<table>
<thead>
<tr>
<th>Title</th>
<th>INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS ON A BERGMAN SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NAkazI, TAKahIko; OSawa, Tomoko</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings of the Edinburgh Mathematical Society, 48: 479-484</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/5822</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright © 2005 Cambridge University Press</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>PEMS48.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS ON A BERGMAN SPACE

TAKAHIKO NAKAZI¹ AND TOMOKO OSAWA²

¹Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan (nakazi@math.sci.hokudai.ac.jp)
²Mathematical and Scientific Subjects, Asahikawa National College of Technology, Asahikawa 071-8142, Japan (ohsawa@asahikawa-nct.ac.jp)

(Received 29 April 2004)

Abstract Let \(L^2 = L^2(\mathbb{D}, drd\theta / \pi) \) be the Lebesgue space on the open unit disc \(\mathbb{D} \) and let \(L^2_{a} = L^2 \cap \text{Hol}(\mathbb{D}) \) be a Bergman space on \(\mathbb{D} \). In this paper, we are interested in a closed subspace \(M \) of \(L^2 \) which is invariant under the multiplication by the coordinate function \(z \), and a Hankel-type operator from \(L^2_{a} \) to \(M^\perp \). In particular, we study an invariant subspace \(M \) such that there does not exist a finite-rank Hankel-type operator except a zero operator.

Keywords: Bergman space; invariant subspace; Hankel-type operator

2000 Mathematics subject classification: Primary 47B35; 47A15

1. Introduction

Let \(D \) be the open unit disc in \(\mathbb{C} \) and \(\text{Hol}(D) \) be the set of all holomorphic functions on \(D \). Let \(d\mu = rdrd\theta / \pi \) and \(L^2 = L^2(D, d\mu) \) the Lebesgue space. The Bergman space \(L^2_a \) on \(D \) is defined by \(L^2_a = L^2 \cap \text{Hol}(D) \). Then \(L^2_a \) is the closed subspace of \(L^2 \). When \(M \) is a closed subspace of \(L^2 \) and \(z \in M \), \(M \) is called an invariant subspace. For \(\varphi \) in \(L^\infty = L^\infty(D, d\mu) \), a Hankel-type operator is defined by

\[
H^M_{\varphi} f = (I - P^M)(\varphi f) \quad (f \in L^2_a),
\]

where \(P^M \) is the orthogonal projection from \(L^2 \) onto \(M \). When \(M = L^2_a \), \(H^M_{\varphi} \) is called a big Hankel operator and when \(M = (\overline{zL^2_a})^\perp \), \(H^M_{\varphi} \) is called a small Hankel operator. When \(L^2_a \subseteq M \subseteq (\overline{zL^2_a})^\perp \), \(H^M_{\varphi} \) is called an intermediate Hankel operator.

It is easy to see that there does not exist a finite-rank big Hankel operator except a zero one (see [3,6]). On the other hand, there exist a lot of finite-rank non-zero small Hankel operators (see [6]). In fact, it is easy to see the results. Strouse [7] described completely all finite-rank intermediate Hankel operators for some invariant subspace. In the previous paper [6], we began to study finite-rank intermediate Hankel operators for arbitrary invariant subspace. In [6, Theorem 3.2], we gave three necessary and sufficient
conditions for \(M \) such that there does not exist a finite-rank intermediate Hankel operator except a zero one. In this paper, without the hypothesis on an invariant subspace \(M \), we give a new necessary and sufficient condition for \(M \) which have a finite-rank Hankel-type operator except a zero one.

For an invariant subspace \(M \) in \(L^2 \), \(H^M \) denotes the kernel of \(H^M \) and then \(\ker H^M = \{ f \in L^2_a; \varphi f \in M \} \). Hence \(\ker H^M \) is also an invariant subspace in \(L^2_a \). Thus each invariant subspace \(M \) in \(L^2 \) is related to an invariant subspace in \(L^2_a \) by a Hankel-type operator. In this paper, the following property of invariant subspaces in \(L^2 \) is important.

