HOKKAIDO UNIVERSITY

Title	Synthetic Studies on Nigricanoside A Dimethyl Ester
Author（s）	木梨，尚人
Citation	北海道大学．博士（理学）甲第11140号
Issue Date	2013．09．25
DOI	10．14943，doctoral．K11140
Doc URL	nttp：／hdl．handle．net／2115／58226
Type	theses（doctoral）
File Information	Naoto＿Kinashi．pdf

Instructions for use

Synthetic Studies on Nigricanoside-A Dimethyl Ester

Dissertation

Graduate School of Chemical Sciences and Engineering Hokkaido University

Contents

Chapter 1. Introduction p 1
1-1. Introduction p 2
1-2. Nigricanoseide-A and Related Compounds p 4
1-3. Synthetic Studies of Nigricanosides by Other Research Groups. p 7
1-4. Outline of the Synthetic Strategy of Nigricanoside-A Aiming at Full Assignment of the Absolute Stereochemistry. p 9
References p 13
Chapter 2. Development of a Stereoselective Method for the Construction of the C8'-
O-C6" Ether of Nigricanoside-A Dimethyl Ester p 14
2-1. Introduction p 15
2-2. Synthesis of the Garactosyl Glycerol Segment p 17
2-3. Attempts to Construct the C8'-O-C6" Ether Bond by Williamson Ether Synthesis or Enolate Alkylation p 18
2-4. Application of Chirality Transferring Ireland-Claisen Rearrangement for the C8'-O-C6" Ether Formation p 22
2-5. Determination of Stereochemistry at C8' Stereocenter Derived from the Ether Formation by Ireland-Claisen Rearrangement p 26
2-6. Synthesis of Model Compounds for the C20 Lipid Chain/Galactosyl Glycerol Segment p 31
2-7. Conclusion p 36
References p 37
Experimental Section p 38
Chapter 3. Exploration of a Stereoselective Method for the Construction of the C9- C10-O-C11'-C12 Region of Nigricanoside-A Dimethyl Ester p 85
3-1. Introduction p 86
3-2. An Approach to the Construction of the C10-O-C11' Ether Bond by Reductive Acetal Cleavage p 90
3-3. An Alternative Approach to the Construction of the C10-O-C11' Ether Bond by Ireland-Claisen Rearrangement p 92
3-4. Application of an Asymmetric Aldol Reaction for the Construction of the C9-C10-O-C11'-C12 Region p 95
3-5. Determination of Stereochemistry at C9 and C10 Stereocenters of the Aldol Products p 99
3-6. Application of the Aldol Products for Further Synthesis p 105
3-7. Conclusion p 108
References p 110
Experimental Section p 113
Acknowledgement p 143

Abbreviation

Ac	acetyl
Aux	auxiliary group
Bn	benzyl
Bu	butyl
tBu	tert-butyl
calcd	calculated
CSA	(\pm)-10-camphorsulfonic acid
Cy	cyclohexyl
DBU	1,8-diazabicyclo[5,4,0]undec-7-ene
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	azodicarboxylic acid diethyl ester
DIAD	azodicarboxylic acid diisopropyl ester
DIBALH	diisobuthylaluminium hydride
DMAP	4-(dimethylamino)pyridine
DMB	3,4-dimethoxybenzyl
DMP	3,4-dimethoxyphenyl
DMF	N,N-dimethylformamide
IR	infrared absorption spectroscopy
DMPI	Dess-Martin periodinane
DMSO	dimethylsulfoxide
EE	ethoxyethyl
EI	ethyl
FD	electron impact ionization desorption ionization
Hexamethylphosphoramide	

LAH	lithium aluminium hydride
LDA	lithium diisopropylamide
LG	leaving group
LR	low resolution
Me	methyl
Mes	mesityl
Ms	mesyl
MS	mass spectrometry
NCS	N-chlorosuccinimide
NMO	N-methylmorpholine- N-oxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
Ph	phenyl
Piv	pivaloyl
PMB	p-methoxybenzyl
PMP	p-methoxyphenyl
PPTS	pyridinium p-toluenesulfonate
Pr	propyl
PTS	p-toluenesulfonic acid
Py	pyridine
RCM	ring-closing olefin metathesis
TBAB	tetrabutylammonium bromide
TBAF	tetrabutylammonium fluoride
TBAI	tetrabutylammonium iodide
TBDPS	t-buperidine- N-oxyl
TBS	

TIPS triisopropylsilyl
TMS trimethylsilyl / tetramethylsilane
Ts $\quad p$-toluenesulfonyl

Chapter 1.

Introduction

1-1. Introduction

Nigricanoside-A(1-1) (Figure 1-1), isolated as a strong antimitotic agent [IC ${ }_{50}$ of nigricanosideA dimethyl ester (1-2): 3 nM against human breast cancer MCF-7 cells] along with nigricanoside-B (1-3) from the green alga Avrainvillea nigricans by Andersen, ${ }^{1}$ is a unique oxylipin derivative including two oxygenated fatty acids and a galactosyl glycerol moiety that are connected to each other by ether bonds. Although the planar structure and the partial relative stereochemistry of 1-1 have been elucidated by intensive NMR analysis of the dimethyl ester (1-2) of 1-1, full assignment of the relative and absolute stereochemistries of $\mathbf{1 - 1}$ has yet to be completed. The unique structure and the strong bioactivity of $\mathbf{1 - 1}$ have prompted the author to attempt its total synthesis and full stereochemical assignment. At the beginning of the project, the author intended to develop effective methods for the stereoselective construction of the $\mathrm{C} 8^{\prime}-\mathrm{O}-\mathrm{C} 6 "$ ether bond connecting the galactose moiety to the C 20 lipid chain as well as the stereoselective formation of the $\mathrm{C} 9-\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11^{\prime}-\mathrm{C} 12$ ' region of 1-1.

Nigricanoside B: R = H (1-3)
Nigricanoside B Dimethyl Ester: R = Me (1-4)

Figure 1-1. Nigricanoside congeners.

In this dissertation work, the author has established a method for the stereoselective construction of the C8'-O-C6" ether linkage based on chirality transferring Ireland-Claisen rearrangement ${ }^{2}$ (Figure 1-2). The details of the development and application of the method to the
 glycerol segment of 1-2 are described in Chapter 2. The author also explored a stereoselective method for the construction of the C9-C10-O-C11'-C12' region and examined the availability of Williamson ether synthesis, ${ }^{3}$ Ireland-Claisen rearrangement, ${ }^{2}$ and Evans asymmetric aldol reaction to the
construction. ${ }^{4}$ The application of a lithium enolate mediated stereoselective aldol reaction for the formation of the $\mathrm{C} 9-\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11$ '-C12' region are described in detail in Chapter 3.

Chapter 2:
Development of a Stereoselective Method for the Construction of the C8'-O-C6" Ether of Nigricanoside-A Dimethyl Ester

(8'SIR,2"'R)-1-5

Chapter 3:
Exploration of a Stereoselective Method for the Construction of the C9-C10-O-C11'-C12 Region of Nigricanoside-A Dimethyl Ester

1-2

Figure 1-2. The objectives of this dissertation work.

1-2. Nigricanoseide-A and Related Compounds

Nigricanosides-A (1-1) and -B (1-3) were isolated by Andersen from the green alga Avrainvillea nigricans, harvested from reef flats near Portsmouth, Dominica. ${ }^{1}$ The sufficient quantities of nigricanosides were isolated from the algal biomass (28 kg wet wt) collected repeatedly during the intervening eight years. Nigricanosides was obtained as dimethyl esters with an $800 \mu \mathrm{~g}$ amount of 1$2\left(3 \times 10^{-6} \%\right.$ wet wt.) and a $400 \mu \mathrm{~g}$ amount of $\mathbf{1 - 4}\left(1.5 \times 10^{-6} \%\right.$ wet wt. $)$.

Nigricanoside A dimethyl ester (1-2) arrests the mitosis of human breast cancer MCF-7 cells with an IC_{50} of 3 nM , and the arrested cells show highly disorganized microtubule spindles. The ester also stimulates the polymerization of pure tubulin in vitro at $10 \mu \mathrm{M}$. Furthermore, ester 1-2 inhibits the proliferation of MCF-7 and human colon cancer HCT-116 cells with an IC_{50} of ca. 3 nM . The anti-proliferative activity was significantly reduced ($\mathrm{IC}_{50} \approx 300 \mathrm{nM}$) when 1-2 was hydrogenated.

Nigricanosides $A(1-1)$ and $B(1-2)$ are novel glyceroglycolipids including a galactglycerol and two fatty acid chains that are the same components as monogalactosyldiacylglycerols (MGDGs, Figure 1-3), known as chloroplast membrane lipids. The significant structural features of nigricanosides are ether linkages between the C16 and C20 lipid chains and between galactose residue and C20 lipid chain, which are without precedent. Although the planar structure and the partial relative stereochemistry of 1-1 have been elucidated by intensive NMR analysis of the dimethyl ester (1-2) of 1-1, full assignment of the relative and absolute stereochemistries of 1-1 has yet to be completed.

Figure 1-3. Monogalactosyldiacylglycerol

A monogalactosyldiacylglycerol (1-6) related to nigricanoside-B (1-3) has been reported by

Falkowski (Figure 1-4). ${ }^{5}$ Compound 1-6 possessing a galactosylglycerol with a hexadeca-6,9,12trienoate at $s n-2$ position and eicosa-5,8,11,14,17-pentaenoate at $s n-1$ position was isolated from the diatom Phaeodactylum tricornutum as an apoptosis-inducing agent. MGDG 1-6 is thought to be a possible precursor of 1-3 although the presence of 1-6 in Avrainvillea nigricans is unknown.

Figure 1-4. MGDG 1-6 from the diatom Phaeodactylum tricornutum

Oxidatively modified MGDGs and DGDG (digalactosyldiacylglycerol) were also reported. MGDG 1-7 having oxidized fatty acid subunit was isolated from the red alga Gracilariopsis lemaneiformis by Gerwick (Figure 1-5). ${ }^{6}$ DGDGs $\mathbf{1 - 8}{ }^{6}$ and $\mathbf{1 - 9}{ }^{7}$ also isolated from the same species (Figure 1-6). Gerwick proposed that the oxidized DGDGs would be generated via the formation of a 12-hydroperoxide with 12S-lipoxygenase followed by diol formation with hydroperoxide isomerase or a sequential C-C bond cleavage with hydroperoxide lyase and 5-hydroperoxide formation with 5lipoxygenase.

Figure 1-5. Oxidized MGDG 1-7 from the red alga Gracilariopsis lemaneiformis

Figure 1-6. Oxidized DGDGs 1-8 and 1-9 from the red alga Gracilariopsis lemaneiformis

For a lipid ether natural product, di-sec-alkyl ether 1-10 (Figure 1-7) was isolated from the green alga Botryococcus Braunii, which is known to produce hydrocarbons in high yield, by Metzger. ${ }^{8}$ The di-sec-alkyl ethers are rare among the lipid ether family compounds, in which primary alkyl ethers, such as platelet activating factor, ${ }^{9}$ are well known.

Figure 1-7. Dialkyl ether 1-10 from the green alga Botryococcus braunii

Thus, the nigricanosides are reported to be the first examples of a new class of ether-linked glycoglycerolipids by Andersen. ${ }^{1}$

1-3. Synthetic Studies of Nigricanosides by Other Research Groups.

For the synthesis of nigricanosides, only a few reports were published.
MacMillan's group reported a synthetic model compound (1-11, Figure 1-8) for C16 lipid chain of nigricanosides in their demonstration of a new NMR technique, MDEC (Multi Frequency Homonuclear Decoupling). ${ }^{10}$ The combination of MDEC and 1D-TOCSY-MDEC was successfully applied and elucidated the C9/C10 anti stereochemistry of $\mathbf{1 - 1 1}$. However, the details of the synthesis of $\mathbf{1 - 1 1}$ have not been reported.

Figure 1-8. A synthetic model compound for C16 lipid chain of nigricanosides by MacMillan

Recently, Kuwahara's group reported the synthesis of compound $\mathbf{1 - 1 9}$ corresponding to the C16 lipid chain of nigricanosides (Scheme 1-1). The assembly of the lipid was started from amide 1-12 and ester 1-16. Amide 1-12 was reacted with Z-1-iodohex-2-ene under Evans' asymmetric alkylation conditions ${ }^{11}$ to produce 1-13, which was converted to Weinreb amide 1-14. ${ }^{12}$ After the reaction of 1-14 with ((dimethoxyphosphoryl)methyl)lithium, the resulting phosphonate $\mathbf{1 - 1 5}$ was reacted with aldehyde $\mathbf{1 - 1 7}$, prepared from $\mathbf{1 - 1 6}$ by a three-step process, to afford E-enone $\mathbf{1 - 1 8}$. An additional three-steps [(i) diastereoselective ketone reduction, ${ }^{13}$ (ii) acetylation, and (3) removal of the PMB group) $)^{14}$ produced ester $\mathbf{1 - 1 9}$. Thus, stereoselective synthesis of a possible diastereomer of the C 16 lipid chain of nigricanosides has been achieved.

Although the oxylipins corresponding to C 16 lipid chain of nigricanosides has been reported, there is no report about the synthesis of other parts of nigricanosides.

Scheme 1-1. Synthesis of a diastereomer of C16 lipid chain of nigricanosides by Kuwahara ${ }^{15}$

1-4. Outline of the Synthetic Strategy of Nigricanoside-A Aiming at Full Assignment of the

 Absolute Stereochemistry.While potent inhibition of proliferation of cancer cells by nigricanoside-A dimethyl ester (1-2) is notable as a promising property for a new candidate anti-cancer drug, lack of stereochemical information of 1-2 would be an obstacle for further biological studies on it. Therefore, the author has undertaken the studies toward total synthesis of 1-2 aiming at full assignment of its stereochemistry.

Before the design of the synthesis of $\mathbf{1 - 2}$, the author deduced the stereochemistry at C 2 " of nigricanosides. It would be natural that nigricanosides originate from MGDGs. MGDGs are known to have a common sn-3-galactosylglycerol moiety, which is biosynthesized via a route depicted in Scheme 1-2. ${ }^{16}$ Therefore, nigricanosides are deduced to have the same sn-3-D-galactosylglycerol.

Scheme 1-2. Biosynthetic pathway for MGDG.
The plausible biosynthetic pathway of nigricanoside-B is deduced as shown in Scheme 1-3
based on leukotriene biosynthesis. ${ }^{17}$ MGDG 1-6 would be oxidized to dihydroperoxide 1-20, which would be reacted with $\mathrm{H}_{2} \mathrm{O}$ at C 6 and with C 6 "- OH intramolecularly at C 8 ' to produce diepoxide 120. Intramolecular ether formation of C10-O-C11' can occur by either of two modes: (i) the attack of water to C 9 followed by the attack of $\mathrm{C} 10-\mathrm{O}$ to C 11 ', or (ii) the attack of water to C 12 ' followed by the attack of C 11 '-O to C 10 . The resulting macrocyclic $\mathbf{1 - 2 2}$ would be then hydrolyzed to nigricanoside $\mathrm{B}(\mathbf{1 - 3})$. During the biosynthesis, the stereochemistry at C 2 "' would be retained.

galactosylglycerol moiety in this dissertation work.
Next, the author performed retro-synthetic analysis of the final stage of the synthesis. The target nigricanoside-A dimethyl ester (1-2) was divided into two imaginary pieces, 1-23 and 1-24, at C9'C10' bond (Scheme 1-4), because this division was expected to provide almost equal complexity in both segments.

Scheme 1-4. Disconnection at C9'-C10' double bond in retrosynthetic analysis of 1-2.

1-25

Figure 1-9. Model compounds for the determination of stereochemistry of 1-2.

Imaginary segment 1-23 stimulated an idea for determination of configuration at C^{\prime} ' of $\mathbf{1 - 2}$:
model compounds 1-25 (Figure 1-9) excluding the C16 lipid chain and oxygen functional groups at C11' and C12' would be easily preparable from $\mathbf{1 - 2 3}$, and comparison of NMR data of each C8'epimer of $\mathbf{1 - 2 5}$ with those of natural 1-2 would provide a basis for the determination of the stereochemistry at C 8 . More complex model, such as $\mathbf{1 - 2 7}$, would be usable for the confirmation of the configurations at C 11 ' and C 12 ' in the next stage analysis.

Therefore, the author first planned to synthesize model compounds ($\mathbf{8} \mathbf{S} / \boldsymbol{R}, \mathbf{2} \mathbf{~ ' ~ ' ~} \boldsymbol{R}$)-1-5 (Figure $1-10)$ aiming at the establishment of the method for the stereoselective construction of $\mathrm{C} 8^{\prime}-\mathrm{O}-\mathrm{C} 6^{\prime \prime}$ bond and at the determination C8'-configuraion by NMR comparison with 1-2. The details of the accomplishment of the synthesis are described in Chapter 2.

Figure 1-10. C20 Lipid Chain/Galactosyl Glycerol Segment Model

Imaginary segment 1-24 (Figure 1-11) also stimulate the idea of NMR comparison of model compound 1-26 or 1-28 (Figure 1-9) with 1-2 to obtain information of stereochemistry around the C9-C10-O-C11'-C12' region of $\mathbf{1 - 2}$. However, the ether region including two hydroxy groups is difficult to synthesize stereoselectively, and, therefore, an effective synthetic method must be developed for the region. In the latter half of this dissertation work, the author explored the availability of Williamson ether synthesis, ${ }^{3}$ Ireland-Claisen rearrangement, ${ }^{2}$ and Evans asymmetric aldol reaction ${ }^{4}$ to the stereoselective construction of the region. Details are described in Chapter 3.

Figure 1-11. Problem of stereoselective construction of C9-C10-O-C11'-C12' ether moiety

References

1. Williams, D. E.; Sturgeon, C. M.; Roberge, M.; Andersen, R. J. J. Am. Chem. Soc. 2007, 129, 5822.
2. (a) Ireland, R. E.; Muller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868. A review: (b) McFarland, C. M.; McIntosh, M. C. In The Claisen Rearrangement, Hiersemann, M.; Nubbemeyer, U., Eds.; Wiley-VCH: Weinheim, 2007, p 117.
3. A review: Feuer, H.; Hooz, J. In The Chemistry of Functional Groups, Patai, S. Ed. Wiley: New York, 1967, p 445-498.
4. Reviews: (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307. (b) Arya, P.; Qin. H. Tetrahedron 2000, 56, 917.
5. Andrianasolo, E. H.; Haramaty, L.; Vardi, A.; White, E.; Lutz, R.; Falkowski, P. J. Nat. Prod. 2008, 71, 1197.
6. Jiang, Z. D.; Gerwick, W. H. Phytochemistry 1990, 29, 1433.
7. Jiang, Z. D.; Gerwick, W. H. Lipids 1991, 26, 960.
8. Metzger, P.; Casadevall, E. Phytochemistry 1991, 30, 1439.
9. For a Review: De Rosa, M.; Gambacorta, A.; Gliozzi, A. Microbiol. Mol. Biol. Rev. 1986, 50, 70.
10. Espindola, A. P. D. M.; Crouch, R.; DeBergh, J. R.; Ready, J. M.; MacMillan, J. B. J. Am. Chem. Soc. 2009, 131, 15994.
11. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.
12. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
13. Nakata, T.; Oishi T. Tetrahedron Lett. 1980, 21, 1641.
14. Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 889.c
15. Kurashina, Y.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2012, 76, 605.
16. Maréchal, É.; Block, M. A.; Dorne, A.-J.; Douce, R.; Joyard, J. Physiol. Plant. 1997, 100, 65.
17. Pace-Asciak, C. R. J. Biol. Chem. 1984, 259, 8332.

Chapter 2.

Development of a Stereoselective Method for the Construction of the C8'-O-C6' ${ }^{\prime \prime}$ Ether of Nigricanoside-A Dimethyl Ester

2-1. Introduction

As described in the Chapter 1, the author has been attracted the unique structure and the strong bioactivity of nigricanoside A (1-1) and attempted its total synthesis and full stereochemical assignment. At the beginning of the project, the author intended to develop an effective method for the stereoselective construction of the C 8 '-O-C6" ether bond of $\mathbf{1 - 1}$ connecting the galactose moiety to the C20 fatty acid chain. The feasibility of the method was examined through the synthesis of simple model compounds ($\mathbf{8}^{\prime} \mathbf{S}, \mathbf{2}^{\prime \prime \prime} \mathbf{R}$)-1-5 and ($\mathbf{8}^{\prime} \mathbf{R}, \mathbf{2}^{\prime \prime} \mathbf{\prime \prime} \mathbf{R}$)-1-5 corresponding to the C20 lipid chain/galactosyl glycerol segment of 1-1 (Figure 2-1).
 the oxygen functionalities at $\mathrm{C} 11^{\prime}$ and C 12 ', were designed for the following purpose: (i) a simple demonstration of the stereoselective construction of the C8'-O-C6" ether of 1-1, (ii) comparison of the NMR spectra with $\mathbf{1 - 2}$ to predict the configuration at C8' of $\mathbf{1 - 1}$, and (iii) investigation of the structure-activity relationship in antimitotic/cytotoxic assays of $\mathbf{1 - 1}$. The 2 " R configuration of the models was designed according to the proposed R configuration at $\mathrm{C} 2 "$ ' of the glycerol of $\mathbf{1 - 1}$, which was based on the assumption that nigricanosides were oxidative metabolites of monogalactosyl diacyl glycerols (MGDGs), known as chloroplast membrane lipids, having a common 3-galactosyl-snglycerol structure. ${ }^{1}$ In this chapter, the author discloses the synthesis and NMR analysis of the models.

Figure 2-1.

The author undertook three approaches to construct the ether linkage between the galactose moiety and C20 lipid chain as follows: (i) Williamson ether synthesis for the formation of the C6"-O bond [(A) in Figure 2-2], (ii) an asymmetric alkylation for the C7'-C8' bond formation followed by a Julia-Kochienski olefination for the C9'-C10' double bond formation [(B) in Figure 2-2], and (iii) an Ireland-Claisen rearrangment for the $\mathrm{C}^{\prime}-\mathrm{C} 8$ ' bond formation followed by the $\mathrm{C}^{\prime}-\mathrm{C} 10$ ' bond forming Julia-Kochienski olefination [(B) in Figure 2-2]. In the latter two approaches, the C6"-O-C8' bond should be prepared as a 6-O-(carboxymethyl)galactopyranose derivative prior to the alkylation or the rearrangement. The attempts of the Williamson synthesis and the asymmetric alkylation are described
 Ireland-Claisen rearrangement is explained in Sections 2-4 to 2-6.

Figure 2-2. Plans for the construction of the ether linkage between the galactosyl glycerol and the C20 lipid chain segments.

2-2. Synthesis of the Galactosyl Glycerol Segment

First, the galactosyl glycerol segment was synthesized. As described above, nigricanoside A is deduced to be biosynthesized from a MGDG, a chloroplast lipid, and, therefore, the galactosyl glycerol segment would have a 3-D-galactosyl-sn-glycerol stereochemistry. Based on the deduction, the author decided to prepare intermediate alcohols 2-5 and 2-6 steleoselectively. The synthesis of alcohols 2-5 and 2-6 from the known 3-galactosyl-sn-glycerol derivative 2-1 ${ }^{2}$ is shown in Scheme 21. The acetate groups of $\mathbf{2 - 1}$ were removed by methanolysis, and the resulting tetraol was subjected to stepwise protection with TBDPSCl and 2,2-dimethoxypropane to give alcohol 2-2 (79\% over 3 steps). The protection of 2-2 as an EE ether (95\%) and a TBS ether (91%) followed by the selective removal of the TBDPS group ${ }^{3}$ produced alcohols 2-5 (79\%) and 2-6 (80\%), respectively.

