we can apply Corollary 2.3 to $M_1 = L^2_{a}$ or $M_2 = L^2_{a}$. If $M_1 = M$ and $M_2 = L^2_{a}$, then (i) follows. If $M_1 = L^2_{a}$ and $M_2 = M$, then $M = \langle f_1/b, \ldots, f_n/b \rangle \oplus L^2_{a}$, where $b = \prod_{j=1}^n (z - a_j), \{a_j\} \subset D$ and $\{f_j\} \subset L^2_{a}$. For each $1 \leq \ell \leq n$, $f_{\ell}/b \in L^2$ and so
invariant subspaces.
In this section, we study the relation between finite-rank Hankel-type operators and invariant subspaces.

3. Finite-rank Hankel-type operators

In this section, we study the relation between finite-rank Hankel-type operators and invariant subspaces.

Theorem 3.1. Let \mathcal{M} be an invariant subspace of L^2. Then there does not exist a finite-rank Hankel-type operator $H^\mathcal{M}_\varphi$ except a zero one if and only if \mathcal{M} is weakly divisible.

Proof. Suppose \mathcal{M} is weakly divisible. If $H^\mathcal{M}_\varphi$ is of finite rank, then $\ker H^\mathcal{M}_\varphi$ is an invariant subspace in L^2 and $\dim L^2 / \ker H^\mathcal{M}_\varphi < \infty$. By (i) of Corollary 2.4, $\ker H^\mathcal{M}_\varphi = bL^2$ for some polynomial b with $Z(b) \subset D$ and so $b\varphi$ belongs to \mathcal{M}. Put $f = b\varphi$, then $|f(z)| \leq |b(z)| (z \in D)$, where $\gamma = \|\varphi\|_\infty$. Suppose $b(z) = a_0 \prod_{j=1}^n (z - a_j)$, where $\{a_j\} \subset D$. For any ℓ with $1 \leq \ell \leq n$,

$$
|f(z)| \leq |a_0| \prod_{j \neq \ell} |z - a_j| \quad (z \in D)
$$

and $f(z)/(z - a_\ell)$ belongs to \mathcal{M} because $a_\ell \in D$ and \mathcal{M} is weakly divisible. Thus $\varphi(z) = f(z)/b(z)$ belongs to \mathcal{M}. Hence $H^\mathcal{M}_\varphi = 0$.

Conversely, if \mathcal{M} is not weakly divisible, then there exists a function f in \mathcal{M} and a point a in D such that $|f(z)| \leq |z - a| (z \in D)$ and $f(z)/(z - a)$ does not belong to \mathcal{M}. Put $\varphi = f(z)/(z - a)$, then $\varphi \in L^\infty$ and $H^\mathcal{M}_\varphi$ is not zero because $\varphi \notin \mathcal{M}$. On the other hand, $(z - a)\varphi \in \mathcal{M}$ and so the kernel of $H^\mathcal{M}_\varphi$ contains $(z - a)L^2$. This implies that $H^\mathcal{M}_\varphi$ is of rank one because $L^2 / (z - a)L^2 = \mathbb{C}$. \square

Proposition 3.2. If there exists a symbol φ such that $r(H^\mathcal{M}_\varphi) = n \geq 1$, then there exists a symbol φ_j such that $r(H^\mathcal{M}_{\varphi_j}) = j$ for any j with $0 \leq j \leq n - 1$.

Proof. Suppose $1 \leq n = r(H^\mathcal{M}_\varphi) < \infty$. Then $\ker H^\mathcal{M}_{\varphi_j}$ is the kernel of $H^\mathcal{M}_{\varphi_j}$ is an invariant subspace of L^2 and $L^2 / \ker H^\mathcal{M}_{\varphi_j}$ is of finite dimension n. By Corollary 2.4, $\ker H^\mathcal{M}_{\varphi_j} = bL^2$, where $b = \prod_{j=1}^n (z - a_\ell)$ and $(a_\ell) \subset D$. Hence $b\varphi$ belongs to \mathcal{M}. Put

$$
\varphi_j = \varphi \prod_{\ell=j+1}^n (z - a_\ell) \quad \text{for } 1 \leq j \leq n - 1,
$$

then $\varphi_j \notin \mathcal{M}$ for $1 \leq j \leq n - 1$ and $\varphi_0 = b\varphi$. Since $\ker H^\mathcal{M}_{\varphi_j} = b_jL^2$ for $1 \leq j \leq n - 1$, where $b_j = \prod_{\ell=1}^n (z - a_\ell)$, $H^\mathcal{M}_{\varphi_j}$ is of finite rank j for $0 \leq j \leq n - 1$. \square