Definition 1.1. Let \(M \) be an invariant subspace of \(L^2 \). \(M \) is called weakly divisible if whenever \(f \in M \) and \(|f(z)| \leq \gamma |z - a| \) for some \(a \in D \) and some \(\gamma \geq 0 \) then \(f(z) = (z - a)g(z) \) and \(g \) is a function in \(M \).

In §2, we generalize a theorem of Axler and Bourdon [1], which will be used later on. In §3, we show that there does not exist a finite-rank Hankel-type operator \(H^M \) except a zero one if and only if \(M \) is weakly divisible. In §4, we give several examples of weakly divisible invariant subspaces.

In this paper \([S]_a\) denotes the weak* closed linear span of a subset \(S \) in \(L^\infty \) and \([S]_2 \) denotes the closed linear span of a subset \(S \) in \(L^2 \).

2. An invariant subspace and the index

In this section, for a given invariant subspace \(M \) we are interested in two invariant subspaces \(M' \) and \(M'' \) such that \(M' \subseteq M \subseteq M'' \), \(\dim M \otimes M' < \infty \) and \(\dim M'' \otimes M < \infty \). Under some conditions on \(M \), \(M' \) and \(M'' \), we describe \(M' \) and \(M'' \) using \(M \). Corollary 2.4 will be used in §§3 and 4. Corollary 2.4 (i) is known from [1].

When \(M \) is an invariant subspace of \(L^2 \), for \(a \in \mathbb{C} \) put \(\text{ind}_a M = \dim \{ M \oplus (z - a)M \} \). \(\text{ind}_a M \) is called the index of \(M \) at \(a \). It is known (cf. [1]) that for each \(n \) (\(0 \leq n \leq \infty \)) and for any \(a \) (\(\in D \)) there exists an invariant subspace \(M \) with \(\text{ind}_a M = n \).

Theorem 2.1. Let \(M, M_1 \) and \(M_2 \) be invariant subspaces of \(L^2 \) and \(M_1 \subseteq M_2 \).

(i) \(\text{ind}_a M = 0 \) for any \(a \notin D \).

(ii) If \(\dim M_2 \otimes M_1 < \infty \), then there exists a polynomial \(b \) such that \(bM_2 \subseteq M_1 \), \(Z(b) \subseteq D \) and the degree of \(b \leq \dim M_2 \otimes M_1 \) and

\[
\sum (\text{ind}_a M_2; a \in Z(b)) \geq \dim M_2 \otimes M_1.
\]

Proof. (i) If \(|a| > 1 \), then \((z - a)^{-1} \in H^\infty \) and \(M = (z - a)M \). Hence \(\text{ind}_a M = 0 \). If \(|a| = 1 \), then \((z - a)M = (z - a)\{ z - a(1 + \varepsilon) \}^{-1}M \). For any \(f \in M \), it is easy to see that

\[
\int_D \left| \frac{z - a}{z - a(1 + \varepsilon)} f - f \right|^2 d\mu \to 0 \quad (\varepsilon \to 0)
\]

by Lebesgue’s convergence theorem. This implies that \((z - a)M\) is dense in \(M \) and so \(\text{ind}_a M = 0 \) for \(|a| = 1 \).
(ii) Put $N = M_2 \ominus M_1$ and $S_z = PM_z|N$, where M_2 is a multiplication operator on L^2 by the coordinate function z and P is the orthogonal projection from L^2 to N. If $n = \dim N < \infty$, then there exists a polynomial b of degree n such that $S_b = b(S_z) = 0$ and so $bM_2 \subseteq M_1$. By (i), we may assume that $Z(b) \subset D$. We will prove that $\sum (\text{ind}_a M_2; a \in Z(b)) \geq n$. We can write that $b = a_0 \prod_{j=1}^n (z - a_j)$ and so $Z(b) = \{a_1, a_2, \ldots, a_n\}$, where $a_0 \in \mathbb{C}$. If $\sum (\text{ind}_a M_2; a \in Z(b)) \leq n - 1$, then we may assume $\text{ind}_a M_2 = 0$. Since $\sum_{j=2}^n (z - a_j)M_2 \subseteq M_1 \subset M_2$.

