<table>
<thead>
<tr>
<th>Title</th>
<th>INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS ON A BERGMAN SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NAkAzI, TAKAHlCO; OSAWA, TOMOKO</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings of the Edinburgh Mathematical Society, 48: 479-484</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/5822</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright © 2005 Cambridge University Press</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>PEMs48.pdf</td>
</tr>
<tr>
<td>Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP</td>
<td></td>
</tr>
</tbody>
</table>
INVARIANT SUBSPACES AND HANKEL-TYPE OPERATORS
ON A BERGMAN SPACE

TAKAHIKO NAKAZI\(^1\) AND TOMOKO OSAWA\(^2\)
\(^1\)Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan (nakazi@math.sci.hokudai.ac.jp)
\(^2\)Mathematical and Scientific Subjects, Asahikawa National College of Technology, Asahikawa 071-8142, Japan (ohsawa@asahikawa-ntc.ac.jp)

(Received 29 April 2004)

Abstract Let \(L^2 = L^2(D, r dr d\theta/\pi)\) be the Lebesgue space on the open unit disc \(D\) and let \(L^2_a = L^2 \cap \operatorname{Hol}(D)\) be a Bergman space on \(D\). In this paper, we are interested in a closed subspace \(M\) of \(L^2\) which is invariant under the multiplication by the coordinate function \(z\), and a Hankel-type operator from \(L^2_a\) to \(M^\perp\). In particular, we study an invariant subspace \(M\) such that there does not exist a finite-rank Hankel-type operator except a zero operator.

Keywords: Bergman space; invariant subspace; Hankel-type operator

2000 Mathematics subject classification: Primary 47B35; 47A15

1. Introduction

Let \(D\) be the open unit disc in \(\mathbb{C}\) and \(\operatorname{Hol}(D)\) be the set of all holomorphic functions on \(D\). Let \(d\mu = r dr d\theta/\pi\) and \(L^2 = L^2(D, d\mu)\) the Lebesgue space. The Bergman space \(L^2_a\) on \(D\) is defined by \(L^2_a = L^2 \cap \operatorname{Hol}(D)\). Then \(L^2_a\) is the closed subspace of \(L^2\). When \(M\) is a closed subspace of \(L^2\) and \(z M \subseteq M\), \(M\) is called an invariant subspace. For \(\varphi\) in \(L^\infty = L^\infty(D, d\mu)\), a Hankel-type operator is defined by

\[
H^M_\varphi f = (I - P^M)(\varphi f) \quad (f \in L^2_a),
\]

where \(P^M\) is the orthogonal projection from \(L^2\) onto \(M\). When \(M = L^2_a\), \(H^M_\varphi\) is called a big Hankel operator and when \(M = (\overline{z L^2_a})^\perp\), \(H^M_\varphi\) is called a small Hankel operator. When \(L^2_a \subseteq M \subseteq (\overline{z L^2_a})^\perp\), \(H^M_\varphi\) is called an intermediate Hankel operator.

It is easy to see that there does not exist a finite-rank big Hankel operator except a zero one (see [3, 6]). On the other hand, there exist a lot of finite-rank non-zero small Hankel operators (see [6]). In fact, it is easy to see the results. Strouse [7] described completely all finite-rank intermediate Hankel operators for some invariant subspace. In the previous paper [6], we began to study finite-rank intermediate Hankel operators for arbitrary invariant subspace. In [6, Theorem 3.2], we gave three necessary and sufficient
conditions for \mathcal{M} such that there does not exist a finite-rank intermediate Hankel operator except a zero one. In this paper, without the hypothesis on an invariant subspace \mathcal{M}, we give a new necessary and sufficient condition for \mathcal{M} which have a finite-rank Hankel-type operator except a zero one.