Corollary 3.3. The following two expressions are equivalent for an invariant subspace \mathcal{M}.

(i) If $r(H^\mathcal{M}_\varphi) < \infty$, then $r(H^\mathcal{M}_{\varphi_j}) = 0$.

(ii) If \(r(H^{M}_{\varphi}) \leq 1 \), then \(r(H^{M}_{\varphi}) = 0 \).

Proof. (i) \(\Rightarrow \) (ii). This is clear.

(ii) \(\Rightarrow \) (i). If (i) is not true, then there exists a symbol \(\varphi \) with \(r(H^{M}_{\varphi}) = n \geq 2 \). By Proposition 3.2 there exists a symbol \(\varphi_{1} \) such that \(r(H^{M}_{\varphi_{1}}) = 1 \). This contradicts (ii). \(\square \)

4. Weakly divisible invariant subspaces

For a function \(f \) in \(L^{2}_{\alpha} \), put \(Z(f) = \{ a \in D; f(a) = 0 \} \) and \(Z(G) = \cap \{ Z(f); f \in G \} \) for a subset \(G \) in \(L^{2}_{\alpha} \). For \(1 \leq p \leq \infty \), if \(E \) is an open set in \(D \), \(H_{E}^{\infty} \) denotes the set of all functions in \(L^{p} \) that are analytic on \(E \). In Corollary 4.2, a weakly divisible invariant subspace \(M \) is described completely when \(M \) is in \(L^{2}_{\alpha} \). There exists a non-zero invariant subspace \(M \) in \(L^{2}_{\alpha} \) such that \(M \cap L^{\infty} = \{ 0 \} \). For it is known (see [5]) that there exists a non-zero function \(f \) in \(L^{2}_{\alpha} \) such that \(Z(f) \) does not satisfy the Blaschke condition.

Theorem 4.1. Let \(M \) be an invariant subspace of \(L^{2} \).

(i) If \(M \cap L^{\infty} \subseteq H^{\infty} \) and \(Z(M \cap L^{\infty}) = \emptyset \), then \(M \) is weakly divisible.

(ii) If \(M \cap L^{\infty} = H_{E}^{\infty} \) for some open set \(E \), then \(M \) is weakly divisible.

(iii) If \(M \cap L^{\infty} = \{ 0 \} \), then \(M \) is weakly divisible.

Proof. (i) If \(\{ f_{n} \} \) is a sequence in \(M \cap L^{\infty} \) which converges pointwise boundedly to \(f \), then \(f \in M \). By the Krein–Schmullian criterion (see [4, IV 2.1]), \(M \cap L^{\infty} \) is weakly closed. Hence, by a well-known theorem of Beurling [2] \(M \cap L^{\infty} = qH^{\infty} \) for some inner function \(q \). Hence if \(f \in M \) and \(|f(z)| = \gamma|z-a| \) \((z \in D)\) for some \(a \in D \), then \(f = qh \) for some \(h \in H^{\infty} \). Since \(Z(M \cap L^{\infty}) = \emptyset \), \(|q(z)| > 0 \) \((z \in D)\) and so \(h(a) = 0 \). Hence \(f(z)/(z-a) = q(z) \times (h(z)/(z-a)) \in qH^{\infty} \). Thus \(f(z)/(z-a) \) belongs to \(M \).