Then it is easy to see that $\dim M_2 \ominus \prod_{j=2}^n (z - a_j)M_2 \leq n - 1$ because $\text{ind}_a M_2 \leq 1$ for $2 \leq j \leq n$. This contradicts that $\dim M_2 \ominus M_1 = n$.

Corollary 2.2. Let M_1 and M_2 be invariant subspaces of L^2 and $M_1 \subseteq M_2$. If $\dim M_2 \ominus M_1 = 1$, then $(z - a)M_2 \subseteq M_1 \subseteq M_2$ for some $a \in D$ and $\text{ind}_a M_2 \geq 1$. If $\text{ind}_a M_1 = 1$ or $\text{ind}_a M_2 = 1$, then $M_1 = [(z - a)M_2]_2$.

Proof. By Theorem 2.1, $(z - a)M_2 \subseteq M_1$ for some $a \in D$ and so $\text{ind}_a M_2 \geq 1$. Since $(z - a)M_1 \subseteq (z - a)M_2 \subseteq M_1 \subseteq M_2, M_1 = [(z - a)M_2]_2$ if $\text{ind}_a M_1 = 1$ or $\text{ind}_a M_2 = 1$.

Corollary 2.3. Let M_1 and M_2 be invariant subspaces such that $M_1 \subseteq M_2$ and $\dim M_2 \ominus M_1 = n < \infty$. Suppose that $(z - a)M_j$ is closed for any $a \in D$ when $j = 1, 2$. If $\text{ind}_a M_1 = 1$ for any $a \in D$ or $\text{ind}_a M_2 = 1$ for any $a \in D$, then $M_1 = bM_2$ and $M_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus M_1$, where $b = \prod_{j=1}^n (z - a_j), \{a_j\} \subset D$ and $\{f_j\} \subset M_1$.

Proof. By Theorem 2.1 there exists a polynomial b such that $bM_2 \subseteq M_1$ and $Z(b) \subset D$ and the degree of $b \leq n$. Hence $b = \prod_{j=1}^n (z - a_j)$ and $\{a_j\} \subset D$ and $b \leq n$. When $\text{ind}_a M_2 = 1$ for any $a \in D$, $\dim M_2 \ominus bM_2 = \ell$ because $(z - a_j)M_2$ is closed for $1 \leq j \leq \ell$ and so $\ell = n$. Hence $M_1 = bM_2$. When $\text{ind}_a M_1 = 1$ for any $a \in D$, $\dim M_1 \ominus bM_1 = \ell$ by the same reason. Since $bM_1 \subseteq bM_2 \subseteq M_1$ and $\dim bM_2 \ominus bM_1 = n, \ell = n$ and so $M_1 = bM_2$. Put $M_2 = \langle \varphi_1, \ldots, \varphi_n \rangle \oplus M_1$, where $\{\varphi_j\}$ are orthogonal to M_1. What was just proved above, $bM_2 = M_1$ and so $bM_2 = \langle b\varphi_1, \ldots, b\varphi_n \rangle \oplus bM_1 = M_1$. Put $f_j = b\varphi_j$ for $j = 1, \ldots, n$, then $\{f_j\}$ are in M_1 and $M_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus M_1$.

Corollary 2.4. Let M be an invariant subspace of L^2.

(i) If $\dim L^2_a \ominus M = n < \infty$ and $n \neq 0$, then $M = bL^2_a$, where $b = \prod_{j=1}^n (z - a_j)$ and $\{a_j\} \subset D$.

(ii) If $\dim M \cap L^2_a = n < \infty$, then $M = L^2_a$.