For an invariant subspace \mathcal{M} in L^2, $\ker H_\varphi^\mathcal{M}$ denotes the kernel of $H_\varphi^\mathcal{M}$ and then $\ker H_\varphi^\mathcal{M} = \{ f \in L^2_a; \varphi f \in \mathcal{M} \}$. Hence $\ker H_\varphi^\mathcal{M}$ is also an invariant subspace in L^2_a. Thus each invariant subspace \mathcal{M} in L^2 is related to an invariant subspace in L^2_a by a Hankel-type operator. In this paper, the following property of invariant subspaces in L^2 is important.

Definition 1.1. Let \mathcal{M} be an invariant subspace of L^2. \mathcal{M} is called weakly divisible if whenever $f \in \mathcal{M}$ and $|f(z)| \leq \gamma |z - a|$ for some $a \in D$ and some $\gamma \geq 0$ then $f(z) = (z - a)g(z)$ and g is a function in \mathcal{M}.

In §2, we generalize a theorem of Axler and Bourdon [1], which will be used later on. In §3, we show that there does not exist a finite-rank Hankel-type operator $H_\varphi^\mathcal{M}$ except a zero one if and only if \mathcal{M} is weakly divisible. In §4, we give several examples of weakly divisible invariant subspaces.

In this paper $[S]_a$ denotes the weak* closed linear span of a subset S in L^∞ and $[S]_2$ denotes the closed linear span of a subset S in L^2.

2. An invariant subspace and the index

In this section, for a given invariant subspace \mathcal{M} we are interested in two invariant subspaces \mathcal{M}' and \mathcal{M}'' such that $\mathcal{M}' \subseteq \mathcal{M} \subseteq \mathcal{M}''$, dim $\mathcal{M} \cap \mathcal{M}' < \infty$ and dim $\mathcal{M}'' \cap \mathcal{M} < \infty$. Under some conditions on \mathcal{M}, \mathcal{M}' and \mathcal{M}'', we describe \mathcal{M}' and \mathcal{M}'' using \mathcal{M}. Corollary 2.4 will be used in §§3 and 4. Corollary 2.4 (i) is known from [1].

When \mathcal{M} is an invariant subspace of L^2, for $a \in \mathbb{C}$ put $\text{ind}_a \mathcal{M} = \text{dim} \{ \mathcal{M} \cap (z - a)\mathcal{M} \}$. $\text{ind}_a \mathcal{M}$ is called the index of \mathcal{M} at a. It is known (cf. [1]) that for each $n \ (0 \leq n \leq \infty)$ and for any $a \ (\in D)$ there exists an invariant subspace \mathcal{M} with $\text{ind}_a \mathcal{M} = n$.

Theorem 2.1. Let \mathcal{M}, \mathcal{M}_1 and \mathcal{M}_2 be invariant subspaces of L^2 and $\mathcal{M}_1 \subseteq \mathcal{M}_2$.

(i) $\text{ind}_a \mathcal{M} = 0$ for any $a \notin D$.

(ii) If dim $\mathcal{M}_2 \cap \mathcal{M}_1 < \infty$, then there exists a polynomial b such that $b\mathcal{M}_2 \subseteq \mathcal{M}_1$, $Z(b) \subseteq D$ and the degree of b is $\leq \text{dim} \mathcal{M}_2 \cap \mathcal{M}_1$ and

$$\sum (\text{ind}_a \mathcal{M}_2; a \in Z(b)) \geq \text{dim} \mathcal{M}_2 \cap \mathcal{M}_1.$$

Proof. (i) If $|a| > 1$, then $(z - a)^{-1} \in H^\infty$ and $\mathcal{M} = (z - a)\mathcal{M}$. Hence $\text{ind}_a \mathcal{M} = 0$. If $|a| = 1$, then $(z - a)\mathcal{M} = (z - a)(z - a(1 + \varepsilon))^{-1}\mathcal{M}$. For any $f \in \mathcal{M}$, it is easy to see that

$$\int_D \left| \frac{z - a}{z - a(1 + \varepsilon)} f - f \right|^2 d\mu \to 0 \quad (\varepsilon \to 0)$$

by Lebesgue’s convergence theorem. This implies that $(z - a)\mathcal{M}$ is dense in \mathcal{M} and so $\text{ind}_a \mathcal{M} = 0$ for $|a| = 1$.