Scheme 2-1. Synthesis of galactosyl glycerols 2-5 and 2-6. Reagents and conditions: (a) MeONa, $\mathrm{MeOH}, 23^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) $\mathrm{Et}_{3} \mathrm{~N}$, TBDPSCl, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}$, 12 h ; (c) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $23{ }^{\circ} \mathrm{C}, 11 \mathrm{~h}, 79 \%$ from 2-1; (d) EVE, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 3 \mathrm{~h}, \mathbf{2 - 3}$: 95\%; (e) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 3 \mathrm{~h}, \mathbf{2 - 4}: 91 \%$; (f) TBAF, THF, $23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathbf{2 - 5}: 79 \%$; (g) TBAF, AcOH, DMF, $23^{\circ} \mathrm{C}$, 2-6: 80%.

2-3. Attempts to Construct the C8'-O-C6' Ether Bond by Williamson Ether Synthesis or Enolate Alkylation

For the ether bond formation between the C20 lipid chain (2-7) and the galactosyl glycerol moiety (2-5) by Williamson ether synthesis, two modes are considered: the ether formations by the attack of the hydroxy group at C 6 " to C 8 ' carboncenter and by the attack of the hydroxyl group at $\mathrm{C} 8^{\prime}$ to C6" center (Scheme 2-2). However, the former attack would be disadvantageous due to the steric hindrance around the electrophilic C 8 ' carboncenter, which would induce undesired E 2 to form a conjugate triene. Therefore, the author selected the latter type Williamson ether synthesis. In order to examine the availability of the Williamson ether synthesis, a model synthesis was attempted.

Scheme 2-2. Approach to the model compounds by Williamson ether synthesis.

Scheme 2-3. Attempting installation of haptan-4-ol at C6" by Williamson ether synthesis.

In the model synthesis, heptan-4-ol was employed as a mimic for 2-7 (Scheme 2-3). After alcohol 2-5 was reacted with $\mathrm{Tf}_{2} \mathrm{O}$, the resulting 2-8 was treated with an alkoxide derived from
heptan-4-ol with sodium hydride to give only an E2 elimination product 2-9. Because of this disappointing result, which suggested the low reactivity of the C 6 "-triflate in the $\mathrm{S}_{\mathrm{N}} 2$ reaction, the plan for the C 8 '-O-C6" bond formation by Williamson ether synthesis was abandoned.

Next, an approach employing asymmetric alkylation was examined for the stereoselective construction of the ether-bond C8' stereocenter (Scheme 2-4). In this approach, successful asymmetric induction during the reaction of a glycolic acid derivative having the galactosyl glycerol moiety (212) with $\mathrm{Cl}^{\prime}-\mathrm{C} 7$ ' carbon chain $\mathbf{2 - 1 1}$ was expected. Here, Evans' asymmetric alkylation was attempted.

Asymmetric Alkylation

Scheme 2-4. Approach to the model compounds by asymmetric alkylation.

The synthesis of C 1 '-C7' carbon chain 2-11 was started from hex-5-yn-1-ol (2-13) (Scheme 2-5). Protection of 2-13 with PMBCl followed by hydroxymethylation produced propargyl alcohol $\mathbf{2 - 1 5}$ (81\% over two steps), which was iodinated to afford 2-11 (57\%).

Scheme 2-5. Synthesis of the C1'-C7' segment. Reagents and conditions: (a) $\mathrm{NaH}, \mathrm{PMBCl}, \mathrm{THF}$, $23{ }^{\circ} \mathrm{C}, 3 \mathrm{~d}$; (b) BuLi, THF, $-78{ }^{\circ} \mathrm{C}$, then $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, 7 \mathrm{~h}, 73 \%$ over 2 steps; (c) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 57 \%$

Glycolic acid derivatives having oxazolidinone chiral auxiliaries (2-12-Bn, 2-12-Ph, and 2-12IP) were synthesized from alcohol 2-6 (Scheme 2-6). Alcohol 2-6 was converted to glycolic acid 2-

16 through etherification with tert-butyl bromoacetate under phase-transfer conditions followed by basic hydrolysis (91%). The acid was condensed with three oxazolidinone chiral auxiliaries under standard conditions via mix-anhydride intermediates to produce $\mathbf{2 - 1 2 - B n}, \mathbf{2 - 1 2 - P h}$, and $\mathbf{2 - 1 2 - I P}$ in good yield (61-87\%).

Scheme 2-6. Synthesis of glycolic acid derivatives 2-12. Reagents and conditions: (a) (i) tert-butyl bromoacetate, $\mathrm{Bu}_{4} \mathrm{~N} \cdot \mathrm{HSO}_{4}$, benzene, 4 M aq. $\mathrm{NaOH}, 23^{\circ} \mathrm{C}$, 29 h ; (ii) 4 M aq. $\mathrm{NaOH}, \mathrm{MeOH}, 2{ }^{\circ} \mathrm{C}$, $7 \mathrm{~h}, 67 \%$ over 2 steps; (b) $\mathrm{Et}_{3} \mathrm{~N}$, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}, \mathrm{THF},-20^{\circ} \mathrm{C}, 0.6-1 \mathrm{~h}$, then 4 -substituted-oxazolidin-2-one-3-yl lithium, $-20^{\circ} \mathrm{C}, 0.5-2 \mathrm{~h}, \mathbf{2 - 1 2 - B n}: 80 \%$, 2-12-Ph: 61%, 2-12-IP: 87%.

The alkylation of amides $\mathbf{2 - 1 2}$, however, did not produce the desired alkylated product $\mathbf{2 - 1 7}$ (Scheme 2-7). After each amide 2-12 was deprotonated with NHMDS, the resulting sodium enolate was reacted with iodide 2-11 to afford only carboxylic acid 2-16, which would be attributable to the low reactivity of the enolate to $\mathbf{2 - 1 1}$ and the easy elimination of oxazolidinyl anion 2-18 from the enolate.

Although several asymmetric alkylation reactions with other chiral auxiliaries were also examined, the desired alkylated compounds could not be obtained. Accordingly, the author decided to revise the approach for the construction of the ether-bound C 8 ' stereocenter.

Scheme 2-7. Attempting asymmetric alkylation of 2-12.

2-4. Application of Chirality Transferring Ireland-Claisen Rearrangement for the C8'-OC6' ${ }^{\prime}$ Ether Formation

As an alternative approach to the formation of the ether-bound C 8 stereocenter for the synthesis of model compounds ($\mathbf{8}^{\prime} \mathbf{S} / \mathbf{R}, \mathbf{2} \mathbf{'}^{\prime} \mathbf{R}$)-1-5, the author employed a process based on a chirality transferring Ireland-Claisen rearrangement.

Scheme 2-8. Synthetic plan for models ($\mathbf{8} \mathbf{S} / \mathbf{R}, \mathbf{2} \mathbf{2}^{\prime} \mathbf{R}$)-1-5.

The synthetic plan for the model compounds ($\mathbf{8} \mathbf{S} / \boldsymbol{R}, \mathbf{2} \mathbf{2}^{\prime \prime} \boldsymbol{R}$)-1-5 is outlined in Scheme 2-8. The Z-olefin groups at C 5 ' and C 14 ' of $\left(\mathbf{8} \mathbf{S} / \mathbf{R}, \mathbf{2}^{\prime \prime} \mathbf{~} \boldsymbol{R}\right) \mathbf{- 1 - 5}$ were scheduled to be formed by Lindlar hydrogenation of the corresponding alkyne groups at the final stage of the synthesis after aldehyde 221 and sulfone 2-22 were connected by Julia-Kocienski olefination ${ }^{4}$ to form the E-olefin at C9'. The Z-bromoalkene at C5' of 2-20 would be converted to an alkyne group under mild basic conditions after the olefination step. For the construction of the C 8 ' stereocenter and the Z-bromoalkene of 2-23,
the Ireland-Claisen rearrangement of ester 2-25 was employed. The rearrangement was expected to exhibit perfect chirality transfer from C5' of 2-25 to C8' of 2-23. Therefore, bromoalkenol 2-26, which would be condensed with glycolic acid derivative 2-6 to form 2-25, must be obtained in enantiomerically pure form. Thus, both enantiomers $(\boldsymbol{R}) \mathbf{- 2 - 2 6}$ and $(\boldsymbol{S}) \mathbf{- 2 - 2 6}$ would be prepared by chiral resolution.

Scheme 2-9. Synthesis of chiral alcohols (\boldsymbol{R})-2-26 and (S)-2-26. Reagent and conditions: (a) Br_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}$, $10 \mathrm{~min}, 86 \%$; (b) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 98 \%$; (c) EDCI, 2-29, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}$, 4 h ; then separation by HPLC, 2-30: 34\%, 2-31: 35\%; (d) 5 M $\mathrm{NaOH}, \mathrm{MeOH}, 23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h},(\boldsymbol{R}) \mathbf{- 2 - 2 6}: 100 \%$; (e) $5 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 1 \mathrm{~h}, \boldsymbol{(S)} \mathbf{- 2 - 2 6}: 98 \%$.

The preparation of chiral allylic alcohols (\boldsymbol{R})-2-26 and (S)-2-26 started from the known enone 2-27 ${ }^{5}$ (Scheme 3). Bromination of 2-27 followed by elimination of HBr with $\mathrm{Et}_{3} \mathrm{~N}$ produced α-bromo enone 2-28 (86\%), which was reduced under Luche conditions to give racemic alcohol 2$26(98 \%){ }^{6}$ After the condensation of 2-26 with $(R)-(-)-\alpha$-methoxyphenylacetic acid (2-29), the resulting diastereomeric esters $\mathbf{2 - 3 0}$ and $\mathbf{2 - 3 1}$ were separated by preparative HPLC (2-30: $\mathbf{3 4 \%}$; $\mathbf{2 - 3 1}$: $\mathbf{3 5 \%}$). ${ }^{7}$ The hydrolysis of esters 2-30 and 2-31 afforded homochiral alcohols (R)-2-26 (100\%) and (S)-2-26 (98\%), respectively. The absolute configurations of the alcohols were determined by application of the modified Mosher's method on alcohol (S)-2-26 (Scheme 2-10). ${ }^{8}$

Scheme 2-10. Confirmation of stereochemistry of (S)-2-26 by modified Mosher's method. Reagents and conditions: (a) (-)-(R)-MTPACl, Et ${ }_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 64 \%$; (b) (+)-(S)-MTPACl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 68 \%$.

Sulfone 2-22 was prepared from undec-5-yn-1-ol (2-34) ${ }^{9}$ via a process including Mitsunobu reaction ${ }^{10}$ with 1-phenyl-1 H -tetrazole-5-thiol (62%) and oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of ammonium molybdate hydrate ${ }^{11}$ (50\%) (Scheme 2-11).

Scheme 2-11. Preparation of sulfone 2-22. Reagents and conditions: (a) 1-Phenyl-1H-tetrazole-5thiol, DEAD, PPh_{3}, THF, $0{ }^{\circ} \mathrm{C} \rightarrow 23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 68 \%$; (b) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{EtOH}, 0{ }^{\circ} \mathrm{C} \rightarrow 23{ }^{\circ} \mathrm{C}$, 19 h, 50\%.

The stereoselective construction of the C 8 ' stereocenter by Ireland-Claisen rearrangement is shown in Scheme 2-12. First, glycolic acid 2-16 was esterified with alcohol (S)-2-26 to afford ester (5'S)-2-25 (97\%). The treatment of (5'S)-2-25 with NHMDS in the presence of TMSCl in THF at $78^{\circ} \mathrm{C}$ produced a ketene silyl acetal intermediate, which was then warmed to $0^{\circ} \mathrm{C}$ to give rearranged product ($8^{\prime} S$)-2-23 as a single diastereomer. Carboxylic acid (8'S)-2-23 was condensed with $N, O-$ dimethylhydroxylamine to furnish N-methoxy- N-methylamide ($\mathbf{8}^{\prime} \mathbf{S}$)-2-36 in good yield (80% over 2 steps).

Scheme 2-12. The Ireland-Claisen rearrangement of ester (5'S)-2-25. Reagents and conditions: (a) (S)-2-26, EDCI $\cdot \mathrm{HCl}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 19 \mathrm{~h}, 70 \%$; (b) TMSCl, NHMDS, $-7{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then $0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (c) $\mathrm{MeNH}(\mathrm{OMe}) \cdot \mathrm{HCl}, \mathrm{EDCI} \cdot \mathrm{HCl}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 5 \mathrm{~h}, 80 \%$ from (5'S)-2-25.

2-5. Determination of Stereochemistry at C8' Stereocenter Derived from the Ether Formation by Ireland-Claisen Rearrangement

In order to confirm absolute stereochemistry at C8' of $\mathbf{2 - 2 3}$, which was constructed by chirality transferring Ireland-Claisen rearrangement, the following three methods were examined: (i) X-ray analysis of a crystalline compound derived from 2-23 (Method A); (ii) the modified Mosher's analysis of alcohol 2-38 derived from 2-23 by a sequence including oxidative cleavage of the galactose moiety followed by a retro-oxy-Michael reaction to remove the residual propanal moiety from 2-37 (Method B); and (iii) the modified Mosher's analysis of cyclohexenyl alcohol 2-39 derived from 2-32 via a process involving allylation and RCM (Method C) (Scheme 2-13).

Scheme 2-13. Plans for the determination of stereochemistry at C^{\prime} of (8'S)-2-23.

First, according to Method A, carboxylic acid ($\mathbf{8}^{\prime} \mathbf{S}$)-2-23 was converted to a series of derivatives (Scheme 2-14). Carboxylic acid ($\mathbf{8}^{\prime} \mathbf{S}$)-2-23 was amidated to give 2-40, of which the TBS group was then removed to afford alcohol 2-41. Carboxylic acid (8'S)-2-23 was also transformed to methyl ester 2-41, which was subjected to reduction giving alcohol 2-43 and the subsequent 3,5dinitrobenzoylation to produce $\mathbf{2 - 4 4}$. Unfortunately, these derivatives were not crystallized. Additional derivatizations were also in vain. Therefore, the confirmation of C8' stereochemistry by Method A was abandoned.

Scheme 2-14. Derivatization of ($\mathbf{8}^{\prime} \mathbf{S} \mathbf{S} \mathbf{- 2 - 2 3}$ for crystallization. Reagents and Conditions: (a) $\mathrm{Et}_{3} \mathrm{~N}$, pivaloyl chloride, $0^{\circ} \mathrm{C}$, 20 min , then NH_{3} (aq.), $35 \mathrm{~min}, 53 \%$ from (5'S)-2-25; (b) TBAF, THF, $23{ }^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 97 \%$; (c) TMSCHN $2, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 20 \mathrm{~min}, 77 \%$ from (5'S)-2-25; (d) DIBALH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}, 68 \%$; alternatively: $\mathrm{LiAlH}_{4}, \mathrm{THF},-78^{\circ} \mathrm{C}, 35 \mathrm{~min}$; (e) 3,5-dinitorobenzoy chloride, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 45 \%$ from 2-42.

Next, Method B was attempted. After intensive experiments, it was clarified that the protection of the hydroxy groups at C9' and C2" as methyl ethers and conversion of the bromoalkene group to an alkene were required for clean removal of acetonide group as well as clean oxidative cleavage. Thus, alcohol $\mathbf{2 - 4 3}$, derived from ($\mathbf{8}^{\prime} \mathbf{S}$)-2-23, was reacted with TBAF in refluxing THF to induce desilylation and alkynylation, and the resulting alkene diol 2-45 was methlyated to give 2-46 (Scheme 2-15). The removal of the acetonide groups of 2-46 afforded tetraol 2-47. The oxidative cleavage of 2-47 was performed with NaIO_{4} or $\mathrm{Pb}(\mathrm{OAc})_{4}$, and the resulting aldehyde was treated with base as shown in inset table in Scheme 2-15. However, the desired alcohol 2-38 was not detected. Accordingly, Method B was discontinued.

Scheme 2-15. Preparation of 2-47 and its attempting oxidative cleavage. (a) TBAF• $3 \mathrm{H}_{2} \mathrm{O}$, THF, reflux, $2 \mathrm{~h}, 81 \%$; (b) MeI, NaH, THF, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}, \sim 75 \%$; (c) TFA, $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}, 75 \%$.

Finally, Method C was examined and resulted in successful determination of stereochemisty at $\mathrm{C} 8^{\prime}$ of ($\mathbf{8}^{\prime} S$)-2-23. The bromoalkene of ($\mathbf{8}^{\prime} \mathbf{S}$)-2-36, derived from ($\mathbf{8}^{\prime} \mathbf{S}$)-2-23, was reduced with $\mathrm{Bu}_{3} \mathrm{SnH}$ to alkene 2-48 (37\%) (Scheme 2-16). After the reduction of 2-48 with $\mathrm{LiAlH}_{4},{ }^{12}$ the resulting aldehyde was reacted with allyl magnesium chloride to give 2-49 as a $1: 1$ mixture of diastereomers at C9' (61\%). Diene 2-49 was then cyclized by ring-closing olefin metathesis with Grubbs' first generation catalyst (2-50), ${ }^{13}$ and trans-disubstituted cyclohexene 2-51, of which the trans-relationship between Ha and Hb was confirmed by the large J value $(9.3 \mathrm{~Hz})$ between these protons, was obtained in 21% yield after separation from the corresponding cis-isomer. Alcohol 2-51 was converted to (S) - and (R)-MTPA esters (2-52). Application of modified Mosher's analysis ${ }^{11}$ to these MTPA esters established the (S)-configuration at C^{\prime} ', which thus determined the (8 ' S)configuration in conjunction with the trans-relationship between Ha and Hb .

Scheme 2-16. Determination of the stereochemistry at $\mathrm{C} 8^{\prime}$ of ($\mathbf{8}^{\prime} \mathbf{S}$)-2-36. Reagents and conditions:
(a) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux, 1 h , then concentration, $23{ }^{\circ} \mathrm{C}, 6$ days, 76%; (b) LiAlH_{4}, THF, $20^{\circ} \mathrm{C}, 45 \mathrm{~min}$, then $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; allyl magnesium chloride, THF, $2 \mathrm{~h},-20^{\circ} \mathrm{C}, 62 \%$ over 2 steps, ds $=1: 1$; (c) 2-50, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 1 h , then separation, 21%; (d) (S / R)-MTPA, DMF, $(\mathrm{COCl})_{2}$, hexane, $23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then 2-51, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CDCl}_{3}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 10-18 \mathrm{~h},(\boldsymbol{S})$-MTPA ester 2-52: 51%, (R)-MTPA ester 2-52: 63\%.

The established (8'S)-configuration of $\mathbf{2 - 5 1}$ also explained the stereoselectivity of the IrelandClaisen rearrangement of (5'S)-2-25 producing (8'S)-2-23. The initial formation of the ketene silyl acetal would be highly Z-selective, and the Z-ketene silyl acetal would be rearranged via a stable chair form transition state (TS in Scheme 2-12), which would effectively promote the chirality transfer from C5' to C8' and produce ($\mathbf{8}^{\prime} \mathbf{S} \mathbf{S} \mathbf{- 2 - 2 3}$ exclusively.

2-6. Synthesis of Model Compounds for the C20 Lipid Chain/Galactosyl Glycerol Segment

The completion of the synthesis of model compound ($\left.\mathbf{8}^{\prime} \mathbf{S}, \mathbf{2}^{\prime \prime} \mathbf{R} \mathbf{R}\right) \mathbf{- 1}-\mathbf{5}$ is illustrated in Scheme 2-17.

Scheme 2-17. Completion of the synthesis of ($\mathbf{8} \mathbf{\prime} \boldsymbol{S}, \mathbf{2} \mathbf{2}^{\prime} \mathbf{R}$)-1-5. Reagents and conditions: (a) LiAlH_{4}, THF, $-20^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) 2-22, KHMDS, THF, $-78^{\circ} \mathrm{C}, 45 \mathrm{~min}$, then ($\mathbf{8} \mathbf{S} \mathbf{S}$)-2-21, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 47 \%$ from (8'S)-2-36; (c) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}, \mathrm{pH} 7.0$ buffer, $\mathrm{CH}_{3} \mathrm{CN}, 45^{\circ} \mathrm{C}, 21 \mathrm{~h}$; (d) $\mathrm{TMSCHN}_{2}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 73 \%$ from (8'S)-2-20; (e) TBAF• $3 \mathrm{H}_{2} \mathrm{O}$, DMF, $75^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 48\%; (f) H_{2}, Lindlar cat., $\mathrm{MeOH}, 23^{\circ} \mathrm{C}, 24.5 \mathrm{~h}, 100 \%$; (g) TFA, $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 7 \mathrm{~h}, 50 \%$ from (8 'S)-2-55.

Weinreb amide (8'S)-2-36 was reduced with LiAlH_{4} to give aldehyde (8'S)-2-21, which was subjected to Julia-Kocienski olefination with sulfone 2-22 using KHMDS to produce E-alkene ($\mathbf{8}^{\prime} \mathbf{S}$)-
$\mathbf{2 - 2 0}$ (47% over 2 steps). The PMB group of ($\mathbf{8} \mathbf{S} \mathbf{S}$)-2-20 was oxidatively removed by TEMPO oxidation in the presence of water ${ }^{14}$, and the resulting carboxylic acid was converted to methyl ester (8'S)-2-54 by treatment with trimethylsilyldiazomethane (73% over 2 steps). ${ }^{15}$ The bromoalkene group of ($\left.\mathbf{8}^{\prime} \mathbf{S}\right) \mathbf{- 2 - 5 4}$ was transformed to an acetylene group [(8'S)-2-55, 48\%] by treatment with TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}$ in DMF at $75^{\circ} \mathrm{C}$, which also removed the TBS ether at C 2 ", according to Mori's procedure. ${ }^{16}$ Lindlar hydrogenation of ($\mathbf{8}^{\prime} \mathbf{S} \mathbf{)} \mathbf{- 2}-\mathbf{5 5}$ followed by acidic methanolysis of the acetonides
 stereoselectively synthesized from 3-galactosyl-sn-glycerol derivative 2-1 via a route including chirality transferring Ireland-Claisen rearrangement as a key step.

The synthesis of ($\left.\mathbf{8}^{\prime} \boldsymbol{R}, \mathbf{2}^{\prime}{ }^{\prime} \boldsymbol{R}\right) \mathbf{- 1 - 5}$ from $(\boldsymbol{R}) \mathbf{- 2 - 2 6}$ and $\mathbf{2 - 1 6}$ was also successfully performed by the almost same route (Scheme 2-18).