Proof. It is known that $\text{ind}_a L^2_a = 1$ and $(z - a)L^2_a$ is closed for each $a \in D$. Hence we can apply Corollary 2.3 to $M_1 = L^2_a$ or $M_2 = L^2_a$. If $M_1 = M$ and $M_2 = L^2_a$, then (i) follows. If $M_1 = L^2_a$ and $M_2 = M$, then $M = \langle f_1/b, \ldots, f_n/b \rangle \oplus L^2_a$, where $b = \prod_{j=1}^n (z - a_j), \{a_j\} \subset D$ and $\{f_j\} \subset L^2_a$. For each $1 \leq \ell \leq n$, $f_\ell/b \in L^2$ and so
3. Finite-rank Hankel-type operators

In this section, we study the relation between finite-rank Hankel-type operators and invariant subspaces.

Theorem 3.1. Let \mathcal{M} be an invariant subspace of L^2. Then there does not exist a finite-rank Hankel-type operator H^M_φ except a zero one if and only if \mathcal{M} is weakly divisible.

Proof. Suppose \mathcal{M} is weakly divisible. If H^M_φ is of finite rank, then $\ker H^M_\varphi$ is an invariant subspace in L^2_a and $\dim L^2_a/\ker H^M_\varphi < \infty$. By (i) of Corollary 2.4, $\ker H^M_\varphi = bL^2_a$ for some polynomial b with $Z(b) \subset D$ and so $b\varphi$ belongs to \mathcal{M}. Put $f = b\varphi$, then $|f(z)| \leq \gamma |b(z)|$ ($z \in D$), where $\gamma = \|\varphi\|_\infty$. Suppose $b(z) = a_0 \prod_{j=1}^n (z - a_j)$, where $\{a_j\} \subset D$. For any ℓ with $1 \leq \ell \leq n$,

$$\left| \frac{f(z)}{z - a_\ell} \right| \leq \gamma |a_0| \prod_{j \neq \ell} |z - a_j| \quad (z \in D)$$

and $f(z)/(z - a_\ell)$ belongs to \mathcal{M} because $a_\ell \in D$ and \mathcal{M} is weakly divisible. Thus $\varphi(z) = f(z)/b(z)$ belongs to \mathcal{M}. Hence $H^M_\varphi = 0$.

Conversely, if \mathcal{M} is not weakly divisible, then there exists a function f in \mathcal{M} and a point a in D such that $|f(z)| \leq \gamma |z - a|$ ($z \in D$) and $f(z)/(z - a)$ does not belong to \mathcal{M}. Put $\varphi = f(z)/(z - a)$, then $\varphi \in L^\infty$ and H^M_φ is not zero because $\varphi \notin \mathcal{M}$. On the other hand, $(z - a)\varphi \in \mathcal{M}$ and so the kernel of H^M_φ contains $(z - a)L^2_a$. This implies that H^M_φ is of rank one because $L^2_a/(z - a)L^2_a = \mathbb{C}$.

Proposition 3.2. If there exists a symbol φ such that $r(H^M_\varphi) = n \geq 1$, then there exists a symbol φ_j such that $r(H^M_{\varphi_j}) = j$ for any j with $0 \leq j \leq n - 1$.

Proof. Suppose $1 \leq n = r(H^M_\varphi) < \infty$. Then $\ker H^M_\varphi$ is the kernel of H^M_φ is an invariant subspace of L^2_a and $L^2_a/\ker H^M_\varphi$ is of finite dimension n. By Corollary 2.4, $\ker H^M_\varphi = bL^2_a$, where $b = \prod_{j=1}^n (z - a_\ell)$ and $(a_\ell) \subset D$. Hence $b\varphi$ belongs to \mathcal{M}. Put

$$\varphi_j = \varphi \prod_{\ell=1}^n (z - a_\ell) \quad \text{for } 1 \leq j \leq n - 1,$$

then $\varphi_j \notin \mathcal{M}$ for $1 \leq j \leq n - 1$ and $\varphi_0 = b\varphi$. Since $\ker H^M_{\varphi_j} = b_jL^2_a$ for $1 \leq j \leq n - 1$, where $b_j = \prod_{j=1}^n (z - a_\ell)$, $H^M_{\varphi_j}$ is of finite rank j for $0 \leq j \leq n - 1$.

Corollary 3.3. The following two expressions are equivalent for an invariant subspace \mathcal{M}.