(ii) Put \(\mathcal{N} = \mathcal{M}_2 \ominus \mathcal{M}_1 \) and \(S_z = PM_z|\mathcal{N} \), where \(\mathcal{M}_2 \) is a multiplication operator on \(L^2 \) by the coordinate function \(z \) and \(P \) is the orthogonal projection from \(L^2 \) to \(\mathcal{N} \). If \(n = \dim \mathcal{N} < \infty \), then there exists a polynomial \(b \) of degree \(n \) such that \(S_b = b(S_z) = 0 \) and so \(b\mathcal{M}_2 \subseteq \mathcal{M}_1 \). By (i), we may assume that \(Z(b) \subset D \). We will prove that \(\sum (\text{ind}_a \mathcal{M}_2; a \in Z(b)) \geq n \). We can write that \(b = a_0 \prod_{j=1}^{n}(z - a_j) \) and so \(Z(b) = \{a_1, a_2, \ldots, a_n\} \), where \(a_0 \in \mathbb{C} \). If \(\sum (\text{ind}_a \mathcal{M}_2; a \in Z(b)) \leq n - 1 \), then we may assume \(\text{ind}_a \mathcal{M}_2 = 0 \). Since \([(z-a_1)\mathcal{M}_2]_2 = \mathcal{M}_2 \),

\[
\prod_{j=2}^{n}(z-a_j)\mathcal{M}_2 \subseteq \mathcal{M}_1 \subset \mathcal{M}_2.
\]

Then it is easy to see that \(\dim \mathcal{M}_2 \ominus \prod_{j=2}^{n}(z-a_j)\mathcal{M}_2)_2 \leq n - 1 \) because \(\text{ind}_a \mathcal{M}_2 \leq 1 \) for \(2 \leq j \leq n \). This contradicts that \(\dim \mathcal{M}_2 \ominus \mathcal{M}_1 = n \).

Corollary 2.2. Let \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) be invariant subspaces of \(L^2 \) and \(\mathcal{M}_1 \subseteq \mathcal{M}_2 \). If \(\dim \mathcal{M}_2 \ominus \mathcal{M}_1 = 1 \), then \((z - a)\mathcal{M}_2 \subseteq \mathcal{M}_1 \subset \mathcal{M}_2 \) for some \(a \in D \) and \(\text{ind}_a \mathcal{M}_2 = 1 \). If \(\text{ind}_a \mathcal{M}_1 = 1 \) or \(\text{ind}_a \mathcal{M}_2 = 1 \), then \(\mathcal{M}_1 = [(z - a)\mathcal{M}_2]_2 \).

Proof. By Theorem 2.1, \((z - a)\mathcal{M}_2 \subseteq \mathcal{M}_1 \) for some \(a \in D \) and so \(\text{ind}_a \mathcal{M}_2 \geq 1 \). Since \((z-a)\mathcal{M}_1 \subseteq (z-a)\mathcal{M}_2 \subseteq \mathcal{M}_1 \not\subset \mathcal{M}_2 \), \(\mathcal{M}_1 = [(z-a)\mathcal{M}_2]_2 \) if \(\text{ind}_a \mathcal{M}_1 = 1 \) or \(\text{ind}_a \mathcal{M}_2 = 1 \).

Corollary 2.3. Let \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) be invariant subspaces such that \(\mathcal{M}_1 \subseteq \mathcal{M}_2 \) and \(\dim \mathcal{M}_2 \ominus \mathcal{M}_1 = n < \infty \). Suppose that \((z - a)\mathcal{M}_j \) is closed for any \(a \in D \) when \(j = 1, 2 \). If \(\text{ind}_a \mathcal{M}_1 = 1 \) for any \(a \in D \) or \(\text{ind}_a \mathcal{M}_2 = 1 \) for any \(a \in D \), then \(\mathcal{M}_1 = b\mathcal{M}_2 \) and \(\mathcal{M}_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus \mathcal{M}_1 \), where \(b = \prod_{j=1}^{n}(z - a_j), \{a_j\} \subset D \) and \(\{f_j\} \subset \mathcal{M}_1 \).