Scheme 2-18. The synthesis of ($\left.\mathbf{8}^{\prime} \boldsymbol{R}, \mathbf{2}^{\prime} ' \boldsymbol{R}\right) \mathbf{- 1}-\mathbf{5}$. Reagents and conditions: (a) ($\left.\boldsymbol{R}\right) \mathbf{- 2} \mathbf{2 6}, \mathrm{EDCI} \cdot \mathrm{HCl}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 66 \%$; (b) TMSCl, KHMDS, $-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then $0{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; (c) $\mathrm{MeNH}(\mathrm{OMe}) \cdot \mathrm{HCl}, \mathrm{EDCI} \cdot \mathrm{HCl}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}, 67 \%$ from ($\left.\boldsymbol{R}\right)$-2-26. (d) LiAlH_{4}, THF, $-20^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) 2-22, KHMDS, THF, $-78^{\circ} \mathrm{C}, 45 \mathrm{~min}$, then ($\mathbf{8}^{\prime} \boldsymbol{R}$)-2-21, $-78^{\circ} \mathrm{C} \rightarrow 23^{\circ} \mathrm{C}$, $3.5 \mathrm{~h}, 63 \%$ from (8'R)-2-36; (f) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{pH} 7$ buffer, $23{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 64 \%$; (g) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 30 \mathrm{~h}$; (h) $\mathrm{TMSCHN}_{2}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 10 \mathrm{~min}, 68 \%$ from ($\mathbf{8}^{\prime} \boldsymbol{R}$)-2-53; (i) TBAF $3 \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}, 7{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 92 \%$; (j) H_{2}, Lindlar cat., $\mathrm{MeOH}, 23^{\circ} \mathrm{C}, 22 \mathrm{~h}, 100 \%$; (k) TFA, MeOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 17.5 \mathrm{~h}, 100 \%$.
 NMR data of the model compounds in $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{DMSO}-d_{6}$ (25:2) with the reported data of 1-2. The deviation of the chemical shifts of the models from those of $\mathbf{1 - 2}$ is shown in Fig. 2. While there are large differences in the chemical shifts in the H9'-H16' region between each model and 1-2 due to the absence of the C16 fatty acid chain and the oxygen functionalities at $\mathrm{C} 11^{\prime}$ and C 12 ' in the model compounds, the chemical shift deviations in other regions of both models are small (within $\pm 0.1 \mathrm{ppm}$). The similarity of the ${ }^{1} \mathrm{H}$ NMR spectrum of ($\mathbf{8} \mathbf{S} \mathbf{S}, \mathbf{2} \mathbf{' ' ~}^{\mathbf{R}}$)-1-5 with that of $\mathbf{1 - 2}$ is suggested from the fact that the average of the absolute values of the chemical shift deviations of ($\mathbf{8} \mathbf{\prime} \mathbf{S , 2} \mathbf{2} ' \mathbf{R}$)-1-5 from 1-2 (for all protons, except H9'-H16' and hydroxylc protons, of the model) is smaller (0.018 ppm) than that of ($\mathbf{8}^{\prime} \boldsymbol{R}, \mathbf{2} \mathbf{' ' ~}^{\mathbf{R}} \mathbf{R} \mathbf{) - \mathbf { 1 - 5 }}(0.028 \mathrm{ppm})$. However, the S-configuration at C8' of $\mathbf{2}$ cannot be asserted with confidence at this stage due to the presence of significant chemical shift deviations of H 4 " and $\mathrm{H} 6 \mathrm{"b}$ of ($\left.\mathbf{8}^{\prime} \mathbf{S , 2} \mathbf{2} \cdot \mathbf{\prime} \boldsymbol{R}\right) \mathbf{- 1 - 5}$, as well as the observation that the ${ }^{13} \mathrm{C}$ NMR data of both models significantly deviated from those of 1-2 (Figure 2-4). Further studies with alternative model compounds are required for the determination of the stereochemistry at C 8 ' of 1-2 .

Figure 2-3. Deviation of ${ }^{1} \mathrm{H}$ NMR chemical shifts of $\mathbf{1 - 5}$ from the reported values of 1-2. ${ }^{1} \mathrm{H}$ NMR spectra of 1-5 were measured in 25:2 $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{DMSO}-d_{6}$ according to the literature.

Positions
Figure 2-4. Deviation of ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{1 - 5}$ from the reported values of $\mathbf{1 - 2} .{ }^{13} \mathrm{C}$ NMR spectra of 1-5 were measured in 25:2 $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{DMSO}-d_{6}$ according to the literature.

2-7. Conclusion

A method for the stereoselective construction of the C8'-O-C6" ether of nigricanoside-A (11), an antimitotic natural product from the green alga Avrainvillea nigricans, has been developed based on chirality-transferring Ireland-Claisen rearrangement. The method was successfully applied to the synthesis of simple models $\left[\left(\mathbf{8 ' S}^{\prime} \mathbf{S}, \mathbf{2}^{\prime \prime} \mathbf{R}\right) \mathbf{- 1} \mathbf{- 5}\right.$ and $\left.\left(\mathbf{8} \mathbf{R}, \mathbf{2} \mathbf{2}^{\prime} \mathbf{R}\right) \mathbf{- 1} \mathbf{- 5}\right]$ for the C 20 lipid chain/galactosyl glycerol segment of 1-1.

References

1. For a review: Maréchal, É.; Block, M. A.; Dorne, A.-J.; Douce, R.; Joyard, J. Physiol. Plant. 1997, 100, 65.
2. Sias, B.; Ferrato, F.; Grandval, P.; Lafont, D.; Boullanger, P.; De Caro, A.; Leboeuf, B.; Veger, R.; Carrière, F. Biochemistry 2004, 43, 10138.
3. Higashibayashi, S.; Shinko, K.; Ishizu, T.; Hashimoto, K.; Shirahama, H.; Nakata, M. Synlett 2000, 11, 1306.
4. Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 9, 26.
5. Jung, S. H.; Kim, S. H. Bull. Korean Chem. Soc. 2003, 24, 13.
6. Gemal, A. L.; Luche, J.-L. J Am. Chem. Soc. 1981, 103, 5454.
7. The separation of $\mathbf{2 - 3 0}$ (polar) from $\mathbf{2 - 3 1}$ (less polar) was performed by HPLC using a pre-packed column (YMC-Pack SIL-06-5 $\mu \mathrm{m}$, $500 \mathrm{~mm} \times 20 \mathrm{mmID}$) supplied by YMC Co., Ltd. with hexane-ethyl acetate eluent ($20 \mathrm{~mL} / \mathrm{min}$).
8. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
9. Evans, R. W.; Sprecher, H. Chem. Phys. Lipids 1985, 38, 327.
10. Mitsunobu, O. Synthesis 1981, 13, 1.
11. Williams, D. R.; Ihle, D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383.
12. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
13. Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.
14. Pradhan, P. P.; Bobbitt, J. M.; Bailey, W. F. J. Org. Chem. 2009, 74, 9524.
15. Hashimoto, N.; Aoyama, T.; Shioiri, T. Chem. Pharm. Bull. 1981, 29, 1457.
16. Okutani, M.; Mori, Y. J. Org. Chem. 2009, 74, 442.

Experimental Section

General Methods

All reactions sensitive to air or moisture were carried out under an argon atmosphere in freshly distilled dry solvent under anhydrous conditions, unless, otherwise noted. Sensitive liquids and solutions were transferred by syringe-septum and cannula techniques. All commercially available reagents were used without further purification with the following exceptions. Tetrahydrofuran (THF) was distilled from sodium-benzophenone ketyl under argon. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and benzene were distilled from CaH_{2} prior to use. All reactions were monitored by thin-layer chromatography (TLC) with precoated silica gel $\left(\mathrm{SiO}_{2}\right)$ plates (Merck, silica gel $60 \mathrm{~F}_{254}$). Plates were visualized by ultraviolet light and by treatment with acidic anisaldehyde or phosphomolybdic acid stain followed by heating. Flash chromatography was performed on YMC Silica Gel 60 (230-400 mesh) as a stationary phase. Melting points were measured on a YANAGIMOTO micro-melting apparatus without calibration. Optical rotations were recorded on a JASCO P-1020 digital polarimeter. Infrared spectra (IR) were measured on a JEOL JIR-WINSPEC100 infrared spectrometer in noted states and are reported in wave numbers $\left(\mathrm{cm}^{-1}\right) .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNMAL300 (${ }^{1} \mathrm{H}$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75 MHz$)$ or a JNM- $\alpha-400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$)$ magnetic resonance spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra are reported as chemical shifts (δ) in parts-per- million (ppm) based on tetramethylsilane (0.00 ppm) or the residual solvent signal (for example, $\mathrm{C}_{6} \mathrm{HD}_{5}$ as 7.15 ppm) as an internal standard. The following abbreviations are used to describe spin multiplicity: $\mathrm{s}=\mathrm{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad}$, $\mathrm{dd}=$ double doublets, $\mathrm{dt}=\mathrm{double}$ triplets, td=triple doublets, and ddd=double double doublets; other combination is derived from those listed. Coupling constants (J) are reported in Hertz $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra are reported as chemical shifts (δ) in ppm based on the solvent signal (for example, ${ }^{13} \mathrm{CDCl}_{3}$ as $77.0 \mathrm{ppm} ;{ }^{13} \mathrm{C}^{12} \mathrm{C}_{5} \mathrm{D}_{6}$ as 128 $\mathrm{ppm})$ as an internal standard. Low and high resolution mass spectra were measured on a JEOL JMS600 H mass spectrometer under electron ionization (EI) condition and a JEOL JMS-SX102A mass spectrometer under field desorption (FD) condition.

Compound 2-2:

To a solution of 2-1 ($1.10 \mathrm{~g}, 2.38 \mathrm{mmol}$) in $\mathrm{MeOH}(25 \mathrm{ml})$ was added $\mathrm{MeONa}(25.6 \mathrm{mg}, 0.474 \mathrm{mmol})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 21 h . Then, to the mixture was added Amberlite IR-120-B ($270.5 \mathrm{mg}, 1.19 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 12 h . The mixture was filtered and concentrated under reduced pressure. The resulting crude tetraol was used without further purification in the next reaction.

To a solution of the crude tetraol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.663 \mathrm{ml}, 4.76 \mathrm{mmol})$, DMAP (a catalytic amount), and TBDPSCl ($0.744 \mathrm{ml}, 2.86 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred. After 3 h , an additional TBDPSCl ($0.124 \mathrm{ml}, 0.477 \mathrm{mmol}$) was added. After 9 h , an additional $\operatorname{TBDPSCl}(0.124 \mathrm{ml}, 0.477 \mathrm{mmol})$ was added, and the mixture was stirred for 4 h . Then, MeOH was added, and the mixture was concentrated under reduced pressure. The resulting crude triol was used without further purification in the next reaction.

To a solution of the crude triol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{ml})$ were added $(\mathrm{MeO})_{2} \mathrm{CMe}(1.46 \mathrm{ml}, 11.9 \mathrm{mmol})$ and CSA ($277 \mathrm{mg}, 1.19 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 5.5 h . Then, the reaction was quenched with satd. aq NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=20 \rightarrow 10$ $\rightarrow 8 \rightarrow 5 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow \mathrm{EtOAc}$) to give 2-2 ($1.08 \mathrm{~g}, 1.89 \mathrm{mmol}, 79 \%$ over 3 steps).

2-2: a colorless amorphous; $[\alpha]_{\mathrm{D}}{ }^{21}+5.65\left(c \quad 1.63, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3456, 3071, 3049, 2985, 2955, 2933, 2887, 2858, 1472, 1462, 1428, 1381, 1372, 1244, $1219,1156,1114,1076,966,874,825,802,742,703,614,506 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(9 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.57$ (1 H, brs), $3.57(1 \mathrm{H}$, brt, $\mathrm{J}=7.9 \mathrm{~Hz}$), $3.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0,10.8 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.1,8.4 \mathrm{~Hz})$, 3.83-3.94 ($3 \mathrm{H}, \mathrm{m}$), $3.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.9,9.3 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,8.4 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5$, 7.4 Hz), $4.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 4.25-4.33(2 \mathrm{H}, \mathrm{m}), 7.34-7.46(6 \mathrm{H}, \mathrm{m}), 7.66-7.73(4 \mathrm{H}, \mathrm{m})$;

[^0]$\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{CH}_{2}\right), 66.2\left(\mathrm{CH}_{2}\right), 69.7\left(\mathrm{CH}_{2}\right), 73.1(\mathrm{CH}), 73.6(\mathrm{CH}), 73.7(\mathrm{CH}), 74.4(\mathrm{CH}), 78.6(\mathrm{CH})$, $102.9(\mathrm{CH}), 109.5(\mathrm{C}), 110.0(\mathrm{C}), 127.6(\mathrm{CH} \times 2), 127.7(\mathrm{CH} \times 2), 129.7(\mathrm{CH} \times 2), 133.2(\mathrm{C}), 133.4(\mathrm{C})$, $135.5(\mathrm{CH} \times 2)$, $135.6(\mathrm{CH} \times 2)$;

FD-LRMS $m / z 573$ (9.9\%, [M+H+]), 515 (bp);
FD-HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{8} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 573.2884, found 573.2891.

Compound 2-3:

To a solution of alcohol $\mathbf{2 - 2}(599.8 \mathrm{mg}, 1.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ were added ethyl vinyl ether $(1.00 \mathrm{ml}, 10.5 \mathrm{mmol})$ and PPTS $(26.3 \mathrm{mg}, 0.105 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . Then, satd. aq. NaHCO_{3} was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=5$) to give $\mathbf{2 - 3}(640.5 \mathrm{mg}, 0.993 \mathrm{mmol}, 95 \%)$.

2-3: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(9 \mathrm{H}, \mathrm{s}), 1.16-1.24(3 \mathrm{H}, \mathrm{m}), 1.30-1.35(9 \mathrm{H}, \mathrm{m}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.50$ (3H, brs), 3.44-3.58 (5H, m), 3.72-3.86 ($2 \mathrm{H}, \mathrm{m}$), 3.86-3.96 ($2 \mathrm{H}, \mathrm{m}$), 3.96-4.06 ($1 \mathrm{H}, \mathrm{m}$), 4.06-4.13 $(1 \mathrm{H}, \mathrm{m}), 4.18-4.31(3 \mathrm{H}, \mathrm{m}), 4.89-4.98(1 \mathrm{H}, \mathrm{m}), 7.33-7.47(6 \mathrm{H}, \mathrm{m}), 7.66-7.73(4 \mathrm{H}, \mathrm{m})$.

Compound 2-4:

To a solution of $\mathbf{2 - 2}(2.90 \mathrm{~g}, 5.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 ml) were added 2,6-lutidine ($1.70 \mathrm{ml}, 14.6$ mmol), DMAP ($61 \mathrm{mg}, 0.50 \mathrm{mmol}$), and TBSOTf ($1.75 \mathrm{ml}, 7.62 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was
stirred for 4.5 h . Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resultant residue was purified by column chromatography (silica gel, hexane/EtOAc $=20 \rightarrow 6$) to give $\mathbf{2 - 4}(3.18 \mathrm{~g}, 4.62 \mathrm{mmol}, 91 \%)$. 2-4: a colorless amorphous; $[\alpha]_{\mathrm{D}}{ }^{23}+5.47$ (c 1.49, CHCl_{3});

IR (neat) v 3072, 3050, 2985, 2955, 2932, 2886, 2857, 1472, 1463, 1428, 1381, 1370, 1249, 1219, $1163,1114,1079,1046,1007,877,839,826,780,742,702,505 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.33$ $(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=7.8,10.0 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{dd}, J=6.8,7.8 \mathrm{~Hz}), 3.80$ $(1 \mathrm{H}, \mathrm{dd}, J=5.5,8.4 \mathrm{~Hz}), 3.80-3.84(1 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{dd}, J=4.8,10.0 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{dd}, J=6.0$, $9.8 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{dd}, J=7.3,9.8 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=5.5,6.8 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{dd}, J=6.2,8.4 \mathrm{~Hz})$, $4.14(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=2.0,5.5 \mathrm{~Hz}), 4.23-4.30(1 \mathrm{H}, \mathrm{m}), 7.34-7.46(6 \mathrm{H}, \mathrm{m}), 7.66-$ 7.72 (4H, m);
${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 19.2(\mathrm{C}), 25.3\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right)$, $26.4\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3} \times 3\right), 26.9\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 62.7\left(\mathrm{CH}_{2}\right), 67.5\left(\mathrm{CH}_{2}\right), 70.4\left(\mathrm{CH}_{2}\right), 73.3(\mathrm{CH})$, $73.4(\mathrm{CH}), 74.2(\mathrm{CH}), 74.5(\mathrm{CH}), 80.6(\mathrm{CH}), 103.5(\mathrm{CH}), 109.1(\mathrm{C}), 109.6(\mathrm{C}), 127.6(\mathrm{CH} \times 2), 127.7$ $(\mathrm{CH} \times 2), 129.67(\mathrm{CH}), 129.69(\mathrm{CH}), 133.3(\mathrm{C}), 133.5(\mathrm{C}), 135.5(\mathrm{CH} \times 2), 135.6(\mathrm{CH} \times 2)$;

FD-LRMS $m / z 687\left(1.8 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right]\right), 629(\mathrm{bp})$;
FD-HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{O}_{8} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 687.3748$, found 687.3732 .

Compound 2-5:

To a solution of 2-3 ($640.5 \mathrm{mg}, 0.9932 \mathrm{mmol}$) in THF $(10 \mathrm{ml})$ were added TBAF (1.0 M in THF, 2.9 $\mathrm{ml}, 2.9 \mathrm{mmol}$) at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . Then the mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=2 \rightarrow \mathrm{EtOAc})$ to give $\mathbf{2 - 5}(318.7 \mathrm{mg}, 0.784 \mathrm{mmol}, 79 \%)$.

2-5: a colorless amorphous;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16-1.23(3 \mathrm{H}, \mathrm{m}), 1.30-1.37(6 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.52$ $(3 \mathrm{H}, \mathrm{s}), 3.44-3.66(4 \mathrm{H}, \mathrm{m}), 3.68-4.01(5 \mathrm{H}, \mathrm{m}), 4.03-4.10(1 \mathrm{H}, \mathrm{m}), 4.10-4.17(2 \mathrm{H}, \mathrm{m}), 4.24-4.38(2 \mathrm{H}$, m), 4.91-4.98 $(1 \mathrm{H}, \mathrm{m})$.

Compound 2-6:

To a solution of 2-4 ($3.18 \mathrm{~g}, 4.62 \mathrm{mmol}$) in DMF (50.0 ml) were added AcOH ($0.344 \mathrm{ml}, 6.01 \mathrm{mmol}$) and TBAF (1 M in THF, $5.09 \mathrm{ml}, 5.09 \mathrm{mmol}$) at $24^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . The reaction was quenched with satd. aq NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=20 \rightarrow 4$) to give 2-6 $(1.67 \mathrm{~g}, 3.72 \mathrm{mmol}, 80 \%)$.

2-6: a colorless amorphous; $[\alpha]_{\mathrm{D}}{ }^{27}+19.2$ (c 1.00, CHCl_{3});
IR (neat) v 3454, 2986, 2952, 2934, 2885, 2858, 1473, 1463, 1455, 1381, 1371, 1249, 1219, 1162, $1142,1080,1047,966,874,839,808,780,746,670,666 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.41$ $(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 2.45(1 \mathrm{H}, \mathrm{brs}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=6.8,7.8 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=6.4,10.6 \mathrm{~Hz})$, $3.75(1 \mathrm{H}, \mathrm{dd}, J=6.0,8.4 \mathrm{~Hz}), 3.76-3.86(2 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=5.5,10.6 \mathrm{~Hz}), 3.90-4.00(1 \mathrm{H}, \mathrm{m})$, $4.03(1 \mathrm{H}, \mathrm{brt}, J=6.0 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.4 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{dd}, J=1.8,5.5 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}), 4.33(1 \mathrm{H}$, brqn, $J=6.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right), 17.7(\mathrm{C}), 24.9\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{3} \times 3\right), 26.1$ $\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 61.6\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 70.6\left(\mathrm{CH}_{2}\right), 73.2(\mathrm{CH}), 73.5(\mathrm{CH}), 74.15$ (CH), $74.23(\mathrm{CH}), 80.4(\mathrm{CH}), 103.1(\mathrm{CH}), 108.9(\mathrm{C}), 109.5(\mathrm{C})$;

FD-LRMS $m / z 449\left(36.6 \%,\left[M+\mathrm{H}^{+}\right]\right), 391(b p) ;$
FD-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 449.2571$, found 449.2598 .

Compound 2-8:

To a solution of $\mathbf{2 - 5}(15.6 \mathrm{mg}, 0.0384 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{ml})$ were added 2,6-lutidine (0.011 ml , $0.092 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(0.0076 \mathrm{ml}, 0.046 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with 0.5 M aq. HCl and then with satd. aq. NaHCO_{3}, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give crude $\mathbf{2 - 8}(15.3 \mathrm{mg}, 0.0284$ $\mathrm{mmol}, 74 \%$), which was used in the next reaction without further purification.

2-8: a colorless amorphous;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16-1.26(3 \mathrm{H}, \mathrm{m}), 1.30-1.38(6 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s}), 1.51$ $(3 \mathrm{H}, \mathrm{s}), 3.41-3.88(5 \mathrm{H}, \mathrm{m}), 3.88-3.96(1 \mathrm{H}, \mathrm{m}), 4.02-4.23(4 \mathrm{H}, \mathrm{m}), 4.24-4.41(2 \mathrm{H}, \mathrm{m}), 4.62-4.78(2 \mathrm{H}$, m), 4.88-4.97 ($1 \mathrm{H}, \mathrm{m}$).

Compound 2-15:

To a solution of $\mathbf{2 - 1 3}(2.45 \mathrm{~g}, 25.0 \mathrm{mmol})$ in THF (50 ml) were added $\mathrm{NaH}(60 \%$ in oil, $2.0 \mathrm{~g}, 50$ mmol) and $\mathrm{PMBCl}(5.08 \mathrm{ml}, 37.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 3 days. Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resultant residue was purified by column chromatography (silica gel, hexane/EtOAc $=10$) to give $\mathbf{2 - 1 4}(5.79 \mathrm{~g})$ including small amounts of byproducts from $\mathrm{PMBCl}[\mathbf{2 -}$ 14: a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55-1.78(4 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{t}, J=2.6 \mathrm{~Hz}), 2.21$
$(2 \mathrm{H}, \mathrm{dt}, J=2.6,6.9 \mathrm{~Hz}), 3.46(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{s}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $7.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz})]$.

To a solution of the above 2-14 (5.79 g) in THF (100 ml) were added BuLi (1.65 M in hexane, 32.2 ml , 53.1 mmol) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min . Then, to the mixture was added paraformaldehyde $(1.59 \mathrm{~g}, 53.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 7 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were dried over anhydrous MgSO_{4}, filtered through a Celite pad, and concentrated in vacuo. The resultant residue was purified by column chromatography (silica gel, hexane/EtOAc $=4$) to give $\mathbf{2 - 1 5}(4.52 \mathrm{~g}, 18.2 \mathrm{mmol}, 73 \%$ over 2 steps $)$. 2-15: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.47-1.76(4 \mathrm{H}, \mathrm{m}), 2.24(2 \mathrm{H}, \mathrm{tt}, J=2.2,6.9 \mathrm{~Hz}), 3.46(2 \mathrm{H}, \mathrm{t}, J=6.2$ $\mathrm{Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.21-4.26(2 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{s}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$.

Compound 2-11:

To a solution of $\mathbf{2 - 1 5}(4.52 \mathrm{~g}, 18.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ were added imidazole ($2.48 \mathrm{~g}, 38.4$ $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(7.16 \mathrm{~g}, 27.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . Then, to the mixture was added $\mathrm{I}_{2}(6.93 \mathrm{~g}, 27.3 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 35 min . Then, the reaction was quenched with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were dried over anhydrous MgSO_{4}, filtered through a Celite pad, and concentrated in vacuo. The resultant residue was purified by column chromatography (silica gel, hexane/EtOAc $=10)$ to give $\mathbf{2 - 1 1}(3.68 \mathrm{~g}, 10.3 \mathrm{mmol}, 57 \%)$.