(i) If $r(H^M_\varphi) < \infty$, then $r(H^M_{\varphi_j}) = 0$.

(ii) If \(r(H_\varphi^M) \leq 1 \), then \(r(H_\varphi^M) = 0 \).

Proof. (i) \(\Rightarrow \) (ii). This is clear.

(ii) \(\Rightarrow \) (i). If (i) is not true, then there exists a symbol \(\varphi \) with \(r(H_\varphi^M) = n \geq 2 \). By Proposition 3.2 there exists a symbol \(\varphi_1 \) such that \(r(H_{\varphi_1}^M) = 1 \). This contradicts (ii). \(\Box \)

4. Weakly divisible invariant subspaces

For a function \(f \) in \(L^2_a \), put \(Z(f) = \{ a \in D; f(a) = 0 \} \) and \(Z(G) = \cap \{ Z(f); f \in G \} \) for a subset \(G \) in \(L^2_a \). For \(1 \leq p \leq \infty \), if \(E \) is an open set in \(D \), \(H^p_E \) denotes the set of all functions in \(L^p \) that are analytic on \(E \). In Corollary 4.2, a weakly divisible invariant subspace \(M \) is described completely when \(M \) is in \(L^2_a \). There exists a non-zero invariant subspace \(M \) in \(L^2_a \) such that \(M \cap L^\infty = \{ 0 \} \). For it is known (see [5]) that there exists a non-zero function \(f \) in \(L^2_a \) such that \(Z(f) \) does not satisfy the Blaschke condition.

Theorem 4.1. Let \(\mathcal{M} \) be an invariant subspace of \(L^2 \).

(i) If \(\mathcal{M} \cap L^\infty \subseteq H^\infty \) and \(Z(\mathcal{M} \cap L^\infty) = \emptyset \), then \(\mathcal{M} \) is weakly divisible.

(ii) If \(\mathcal{M} \cap L^\infty = H^\infty_E \) for some open set \(E \), then \(\mathcal{M} \) is weakly divisible.

(iii) If \(\mathcal{M} \cap L^\infty = \{ 0 \} \), then \(\mathcal{M} \) is weakly divisible.

Proof. (i) If \(\{ f_n \} \) is a sequence in \(\mathcal{M} \cap L^\infty \) which converges pointwise boundedly to \(f \), then \(f \in \mathcal{M} \). By the Krein–Schmalian criterion (see [4, IV 2.1]), \(\mathcal{M} \cap L^\infty \) is weak* closed. Hence, by a well-known theorem of Beurling [2] \(\mathcal{M} \cap L^\infty = qH^\infty \) for some inner function \(q \). Hence if \(f \in \mathcal{M} \) and \(|f(z)| \leq \gamma |z - a| \) (\(z \in D \)) for some \(a \in D \), then \(f = qh \) for some \(h \in H^\infty \). Since \(Z(\mathcal{M} \cap L^\infty) = \emptyset \), \(|q(z)| > 0 \) (\(z \in D \)) and so \(h(a) = 0 \). Hence \(f(z)/(z - a) = q(z) \times (h(z)/(z - a)) \) \(\in qH^\infty \). Thus \(f(z)/(z - a) \) belongs to \(\mathcal{M} \).

(ii) If \(f \in H^\infty_E \) and \(|f(z)| \leq \gamma |z - a| \) (\(z \in D \)) for some \(a \in D \), then \(f(z)/(z - a) \in L^\infty \) and \(f(z)/(z - a) \) is analytic on \(E \). Hence \(f(z)/(z - a) \) belongs to \(H^\infty_E \) and so \(\mathcal{M} \) is weakly divisible.

(iii) This is clear. \(\Box \)

Corollary 4.2. Let \(\mathcal{M} \) be an invariant subspace of \(L^2_a \). Then \(\mathcal{M} \) is weakly divisible if and only if \(\mathcal{M} \cap L^\infty = \{ 0 \} \) or \(Z(\mathcal{M} \cap L^\infty) = \emptyset \).