Proof. By Theorem 2.1 there exists a polynomial \(b \) such that \(b\mathcal{M}_2 \subseteq \mathcal{M}_1 \) and \(Z(b) \subset D \) and the degree of \(b \leq n \). Hence \(b = \prod_{j=1}^{\ell}(z - a_j) \) and \(\{a_j\} \subset D \) and \(\ell \leq n \). When \(\text{ind}_a \mathcal{M}_2 = 1 \) for any \(a \in D \), \(\dim \mathcal{M}_2 \ominus b\mathcal{M}_2 = \ell \) because \((z-a)\mathcal{M}_2 \) is closed for \(1 \leq j \leq \ell \) and so \(\ell = n \). Hence \(\mathcal{M}_1 = b\mathcal{M}_2 \). But \(\mathcal{M}_1 = b\mathcal{M}_1 \). When \(\text{ind}_a \mathcal{M}_2 = 1 \) for any \(a \in D \), \(\dim \mathcal{M}_1 \ominus b\mathcal{M}_1 = \ell \) by the same reason. Since \(b\mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \mathcal{M}_1 \) and \(\dim b\mathcal{M}_2 \ominus b\mathcal{M}_1 = n, \ell = n \) and so \(\mathcal{M}_1 = b\mathcal{M}_2 \). Put \(\mathcal{M}_2 = \langle \varphi_1, \ldots, \varphi_n \rangle \oplus \mathcal{M}_1 \), where \(\{\varphi_j\} \) are orthogonal to \(\mathcal{M}_1 \). What was just proved above, \(b\mathcal{M}_2 = \mathcal{M}_1 \) and so \(b\mathcal{M}_2 = \langle b\varphi_1, \ldots, b\varphi_n \rangle \oplus \mathcal{M}_1 = \mathcal{M}_1 \). Put \(f_j = b\varphi_j \) for \(j = 1, \ldots, n \), then \(\{f_j\} \) are in \(\mathcal{M}_1 \) and \(\mathcal{M}_2 = \langle f_1/b, \ldots, f_n/b \rangle \oplus \mathcal{M}_1 \).

Corollary 2.4. Let \(\mathcal{M} \) be an invariant subspace of \(L^2 \).

(i) If \(\dim \mathcal{L}_a^2 \ominus \mathcal{M} = n < \infty \) and \(n \neq 0 \), then \(\mathcal{M} = b\mathcal{L}_a^2 \), where \(b = \prod_{j=1}^{n}(z - a_j) \) and \(\{a_j\} \subset D \).

(ii) If \(\dim \mathcal{M} \ominus \mathcal{L}_a^2 = n < \infty \), then \(\mathcal{M} = \mathcal{L}_a^2 \).

Proof. It is known that \(\text{ind}_a \mathcal{L}_a^2 = 1 \) and \((z-a)\mathcal{L}_a^2 \) is closed for each \(a \in D \). Hence we can apply Corollary 2.3 to \(\mathcal{M}_1 = \mathcal{L}_a^2 \) or \(\mathcal{M}_2 = \mathcal{L}_a^2 \). If \(\mathcal{M}_1 = \mathcal{M} \) and \(\mathcal{M}_2 = \mathcal{L}_a^2 \), then (i) follows. If \(\mathcal{M}_1 = \mathcal{L}_a^2 \) and \(\mathcal{M}_2 = \mathcal{M} \), then \(\mathcal{M} = \langle f_1/b, \ldots, f_n/b \rangle \oplus \mathcal{L}_a^2 \), where \(b = \prod_{j=1}^{n}(z - a_j), \{a_j\} \subset D \) and \(\{f_j\} \subset \mathcal{L}_a^2 \). For each \(1 \leq \ell \leq n \), \(f_\ell/b \in L^2 \) and so
In this section, we study the relation between finite-rank Hankel-type operators and invariant subspaces.