2-11: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52-1.75(4 \mathrm{H}, \mathrm{m}), 2.22(2 \mathrm{H}, \mathrm{tt}, J=2.5,6.9 \mathrm{~Hz}), 3.46(2 \mathrm{H}, \mathrm{t}, J=6.2$ $\mathrm{Hz}), 3.69(2 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{s}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.7$ Hz).

Compound 2-16:

To a solution of alcohol 2-6 ($221.3 \mathrm{mg}, 0.4932 \mathrm{mmol}$) in benzene $(2.0 \mathrm{ml})$ were added 4 M aq. NaOH $(4.0 \mathrm{ml})$, tert-butyl bromoacetate $(0.250 \mathrm{ml}, 1.69 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{~N} \cdot \mathrm{HSO}_{4}(628.1 \mathrm{mg}, 1.85 \mathrm{mmol})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 29 h . Then, satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After the residue was dissolved in $\mathrm{MeOH}(2.0 \mathrm{ml}), 4 \mathrm{M}$ aq. $\mathrm{NaOH}(4.0 \mathrm{ml})$ was added to the solution at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 7 h . The mixture was acidified with 1 M aq. HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give almost pure 2-16 ($168.5 \mathrm{mg}, 0.3326 \mathrm{mmol}, 67 \%$ over 2 steps).

2-16: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{22}+2.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.41$ $(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{dd}, J=7.0,10.0 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=6.3,7.6 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{dd}, J$ $=5.6,8.5 \mathrm{~Hz}), 3.79-3.93(3 \mathrm{H}, \mathrm{m}), 3.95-4.02(1 \mathrm{H}, \mathrm{m}), 4.03-4.10(2 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz})$, 4.17-4.22 ($1 \mathrm{H}, \mathrm{m}$), $4.21(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 4.24-4.34(1 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 25.1\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3} \times 3\right), 26.2$ $\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 67.2\left(\mathrm{CH}_{2}\right), 68.6\left(\mathrm{CH}_{2}\right), 70.5\left(\mathrm{CH}_{2}\right), 71.1\left(\mathrm{CH}_{2}\right), 71.8(\mathrm{CH}), 73.7(\mathrm{CH})$, 73.9 (CH), 74.1 (CH), 80.3 (CH), 103.1 (CH), 109.3 (C), 110.0 (C), 173.5 (C);

FD-LRMS m/z 507 (64.3\%, [M+H $\left.{ }^{+}\right]$), 449 (bp);
FD-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{O}_{10} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 507.2626$, found 507.2652.

Compound 2-12-Bn:

To a solution of $\mathbf{2 - 1 6}(31.6 \mathrm{mg}, 0.0624 \mathrm{mmol})$ in THF $(0.2 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.035 \mathrm{ml}, 0.25$ $\mathrm{mmol})$ and pivaloyl chloride ($0.0153 \mathrm{ml}, 0.124 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 45 min . To a THF solution of (S)-4-benzyloxazolidin-2-one-3-yl lithium, prepared by the reaction of (S) -4-benzyloxazolidin-2-one ($33.2 \mathrm{mg}, 0.187 \mathrm{mmol}$) with $\operatorname{BuLi}(1.65 \mathrm{M}$ in hexane, $0.0760 \mathrm{ml}, 0.125$ $\mathrm{mmol})$ in THF (1.0 ml) at $-25^{\circ} \mathrm{C}$ for 30 min , was added the above mixed anhydride solution at $20^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane/EtOAc $=$) to give $\mathbf{2 - 1 2 - B n}(33.1 \mathrm{mg}, 0.0497 \mathrm{mmol}$, $80 \%)$.

2-12-Bn: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.12(3 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.33(6 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.48$ $(3 \mathrm{H}, \mathrm{s}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=9.6,13.4 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=3.3,13.4 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{brt}, J=8.0 \mathrm{~Hz})$, $3.52(1 \mathrm{H}, \mathrm{dd}, J=5.1,7.7 \mathrm{~Hz}), 3.79-4.34(12 \mathrm{H}, \mathrm{m}), 4.68(1 \mathrm{H}, \mathrm{tdd}, J=3.3,7.8,9.6 \mathrm{~Hz}), 4.79(2 \mathrm{H}, \mathrm{s})$, 7.15-7.38 (5H, m).

Compound 2-12-Ph:

To a solution of $\mathbf{2 - 1 6}$ ($76.0 \mathrm{mg}, 0.150 \mathrm{mmol}$) in THF (2 ml) were added $\mathrm{Et}_{3} \mathrm{~N}(0.063 \mathrm{ml}, 0.45 \mathrm{mmol})$
and pivaloyl chloride $(0.037 \mathrm{ml}, 0.30 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . To a THF solution of (R)-4-phenyloxazolidin-2-one-3-yl lithium, prepared by the reaction of (R)-4-phenyloxazolidin-2-one ($66.5 \mathrm{mg}, 0.408 \mathrm{mmol}$) with $\operatorname{BuLi}(1.65 \mathrm{M}$ in hexane, $0.182 \mathrm{ml}, 0.300 \mathrm{mmol})$ in THF (1.0 ml) at $-20^{\circ} \mathrm{C}$ for 30 min , was added the above mixed anhydride solution at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane/EtOAc $=2$) to give 2-12-Ph $(59.6 \mathrm{mg}, 0.0914 \mathrm{mmol}$, $61 \%)$.

2-12-Ph: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.40$ $(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 3.43-3.51(2 \mathrm{H}, \mathrm{m}), 3.71-4.14(8 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.21 .4 .33(1 \mathrm{H}$, $\mathrm{m}), 4.36(1 \mathrm{H}, \mathrm{dd}, J=3.7,9.0 \mathrm{~Hz}), 4.70-4.87(3 \mathrm{H}, \mathrm{m}) .5 .42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.7,8.7 \mathrm{~Hz}), 7.28-7.42(5 \mathrm{H}$, m).

Compound 2-12-IP:

To a solution of $\mathbf{2 - 1 6}(70.0 \mathrm{mg}, 0.138 \mathrm{mmol})$ in THF (1 ml) were added $\mathrm{Et}_{3} \mathrm{~N}(0.077 \mathrm{ml}, 0.55 \mathrm{mmol})$ and pivaloyl chloride $(0.034 \mathrm{ml}, 0.28 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 40 min . To a THF solution of (R)-4-isopropyloxazolidin-2-one-3-yl lithium, prepared by the reaction of (R)-4-isopropyloxazolidin-2-one ($44.3 \mathrm{mg}, 0.346 \mathrm{mmol}$) with $\mathrm{BuLi}(1.65 \mathrm{M}$ in hexane, $0.167 \mathrm{ml}, 0.276$ $\mathrm{mmol})$ in THF (1.0 ml) at $-20^{\circ} \mathrm{C}$ for 30 min , was added the above mixed anhydride solution at $20^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with
brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane/EtOAc $=2$) to give $\mathbf{2 - 1 2 - I P}(74.6 \mathrm{mg}, 0.121 \mathrm{mmol}$, $87 \%)$.

2-12-IP: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.93$ $(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.32(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 2.36-2.50(1 \mathrm{H}, \mathrm{m}), 3.46-$ $3.54(2 \mathrm{H}, \mathrm{m}), 3.73-3.86(2 \mathrm{H}, \mathrm{m}), 3.87-4.10(5 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{dd}, J=2.0,5.5 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{d}, J=$ $7.9 \mathrm{~Hz}), 4.22-4.34(2 \mathrm{H}, \mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{brt}, J=8.5 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{td}, J=3.5,8.2 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=$ $18.1 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=18.1 \mathrm{~Hz})$.

Compound 2-28:

To a solution of $\mathbf{2 - 2 7}(2.71 \mathrm{~g}, 10.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ was added $\mathrm{Br}_{2}(0.609 \mathrm{ml}, 11.9 \mathrm{mmol})$ dropwise over 10 min at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . Then, to the mixture was added $\mathrm{Et}_{3} \mathrm{~N}(3.80 \mathrm{ml}, 27.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . Then, the reaction was quenched with satd. aq. NaHCO_{3} and satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=15)$ to give $\mathbf{2 - 2 8}(3.07 \mathrm{~g}, 9.38 \mathrm{mmol}, 86 \%)$.

2-28: a colorless oil;
IR (neat) v 3030, 3001, 2935, 2858, 1698, 1612, 1586, 1513, 1463, 1442, 1393, 1362, 1302, 1247, 1208, 1175, 1149, 1098, 1051, 1036, $820 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.57-1.80(4 \mathrm{H}, \mathrm{m}), 2.81(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.46(2 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz})$, $3.80(3 \mathrm{H}, \mathrm{s}), 4.42(2 \mathrm{H}, \mathrm{s}), 6.35(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $7.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.9\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{3}\right), 69.2\left(\mathrm{CH}_{2}\right), 72.2$
$\left(\mathrm{CH}_{2}\right), 113.4(\mathrm{CH} \times 2), 128.4\left(\mathrm{CH}_{2}\right), 128.9(\mathrm{CH} \times 2), 130.3(\mathrm{C}), 131.4(\mathrm{C}), 158.8(\mathrm{C}), 193.6(\mathrm{C})$;

Compound 2-26:

To a solution of $\mathbf{2 - 2 8}(132.3 \mathrm{mg}, 0.404 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{ml})$ were added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(301.3 \mathrm{mg}$, $0.808 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(7.7 \mathrm{mg}, 0.20 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was evaporated to remove MeOH . The concentrated aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5$) to give 2-26 ($129.4 \mathrm{mg}, 0.393 \mathrm{mmol}, 98 \%$).

2-26: a colorless oil;
IR (neat) v 3414, 3034, 3000, 2939, 2862, 1612, 1586, 1513, 1463, 1442, 1363, 1303, 1248, 1173, 1092, 1036, 899, 820, $665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30-1.53\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 1.53-1.79\left(4 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\times 2\right), 1.97(1 \mathrm{H}, \mathrm{d}, J$ $=6.0 \mathrm{~Hz}, \mathrm{OH}), 3.45\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz},-\mathrm{OCH}_{2}-\underline{-}^{-}\right), 3.80\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 4.08(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz},-$ $\mathrm{CH}(\mathrm{OH})-), 4.42\left(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2}-\mathrm{Ar}\right), 5.55(1 \mathrm{H}, \mathrm{brd}, J=1.8 \mathrm{~Hz},=\mathrm{CH}-), 5.86(1 \mathrm{H}, \mathrm{brs},=\mathrm{CH}-), 6.88$ ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{PMB}$), $7.26(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{PMB}$);
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.9\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 34.8\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 69.7\left(\mathrm{CH}_{2}\right), 72.4$ $\left(\mathrm{CH}_{2}\right), 75.7\left(\mathrm{CH}_{2}\right), 113.7(\mathrm{CH} \times 2), 116.7\left(\mathrm{CH}_{2}\right), 129.2(\mathrm{CH} \times 2), 130.5(\mathrm{C}), 137.5(\mathrm{C}), 159.0(\mathrm{C})$;

EI-LRMS $m / z 328$ (3.5\%, [$\left.\mathrm{M}^{+}\right]$), 121 (bp);
EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3}\left(\left[\mathrm{M}^{+}\right]\right) 328.0674$, found 328.0692.

Compounds 2-30 and 2-31:

To a solution of 2-26 ($176.7 \mathrm{mg}, 0.5367 \mathrm{mmol}$), DMAP (a catalytic amount), and (R)-(-)- $\alpha-$ methoxyphenylacetic acid ($133.8 \mathrm{mg}, 0.8051 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{ml})$ was added $\mathrm{EDCI}(154.3 \mathrm{mg}$, 0.8051 mmol) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=12 \rightarrow 10$) to give a mixture of 2-30 and 2-31. Then, the mixture was separated by preparative HPLC using a pre-packed column (YMC-Pack SIL-06-5 $\mu \mathrm{m}, 500 \mathrm{~mm} \times 20 \mathrm{mmID}$) supplied by YMC Co., Ltd. with hexaneethyl acetate eluent (flow rate: $20 \mathrm{ml} / \mathrm{min}$) to give $\mathbf{2 - 3 0}(87.9 \mathrm{mg}, 0.184 \mathrm{mmol}, 34 \%)$ as a polar component and $\mathbf{2 - 3 1}(89.5 \mathrm{mg}, 0.187 \mathrm{mmol}, 35 \%)$ as a less polar component.

2-30: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}-21\left(c 0.40, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3063 3032, 2999, 2935, 2863, 2836, 1755, 1627, 1612, 1586, 1513, 1496, 1455, 1443 , $1362,1302,1247,1198,1172,1101,1036,999,911,847,821,753,698,665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.22-1.44(2 \mathrm{H}, \mathrm{m}), 1.51-1.65(2 \mathrm{H}, \mathrm{m}), 1.66-1.86(2 \mathrm{H}, \mathrm{m}), 3.41(2 \mathrm{H}, \mathrm{t}$, $J=6.5 \mathrm{~Hz}), 3.42(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.41(2 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{s}), 5.26(1 \mathrm{H}, \mathrm{brt}, J=6.5 \mathrm{~Hz}), 5.40(1 \mathrm{H}$, brd, $J=2.1 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{brs}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.28-7.38(3 \mathrm{H}, \mathrm{m})$, 7.40-7.46 (2H, m);
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 57.3\left(\mathrm{CH}_{3}\right), 69.5$ $\left(\mathrm{CH}_{2}\right), 72.5\left(\mathrm{CH}_{2}\right), 76.8(\mathrm{CH}), 82.4(\mathrm{CH}), 113.7(\mathrm{CH} \times 2), 119.0\left(\mathrm{CH}_{2}\right), 127.2(\mathrm{CH} \times 2), 128.5(\mathrm{CH} \times 2)$, 128.7 (CH), 129.1 (CH×2), 130.3 (C), 130.6 (C), 135.8 (C), 159.1 (C), 169.5 (C);

EI-LRMS m/z 476 ($0.23 \%,\left[\mathrm{M}^{+}\right]$), 121 (bp);
EI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{5}{ }^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]: 476.1198$, found: 476.1187.
2-31: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}-36\left(c 0.40, \mathrm{CHCl}_{3}\right)$;

IR (neat) v 3063, 3033, 2997, 2936, 2863, 2836, 2755, 1628, 1612, 1586, 1513, 1496, 1455, 1443, $1362,1317,1302,1248,1198,1175,1101,1036,1000,911,847,821,736,698,665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$) δ 0.98-1.19 (2H, m), 1.39-1.51 (2H, m), 1.55-1.75 (2H, m), $3.27(2 \mathrm{H}, \mathrm{t}$, $J=6.5 \mathrm{~Hz}), 3.42(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{s}), 5.22(1 \mathrm{H}, \mathrm{brt}, J=6.7 \mathrm{~Hz}), 5.59(1 \mathrm{H}$, d, $J=2.0 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{brd}, J=2.0 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.26-$ 7.37 (3H, m), 7.41-7.47 (2H, m);
${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 57.1\left(\mathrm{CH}_{3}\right), 69.2$ $\left(\mathrm{CH}_{2}\right), 72.2\left(\mathrm{CH}_{2}\right), 76.7(\mathrm{CH}), 82.2(\mathrm{CH}), 113.5(\mathrm{CH} \times 2), 119.3\left(\mathrm{CH}_{2}\right), 127.0(\mathrm{CH} \times 2), 128.3(\mathrm{CH} \times 2)$, $128.5(\mathrm{CH}), 128.9(\mathrm{CH} \times 2), 130.4$ (C), 130.8 (C), 135.9 (C), 158.9 (C), 169.4 (C);

EI-LRMS m/z 476 (0.57\%, [M+]), 121 (bp);
EI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{5}{ }^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]: 476.1198$, found: 476.1219.

Compound (R)-2-26:

To a solution of 2-30 ($87.9 \mathrm{mg}, 0.184 \mathrm{mmol}$) in $\mathrm{MeOH}(1.0 \mathrm{ml})$ was added 5 M aq. $\mathrm{NaOH}(0.5 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 1.5 h . Then, the mixture was acidified with $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5$) to give $(\boldsymbol{R}) \mathbf{- 2 - 2 6}(60.8 \mathrm{mg}, 0.185 \mathrm{mmol}, 100 \%)$. (\boldsymbol{R})-2-26: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}-11.2$ (c 0.14, CHCl_{3});

IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ spectra are identical with those of racemic 2-26;
EI-LRMS $m / z 328$ (1.4\%, [$\left.\mathrm{M}^{+}\right]$), 121 (bp);
EI-HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3}\left(\left[\mathrm{M}^{+}\right]\right) 328.0674$, found 328.0696.

Compound (S)-2-26:

To a solution of $\mathbf{2 - 3 0}(89.5 \mathrm{mg}, 0.187 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{ml})$ was added 5 M aq. $\mathrm{NaOH}(0.5 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 1.5 h . Then, the mixture was acidified with $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5$) to give $(\boldsymbol{S}) \mathbf{- 2 - 2 6}(60.5 \mathrm{mg}, 0.184 \mathrm{mmol}, 98 \%)$. (S)-2-26: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{23}+11.1\left(c 0.14, \mathrm{CHCl}_{3}\right) ;$

IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ spectra are identical with those of racemic 2-26;
EI-LRMS $m / z 328$ (1.3\%, $\left.\left[\mathrm{M}^{+}\right]\right), 121(b p) ;$
EI-HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3}\left(\left[\mathrm{M}^{+}\right]\right) 328.0674$, found 328.0674.

Compound 2-32:

To a solution of $(\mathbf{S}) \mathbf{- 2 - 2 6}(3.5 \mathrm{mg}, 0.011 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ were added DMAP (a catalytic amount), $\mathrm{Et}_{3} \mathrm{~N}(0.0089 \mathrm{ml}, 0.064 \mathrm{mmol})$, and $(-)-(R)-\mathrm{MTPACl}(0.0030 \mathrm{ml}, 0.016 \mathrm{mmol})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with CHCl_{3}. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=15 \rightarrow 10)$ to give 2-32 $(3.8 \mathrm{mg}, 0.0070 \mathrm{mmol}, 64 \%)$.

2-32: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}-29\left(c 0.30, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26$ (brqn, $J=7.6 \mathrm{~Hz}, \mathrm{H} 3$ '), $1.55\left(2 \mathrm{H}, \operatorname{brqn}, J=6.5 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime}\right), 1.76$ ($2 \mathrm{H}, \mathrm{brq}, J=6.6 \mathrm{~Hz}, \mathrm{H} 4$ '), 3.36 ($2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H1}$ '), 3.58 (3 H , brs, MTPA), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{PMB}$), $4.40(2 \mathrm{H}, \mathrm{s}, \mathrm{PMB}), 5.44(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H} 5 '), 5.70(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 5.99(1 \mathrm{H}, \mathrm{d}, J=2.0$ $\mathrm{Hz}, \mathrm{H} 7$ 'b) , 6.87 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}$), $7.24(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}), 7.34-7.41$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{MTPA}$),
7.50-7.56 (2H, m, MTPA);

Compound 2-33:

To a solution of $(\mathbf{S}) \mathbf{- 2 - 2 6}(3.5 \mathrm{mg}, 0.011 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ were added DMAP (a catalytic amount), $\mathrm{Et}_{3} \mathrm{~N}(0.0089 \mathrm{ml}, 0.064 \mathrm{mmol})$, and (+)-(S)-MTPACl ($\left.0.0030 \mathrm{ml}, 0.016 \mathrm{mmol}\right)$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 h . Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with CHCl_{3}. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=15 \rightarrow 10$) to give 2-33 ($4.1 \mathrm{mg}, 0.0075 \mathrm{mmol}, 68 \%$). 2-33: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}+3.0\left(c 0.50, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36-1.46$ [center: 1.41] ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), 1.62 (2 H, brqn, $J=6.9 \mathrm{~Hz}, \mathrm{H} 2$ '), $1.84\left(2 \mathrm{H}, \mathrm{td}, J=6.7,8.9 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.43\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H} 1^{\prime}\right), 3.54$ ($3 \mathrm{H}, \mathrm{brs}, \mathrm{MTPA}$), $3.80(3 \mathrm{H}, \mathrm{s}$, PMB), 4.41 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PMB}$), 5.41 ($1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H} 5$ '), 5.63 ($1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{a}$), 5.86 ($1 \mathrm{H}, \mathrm{d}$, $\left.J=2.1 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{b}\right), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}), 7.35-7.42(3 \mathrm{H}, \mathrm{m}$, МTPA), 7.48-7.54 (2H, m, MTPA);

The result of modified Mosher's method for (S)-2-26.

Compound 2-35:

To a solution of $\mathbf{2 - 3 4}(168.5 \mathrm{mg}, 1.001 \mathrm{mmol})$ in THF (10 ml) were added $\mathrm{PPh}_{3}(340.9 \mathrm{mg}, 1.300$ mmol) and PTSH ($214.1 \mathrm{mg}, 1.201 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . To the mixture was added DEAD $(0.205 \mathrm{ml}, 1.30 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . Then, the mixture was stirred at $23^{\circ} \mathrm{C}$ for 50 min . Then, the mixture was concentrated directly under reduced pressure. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane $/ E t O A c=15$) to give $\mathbf{2 - 3 5}(223.0 \mathrm{mg}, 0.6789 \mathrm{mmol}, 68 \%)$.

2-35: a coloreless oil;
IR (neat) v 3062, 2931, 2859, 1598, 1500, 1461, 1454, 1440, 1432, 1426, 1421, 1414, 1403, 1397, $1389,1386,1333,1315,1295,1279,1243,1089,1074,1055,1014,761,694,686,665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.22-1.40(4 \mathrm{H}, \mathrm{m}), 1.40-1.53(2 \mathrm{H}, \mathrm{m}), 1.64$ $(2 \mathrm{H}, \mathrm{qn}, J=7.3 \mathrm{~Hz}), 1.95(2 \mathrm{H}, \mathrm{qn}, J=7.4 \mathrm{~Hz}), 2.12(2 \mathrm{H}, \mathrm{tt}, J=2.3,7.0 \mathrm{~Hz}), 2.21(2 \mathrm{H}, \mathrm{tt}, J=2.3,6.9$ $\mathrm{Hz}), 3.43(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.49-7.61(5 \mathrm{H}, \mathrm{m})$;
${ }^{13}{ }^{1}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 28.0$
$\left(\mathrm{CH}_{2}\right)$, $28.6\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 78.9(\mathrm{C}), 80.9(\mathrm{C}), 123.6(\mathrm{CH} \times 2), 129.6(\mathrm{CH} \times 2), 129.9$ (CH), 133.5 (C), 154.2 (C);

EI-LRMS $m / z 328$ (5.8\%, [$\left.\mathrm{M}^{+}\right]$), 101 (bp);
EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 328.1722, found 328.1718.

Compound 2-22:

To a 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (ca. $8.8 \mathrm{M}, 0.773 \mathrm{ml}, 6.82 \mathrm{mmol}$) was added $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right) 6 \cdot 4 \mathrm{H}_{2} \mathrm{O}(84.3$ $\mathrm{mg}, 0.0682 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . Then, to a solution of 2-35 (224.0 $\mathrm{mg}, 0.6819 \mathrm{mmol})$ in $\mathrm{EtOH}(4.0 \mathrm{ml})$ was added the above oxidant solution at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 19 h . Then, the reaction was quenched with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=20 \rightarrow 15 \rightarrow 10)$ to give 2-22 $(122.6 \mathrm{mg}, 0.3401 \mathrm{mmol}$, 50\%).