(ii) If \(f \in H_{E}^{\infty} \) and \(|f(z)| \leq \gamma|z-a| \) \((z \in D)\) for some \(a \in D \), then \(f(z)/(z-a) \in L^{\infty} \) and \(f(z)/(z-a) \) is analytic on \(E \). Hence \(f(z)/(z-a) \) belongs to \(H_{E}^{\infty} \) and so \(M \) is weakly divisible.

(iii) This is clear. \(\square \)

Corollary 4.2. Let \(M \) be an invariant subspace of \(L^{2}_{\alpha} \). Then \(M \) is weakly divisible if and only if \(M \cap L^{\infty} = \{ 0 \} \) or \(Z(M \cap L^{\infty}) = \emptyset \).

Proof. The part of ‘if’ is a result of (i) and (iii) of Theorem 4.1. Conversely, suppose that \(M \) is weakly divisible. If \(M \cap L^{\infty} \neq \{ 0 \} \), then by a theorem of Beurling there exists an inner function \(q \) with \(M \cap L^{\infty} = qH^{\infty} \). If \(q(a) = 0 \) for some \(a \in D \), then there exists a finite positive constant \(\gamma \) such that \(|q(z)| \leq \gamma|z-a| \) \((z \in D)\) and \(q/(z-a) \notin M \). This contradicts the weak divisibility of \(M \) and so \(Z(q) = Z(M \cap L^{\infty}) = \emptyset \). \(\square \)

Corollary 4.3. Let \(M \) be an invariant subspace of \(L^{2} \).

(i) If \(M \subseteq L^{2}_{\alpha} \) and \(\dim L^{2}_{\alpha}/M < \infty \), then \(M \) is not weakly divisible.
(ii) If $M \supseteq L^2_a$ and $\dim M/L^2_a < \infty$, then M is weakly divisible.

Proof. (i) If $M \subset L^2_a$ and $\dim L^2_a/M = \ell < \infty$, then by (i) of Corollary 2.4 $M = bL^2_a$, where $b = \prod_{i=1}^{\ell} (z - a_j)$ and $a_j \in D$ (1 $\leq j \leq \ell$). Hence $Z(M \cap L^\infty) = Z(b) \neq \emptyset$ and so by Corollary 4.2 M is not weakly divisible.

(ii) By (2) of Corollary 2.4 $M = L^2_a$ and so $M \cap L^\infty = H^\infty$. Hence (i) of Theorem 4.1 implies that M is weakly divisible. \hfill \Box

Corollary 4.4. If $M = H^2_E$ for some open set E in D, then M is weakly divisible.

Proof. It is a result of (ii) of Theorem 4.1. \hfill \Box

Proposition 4.5. Suppose that M_j is a weakly divisible invariant subspace of L^2 for $j = 1, 2, \ldots$ and $M_j \times M_\ell = \{fg; f \in M_j \text{ and } g \in M_\ell\} = \{0\}$ if $j \neq \ell$. If $M = \sum_{j=1}^\infty \oplus M_j$, then M is a weakly divisible invariant subspace.

Proof. If $f \in M$, then $f = \sum_{j=1}^\infty f_j$ and $|f(z)| = \sum_{j=1}^\infty |f_j(z)|$ ($z \in D$) by hypothesis. This implies that M is weakly divisible. \hfill \Box

Corollary 4.6. Let $1 \leq \ell \leq \infty$. Suppose D_j is an open set in D with $\mu(\partial D_j) = 0$ for $1 \leq j \leq \ell$, $D_i \cap D_j = \emptyset (i \neq j)$ and $D = \bigcup_{j=1}^{\ell} D_j$. Then $M = \sum_{j=1}^{\ell} \oplus L^2_a(D_j)$ is weakly divisible.

Proof. This is a result of Corollary 4.4 and Proposition 4.5. \hfill \Box

Proposition 4.7. If M is a weakly divisible invariant subspace of L^2 and φ is a unimodular function in L^∞, then φM is a weakly divisible invariant subspace.

Proof. From the definition of weak divisibility, the proposition follows trivially. \hfill \Box

Corollary 4.8. If φ is a unimodular function in L^∞, then φL^2_a is weakly divisible.

Acknowledgements. This research was partly supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

References