Theorem 3.1. Let \(\mathcal{M} \) be an invariant subspace of \(L^2 \). Then there does not exist a finite-rank Hankel-type operator \(H^M_{\varphi} \) except a zero one if and only if \(\mathcal{M} \) is weakly divisible.

Proof. Suppose \(\mathcal{M} \) is weakly divisible. If \(H^M_{\varphi} \) is of finite rank, then \(\ker H^M_{\varphi} \) is an invariant subspace in \(L^2_a \) and \(\dim L^2_a / \ker H^M_{\varphi} < \infty \). By (i) of Corollary 2.4, \(\ker H^M_{\varphi} = bL^2_a \) for some polynomial \(b \) with \(Z(b) \subset D \) and so \(b\varphi \) belongs to \(\mathcal{M} \). Put \(f = b\varphi \), then \(|f(z)| \leq |b(z)| (z \in D) \), where \(\gamma = \| \varphi \|_\infty \). Suppose \(b(z) = a_0 \prod_{j=1}^a (z - a_j) \), where \(\{a_j\} \subset D \). For any \(\ell \) with \(1 \leq \ell \leq n \),

\[
|f(z)| \leq |a_0| \prod_{j \neq \ell} |z - a_j| \quad (z \in D)
\]

and \(f(z)/(z - a_\ell) \) belongs to \(\mathcal{M} \) because \(a_\ell \in D \) and \(\mathcal{M} \) is weakly divisible. Thus \(\varphi(z) = f(z)/b(z) \) belongs to \(\mathcal{M} \). Hence \(H^M_{\varphi} = 0 \).

Conversely, if \(\mathcal{M} \) is not weakly divisible, then there exists a function \(f \) in \(\mathcal{M} \) and a point \(a \) in \(D \) such that \(|f(z)| \leq |z - a| (z \in D) \) and \(f(z)/(z - a) \) does not belong to \(\mathcal{M} \). Put \(\varphi = f(z)/(z - a) \), then \(\varphi \in L^\infty \) and \(H^M_{\varphi} \) is not zero because \(\varphi \notin \mathcal{M} \). On the other hand, \((z - a)\varphi \in \mathcal{M} \) and so the kernel of \(H^M_{\varphi} \) contains \((z - a)L^2_a \). This implies that \(H^M_{\varphi} \) is of rank one because \(L^2_a/(z - a)L^2_a = \mathbb{C} \). \(\square \)

Proposition 3.2. If there exists a symbol \(\varphi \) such that \(r(H^M_{\varphi}) = n \geq 1 \), then there exists a symbol \(\varphi_j \) such that \(r(H^M_{\varphi_j}) = j \) for any \(j \) with \(0 \leq j \leq n - 1 \).

Proof. Suppose \(1 \leq n = r(H^M_{\varphi}) < \infty \). Then \(\ker H^M_{\varphi} = \ker H^M_{\varphi_j} \) is the kernel of \(H^M_{\varphi} \) is an invariant subspace of \(L^2_a \) and \(L^2_a / \ker H^M_{\varphi} \) is of finite dimension \(n \). By Corollary 2.4, \(\ker H^M_{\varphi} = bL^2_a \), where \(b = \prod_{j=1}^n (z - a_j) \) and \(\{a_j\} \subset D \). Hence \(b\varphi \) belongs to \(\mathcal{M} \). Put

\[
\varphi_j = \varphi \prod_{\ell = j+1}^n (z - a_\ell) \quad \text{for} \ 1 \leq j \leq n - 1,
\]

then \(\varphi_j \notin \mathcal{M} \) for \(1 \leq j \leq n - 1 \) and \(\varphi_0 = b\varphi \). Since \(\ker H^M_{\varphi_j} = b_jL^2_a \) for \(1 \leq j \leq n - 1 \), where \(b_j = \prod_{\ell=1}^n (z - a_\ell) \), \(H^M_{\varphi_j} \) is of finite rank \(j \) for \(0 \leq j \leq n - 1 \). \(\square \)

Corollary 3.3. The following two expressions are equivalent for an invariant subspace \(\mathcal{M} \).