2-22: a colorless oil;
IR (neat) v 3069, 2955, 2931, 2871, 2860, 1596, 1497, 1461, 1434, 1407, 1342, 1298, 1268, 1247, $1220,1201,1154,1100,1076,1047,1015,763,730,688,665,626 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.22-1.40(4 \mathrm{H}, \mathrm{m}), 1.40-1.53(2 \mathrm{H}, \mathrm{m}), 1.69$ ($2 \mathrm{H}, \mathrm{qn}, J=7.2 \mathrm{~Hz}$), 2.03-2.16 ($4 \mathrm{H}, \mathrm{m}$), $2.25(2 \mathrm{H}, \mathrm{tt}, J=2.3,6.8 \mathrm{~Hz}), 3.78(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.56-$ 7.73 (5H, m);
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 27.1$ $\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{2}\right), 78.1(\mathrm{C}), 81.6(\mathrm{C}), 125.0(\mathrm{CH} \times 2), 129.5(\mathrm{CH} \times 2), 131.3$ (CH), 132.9 (C), 153.3 (C);

EI-LRMS m/z 361 ($\left.0.33 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right]\right), 118(\mathrm{bp})$;

EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 361.1698, found 361.1727.

Compound (5'S)-2-25:

To a solution of $\mathbf{2 - 1 6}(10.0 \mathrm{mg}, 0.0197 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{ml})$ were added DMAP (a catalytic amount) and a solution of (S)-2-26 (7.8 mg, 0.024 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then, to the mixture was added EDCI $\cdot \mathrm{HCl}(7.6 \mathrm{mg}, 0.039 \mathrm{mmol})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 17.5 h . Then, an additional EDCI $\cdot \mathrm{HCl}(7.6 \mathrm{mg}, 0.039 \mathrm{mmol})$ was added, and the mixture was stirred for 1.5 h . The reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 9 \rightarrow 5$) to give (5'S)-2-25 ($11.2 \mathrm{mg}, 0.0137 \mathrm{mmol}, 70 \%$).
(5'S)-2-25: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}-3.5\left(c 0.30, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3103, 3062, 3033, 2985, 2933, 2857, 1760, 1629, 1613, 1586, 1514, 1463, 1381, 1371, $1302,1248,1219,1175,1128,1079,1051,976,872,839,822,809,780,748,665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.30-1.44(2 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}$, s), $1.34(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.57-1.69(2 \mathrm{H}, \mathrm{m}), 1.70-1.84(2 \mathrm{H}, \mathrm{m}), 3.40-3.54(2 \mathrm{H}, \mathrm{m})$, $3.43(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.73-3.83(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.87-4.34(10 \mathrm{H}, \mathrm{m}), 4.42(2 \mathrm{H}, \mathrm{s}), 5.29(1 \mathrm{H}$, $\mathrm{t}, J=6.7 \mathrm{~Hz}), 5.64(1 \mathrm{H}, \operatorname{brd}, J=2.0 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \operatorname{brd}, J=2.0 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.25$ ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$);
${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 21.6\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right)$, $26.4\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 67.4\left(\mathrm{CH}_{2}\right), 68.8\left(\mathrm{CH}_{2}\right)$, (C), 131.1 (C), 159.1 (C), 169.4 (C);;

FD-LRMS $m / z 818$ (bp, [$\left.\left.\mathrm{M}^{+}: \mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{12} \mathrm{Si}^{81} \mathrm{Br}\right]\right), 816\left(89 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{Br}\right]\right)$;
FD-HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]$: 816.3116, found 816.3123.

Compound (8^{\prime} 'S)-2-36:

To a solution of (5'S)-2-25 (28.0 mg, 0.0342 mmol$)$ in THF (1.0 ml) was added TMSCl $(0.0130 \mathrm{ml}$, 0.103 mmol) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 2 min . To the mixture was added NHMDS (1.09 M in THF, $0.094 \mathrm{ml}, 0.102 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . Then, the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 10 min . The reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting crude carboxylic acid $\left\{\left(\mathbf{8}^{\prime} \mathbf{S}\right) \mathbf{- 2 - 2 3}\right\}$ was used in the next reaction without further purification.

To a solution of the crude carboxylic acid $\{(\mathbf{8} \mathbf{S}) \mathbf{- 2} \mathbf{- 2 3}\}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ were added DMAP (a catalytic amount) and $\mathrm{HNMe}(\mathrm{OMe}) \cdot \mathrm{HCl}(6.7 \mathrm{mg}, 0.068 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 25 min . To the mixture was added EDCI $\cdot \mathrm{HCl}(13.1 \mathrm{mg}, 0.0684 \mathrm{mmol})$, and the mixture was stirred for 75 min . Then, additional EDCI $\cdot \mathrm{HCl}(13.1 \mathrm{mg}, 0.0684 \mathrm{mmol})$ was added, and the mixture was stirred for 195 min . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=3 \rightarrow$ 1) to give ($\mathbf{8} \mathbf{S} \mathbf{S}$)-2-36 $(23.6 \mathrm{mg}, 0.0274 \mathrm{mmol}, 80 \%$ for 2 steps).
(8'S)-2-36: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}-2.11\left(c 1.00, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3062, 2986, 2935, 2857, 1677, 1613, 1514, 1463, 1381, 1371, 1302, 1248, 1219, 1173, 1101, 1042, 989, 874, 839, 809, 780, 756, $666 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 1.29(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.34(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.40 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.40-1.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), 1.48 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.53-1.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '), 2.06-2.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{C}^{\prime}$), $2.76\left(1 \mathrm{H}, \mathrm{dd}, J=7.9,14.3 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{'a}^{2}\right)$, 2.83 ($1 \mathrm{H}, \mathrm{dd}, J=4.8,14.3 \mathrm{~Hz}, \mathrm{H} 7$ 'b), 3.20 (3 H, brs, NCH_{3}), 3.40-3.51 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ ', H2", H1'"a), 3.62 ($1 \mathrm{H}, \mathrm{dd}, J=7.0,10.4 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}$) , 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}$), 3.76-4.00 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ", H5", H6"b, H1'"b, H3'"a), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03-4.12(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 ", \mathrm{H} 3$ "'b), 4.15 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.22-4.32 (1H, m, H2'"), 4.42 (2H, s, PMB), 4.66-4.76 (1H, m, H8'), 5.77 ($\left.1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 6.87$ (2H, d, $J=8.5 \mathrm{~Hz}, \mathrm{PMB}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{PMB})$;
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 24.9\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3} \times 3\right)$, $26.3\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{3}\right), 44.3\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right)$, $61.6\left(\mathrm{CH}_{3}\right), 67.4\left(\mathrm{CH}_{2}\right), 69.5\left(\mathrm{CH}_{2}\right), 69.7\left(\mathrm{CH}_{2}\right), 70.3\left(\mathrm{CH}_{2}\right), 72.4(\mathrm{CH}), 72.5\left(\mathrm{CH}_{2}\right), 74.0(\mathrm{CH}), 74.1$ (CH), $74.2(\mathrm{CH}), 74.8(\mathrm{CH}), 80.4(\mathrm{CH}), 103.0(\mathrm{CH}), 109.0(\mathrm{C}), 109.7(\mathrm{C}), 113.7(\mathrm{CH} \times 2), 122.2(\mathrm{C})$, $129.1(\mathrm{CH} \times 2), 130.6(\mathrm{C}), 132.3(\mathrm{CH}), 159.0(\mathrm{C}), 172.0(\mathrm{C})$;

Compound 2-42:

To a solution of (5'S)-2-25 ($289.7 \mathrm{mg}, 0.3542 \mathrm{mmol}$) in THF (4.0 ml) was added TMSCl (0.134 ml , 1.06 mmol) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 3 min . To the mixture was added NHMDS (1.09 M in THF, $0.972 \mathrm{ml}, 1.06 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 7 min . Then, the mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 10 min . The reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed
with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting crude carboxylic acid $\{(\mathbf{8} \mathbf{S}) \mathbf{- 2}-23\}$ was used in the next reaction without further purification.

To a solution of the above crude ($\mathbf{8} \mathbf{S} \mathbf{S}) \mathbf{- 2}-\mathbf{2 3}$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml} / 0.1 \mathrm{ml})$ was added TMSCHN_{2} (2.0 M in $\mathrm{Et}_{2} \mathrm{O}, 0.354 \mathrm{ml}, 0.708 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min . Then, the mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=15 \rightarrow 12 \rightarrow 5)$ to give methyl ester 2-42 $(228.1 \mathrm{mg}$, $0.2742 \mathrm{mmol}, 77 \%)$.

2-42: colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.07(3 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.38-$ $1.52(2 \mathrm{H}, \mathrm{m}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.52-1.68(2 \mathrm{H}, \mathrm{m}), 2.06-2.27(2 \mathrm{H}, \mathrm{m}), 2.74-2.89(2 \mathrm{H}, \mathrm{m})$, $3.43(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.45-3.52(2 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=8.4,12.3 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}$, s), $3.81(1 \mathrm{H}, \mathrm{dd}, J=5.8,8.2 \mathrm{~Hz}), 3.86-4.00(4 \mathrm{H}, \mathrm{m}), 4.02-4.10(2 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$, 4.22-4.34 ($1 \mathrm{H}, \mathrm{m}$), $4.34(1 \mathrm{H}, \mathrm{dd}, J=5.7,7.5 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{s}), 5.75(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$.

Compound 2-43:

To a solution of $\mathbf{2 - 4 2}(210.6 \mathrm{mg}, 0.2532 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml})$ was added DIBALH $(0.971 \mathrm{ml}$, 1.01 mmol) at $-10^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . Then, the reaction was quenched with satd. aq. Rochelle salt, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 8$ $\rightarrow 4 \rightarrow 3 \rightarrow 1 \rightarrow \mathrm{EtOAc})$ to give $\mathbf{2 - 4 3}$ ($138.3 \mathrm{mg}, 0.1720 \mathrm{mmol}, 68 \%$).

2-43: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40$ $(3 \mathrm{H}, \mathrm{s}), 1.43-1.69(4 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{s}), 2.18(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{dd}, J=6.3,14.4 \mathrm{~Hz})$, $2.64(1 \mathrm{H}, \mathrm{dd}, J=6.9,14.4 \mathrm{~Hz}), 3.44(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.43-3.55(2 \mathrm{H}, \mathrm{m}), 3.67-3.94(7 \mathrm{H}, \mathrm{m}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 4.00-4.31(6 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{s}), 5.73(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.26(2 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}$).

Compound 2-44:

To a solution of $\mathbf{2 - 4 2}(74.5 \mathrm{mg}, 0.0896 \mathrm{mmol})$ in $\mathrm{THF}(2.0 \mathrm{ml})$ was added $\mathrm{LiAlH}_{4}(6.8 \mathrm{mg}, 0.18$ mmol) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 35 min . Then, the reaction was quenched with satd. aq. Rochelle salt, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. To a solution of the resulting crude alcohol $\mathbf{2 - 4 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.0167 \mathrm{ml}, 0.119$ mmol) and 3,5-dinitrobenzoyl chloride ($20.6 \mathrm{mg}, 0.0894 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . Then, after the mixture was diluted with MeOH , the mixture was concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 8$ $\rightarrow 5)$ to give 2-44 ($40.4 \mathrm{mg}, 0.0405 \mathrm{mmol}, 45 \%$ for 2 steps).

2-44: a pale yellow oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.39$ $(3 \mathrm{H}, \mathrm{s}), 1.41-1.68(4 \mathrm{H}, \mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{s}), 2.19(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=7.1,14.3 \mathrm{~Hz})$, $2.87(1 \mathrm{H}, \mathrm{dd}, J=6.4,14.3 \mathrm{~Hz}), 3.43(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.42-3.52(2 \mathrm{H}, \mathrm{m}), 3.77-3.90(4 \mathrm{H}, \mathrm{m}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=5.6,6.5 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=6.1,8.4 \mathrm{~Hz}), 4.07-4.17(3 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{d}$, $J=7.7 \mathrm{~Hz}), 4.21-4.33(1 \mathrm{H}, \mathrm{m}), 4.38-4.45(1 \mathrm{H}, \mathrm{m}), 4.01(2 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{dd}, J=3.6,11.7 \mathrm{~Hz}), 5.81$
$(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 9.15(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 9.22$ $(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz})$.

Compound 2-47:

To a solution of 2-43 ($6.2 \mathrm{mg}, 0.0077 \mathrm{mmol}$) in THF (0.3 ml) was added TBAF• $3 \mathrm{H}_{2} \mathrm{O}$ (an excess amount) at $23^{\circ} \mathrm{C}$, and the mixture was refluxed for 2 h . Then, the mixture was concentrated in vacuo. The resulting residue was roughly purified by column chromatography (silica gel, hexane/EtOAc $=$ $1 \rightarrow 0.5 \rightarrow 0.3$) to give $\mathbf{2 - 4 5}(3.8 \mathrm{mg}, 0.0062 \mathrm{mmol}, 81 \%)$, which was used immediately in the next reaction.

To a solution of the diol 2-45 ($3.8 \mathrm{mg}, 0.0062 \mathrm{mmol}$) in THF (0.7 ml) were added $\mathrm{NaH}(3.0 \mathrm{mg}, 0.062$ $\mathrm{mmol})$ and MeI $(0.0040 \mathrm{ml}, 0.062 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 4 h . Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give crude $\mathbf{2 - 4 6}$ (ca. $3 \mathrm{mg}, \sim 75 \%$). The crude product was combined with an alternative crude 2-46 (ca. 3 mg) obtained by a similar process, and the combined crude 2-46 (5.8 mg) was used in the next reaction without further purification.

To a solution of crude $\mathbf{2 - 4 6}(5.8 \mathrm{mg}, 0.0091 \mathrm{mmol})$ in $\mathrm{MeOH}(0.2 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ was added TFA (0.0067 ml 0.091 mmol) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 36 h . The mixture was diluted with toluene and concentrated in vacuo. The resulting residue was purified by column
chromatography (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20\right)$ to give 2-47 ($3.8 \mathrm{mg}, 0.0068 \mathrm{mmol}, 75 \%$). 2-47: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42-1.75(4 \mathrm{H}, \mathrm{m}), 2.16(2 \mathrm{H}, \mathrm{t} J=7.0 \mathrm{~Hz}), 2.32-2.42(2 \mathrm{H}, \mathrm{m}), 3.38$ $(3 \mathrm{H}, \mathrm{s}), 3.35-3.98(11 \mathrm{H}, \mathrm{m}), 3.45(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.61(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.98-4.06(1 \mathrm{H}, \mathrm{m})$, 4.24-4.32 (1H, m), $4.43(2 \mathrm{H}, \mathrm{s}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$.

Compound (8'S)-2-48:

(8'S)-2-36

2-48

To a solution of ($\left.\mathbf{8}^{\prime} \mathbf{S}\right) \mathbf{- 2 - 3 6}(95.1 \mathrm{mg}, 0.110 \mathrm{mmol})$ in toluene (2.0 ml) were added $\mathrm{Bu}_{3} \mathrm{SnH}(0.3 \mathrm{ml}$, $1.13 \mathrm{mmol})$ and $\operatorname{AIBN}(20.0 \mathrm{mg}, 0.122 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was heated to $110^{\circ} \mathrm{C}$ and stirred for 1 h . Then, the mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and concentrated in vacuo. The resulting mixture was stirred for 6 days at $23^{\circ} \mathrm{C}$. The mixture was directly subjected to column chromatography (silica gel, hexane/EtOAc $=3$) to give 2-48 $(66.1 \mathrm{mg}, 0.0845 \mathrm{mmol}, 76 \%)$.

2-48: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}-1.5\left(c 0.30, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3061, 2985, 2934, 2857, 1739, 1677, 1613, 1586, 1514, 1463, 1443, 1381, 1371, 1322, $1303,1248,1219,1173,1101,1078,1051,1006,990,973,875,839,822,809,780,746,665 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 1.29(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.33(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.35-1.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), $1.40(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.46(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.51-1.70 (2H, m, H2'), 1.94-2.10 (2H, m, H4'), 2.35-2.51 (2H, m, H7'), 3.19 (3 H , brs, NCH_{3}), 3.38-3.52 (4H, m, H1', H2", H1"'a), 3.58 ($\left.1 \mathrm{H}, \mathrm{dd}, J=7.7,10.4 \mathrm{~Hz}, \mathrm{H} 6 " \mathrm{a}\right), 3.70$ ($3 \mathrm{H}, \mathrm{s}$, NOCH_{3}), 3.76-3.39 (2H, m, H6"b,H3'"a), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.90-4.00 (3H, m, H3", H5", H1'"b), 4.00-4.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ ", H3'"b), 4.15 ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.20-4.43 (2H, m, H8', H2"'), 4.42 (2 H , s, PMB), 5.38-5.56 (2H, m, H5', H6'), 6.87 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{PMB}$), 7.25 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{PMB}$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 25.3\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3} \times 3\right), 25.9$
$\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{3}\right), 35.6\left(\mathrm{CH}_{2}\right), 55.1$ $\left(\mathrm{CH}_{3}\right), 61.4\left(\mathrm{CH}_{3}\right), 67.4\left(\mathrm{CH}_{2}\right), 69.4\left(\mathrm{CH}_{2}\right), 70.4\left(\mathrm{CH}_{2}\right), 72.4\left(\mathrm{CH}_{2}\right), 72.6(\mathrm{CH}), 74.0(\mathrm{CH}), 74.1(\mathrm{CH})$, $74.3(\mathrm{CH}), 80.60(\mathrm{CH}), 80.63(\mathrm{CH}), 103.0(\mathrm{CH}), 109.1(\mathrm{C}), 109.3(\mathrm{C}), 113.7(\mathrm{CH} \times 2), 125.0(\mathrm{CH})$, $129.1(\mathrm{CH} \times 2), 130.7(\mathrm{C}), 133.4(\mathrm{CH}), 159.0(\mathrm{C})$, [The signal of the carbonyl carbon was missed.]; FD-LRMS m/z 781 (bp, [M ${ }^{+}$);

FD-HRMS calcd for $\mathrm{C}_{40} \mathrm{H}_{67} \mathrm{NO}_{12} \mathrm{Si}$ [M $\left.{ }^{+}\right]$: 781.4433, found 781.4418.

Compound (8'S)-2-49:

2-48

2-49

To a solution of 2-48 ($38.2 \mathrm{mg}, 0.0488 \mathrm{mmol}$) in THF (2.0 ml) was added $\mathrm{LiAlH}_{4}(12.3 \mathrm{mg}, 0.342$ mmol) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 45 min . Then, the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min. After the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and satd. aq. Rochelle salt, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting crude aldehyde was immediately used in the next reaction without further purification.

To a solution of the crude aldehyde in THF (1.0 ml) was added allylmagnesium chloride (0.8 M in THF, $0.176 \mathrm{ml}, 0.141 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 0.5 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (2 drops). After the addition of anhydrous MgSO_{4}, the mixture was filtrated through a celite pad and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5$) to give $\mathbf{2 - 4 9}(23.0 \mathrm{mg}, 0.0301 \mathrm{mmol} 62 \%$ over 2 steps) as a 1:1 mixture of diastereomers.

2-49: a colorless oil; $[\alpha]_{D}{ }^{24}+1.8\left(c 0.10, \mathrm{CHCl}_{3}\right)$ [for a 1:1 mixture of diastereomers];
IR (neat) v 3492, 3074, 2986, 2933, 2883, 2857, 1613, 1514, 1472, 1463, 1455, 1442, 1381, 1371, $1302,1248,1219,1172,1103,1081,1050,1042,870,839,780,665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.90(9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 1.34(6 \mathrm{H}, \mathrm{s}$, acetonide), 1.36-1.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}$) , $1.40(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.49(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.52-1.68 (2 H , m, H2'), 1.96-2.12 (2H, m, H4'), 2.12-2.44 (4H, m, H7', H10'), 3.32-3.60 (6H, m, H1', H2", H6"a, H8', H1'"a), 3.64-3.93 (5H, m, H9', H3", H6"b, H1'"b, H3'"a), 3.80 (3H, s, OCH 3), 3.97-4.09 (2H, m, H5", H3'"b), 4.13-4.33 (3H, m, H1", H4", H2'"), 4.43 (2H, s, PMB), 5.04-5.15 (2H, m, H12'), 5.35-5.56 (2H, m, H5', H6'), 5.78-5.96 (1H, m, H11'), 6.87 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{PMB}$), 7.26 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, PMB);
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 25.3\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right), 26.0$ $\left(\mathrm{CH}_{2} / 2\right), 26.2\left(\mathrm{CH}_{2} / 2\right), 26.38\left(\mathrm{CH}_{3} / 2\right), 26.43\left(\mathrm{CH}_{3} / 2\right), 26.9\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2} / 2\right), 29.4$ $\left(\mathrm{CH}_{2} / 2\right), 32.4\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2} / 2\right), 33.7\left(\mathrm{CH}_{2} / 2\right), 36.2\left(\mathrm{CH}_{2} / 2\right), 37.5\left(\mathrm{CH}_{2} / 2\right), 55.2\left(\mathrm{CH}_{3}\right), 67.5\left(\mathrm{CH}_{2}\right)$, $68.77\left(\mathrm{CH}_{2} / 2\right), 68.84\left(\mathrm{CH}_{2} / 2\right), 69.9\left(\mathrm{CH}_{2}\right), 70.5\left(\mathrm{CH}_{2}\right), 71.2(\mathrm{CH}), 71.5(\mathrm{CH} / 2), 72.0(\mathrm{CH} / 2), 72.5$ $\left(\mathrm{CH}_{2}\right), 73.5(\mathrm{CH}), 74.2(\mathrm{CH}), 74.24(\mathrm{CH} / 2), 74.29(\mathrm{CH} / 2), 80.4(\mathrm{CH}), 82.4(\mathrm{CH} / 2), 82.9(\mathrm{CH} / 2)$, $103.2(\mathrm{CH}), 109.2(\mathrm{C}), 109.78(\mathrm{C} / 2), 109.81(\mathrm{C} / 2), 113.7(\mathrm{CH} \times 2), 117.1\left(\mathrm{CH}_{2} / 2\right), 117.2\left(\mathrm{CH}_{2} / 2\right)$, $125.5(\mathrm{CH} / 2)$, $126.1(\mathrm{CH} / 2)$, $129.2(\mathrm{CH} \times 2)$, $130.7(\mathrm{C}), 133.0(\mathrm{CH} / 2), 133.3(\mathrm{CH} / 2), 134.8(\mathrm{CH} / 2)$, 135.3 (CH/2), 159.1 (C);

FD-LRMS m/z 764 (bp\%, [$\left.\mathrm{M}^{+}\right]$);
FD-HRMS calcd for $\mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{11} \mathrm{Si}\left[\mathrm{M}^{+}\right]: 764.4531$, found 764.4557.