Proof. The part of ‘if’ is a result of (i) and (iii) of Theorem 4.1. Conversely, suppose that \(\mathcal{M} \) is weakly divisible. If \(\mathcal{M} \cap L^\infty \neq \{ 0 \} \), then by a theorem of Beurling there exists an inner function \(q \) with \(\mathcal{M} \cap L^\infty = qH^\infty \). If \(q(a) = 0 \) for some \(a \in D \), then there exists a finite positive constant \(\gamma \) such that \(|q(z)| \leq \gamma |z - a| \) (\(z \in D \)) and \(q/(z - a) \notin \mathcal{M} \). This contradicts the weak divisibility of \(\mathcal{M} \) and so \(Z(q) = Z(\mathcal{M} \cap L^\infty) = \emptyset \). \(\Box \)

Corollary 4.3. Let \(\mathcal{M} \) be an invariant subspace of \(L^2 \).

(i) If \(\mathcal{M} \subseteq L^2_a \) and \(\dim L^2_a/\mathcal{M} < \infty \), then \(\mathcal{M} \) is not weakly divisible.
If $\mathcal{M} \supseteq L^2_\alpha$ and $\dim \mathcal{M}/L^2_\alpha < \infty$, then \mathcal{M} is weakly divisible.

Proof. (i) If $\mathcal{M} \subseteq L^2_\alpha$ and $\dim L^2_\alpha/\mathcal{M} = \ell < \infty$, then by (i) of Corollary 2.4 $\mathcal{M} = bL^2_\alpha$, where $b = \prod_{j=1}^\ell (z - a_j)$ and $a_j \in D$ $(1 \leq j \leq \ell)$. Hence $Z(\mathcal{M} \cap L^\infty) = Z(b) \neq \emptyset$ and so by Corollary 4.2 \mathcal{M} is not weakly divisible.

(ii) By (2) of Corollary 2.4 $\mathcal{M} = L^2_\alpha$ and so $\mathcal{M} \cap L^\infty = H^\infty$. Hence (i) of Theorem 4.1 implies that \mathcal{M} is weakly divisible.

Corollary 4.4. If $\mathcal{M} = H^2_E$ for some open set E in D, then \mathcal{M} is weakly divisible.

Proof. It is a result of (ii) of Theorem 4.1.

Proposition 4.5. Suppose that \mathcal{M}_j is a weakly divisible invariant subspace of L^2 for $j = 1, 2, \ldots$ and $\mathcal{M}_j \times \mathcal{M}_\ell = \{fg; f \in \mathcal{M}_j$ and $g \in \mathcal{M}_\ell\} = \{0\}$ if $j \neq \ell$. If $\mathcal{M} = \sum_{j=1}^\infty \oplus \mathcal{M}_j$, then \mathcal{M} is a weakly divisible invariant subspace.

Proof. If $f \in \mathcal{M}$, then $f = \sum_{j=1}^\infty f_j$ and $|f(z)| = \sum_{j=1}^\infty |f_j(z)|$ $(z \in D)$ by hypothesis. This implies that \mathcal{M} is weakly divisible.

Corollary 4.6. Let $1 \leq \ell \leq \infty$. Suppose D_j is an open set in D with $\mu(\partial D_j) = 0$ for $1 \leq j \leq \ell$, $D_i \cap D_j = \emptyset (i \neq j)$ and $D = \bigcup_{j=1}^\ell D_j$. Then $\mathcal{M} = \sum_{j=1}^\ell \oplus L^2_\alpha(D_j)$ is weakly divisible.

Proof. This is a result of Corollary 4.4 and Proposition 4.5.

Proposition 4.7. If \mathcal{M} is a weakly divisible invariant subspace of L^2 and φ is a unimodular function in L^∞, then $\varphi \mathcal{M}$ is a weakly divisible invariant subspace.

Proof. From the definition of weak divisibility, the proposition follows trivially.

Corollary 4.8. If φ is a unimodular function in L^∞, then φL^2_α is weakly divisible.

Acknowledgements. This research was partly supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

References