(i) If \(r(H^M_{\varphi}) < \infty \), then \(r(H^M_{\varphi}) = 0 \).
(ii) If \(r(H_\varphi^M) \leq 1 \), then \(r(H_\varphi^M) = 0 \).

Proof. (i) ⇒ (ii). This is clear.

(ii) ⇒ (i). If (i) is not true, then there exists a symbol \(\varphi \) with \(r(H_\varphi^M) = n \geq 2 \). By Proposition 3.2 there exists a symbol \(\varphi_1 \) such that \(r(H_\varphi^M) = 1 \). This contradicts (ii). □

4. Weakly divisible invariant subspaces

For a function \(f \) in \(L_a^2 \), put \(Z(f) = \{ a \in D; f(a) = 0 \} \) and \(Z(G) = \cap \{ Z(f); f \in G \} \) for a subset \(G \) in \(L_a^2 \). For \(1 \leq p \leq \infty \), if \(E \) is an open set in \(D \), \(H_\varphi^E \) denotes the set of all functions in \(L^p \) that are analytic on \(E \). In Corollary 4.2, a weakly divisible invariant subspace \(\mathcal{M} \) is described completely when \(\mathcal{M} \) is in \(L_a^2 \). There exists a non-zero invariant subspace \(\mathcal{M} \) in \(L_a^2 \) such that \(\mathcal{M} \cap L^\infty = (0) \). For it is known (see [5]) that there exists a non-zero function \(f \) in \(L_a^2 \) such that \(Z(f) \) does not satisfy the Blaschke condition.

Theorem 4.1. Let \(\mathcal{M} \) be an invariant subspace of \(L^2 \).

(i) If \(\mathcal{M} \cap L^\infty \subseteq H^\infty \) and \(Z(\mathcal{M} \cap L^\infty) = \emptyset \), then \(\mathcal{M} \) is weakly divisible.

(ii) If \(\mathcal{M} \cap L^\infty = H_\varphi^E \) for some open set \(E \), then \(\mathcal{M} \) is weakly divisible.

(iii) If \(\mathcal{M} \cap L^\infty = (0) \), then \(\mathcal{M} \) is weakly divisible.

Proof. (i) If \(\{ f_n \} \) is a sequence in \(\mathcal{M} \cap L^\infty \) which converges pointwise boundedly to \(f \), then \(f \in \mathcal{M} \). By the Krein–Schmulian criterion (see [4, IV 2.1]), \(\mathcal{M} \cap L^\infty \) is weak∗ closed. Hence, by a well-known theorem of Beurling [2] \(\mathcal{M} \cap L^\infty = qH^\infty \) for some inner function \(q \). Hence if \(f \in \mathcal{M} \) and \(|f(z)| \leq |z - a| \) \((z \in D) \) for some \(a \in D \), then \(f = qh \) for some \(h \in H^\infty \). Since \(Z(\mathcal{M} \cap L^\infty) = \emptyset \), \(|q(z)| > 0 \) \((z \in D)\) and so \(h(a) = 0 \). Hence \(f(z)/(z - a) = \langle h(z)/(z - a) \rangle \in qH^\infty \). Thus \(f(z)/(z - a) \) belongs to \(\mathcal{M} \).

(ii) If \(f \in H_\varphi^E \) and \(|f(z)| \leq |z - a| \) \((z \in D) \) for some \(a \in D \), then \(f(z)/(z - a) \in L^\infty \) and \(f(z)/(z - a) \) is analytic on \(E \). Hence \(f(z)/(z - a) \) belongs to \(H_\varphi^E \) and so \(\mathcal{M} \) is weakly divisible.