Compound (8'S)-2-51:

To a solution of 2-49 ($23.0 \mathrm{mg}, 0.0301 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added a solution of Grubbs' second generation catalyst (2-50) $(2.2 \mathrm{mg}, 0.0026 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at refluxing temperature, and the mixture was stirred for 1 h . Then, the mixture was cooled to $23^{\circ} \mathrm{C}$ and stirred under air for

30 min . Then, the mixture was concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 7 \rightarrow 5$) to give 2-51 ($3.5 \mathrm{mg}, 0.0064 \mathrm{mmol}, 21 \%$) and 9'-epi-2-51 ($2.3 \mathrm{mg}, 0.0042 \mathrm{mmol}, 14 \%$).

2-51: a colorless oil:
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.90 ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 1.34 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.36 ($3 \mathrm{H}, \mathrm{s}$, acetonide), $1.40(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.50(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.94-2.14 ($2 \mathrm{H}, \mathrm{m}$, H7'a, H10'a), 2.44-2.57 (2H, m, H7'b, H10'b), 3.40 ($1 \mathrm{H}, \mathrm{dt}, J=5.7,9.4 \mathrm{~Hz}, \mathrm{H} 8$ '), 3.44-3.56 (3H, m, H2", H6"a, H1'"a), 3.69-3.98 (5H, m, H9', H5", H6"b, H1"'b, H3'"a), 4.00-4.09 (2H, m, H3", H3'"b), 4.18 ($1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.24-4.33 (1H, m, H2"'), 4.25 ($1 \mathrm{H}, \mathrm{dd}, J=1.8,4.1 \mathrm{~Hz}, \mathrm{H} 4$ "), 5.54 (2 H , brs, H6', H11');
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 25.3\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right), 26.3$ $\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 30.8\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 67.5\left(\mathrm{CH}_{2}\right), 68.4\left(\mathrm{CH}_{2}\right), 70.6\left(\mathrm{CH}_{2}\right), 70.7$ $(\mathrm{CH}), 71.2(\mathrm{CH}), 73.6(\mathrm{CH}), 74.2(\mathrm{CH} \times 2), 80.5(\mathrm{CH}), 80.7(\mathrm{CH}), 103.3(\mathrm{CH}), 109.2(\mathrm{C}), 109.9(\mathrm{C})$, $124.0(\mathrm{CH}), 124.7(\mathrm{CH})$;

9'-epi-2-51: a colorless oil:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.90(9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 1.34(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.36(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.41(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.50(3 \mathrm{H}, \mathrm{s}$, acetonide), 2.20-2.38 ($2 \mathrm{H}, \mathrm{m}$, H7', H10'), 3.45-3.54 (2H, m, H2", H1"'a), 3.64-3.69 (1H, m, H8'), 3.78-3.97 (5H, m, H5", H6", H1"'b, H3'"a), 4.01-4.09 (3H, m, H7', H3", H3'"b), 4.17 ($1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.24 ($1 \mathrm{H}, \mathrm{dd}, J=2.3,5.7$ Hz, H4"), 4.24-4.32 (1H, m, H2'"), 5.57 (2H, brs, H6', H11');
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 25.3\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right), 26.4$ $\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 66.3(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 67.5\left(\mathrm{CH}_{2}\right), 70.6$ $\left(\mathrm{CH}_{2}\right), 71.3(\mathrm{CH}), 73.6(\mathrm{CH}), 74.2(\mathrm{CH} \times 2), 74.3(\mathrm{CH}), 80.5(\mathrm{CH}), 103.3(\mathrm{CH}), 109.2(\mathrm{C}), 109.9(\mathrm{C})$, 123.6 (CH), $124.0(\mathrm{CH})$;

Compound (S)-MTPA-ester 2-52:

2-51

(S)-MTPA-ester 2-52

To a solution of (S)-(-)-2-methoxy-2-trifluoromethylphenylacetic acid [(S)-(-)-MTPA] (50.0 mg, $0.214 \mathrm{mmol})$ in hexane (0.5 ml) was added DMF (1 drop) at $23^{\circ} \mathrm{C}$, and the white suspension was stirred for 10 min . Then, to the mixture was added $\left(\mathrm{COCl}_{2}(0.050 \mathrm{ml}, 0.58 \mathrm{mmol})\right.$, and the mixture was stirred for 1 h . The resulting mixture was concentrated in vacuo. The residue was dissolved in $\mathrm{CDCl}_{3}(0.5 \mathrm{ml})$, and the resulting MTPACl solution was used immediately in the next reaction. To a solution of 2-51 ($3.5 \mathrm{mg}, 0.0064 \mathrm{mmol}$), DMAP (a catalytic amount), and $\mathrm{Et}_{3} \mathrm{~N}$ (0.050 ml) in CDCl_{3} $(0.5 \mathrm{ml})$ was added the above MTPACl solution at $0^{\circ} \mathrm{C}$, and the yellow solution was stirred for 18 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=20 \rightarrow 10 \rightarrow 4$) and HPLC (YMC SIL-06, $150 \mathrm{~mm} \times 4.6 \mathrm{mmID}$, eluent: hexane/EtOAc $=4$) to give (\boldsymbol{S})-MTPA ester 2-52 $(2.3 \mathrm{mg}, 0.0033 \mathrm{mmol}, 51 \%)$.
(S)-MTPA ester 2-52: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07$, ($3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.90 ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 1.24 ($3 \mathrm{H}, \mathrm{s}$, acetonide), $1.34(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.41(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.46(3 \mathrm{H}, \mathrm{s}$, acetonide), $2.09(1 \mathrm{H}, \mathrm{m}$, H10'a), 2.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} \mathrm{a}$), 2.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} \mathrm{b}$), 2.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} \mathrm{O}^{\prime} \mathrm{b}$), 3.48 ($1 \mathrm{H}, \mathrm{dd}, J=6.8,7.7 \mathrm{~Hz}$, H2"), 3.48 ($1 \mathrm{H}, \mathrm{dd}, J=7.6,9.6 \mathrm{~Hz}, \mathrm{H} 1$ '"a), 3.54 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ '), 3.76 ($3 \mathrm{H}, \mathrm{brs}, \mathrm{H} 5$ ", H6"), 3.81 ($1 \mathrm{H}, \mathrm{dd}, J=5.7,8.4 \mathrm{~Hz}, \mathrm{H} 3$ "'a), $3.90\left(1 \mathrm{H}, \mathrm{dd}, J=4.8,9.6 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime} \mathrm{b}\right)$, $3.92(1 \mathrm{H}, \mathrm{dd}, J=$ $5.3,6.8 \mathrm{~Hz}, \mathrm{H} 3$ "), 3.97 ($1 \mathrm{H}, \mathrm{dd}, J=1.3,5.3 \mathrm{~Hz}, \mathrm{H} 4$ "), 4.06 ($1 \mathrm{H}, \mathrm{dd}, J=6.1,8.4 \mathrm{~Hz}, \mathrm{H} 3$ "'b), 4.12 (1 H, d, $J=7.7 \mathrm{~Hz}, \mathrm{H} 1$ " $), 4.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime \prime}\right), 5.21(1 \mathrm{H}, \mathrm{ddd}, J=6.0,8.1,8.8 \mathrm{~Hz}, \mathrm{H} 9 '), 5.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 11^{\prime}\right)$, $5.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6$ '), 7.36-7.43 (3H, m), 7.53-7.58 ($2 \mathrm{H}, \mathrm{m}$).

FD-LRMS $m / z 761\left(2.0 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right]\right), 703(\mathrm{bp})$;
FD-HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{11} \mathrm{~F}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 761.3544$, found 761.3578 .

Compound (R)-MTPA-ester-2-52:

To a solution of $(R)-(+)$-2-methoxy-2-trifluoromethylphenylacetic acid [(R)-(+)-MTPA] (50.0 mg, $0.214 \mathrm{mmol})$ in hexane (0.5 ml) was added DMF (1 drop) at $23^{\circ} \mathrm{C}$, and the white suspension was stirred for 10 min . Then, to the mixture was added $\left(\mathrm{COCl}_{2}(0.050 \mathrm{ml}, 0.58 \mathrm{mmol})\right.$, and the mixture was stirred for 1 h . The resulting mixture was concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, and the resulting MTPACl solution was used immediately in the next reaction. To a solution of 2-51 ($2.2 \mathrm{mg}, 0.0040 \mathrm{mmol}$), DMAP (a catalytic amount), and $\mathrm{Et}_{3} \mathrm{~N}(0.050 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{ml})$ was added the above MTPACl solution at $0^{\circ} \mathrm{C}$, and the yellow solution was stirred for 10 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 1$) and HPLC (YMC SIL-06, $150 \mathrm{~mm} \times 4.6 \mathrm{mmID}$, eluent: hexane/EtOAc $=4$) to give (\boldsymbol{R})-MTPA ester 2-52 $(1.8 \mathrm{mg}, 0.0025 \mathrm{mmol}, 63 \%)$.
(R)-MTPA ester 2-52: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06,(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.90(9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 1.25(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.34(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.41(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.45(3 \mathrm{H}, \mathrm{s}$, acetonide), $2.13(1 \mathrm{H}, \mathrm{m}$, H7'a), $2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 10 \mathrm{a}\right.$) , 2.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} \mathrm{b}$), 2.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 10 \mathrm{~b}$), 3.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ "), 3.45 ($1 \mathrm{H}, \mathrm{m}$, H1'"a), 3.45-3.70 (3H, m, H5", H6"), 3.59 (3H, s, OMe), 3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ '), 3.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ "), 3.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '" a), $3.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3\right.$ "), 3.87 ($\left.1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1,10.1 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{l}^{\prime} \mathrm{b}\right), 4.03(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, H1'), 4.05 ($1 \mathrm{H}, \mathrm{dd}, J=6.2,8.5 \mathrm{~Hz}, \mathrm{H} 3$ "'b), 4.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime \prime}$ '), 5.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 9$ '), 5.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 11^{\prime}$), 5.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6$ '), 7.36-7.43 (3H, m), 7.53-7.58 ($2 \mathrm{H}, \mathrm{m}$).

The result of modified Mosher's method for 2-51.

Compound (8'S)-2-20:

To a solution of ($\mathbf{8} \mathbf{S} \mathbf{S}$)-2-36 ($23.6 \mathrm{mg}, 0.0274 \mathrm{mmol})$ in THF $(0.5 \mathrm{ml})$ were added $\mathrm{LiAlH}_{4}(0.5 \mathrm{mg}$, 0.014 mmol) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 45 min . Then, the reaction was quenched with satd. aq. Rochelle salt, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting crude aldehyde $\{(\mathbf{8} \mathbf{S}) \mathbf{- 2 - 2 1}\}$ was immediately used in the next reaction without further purification. To a solution of $\mathbf{2 - 2 2}(29.6 \mathrm{mg}, 0.0821 \mathrm{mmol})$ in THF (0.5 ml) were added KHMDS (0.5 M in toluene, $0.16 \mathrm{ml}, 0.080 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 45 min . To the mixture was added a solution of the above crude aldehyde $\left\{(\mathbf{8} \mathbf{S} \mathbf{)} \mathbf{- 2 - 2 1}\}\right.$ in THF $(0.4 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . Then, the stirred mixture was allowed to warm to ambient temperature ($23{ }^{\circ} \mathrm{C}$) for 1 h. Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=20 \rightarrow 15 \rightarrow 10 \rightarrow 5$) to give ($\mathbf{8}^{\prime} \mathbf{S}$)-2-20 $(12.2 \mathrm{mg}, 0.0130 \mathrm{mmol}, 47 \%)$. (8'S)-2-20: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}-10\left(c 0.15, \mathrm{CHCl}_{3}\right)$;

IR (neat) v 3065, 2985, 2931, 2857, 1513, 1462, 1380, 1370, 1302, 1248, 1219, 1172, 1102, 1042, 968, 873, 839, 809, 780, $665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CHD}_{2} \mathrm{CN}$ as 1.93 ppm) $\delta 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.88$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), $0.88\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H} 20^{\prime}\right), 1.26(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.26-1.37 ($4 \mathrm{H}, \mathrm{m}$, [four protons among H2', H3', H12', H17', H18', and H19']), 1.27 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.33 (3H, s, acetonide), 1.37$1.48(4 \mathrm{H}, \mathrm{m}$, [four protons among H2', H3', H12', H17', H18', and H19']), 1.42 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.48-1.59 (4H, m, [four protons among H2', H3', H12', H17', H18', and H19']), 2.05-2.17 (8H, m, H4', H11', H13', H16'), 2.50 ($1 \mathrm{H}, \mathrm{dd}, J=6.7,14.2 \mathrm{~Hz}, \mathrm{H} 7$ 'a), 2.67 ($1 \mathrm{H}, \mathrm{dd}, J=6.8,14.2 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{~b}$ b), 3.37
($1 \mathrm{H}, \mathrm{dd}, J=6.7 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, \mathrm{H} 2$ "), 3.41 ($2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H} 1$ '), 3.47 ($1 \mathrm{H}, \mathrm{dd}, J=5.9,10.3 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime} \mathrm{a}$) , $3.48(1 \mathrm{H}, \mathrm{dd}, J=6.8,10.7 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}$) , $3.64(1 \mathrm{H}, \mathrm{dd}, J=5.3,10.7 \mathrm{~Hz}, \mathrm{H} 6 " \mathrm{~b}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=6.2$, $8.3 \mathrm{~Hz}, \mathrm{H} 3$ "'a), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{PMB}$), 3.80 ($1 \mathrm{H}, \mathrm{dd}, J=5.9,10.3 \mathrm{~Hz}, \mathrm{H} 1$ "'b), 3.84 ($1 \mathrm{H}, \mathrm{ddd}, J=2.1,5.3$, $6.8 \mathrm{~Hz}, \mathrm{H} 5$ "), $3.91(1 \mathrm{H}, \mathrm{dd}, J=5.6,6.7 \mathrm{~Hz}, \mathrm{H} 3$ "), $4.00(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.3 \mathrm{~Hz}, \mathrm{H} 3$ "'b), 4.06 (1 H , brq, $J=7.1 \mathrm{~Hz}, \mathrm{H} 8$ '), 4.08 ($1 \mathrm{H}, \mathrm{dd}, J=2.1,5.6 \mathrm{~Hz}, \mathrm{H} 4$ "), 4.12 ($1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.23 (1 H, brqn, J $=6.1 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime \prime}$), 4.37 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PMB}$), 5.27 ($1 \mathrm{H}, \mathrm{tdd}, J=1.3,8.0,15.4 \mathrm{~Hz}, \mathrm{H} 9$ '), $5.66(1 \mathrm{H}, \mathrm{td}, J=7.0$, $\left.15.4 \mathrm{~Hz}, \mathrm{H} 10^{\prime}\right), 5.73\left(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, PMB);
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{2}+\mathrm{C}\right), 18.7\left(\mathrm{CH}_{2}\right), 22.2$ $\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right), 26.4\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2} \times 2\right), 31.2\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 67.0\left(\mathrm{CH}_{2}\right), 67.6\left(\mathrm{CH}_{2}\right), 69.8$ $\left(\mathrm{CH}_{2}\right), 70.5\left(\mathrm{CH}_{2}\right), 72.0(\mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right), 73.9(\mathrm{CH}), 74.2(\mathrm{CH}), 74.4(\mathrm{CH}), 78.8(\mathrm{CH}), 79.6(\mathrm{C})$, $80.5(\mathrm{CH}), 80.7(\mathrm{C}), 103.3(\mathrm{CH}), 109.1(\mathrm{C}), 109.6(\mathrm{C}), 113.8(\mathrm{CH} \times 2), 123.8(\mathrm{C}), 129.2(\mathrm{CH} \times 2), 129.7$ (CH), 130.7 (C), 131.1 (CH), 133.8 (CH), 159.1 (C);

FD-LRMS $m / z 936\left(14.3 \%,\left[M^{+}: \mathrm{C}_{49} \mathrm{H}_{79} \mathrm{O}_{10} \mathrm{Si}^{81} \mathrm{Br}\right]\right), 934\left(13.2 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{49} \mathrm{H}_{79} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}\right]\right), 121(\mathrm{bp})$; FD-HRMS calcd for $\mathrm{C}_{49} \mathrm{H}_{79} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]$: 934.4626, found 934.4599.

Compound (8 'S)-2-54:

To a solution of $(\mathbf{8} \mathbf{S}) \mathbf{- 2 - 2 0}(12.2 \mathrm{mg}, 0.0130 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{ml})$ were added TEMPO $(1.0 \mathrm{mg}$, $0.0064 \mathrm{mmol})$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(17.0 \mathrm{mg}, 0.0528 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then, pH 7.0 phosphate buffer $(0.1 \mathrm{ml})$ was added, and the mixture was stirred for 10 min . Then, the mixture was warmed to $45^{\circ} \mathrm{C}$ and stirred for 50 min . Then, TEMPO ($2.0 \mathrm{mg}, 0.0128 \mathrm{mmol}$) and $\mathrm{PhI}(\mathrm{OAc})_{2}(12.6 \mathrm{mg}, 0.0391 \mathrm{mmol})$ was added at the same temperature, and the mixture was stirred for 17.5 h . Then, $\mathrm{PhI}(\mathrm{OAc})_{2}(8.4 \mathrm{mg}, 0.0260 \mathrm{mmol})$ was added at the same temperature, and the mixture was stirred for 1.5 h . Then, $\mathrm{PhI}(\mathrm{OAc})_{2}(8.4 \mathrm{mg}, 0.0260 \mathrm{mmol})$ was added at the same
temperature, and the mixture was stirred for 45 min . Then, the reaction was quenched with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After the resulting residue was dissolved in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml} / 0.1 \mathrm{ml}), \mathrm{TMSCHN}_{2}(2 \mathrm{M} \mathrm{in} \mathrm{Et} 2 \mathrm{O}, 0.039 \mathrm{ml}$, 0.078 mmol) was added to the solution at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 1.5 h . Then, the mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=20 \rightarrow 10 \rightarrow 1)$ to give ($\mathbf{8} \mathbf{S} \mathbf{S} \mathbf{)} \mathbf{- 2 - 5 4}(8.0 \mathrm{mg}, 0.0095 \mathrm{mmol}$, $73 \%)$.
(8'S)-2-54: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}-7.1\left(c 0.10, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 2984, 2929, 2856, 1740, 1461, 1438, 1380, 1370, 1247, 1219, 1165, 1135, 1102, 1082, 1048, 968, 873, 839, 780, $665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CHD}_{2} \mathrm{CN}$ as 1.93 ppm) $\delta 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.88$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.88 ($3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{O}^{\prime}$), 1.26-1.59 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H} 12$ ', H17', H18', H19'), 1.266 (3H, s, acetonide), $1.274(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.33(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.42(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.65(2 \mathrm{H}, \mathrm{qn}, J$
 $J=6.4,14.2 \mathrm{~Hz}, \mathrm{H} 7$ 'a), 2.68 ($\left.1 \mathrm{H}, \mathrm{dd}, J=7.0,14.2 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{b}\right), 3.37(1 \mathrm{H}, \mathrm{dd}, J=6.7 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{l})$, 3.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '"a, H6"a), 3.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.64 ($1 \mathrm{H}, \mathrm{dd}, J=5.4,10.7 \mathrm{~Hz}, \mathrm{H6"b}$), 3.66 ($1 \mathrm{H}, \mathrm{dd}, J$ $=6.2,8.2 \mathrm{~Hz}, \mathrm{H} 3$ "'a), $3.81\left(1 \mathrm{H}, \mathrm{dd}, J=5.9,10.3 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime} \mathrm{lb}\right)$, $3.85(1 \mathrm{H}$, brddd, $J=2.0,5.4,6.8 \mathrm{~Hz}$, H5"), 3.93 ($1 \mathrm{H}, \mathrm{dd}, J=5.6,6.7 \mathrm{~Hz}, \mathrm{H} 3$ "), $4.00(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.2 \mathrm{~Hz}, \mathrm{H} 3 " \mathrm{l}$), $4.07(1 \mathrm{H}, \mathrm{brq}, J=7.1$ Hz, H8'), 4.09 ($1 \mathrm{H}, \mathrm{dd}, J=2.0,5.6 \mathrm{~Hz}, \mathrm{H} 4$ "), 4.13 ($1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.24 (1 H, brqn, $J=6.1$ Hz, H2'"), 5.28 ($1 \mathrm{H}, \mathrm{tdd}, J=1.3,8.0,15.4 \mathrm{~Hz}, \mathrm{H}^{\prime}$), 5.67 ($1 \mathrm{H}, \mathrm{td}, J=6.9,15.4 \mathrm{~Hz}, \mathrm{H} 10$ '), 5.73 (1 H, $\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H} 5$ ');
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3}{ }^{13} \mathrm{CN}$ as 118.2 ppm) $\delta-4.4\left(\mathrm{CH}_{3}\right),-4.2\left(\mathrm{CH}_{3}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$, 18.4 $\left(\mathrm{CH}_{2}\right), 18.7(\mathrm{C}), 19.0\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3} \times 3\right), 26.6\left(\mathrm{CH}_{3}\right), 27.1$ $\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 31.69\left(\mathrm{CH}_{2}\right), 31.73\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 48.3$ $\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 67.5\left(\mathrm{CH}_{2}\right), 67.8\left(\mathrm{CH}_{2}\right), 71.2\left(\mathrm{CH}_{2}\right), 72.9(\mathrm{CH}), 74.9(\mathrm{CH}), 75.3(\mathrm{CH}), 75.7(\mathrm{CH})$, $79.5(\mathrm{CH}), 80.5(\mathrm{C}), 81.3(\mathrm{CH}), 81.4(\mathrm{C}), 103.6(\mathrm{CH}), 109.8(\mathrm{C}), 110.2(\mathrm{C}), 125.3(\mathrm{C}), 130.9(\mathrm{CH})$, $131.4(\mathrm{CH}), 134.7$ (CH), 174.4 (C);

FD-LRMS $m / z 844\left(22.8 \%,\left[M^{+}: \mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{10} \mathrm{Si}^{81} \mathrm{Br}\right]\right), 842\left(23.8 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}\right]\right), 57(\mathrm{bp}) ;$

FD-HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]$: 842.4000, found 842.4011.