(iii) This is clear. □

Corollary 4.2. Let \(\mathcal{M} \) be an invariant subspace of \(L_a^2 \). Then \(\mathcal{M} \) is weakly divisible if and only if \(\mathcal{M} \cap L^\infty = (0) \) or \(Z(\mathcal{M} \cap L^\infty) = \emptyset \).

Proof. The part of ‘if’ is a result of (i) and (iii) of Theorem 4.1. Conversely, suppose that \(\mathcal{M} \) is weakly divisible. If \(\mathcal{M} \cap L^\infty \neq (0) \), then by a theorem of Beurling there exists an inner function \(q \) with \(\mathcal{M} \cap L^\infty = qH^\infty \). If \(q(a) = 0 \) for some \(a \in D \), then there exists a finite positive constant \(\gamma \) such that \(|q(z)| \leq \gamma |z - a| \) \((z \in D) \) and \(q/(z - a) \notin \mathcal{M} \). This contradicts the weak divisibility of \(\mathcal{M} \) and so \(Z(q) = Z(\mathcal{M} \cap L^\infty) = \emptyset \). □

Corollary 4.3. Let \(\mathcal{M} \) be an invariant subspace of \(L^2 \).

(i) If \(\mathcal{M} \subseteq L_a^2 \) and \(\dim L_a^2/\mathcal{M} < \infty \), then \(\mathcal{M} \) is not weakly divisible.
(ii) If $M \supseteq L^2_0$ and $\dim M/L^2_0 < \infty$, then M is weakly divisible.

Proof. (i) If $M \subseteq L^2_0$ and $\dim L^2_0/M = \ell < \infty$, then by (i) of Corollary 2.4 $M = bL^2_0$, where $b = \prod_{j=1}^{\ell} (z - a_j)$ and $a_j \in D$ ($1 \leq j \leq \ell$). Hence $Z(M \cap L^\infty) = Z(b) \neq \emptyset$ and so by Corollary 4.2 M is not weakly divisible.

(ii) By (2) of Corollary 2.4 $M = L^2_0$ and so $M \cap L^\infty = H^\infty$. Hence (i) of Theorem 4.1 implies that M is weakly divisible. \hfill \Box

Corollary 4.4. If $M = H^2_E$ for some open set E in D, then M is weakly divisible.

Proof. It is a result of (ii) of Theorem 4.1. \hfill \Box

Proposition 4.5. Suppose that M_j is a weakly divisible invariant subspace of L^2 for $j = 1, 2, \ldots$ and $M_j \times M_\ell = \{fg; f \in M_j \text{ and } g \in M_\ell\} = \{0\}$ if $j \neq \ell$. If $M = \sum_{j=1}^{\ell} \oplus M_j$, then M is a weakly divisible invariant subspace.

Proof. If $f \in M$, then $f = \sum_{j=1}^{\ell} f_j$ and $|f(z)| = \sum_{j=1}^{\ell} |f_j(z)|$ ($z \in D$) by hypothesis. This implies that M is weakly divisible. \hfill \Box

Corollary 4.6. Let $1 \leq \ell \leq \infty$. Suppose D_j is an open set in D with $\mu(\partial D_j) = 0$ for $1 \leq j \leq \ell$, $D_i \cap D_j = \emptyset (i \neq j)$ and $D = \bigcup_{j=1}^{\ell} D_j$. Then $M = \sum_{j=1}^{\ell} \oplus L^2_0(D_j)$ is weakly divisible.

Proof. This is a result of Corollary 4.4 and Proposition 4.5. \hfill \Box

Proposition 4.7. If M is a weakly divisible invariant subspace of L^2 and φ is a unimodular function in L^∞, then φM is a weakly divisible invariant subspace.

Proof. From the definition of weak divisibility, the proposition follows trivially. \hfill \Box

Corollary 4.8. If φ is a unimodular function in L^∞, then φL^2_0 is weakly divisible.

Acknowledgements. This research was partly supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

References