Compound (8'S)-2-55:

To a solution of ($\mathbf{8} \mathbf{S} \mathbf{S}) \mathbf{- 2}-\mathbf{5 4}(6.0 \mathrm{mg}, 0.0071 \mathrm{mmol})$ in DMF (0.3 ml) was added TBAF• $3 \mathrm{H}_{2} \mathrm{O}(9.1 \mathrm{mg}$, 0.029 mmol) at $75^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . Then, the mixture was diluted with a $1: 1$ mixture of hexane and EtOAc and acidified with 0.1 M HCl . The mixture was extracted with a 1:1 mixture of hexane and EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Because partial hydrolysis of the methyl ester was observed, the resulting residue was dissolved in methanol (ca. 1 ml) and was treated with TMSCHN_{2} (2 M in $\mathrm{Et}_{2} \mathrm{O}$). The reaction mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=5 \rightarrow 1 \rightarrow$ EtOAc) to give ($\mathbf{8} \mathbf{S} \mathbf{S} \mathbf{- 2 - 5 5}(2.2 \mathrm{mg}, 0.0034 \mathrm{mmol}, 48 \%)$.
(8'S)-2-55: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{26}-7.0\left(c 0.050, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3451, 2983, 2931, 2859, 1738, 1455, 1435, 1380, 1371, 1246, 1218, 1164, 1077, 968, 933, 873, 844, 689, $665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CHD}_{2} \mathrm{CN}$ as 1.93 ppm) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H} 20$ '), 1.25-1.59 (8 H , m, H12', H17', H18', H19'), 1.27 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.29 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.35 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.42 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.70 ($2 \mathrm{H}, \mathrm{qn}, J=7.2 \mathrm{~Hz}, \mathrm{H3}$ '), 2.08-2.34 ($10 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ ', H7', H11', H13', H16'), 2.38 ($2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H} 2$ '), $3.26-3.31$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ "), 3.50 ($1 \mathrm{H}, \mathrm{dd}, J=7.3,10.5 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}$) , 3.52 (1 H , dd, $J=5.7,10.5 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime} \mathrm{a}$), $3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=5.2,10.5 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}$), $3.71(1 \mathrm{H}, \mathrm{dd}$, $J=6.1,8.3 \mathrm{~Hz}, \mathrm{H} 3$ "'a), 3.80 ($1 \mathrm{H}, \mathrm{dd}, J=5.8,10.5 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime} \mathrm{b}$), 3.81-3.89 (2H, m, H8', H5"), 3.93 (1 H , dd, $J=5.4,7.0 \mathrm{~Hz}, \mathrm{H} 3$ "), $4.02(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.3 \mathrm{~Hz}, \mathrm{H} 3$ "'b), $4.10(1 \mathrm{H}, \mathrm{dd}, J=2.1,5.4 \mathrm{~Hz}, \mathrm{H} 4$ "), 4.16 ($1 \mathrm{H}, \mathrm{d}, ~ J=8.0 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}$), 4.21-4.28 (1H, m, H2'"), 5.36 ($1 \mathrm{H}, \mathrm{brdd}, J=7.6,15.6 \mathrm{~Hz}, \mathrm{H} 9$ '), 5.69 ($1 \mathrm{H}, \mathrm{td}, J=6.9,15.6 \mathrm{~Hz}, \mathrm{H} 10{ }^{\prime}$);
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3}{ }^{13} \mathrm{CN}$ as 118.2 ppm) $\delta 14.2\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right), 19.0$ $\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{2}\right)$, $25.1\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 29.3$ $\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 31.68\left(\mathrm{CH}_{2}\right), 31.74\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 67.1\left(\mathrm{CH}_{2}\right), 67.9\left(\mathrm{CH}_{2}\right), 70.9$ $\left(\mathrm{CH}_{2}\right), 73.0(\mathrm{CH}), 74.1(\mathrm{CH}), 74.6(\mathrm{CH}), 75.3(\mathrm{CH}), 78.4(\mathrm{C}), 80.0(\mathrm{CH}), 80.3(\mathrm{CH}), 80.6(\mathrm{C}), 81.4$ (C), 81.5 (C), 103.7 (CH), 109.9 (C), 110.1 (C), 131.1 (CH), 134.4 (CH), 174.3 (C); FD-LRMS m/z 649 (84.4\%, [M+H+]), 43 (bp);

FD-HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{57} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 649.3952, found 649.3993 .

Compound (8'S)-2-56:

To a solution of ($\mathbf{8} \mathbf{S} \mathbf{S}$)-2-55 ($2.2 \mathrm{mg}, 0.0034 \mathrm{mmol}$) and 1-hexene ($0.050 \mathrm{ml}, 0.40 \mathrm{mmol}$) in MeOH $(1.0 \mathrm{ml})$ was added Lindlar catalyst (2.2 mg) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 24.5 h under H_{2} atmosphere. The mixture was filtered through a celite pad and concentrated in vacuo to give almost pure (8'S)-2-56 (2.2 mg, $0.0034 \mathrm{mmol}, 100 \%$).
(8'S)-2-56: a colorless oil; $[\alpha]_{\mathrm{D}}^{22}+4.5\left(c 0.10, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3447, 2925, 1740, 1457, 1437, 1380, 1370, 1245, 1219, 1164, 1075, 969, 872, 845, 665 cm^{-1};
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H} 20$ '), 1.22-1.73 ($10 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ', H12', H17', H18', H19'), $1.35(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.36(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.43(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.52(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.93-2.11 (9H, m, H4', H7'a, H11', H13', H16'), 2.26-2.35 (3H, m, H2', H7'b), 3.53-3.68 (3H, m, H2", H6"a, H1"'a), 3.66 (3H, s, OMe), 3.74 (1H, dd, $J=5.8,9.8 \mathrm{~Hz}, \mathrm{H6} " \mathrm{~b}), 3.82$ ($1 \mathrm{H}, \mathrm{dd}, J$ $=6.0,8.3 \mathrm{~Hz}, \mathrm{H} 3$ "'a), 3.82-3.91 (2H, m, H8', H5"), 3.93 ($1 \mathrm{H}, \mathrm{dd}, J=5.2,10.7 \mathrm{~Hz}, \mathrm{H} 1$ "'b), 4.02-4.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ", H3"'b), 4.18-4.21 (1H, m, H4"), 4.20 ($1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.27-4.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime}$ "), 5.24-5.46 (5H, m, H5', H6', H9', H14', H15'), 5.58-5.67 (1H, m, H10');
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 26.6$
$\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 66.3\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 69.8\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{CH}), 73.5(\mathrm{CH})$, $73.6(\mathrm{CH}), 74.4(\mathrm{CH}), 78.5(\mathrm{CH}), 81.4(\mathrm{CH}), 102.9(\mathrm{CH}), 109.5(\mathrm{C}), 110.0(\mathrm{C}), 126.6(\mathrm{CH}), 129.2$ $(\mathrm{CH}), 130.1(\mathrm{CH}), 130.2(\mathrm{CH}), 130.4(\mathrm{CH}), 134.0(\mathrm{CH}), 174.0(\mathrm{C})$;

FD-LRMS m/z 652 (3.2\%, [$\left.\mathrm{M}^{+}\right]$), 242 (bp);
FD-HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{10}\left[\mathrm{M}^{+}\right]$: 652.4187, found 652.4198.

Compound (8'S,2''R)-1-5:

(8'S, 2'"R)-1-5
To a solution of ($\mathbf{8} \mathbf{S} \mathbf{S}) \mathbf{- 2 - 5 6}(2.2 \mathrm{mg}, 0.0034 \mathrm{mmol})$ in $\mathbf{M e O H}(0.4 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{ml})$ was added TFA ($0.0192 \mathrm{ml}, 0.169 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 7 h . The mixture was diluted with toluene and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 \rightarrow 5\right)$ to give ($\mathbf{8} \mathbf{S} \mathbf{S}, \mathbf{2} \mathbf{' ~} \boldsymbol{R}$) - $\mathbf{1 - 5}(1.0 \mathrm{mg}, 0.0017 \mathrm{mmol}$, $50 \%)$.
(8'S, 2''R)-1-5: a pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{23}-2.2\left(c \mathbf{0 . 1 0}, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3406, 2925, 2855, $1731 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{DMSO}-d_{6}[25: 2], \mathrm{C}_{6} \mathrm{HD}_{5}$ as 7.15 ppm) $\delta 0.86\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H} 20^{\prime}\right)$, 1.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 18^{\prime}$), 1.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 19$ '), 1.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 17$ '), 1.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 12$ '), 1.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}$), 1.97 (2H, m, H11'), 1.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{H}^{\prime}$), 2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 13^{\prime}$), 2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 16^{\prime}$), 2.14 ($2 \mathrm{H}, \mathrm{t}, J=7.6$ Hz, H2'), 2.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7$ 'a), 2.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7$ 'b), 3.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$ "), 3.68 ($1 \mathrm{H}, \mathrm{m}$, H3"), 3.73 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 " \mathrm{a}$), 3.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ '), 3.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 "$ "), 3.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 " \mathrm{~b}$), 3.95 ($1 \mathrm{H}, \mathrm{m}$, H1'"a), 3.97 (1H, m, H2"), 3.98 (1H, m, H4"), 4.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ "'), 4.14 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ "'b), 4.41 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7.6 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime}\right), 5.40$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5{ }^{\prime}$), 5.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 9{ }^{\prime}$), 5.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 144^{\prime}$), 5.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 15^{\prime}$), 5.57 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 10^{\prime}\right), 5.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right)$ [Chemical shifts are shown as exact values derived from $1 \mathrm{D}, \mathrm{COSY}$, HSQC, and HMBC measurements.];
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{DMSO}-d_{6}[25: 2], \mathrm{C}_{6} \mathrm{D}_{6}$ as 128.0 ppm$\left.) \delta 14.25\left(\mathrm{CH}_{3}, \mathrm{C}_{2}\right)^{\prime}\right), 22.87\left(\mathrm{CH}_{2}\right.$, C19'), $25.05\left(\mathrm{CH}_{2}, \mathrm{C} 3^{\prime}\right), 26.99\left(\mathrm{CH}_{2}, \mathrm{C} 4^{\prime}\right), 27.08\left(\mathrm{CH}_{2}, \mathrm{C} 13^{\prime}\right), 27.51\left(\mathrm{CH}_{2}, \mathrm{C} 16^{\prime}\right), 29.62\left(\mathrm{CH}_{2}, \mathrm{Cl}^{\prime}\right)$, $29.69\left(\mathrm{CH}_{2}, \mathrm{C} 17^{\prime}\right), 31.75\left(\mathrm{CH}_{2}, \mathrm{C} 18{ }^{\prime}\right), 32.09\left(\mathrm{CH}_{2}, \mathrm{C} 11^{\prime}\right), 33.39\left(\mathrm{CH}_{2}, \mathrm{C} 2^{\prime}\right), 34.26\left(\mathrm{CH}_{2}, \mathrm{C} 7{ }^{\prime}\right), 51.05$ ($\left.\mathrm{CH}_{3}, \mathrm{OMe}\right), 64.06\left(\mathrm{CH}_{2}, \mathrm{C} 3\right.$ "'), $68.14\left(\mathrm{CH}_{2}, \mathrm{C} 6 "\right), 69.62(\mathrm{CH}, \mathrm{C} 4 "), 71.64(\mathrm{CH}, \mathrm{C} 2 " '), 71.98(\mathrm{CH}$, C2"), 72.39 ($\mathrm{CH}_{2}, \mathrm{C} 1{ }^{\prime \prime}$ '), 74.51 ($\left.\mathrm{CH}, \mathrm{C} 3 "\right), 74.78$ (CH, C5"), 81.38 ($\mathrm{CH}, \mathrm{C} 8$ '), 105.05 ($\mathrm{CH}, \mathrm{C} 1{ }^{\prime}$), 127.19 (CH, C6'), 129.77 (CH, C14'), 130.30 (CH, C5'), 130.40 (CH, C15'), 131.33 (CH, C9'), 133.57 (CH, C10'), 173.46 (C, C1');

FD-LRMS $m / z 595$ (bp, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$);
FD-HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{10} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 595.3458 , found: 595.3463.

Compound ($5^{\prime} R$)-2-25:

To a solution of $\mathbf{2 - 1 6}(38.8 \mathrm{mg}, 0.0766 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ were added DMAP (a catalytic amount) and a solution of ($\boldsymbol{R}) \mathbf{- 2 - 2 6}(21.0 \mathrm{mg}, 0.0638 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then, to the mixture was added EDCI $\cdot \mathrm{HCl}(24.5 \mathrm{mg}, 0.128 \mathrm{mmol})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 16 h . The reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 7 \rightarrow 5$) to give ($\mathbf{5} \mathbf{R} \boldsymbol{R}$)-2-25 ($34.5 \mathrm{mg}, 0.0422 \mathrm{mmol}, 66 \%$).
(5'R)-2-25: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{s}), 1.33-1.43(2 \mathrm{H}$, $\mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 1.57-1.69(2 \mathrm{H}, \mathrm{m}), 1.70-1.84(2 \mathrm{H}, \mathrm{m}), 3.43(2 \mathrm{H}, \mathrm{t}, J=6.4$ $\mathrm{Hz}), 3.43-3.53(2 \mathrm{H}, \mathrm{m}), 3.73-3.83(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.87-4.34(10 \mathrm{H}, \mathrm{m}), 4.42(2 \mathrm{H}, \mathrm{s}), 5.29(1 \mathrm{H}$,
$\mathrm{t}, J=6.7 \mathrm{~Hz}), 5.64(1 \mathrm{H}, \operatorname{brd}, J=2.1 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \operatorname{brd}, J=2.1 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.25$ ($2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$);

FD-LRMS $m / z 818\left(b p,\left[\mathrm{M}^{+}: \mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{12} \mathrm{Si}^{81} \mathrm{Br}\right]\right), 816\left(82.0 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{Br}\right]\right)$;
FD-HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]: 816.3116$, found 816.3120 .

Compound ($\mathbf{8}^{\prime} R$)-2-36:

To a solution of ($\mathbf{5} \mathbf{\prime} \mathbf{R} \mathbf{)} \mathbf{- 2 - 2 5}(78.8 \mathrm{mg}, 0.0963 \mathrm{mmol})$ in THF $(1.4 \mathrm{ml})$ was added $\mathrm{TMSCl}(0.0370 \mathrm{ml}$, 0.293 mmol) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 2 min . To the mixture was added KHMDS (0.5 M in toluene, $0.578 \mathrm{ml}, 0.289 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min . Then, the mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 5 min . The reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting crude carboxylic acid $\left\{\left(\mathbf{8}^{\prime} \mathbf{R} \mathbf{)} \mathbf{- 2 - 2 3}\right\}\right.$ was used in the next reaction without further purification.

To a solution of the crude carboxylic acid $\left\{\left(\mathbf{8}^{\prime} \boldsymbol{R}\right) \mathbf{- 2} \mathbf{- 2 3}\right\}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ were added DMAP (a catalytic amount), $\mathrm{HNMe}(\mathrm{OMe}) \cdot \mathrm{HCl}(28.1 \mathrm{mg}, 0.289 \mathrm{mmol})$, and NaHCO_{3} (solid, a small amount) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . To the mixture was added EDCI• $\mathrm{HCl}(55.3 \mathrm{mg}, 0.288$ mmol), and the mixture was stirred for 3.5 h . Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=8 \rightarrow 3$) to give ($\left.\mathbf{8}^{\prime} \boldsymbol{R}\right) \mathbf{- 2 - 3 6}(55.9$ $\mathrm{mg}, 0.0649 \mathrm{mmol}, 67 \%$ for 2 steps).
(8'R)-2-36: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{22}+3.18\left(c 3.00, \mathrm{CHCl}_{3}\right)$;
IR (neat) v IR (neat) v 3062, 3033, 2986, 2934, 2857, 1677, 1613, 1514, 1463, 1421, 1381, 1371,
$1248,1219,1173,1100,1041,989,872,839,809,780,665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 1.33(6 \mathrm{H}, \mathrm{s}$, acetonide), 1.40-1.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}$) , $1.40(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.48(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.54-1.65 (2 H , m, H2'), 2.07-2.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}$ '), $2.74(1 \mathrm{H}, \mathrm{dd}, J=8.0,14.4 \mathrm{~Hz}, \mathrm{H} 7$ 'a $), 2.82(1 \mathrm{H}, \mathrm{dd}, J=4.6,14.4 \mathrm{~Hz}$, H7'b), 3.21 ($3 \mathrm{H}, \mathrm{brs}, \mathrm{NCH}_{3}$), $3.42(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H} 1$ '), $3.44(1 \mathrm{H}, \mathrm{dd}, J=7.6,10.1 \mathrm{~Hz}, \mathrm{H} 1$ "'a), 3.48 ($1 \mathrm{H}, \mathrm{dd}, J=6.8,7.7 \mathrm{~Hz}, \mathrm{H} 2$ "), $3.67\left(1 \mathrm{H}, \mathrm{dd}, J=7.7,9.2 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}\right.$), $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{3}\right), 3.78(1 \mathrm{H}$, dd, $J=5.7,8.4 \mathrm{~Hz}, \mathrm{H} 3 " \mathrm{a}$), $3.79(1 \mathrm{H}, \mathrm{dd}, J=5.4,9.2 \mathrm{~Hz}, \mathrm{H6} " \mathrm{~b}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87(1 \mathrm{H}, \mathrm{dd}, J$ $=4.6,10.1 \mathrm{~Hz}, \mathrm{H} 1$ "'b), $3.87(1 \mathrm{H}, \mathrm{ddd}, J=2.4,5.4,7.7 \mathrm{~Hz}, \mathrm{H} 5$ "), $3.97(1 \mathrm{H}, \mathrm{dd}, J=5.4,6.8 \mathrm{~Hz}, \mathrm{H} 3$ " $)$, $4.04(1 \mathrm{H}, \mathrm{dd}, J=6.1,8.4 \mathrm{~Hz}, \mathrm{H} 3$ "'b), $4.12(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H} 1$ " $), 4.15(1 \mathrm{H}, \mathrm{dd}, J=2.4,5.4 \mathrm{~Hz}$, H4"), 4.23-4.30 (1H, m, H2'"), 4.42 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PMB}$), 4.58-4.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ '), 5.75 ($1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, H5'), 6.87 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}$), 7.25 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}$);
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 24.9\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 25.8$ $\left(\mathrm{CH}_{3} \times 3\right)$, $26.6\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{3}\right), 44.3\left(\mathrm{CH}_{2}\right), 55.2$ $\left(\mathrm{CH}_{3}\right), 61.6\left(\mathrm{CH}_{3}\right), 67.5\left(\mathrm{CH}_{2}\right), 68.6\left(\mathrm{CH}_{2}\right), 69.7\left(\mathrm{CH}_{2}\right), 70.4\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{CH}), 72.5\left(\mathrm{CH}_{2}\right), 73.3(\mathrm{CH})$, $74.1(\mathrm{CH}), 74.3(\mathrm{CH}), 75.1(\mathrm{CH}), 80.3(\mathrm{CH}), 103.3(\mathrm{CH}), 109.1(\mathrm{C}), 109.5(\mathrm{C}), 113.7(\mathrm{CH} \times 2), 122.3$ (C), 129.2 (CH×2), 130.6 (C), 132.2 (CH), 159.1 (C), 171.8 (C); FD-LRMS $m / z 861$ (bp, [$\left.\left.\mathrm{M}^{+}: \mathrm{C}_{40} \mathrm{H}_{66} \mathrm{NO}_{12} \mathrm{Si}^{81} \mathrm{Br}\right]\right), 859\left(79.1 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{40} \mathrm{H}_{66} \mathrm{NO}_{12} \mathrm{Si}^{79} \mathrm{Br}\right]\right)$; FD-HRMS calcd for $\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{NO}_{12} \mathrm{Si}^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]$: 859.3538, found 859.3515.

Compound (8'R)-2-20:

To a solution of ($\mathbf{8}^{\prime} \boldsymbol{R} \mathbf{)} \mathbf{- 2} \mathbf{- 3 6}(21.2 \mathrm{mg}, 0.0246 \mathrm{mmol})$ in THF $(0.5 \mathrm{ml})$ were added $\mathrm{LiAlH}_{4}(1.0 \mathrm{mg}$, 0.026 mmol) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then, the reaction mixture was warmed
to $0^{\circ} \mathrm{C}$ and stirred for 25 min . Then, the reaction was quenched with satd. aq. Rochelle salt, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting crude aldehyde $\left\{\left(\mathbf{8}^{\prime} \mathbf{R}\right)-\mathbf{2 - 2 1}\right\}$ was immediately used in the next reaction without further purification.

To a solution of 2-22 (19.1 mg, 0.0527 mmol$)$ in THF (0.3 ml) were added KHMDS (0.5 M in toluene, $0.105 \mathrm{ml}, 0.0525 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 45 min . To the mixture was added a solution of the above crude aldehyde $\left\{\left(\mathbf{8}^{\prime} \boldsymbol{R}\right) \mathbf{- 2 - 2 1}\right\}$ in THF $(0.3 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . Then, the stirred mixture was allowed to warm to ambient temperature $\left(23{ }^{\circ} \mathrm{C}\right)$ for 3.5 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 1)$ to give $\left(\mathbf{8}^{\prime} \boldsymbol{R}\right) \mathbf{- 2 - 2 0}(14.5 \mathrm{mg}, 0.0155 \mathrm{mmol}$, 63% over 2 steps).
(8'R)-2-20: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{23}+5.1\left(c 0.30, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3065, 2985, 2931, 2857, 1513, 1462, 1380, 1370, 1302, 1248, 1219, 1172, 1102, 1042, $968,873,839,809,780,665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CHD}_{2} \mathrm{CN}$ as 1.93 ppm) $\delta 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.88$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), $0.88(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H} 20$ '), 1.270 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.273 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.251.59 (12H, m, H2', H3', H12', H17', H18', H19'), 1.33 (3H, s, acetonide), 1.42 (3H, s, acetonide), 2.062.15 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ ', H11', H13', H16'), 2.50 ($1 \mathrm{H}, \mathrm{dd}, J=6.5,14.2 \mathrm{~Hz}, \mathrm{H} 7$ 'a), 2.67 ($1 \mathrm{H}, \mathrm{dd}, J=6.8,14.2$ Hz, H7'b), 3.36 ($1 \mathrm{H}, \mathrm{dd}, J=6.8 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, \mathrm{H} 2$ '), 3.41 ($2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H} 1$ '), 3.47 ($1 \mathrm{H}, \mathrm{dd}, J=6.2$, $10.4 \mathrm{~Hz}, \mathrm{H1}{ }^{\prime \prime} \mathrm{a}$), $3.50(1 \mathrm{H}, \mathrm{dd}, J=5.4,10.3 \mathrm{~Hz}, \mathrm{H6} " \mathrm{a}), 3.59(1 \mathrm{H}, \mathrm{dd}, J=6.9,10.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}$), 3.66 ($1 \mathrm{H}, \mathrm{dd}, J=6.1,8.3 \mathrm{~Hz}, \mathrm{H} 3$ "'a), 3.76 ($1 \mathrm{H}, \mathrm{dd}, J=5.9,10.3 \mathrm{~Hz}, \mathrm{H} 1$ "'b), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{PMB}$), 3.83 (1 H , ddd, $J=2.1,5.4,6.9 \mathrm{~Hz}, \mathrm{H} 5 "), 3.92(1 \mathrm{H}, \mathrm{dd}, J=5.6,6.8 \mathrm{~Hz}, \mathrm{H} 3 "), 4.00(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.3 \mathrm{~Hz}$, H3'"b), $4.00(1 \mathrm{H}, \mathrm{brq}, J=7.2 \mathrm{~Hz}, \mathrm{H} 8$ '), $4.08(1 \mathrm{H}, \mathrm{dd}, J=2.1,5.6 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{C}), 4.11(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, H1"), 4.23 (1 H, brqn, $J=6.1 \mathrm{~Hz}, \mathrm{H} 2 " '), 4.37$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{PMB}$), 5.28 ($1 \mathrm{H}, \mathrm{tdd}, J=1.3,8.0,15.4 \mathrm{~Hz}, \mathrm{H} 9$ '), $5.67\left(1 \mathrm{H}, \mathrm{td}, J=7.0,15.4 \mathrm{~Hz}, \mathrm{H} 10\right.$ '), $5.72\left(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB})$, 7.23 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{PMB}$);
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3}{ }^{13} \mathrm{CN}\right.$ as 118.2 ppm$) \delta-4.4\left(\mathrm{CH}_{3}\right),-4.2\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 18.4$
$\left(\mathrm{CH}_{2}\right), 18.7(\mathrm{C}), 19.1\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3} \times 3\right), 26.7\left(\mathrm{CH}_{3}\right), 27.1$ $\left(\mathrm{CH}_{3}\right)$, $28.4\left(\mathrm{CH}_{3}\right)$, $29.2\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{CH}_{2}\right), 31.69\left(\mathrm{CH}_{2} \times 2\right)$, $31.73\left(\mathrm{CH}_{2}\right), 48.2\left(\mathrm{CH}_{2}\right)$, $55.8\left(\mathrm{CH}_{3}\right), 67.5\left(\mathrm{CH}_{2}\right), 68.0\left(\mathrm{CH}_{2}\right), 70.4\left(\mathrm{CH}_{2}\right), 71.2\left(\mathrm{CH}_{2}\right), 72.4(\mathrm{CH}), 72.9\left(\mathrm{CH}_{2}\right), 74.9(\mathrm{CH}), 75.2$ (CH), $75.7(\mathrm{CH}), 79.5(\mathrm{CH}), 80.5(\mathrm{C}), 81.4(\mathrm{CH}+\mathrm{C}), 103.7(\mathrm{CH}), 109.8(\mathrm{C}), 110.2(\mathrm{C}), 114.5(\mathrm{CH} \times 2)$, 124.5 (C), 130.1 (CH×2), 130.9 (CH), 132.0 (C), 132.2 (CH), 134.7 (CH), 160.0 (C);

FD-LRMS $m / z 936\left(34.4 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{49} \mathrm{H}_{79} \mathrm{O}_{10} \mathrm{Si}^{81} \mathrm{Br}\right]\right), 934\left(26.2 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{49} \mathrm{H}_{79} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}\right]\right), 121(\mathrm{bp})$; FD-HRMS calcd for $\left.\mathrm{C}_{49} \mathrm{H}_{79} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}^{[} \mathrm{M}^{+}\right]$: 934.4626, found 934.4630.

Compound ($8^{\prime} R$)-2-53:

To a solution of ($\mathbf{8} \mathbf{\prime} \mathbf{R} \mathbf{)} \mathbf{- 2} \mathbf{- 5 3}(5.3 \mathrm{mg}, 0.0056 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ and pH 7 buffer (0.05 ml) was added DDQ ($2.0 \mathrm{mg}, 0.0088 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, DDQ (1.3 $\mathrm{mg}, 0.0057 \mathrm{mmol}$) was added, and the mixture was stirred for 2 h . Then, the reaction was quenched with NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=5$) to give ($\mathbf{8}^{\prime} \boldsymbol{R}$)-2-53 ($\mathbf{2} .9 \mathrm{mg}, 0.0036 \mathrm{mmol}, 64 \%$).
($\mathbf{8 '}^{\prime} \boldsymbol{R}$)-2-53: colorless oil; a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}+4.8\left(c 0.20, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3441, 2984, 2928, 2856, 1472, 1457, 1381, 1370, 1248, 1219, 1163, 1137, 1103, 1078, 1048, 970, 872, 839, 780, $665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), $0.90(3 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}, \mathrm{H} 20$ '), 1.17-1.66 (12H, m, H2', H3', H12', H17', H18', H19'), 1.25 (3H, s, acetonide), 1.34 (3H, s, acetonide), 1.41 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.49 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 2.10-2.22 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ ', H11', H13', H16'), 2.50 ($1 \mathrm{H}, \mathrm{dd}, J=6.0,14.3 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{a}$), 2.71 ($\left.1 \mathrm{H}, \mathrm{dd}, J=7.1,14.3 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{b}\right), 3.43-3.52(2 \mathrm{H}, \mathrm{m}$, H2", H1"'a), $3.58(1 \mathrm{H}, \mathrm{dd}, J=6.5,10.0 \mathrm{~Hz}, \mathrm{H6} " \mathrm{a}), 3.64(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H} 1$ '), 3.71 ($1 \mathrm{H}, \mathrm{dd}, J=6.1$, $10.0 \mathrm{~Hz}, \mathrm{H6} " \mathrm{~b}), 3.76-3.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 "), 3.82(1 \mathrm{H}, \mathrm{dd}, J=5.7,8.3 \mathrm{~Hz}, \mathrm{H} 3 " \mathrm{a}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=4.8$,
$10.1 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime} \mathrm{b}$), $3.95-3.99(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), $4.03(1 \mathrm{H}, \mathrm{brq}, J=7.2 \mathrm{~Hz}, \mathrm{H} 8$ '), $4.07(1 \mathrm{H}, \mathrm{dd}, J=6.2,8.3$ Hz, H3"'b), 4.10-4.13 (1H, m, H4"), 4.14 ($1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.24-4.34 (1H, m, H2"'), 5.29 (1 H , brdd, $J=8.0,15.4 \mathrm{~Hz}, \mathrm{H} 9$ '), 5.62-5.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 '$ ' H10');
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 18.2\left(\mathrm{CH}_{2}\right), 18.7\left(\mathrm{CH}_{2}\right)$, $22.2\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right), 26.6\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right)$, $28.8\left(\mathrm{CH}_{2}\right)$, $31.0\left(\mathrm{CH}_{2}\right)$, $31.1\left(\mathrm{CH}_{2}\right)$, $31.3\left(\mathrm{CH}_{2}\right)$, $32.1\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 62.6\left(\mathrm{CH}_{2}\right), 67.3\left(\mathrm{CH}_{2}\right)$, $67.6\left(\mathrm{CH}_{2}\right), 70.5\left(\mathrm{CH}_{2}\right), 71.9(\mathrm{CH}), 73.8(\mathrm{CH}), 74.1(\mathrm{CH}), 74.4(\mathrm{CH}), 78.9(\mathrm{CH}), 79.6(\mathrm{C}), 80.5(\mathrm{CH})$, 80.7 (C), 103.4 (CH), 109.1 (C), 109.7 (C), 124.0 (C), 129.8 (CH), $130.9(\mathrm{CH}), 133.9(\mathrm{CH})$;

Compound (8'R)-2-54:

To a solution of ($\mathbf{8}^{\prime} \boldsymbol{R}$)-2-53 ($\left.4.6 \mathrm{mg}, 0.0056 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{ml})$ were added TEMPO (ca. 1 mg , ca. 0.0064 mmol$)$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(5.4 \mathrm{mg}, 0.017 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 30 h . The reaction was quenched with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting crude carboxylic acid was dissolved in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml} / 0.1 \mathrm{ml})$. To the solution was added $\mathrm{TMSCHN}_{2}(2.0 \mathrm{M}$ in Et $2 \mathrm{O}, 0.0169 \mathrm{ml}, 0.0338 \mathrm{mmol})$ at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min. Then, the mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=15 \rightarrow 10)$ to give $\mathbf{(8 ' R} \mathbf{R} \mathbf{- 2 - 5 4}(3.2 \mathrm{mg}, 0.0038$ mmol, 68\% over 2 steps).
(8'R)-2-54: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{20}+1.1\left(c 0.40, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 2985, 2931, 2857, 1741, 1461, 1454, 1439, 1435, 1380, 1370, 1248, 1219, 1194, 1164, 1138, 1102, 1079, 1047, 968, 868, 839, 780, $665 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.90(3 \mathrm{H}, \mathrm{t}$,
$\left.J=7.0 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{O}^{\prime}\right), 1.14-1.66$ ($\left.8 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} 2^{\prime}, \mathrm{H}^{\prime} 7^{\prime}, \mathrm{H}^{\prime} 8^{\prime}, \mathrm{H}^{\prime} 9^{\prime}\right), 1.34$ ($6 \mathrm{H}, \mathrm{s}$, acetonide), 1.41 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.49 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.72 ($2 \mathrm{H}, \mathrm{qn}, J=6.8 \mathrm{~Hz}, \mathrm{H} 3^{\prime}$), 2.10-2.22 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H} 4{ }^{\prime}, \mathrm{H}^{\prime} 1^{\prime}, \mathrm{H} 13{ }^{\prime}$, H16'), 2.32 ($2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H} 2^{\prime}$), $2.50\left(1 \mathrm{H}, \mathrm{dd}, J=6.0,14.2 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{a}\right), 2.71$ ($1 \mathrm{H}, \mathrm{dd}, J=7.1,14.2$ Hz, H7'b), 3.43-3.52 (2H, m, H2", H1"'a), 3.58 ($1 \mathrm{H}, \mathrm{dd}, J=6.5,9.8 \mathrm{~Hz}, \mathrm{H} 6 " \mathrm{a}$), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.70 ($1 \mathrm{H}, \mathrm{dd}, J=5.9,9.8 \mathrm{~Hz}, \mathrm{H}^{\prime \prime} \mathrm{b}$), 3.77-3.83 (1H, m, H5"), 3.82 ($1 \mathrm{H}, \mathrm{dd}, J=5.6,8.3 \mathrm{~Hz}, \mathrm{H} 3 " \mathrm{a}$), $3.92\left(1 \mathrm{H}, \mathrm{dd}, J=4.8,10.0 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime} \mathrm{b}\right), 3.94-4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 "), 4.02(1 \mathrm{H}, \mathrm{brq}, J=7.1 \mathrm{~Hz}, \mathrm{H} 8$ '), 4.06 ($1 \mathrm{H}, \mathrm{dd}, J=6.2,8.3 \mathrm{~Hz}, \mathrm{H} 3 " \mathrm{~b}), 4.11-4.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ "), $4.13(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.23-4.33 (1 H , m, H2'"), $5.29\left(1 \mathrm{H}\right.$, brdd, $J=8.0,15.4 \mathrm{~Hz}, \mathrm{H} 9$ '), $5.65\left(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H} 5{ }^{\prime}\right), 5.67(1 \mathrm{H}, \mathrm{td}, J=6.8$, 15.4 Hz, H10');
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 18.13(\mathrm{C}), 18.16\left(\mathrm{CH}_{2}\right), 18.7$ $\left(\mathrm{CH}_{2}\right)$, $22.2\left(\mathrm{CH}_{2}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right), 26.6\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.5$ $\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 67.3$ $\left(\mathrm{CH}_{2}\right), 67.6\left(\mathrm{CH}_{2}\right), 70.5\left(\mathrm{CH}_{2}\right), 71.9(\mathrm{CH}), 73.8(\mathrm{CH}), 74.1(\mathrm{CH}), 74.4(\mathrm{CH}), 78.9(\mathrm{CH}), 79.6(\mathrm{C})$, 80.5 (CH), 80.7 (C), 103.3 (CH), 109.1 (C), 109.6 (C), 124.8 (C), 129.7 (CH), 129.9 (CH), 134.0 (CH), 173.8 (C);

FD-LRMS $m / z 844\left(16.2 \%,\left[M^{+}: \mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{10} \mathrm{Si}^{81} \mathrm{Br}\right]\right), 842\left(13.9 \%,\left[\mathrm{M}^{+}: \mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}\right]\right), 57(\mathrm{bp}) ;$ FD-HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{10} \mathrm{Si}^{79} \mathrm{Br}^{\left[\mathrm{M}^{+}\right]: 842.4000 \text {, found 842.4004. }}$

Compound (8'R)-2-55:

To a solution of ($\left.\mathbf{8}^{\prime} \boldsymbol{R}\right) \mathbf{- 2 - 5 4}(3.2 \mathrm{mg}, 0.0038 \mathrm{mmol})$ in DMF $(0.4 \mathrm{ml})$ was added TBAF•3H2O $(4.8 \mathrm{mg}$, 0.015 mmol) at $75^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . Then, the mixture was diluted with a $1: 1$ mixture of hexane and EtOAc and acidified with 0.1 M HCl . The mixture was extracted with a $1: 1$ mixture of hexane and EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Because partial hydrolysis of the
methyl ester was observed, the resulting residue was dissolved in methanol (ca. 1 ml) and was treated with $\mathrm{TMSCHN}_{2}\left(2 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The reaction mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 1$) to give ($\mathbf{8}^{\prime} \mathbf{R}$)-2-55 ($2.3 \mathrm{mg}, 0.0035 \mathrm{mmol}, 92 \%$).
(8'R)-2-55: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{20}+1.7\left(c 0.20, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3451, 2983, 2931, 2859, 1738, 1455, 1435, 1380, 1371, 1246, 1218, 1164, 1077, 968, 933, $873,844,689,665 \mathrm{~cm}^{-1}$;
 H19'), 1.36 ($6 \mathrm{H}, \mathrm{s}$, acetonide), $1.43(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.52(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.79 ($2 \mathrm{H}, \mathrm{qn}, J=7.2$ Hz, H3'), 2.10-2.24 (9H, m, H4', H7'a, H11', H13', H16'), 2.28-2.38 (1H, m, H7'b), 2.43 ($2 \mathrm{H}, \mathrm{t}, J=$ $7.5 \mathrm{~Hz}, \mathrm{H} 2$ '), 3.56 ($1 \mathrm{H}, \mathrm{brt}, J=7.8 \mathrm{~Hz}, \mathrm{H} 2$ "), 3.59-3.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H6"a}, \mathrm{H} 1 " \mathrm{a}$), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.74 ($1 \mathrm{H}, \mathrm{dd}, J=6.0,10.0 \mathrm{~Hz}, \mathrm{H6} " \mathrm{~b}), 3.82\left(1 \mathrm{H}, \mathrm{dd}, J=6.1,8.4 \mathrm{~Hz}, \mathrm{H} 3\right.$ '"a), $3.83\left(1 \mathrm{H}, \mathrm{brq}, J=7.0 \mathrm{~Hz}, \mathrm{H} 8^{\prime}\right)$, $3.89\left(1 \mathrm{H}\right.$, brdt, $J=2.2,6.5 \mathrm{~Hz}, \mathrm{H} 5$ "), $3.93\left(1 \mathrm{H}, \mathrm{dd}, J=5.1,10.8 \mathrm{~Hz}, \mathrm{H} 1 "^{\prime} \mathrm{b}\right), 4.03-4.08$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 "$, H3'"b), 4.20 ($1 \mathrm{H}, \mathrm{dd}, J=2.2,5.4 \mathrm{~Hz}, \mathrm{H} 4$ "), 4.21 ($1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.27-4.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime \prime}$), 5.39 (1 H, brdd, $J=7.8,15.5 \mathrm{~Hz}, \mathrm{H} 9$ '), 5.69 ($1 \mathrm{H}, \mathrm{td}, J=7.0,15.5 \mathrm{~Hz}, \mathrm{H} 10{ }^{\prime}$);
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{2}\right), 18.3\left(\mathrm{CH}_{2}\right), 18.7\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 24.1$ $\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 31.1$ $\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 66.3\left(\mathrm{CH}_{2}\right), 67.2\left(\mathrm{CH}_{2}\right), 69.8\left(\mathrm{CH}_{2}\right), 72.4(\mathrm{CH}), 73.5(\mathrm{CH})$, 73.6 (CH), 74.4 (CH), 77.4 (C), 78.5 (CH), 79.6 (C), $80.0(\mathrm{CH}), 80.5(\mathrm{C}), 80.7(\mathrm{C}), 102.8(\mathrm{CH}), 109.5$ (C), 110.0 (C), 129.9 (CH), 133.9 (CH), 173.7 (C);

FD-LRMS $m / z 648$ (bp, $\left[\mathrm{M}^{+}\right]$);
FD-HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{10}\left[\mathrm{M}^{+}\right]$: 648.3874, found 648.3904 .

Compound (8'R)-2-56:

(8'R)-2-56

To a solution of ($\mathbf{8} \mathbf{\prime} \boldsymbol{R} \mathbf{)} \mathbf{- 2} \mathbf{- 5 5}(2.3 \mathrm{mg}, 0.0035 \mathrm{mmol})$ and 1-hexene $(0.10 \mathrm{ml}, 0.80 \mathrm{mmol})$ in $\mathrm{MeOH}(0.1$ ml) was added Lindlar catalyst (2.3 mg) at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 22 h under H_{2} atmosphere. The mixture was filtered through a celite pad and concentrated in vacuo to give almost pure ($\mathbf{8}^{\prime} \boldsymbol{R}$)-2-56 ($2.3 \mathrm{mg}, 0.0035 \mathrm{mmol}, 100 \%$).
(8'R)-2-56: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{22}+4.5\left(c 0.10, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3447, 2925, 1740, 1457, 1437, 1380, 1370, 1245, 1219, 1164, 1075, 969, 872, 845, 665 cm^{-1};
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H} 20$ '), 1.22-1.73 ($10 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ', H12', H17', H18', H19'), 1.35 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.36 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.43 ($3 \mathrm{H}, \mathrm{s}$, acetonide), $1.52(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.93-2.11 (9H, m, H4', H7'a, H11', H13', H16'), 2.26-2.35 (3H, m, H2', H7'b), 3.53-3.68 (3H, m, H2", H6"a, H1"'a), 3.66 (3H, s, OMe), 3.74 ($1 \mathrm{H}, \mathrm{dd}, J=5.8,9.8 \mathrm{~Hz}, \mathrm{H6"b}$), 3.82 ($1 \mathrm{H}, \mathrm{dd}, J$ $=6.0,8.3 \mathrm{~Hz}, \mathrm{H} 3$ "'a), 3.82-3.91 (2H, m, H8', H5"), 3.93 ($1 \mathrm{H}, \mathrm{dd}, J=5.2,10.7 \mathrm{~Hz}, \mathrm{H} 1$ "'b), 4.02-4.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ", H3"'b), 4.18-4.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ "), 4.20 ($1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 1$ "), 4.27-4.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{2}$ "), 5.24-5.46 (5H, m, H5', H6', H9', H14', H15'), 5.58-5.67 (1H, m, H10');
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 26.6$ $\left(\mathrm{CH}_{3}\right)$, $26.7\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 66.3\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 69.8\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{CH}), 73.5(\mathrm{CH})$, $73.6(\mathrm{CH}), 74.4(\mathrm{CH}), 78.5(\mathrm{CH}), 81.4(\mathrm{CH}), 102.9(\mathrm{CH}), 109.5(\mathrm{C}), 110.0(\mathrm{C}), 126.6(\mathrm{CH}), 129.2$ (CH), $130.1(\mathrm{CH}), 130.2(\mathrm{CH}), 130.4(\mathrm{CH}), 134.0(\mathrm{CH}), 174.0(\mathrm{C})$;

FD-LRMS m/z 652 (3.2\%, [$\left.\mathrm{M}^{+}\right]$), 242 (bp);
FD-HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{10}\left[\mathrm{M}^{+}\right]$: 652.4187, found 652.4198.

Compound (8'R,2''R)-1-5:

To a solution of $\mathbf{(8 ' R} \mathbf{R}) \mathbf{- 2 - 5 6}(2.3 \mathrm{mg}, 0.0035 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{ml})$ was added

TFA ($0.0130 \mathrm{ml}, 0.176 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 17.5 h . The mixture was diluted with toluene and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 \rightarrow 5\right)$ to give $\left(\mathbf{8}^{\prime} \boldsymbol{R}, \mathbf{2}^{\prime} \mathbf{~ ' ~} \boldsymbol{R}\right) \mathbf{- 1 - 5}(2.0 \mathrm{mg}, 0.0035 \mathrm{mmol}$, 100\%).
($\mathbf{8}^{\prime} \boldsymbol{R}, \mathbf{2}^{\prime \prime} \mathbf{\prime} \boldsymbol{R}$)-1-5: a pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{24}+2.8\left(c 0.10, \mathrm{CHCl}_{3}\right)$;
IR (neat) v 3387, 2926, 2861, $1737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{DMSO}-d_{6}[25: 2], \mathrm{C}_{6} \mathrm{HD}_{5}$ as 7.15 ppm) $\delta 0.86$ ($3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H} 20^{\prime}$), 1.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 18$ '), 1.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 19$ '), 1.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 17^{\prime}$), 1.38 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 12$ '), 1.61 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 1.96$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 11^{\prime}$), 1.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$ '), 2.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 13^{\prime}$), 2.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 16$ '), 2.14 ($2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}^{\prime}$ '), 2.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7$ 'a), 2.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} \mathrm{b}$), 3.39 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$ "), 3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ "), 3.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ '), 3.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 " \mathrm{a}$), 3.84 ($2 \mathrm{H}, \mathrm{m}$, H3'"), 3.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime \prime} \mathrm{a}$), 3.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H6}$ "b), 3.98 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ "), 4.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ "'), 4.07 ($1 \mathrm{H}, \mathrm{m}$, H4"), 4.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '"b), 4.39 ($1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H} 1$ "), 5.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$ '), 5.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 9$ '), 5.40 (1H, m, H14'), $5.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 15^{\prime}\right), 5.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 10^{\prime}\right), 5.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right)$ [Chemical shifts are shown as exact values derived from 1D, COSY, HSQC, and HMBC measurements.];
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{DMSO}-d_{6}[25: 2], \mathrm{C}_{6} \mathrm{D}_{6}$ as 128.0 ppm$) \delta 14.25\left(\mathrm{CH}_{3}, \mathrm{C}_{2} 0^{\prime}\right), 22.87\left(\mathrm{CH}_{2}\right.$, C19'), $25.05\left(\mathrm{CH}_{2}, \mathrm{C} 3^{\prime}\right), 26.99\left(\mathrm{CH}_{2}, \mathrm{C} 4{ }^{\prime}\right), 27.06\left(\mathrm{CH}_{2}, \mathrm{C} 13^{\prime}\right), 27.51\left(\mathrm{CH}_{2}, \mathrm{C}_{16}\right)^{\prime}$, $29.54\left(\mathrm{CH}_{2}, \mathrm{Cl}^{\prime}\right)$, $29.68\left(\mathrm{CH}_{2}, \mathrm{C} 17{ }^{\prime}\right), 31.75\left(\mathrm{CH}_{2}, \mathrm{C} 18{ }^{\prime}\right), 32.06\left(\mathrm{CH}_{2}, \mathrm{Cl1}^{\prime}\right), 33.39\left(\mathrm{CH}_{2}, \mathrm{C} 2 '\right), 34.23\left(\mathrm{CH}_{2}, \mathrm{C} 7{ }^{\prime}\right), 51.04$ $\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 64.05\left(\mathrm{CH}_{2}, \mathrm{C} 3 " '\right), 67.67\left(\mathrm{CH}_{2}, \mathrm{C} 6 "\right), 69.38(\mathrm{CH}, \mathrm{C} 4 "), 71.61(\mathrm{CH}, \mathrm{C} 2 " '), 71.99(\mathrm{CH}$, C2"), 72.41 ($\mathrm{CH}_{2}, \mathrm{C} 1{ }^{\prime \prime}$ '), 74.32 ($\mathrm{CH}, \mathrm{C} 5$ "), 74.54 (CH, C3"), 81.26 (CH, C8'), 105.13 (CH, C1"), 127.19 (CH, C6'), 129.74 (CH, C14'), 130.29 (CH, C5'), 130.41 (CH, C15'), 131.30 (CH, C9'), 133.68 (CH, C10'), 173.43 (C, C1');

FD-LRMS m/z 595 (36.8\%, [M+Na $\left.{ }^{+}\right]$), 242 (bp);
FD-HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{10} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 595.3458, found: 595.3473.

Chapter 3.

Exploration of a Stereoselective Method for the

 Construction of the C9-C10-O-C11'-C12 Region of Nigricanoside-A Dimethyl Ester
3-1. Introduction

The synthesis of the C9-C10-O-C11'-C12 region of nigricanoside-A dimethyl ester (1-1, Figure 3-1) was selected as the second subject of the thesis. The synthesis includes the following problems: (i) formation of di-sec-alkyl ether should be achieved in good yield; (ii) the ethereal carbons, C10 and C11', should be constructed stereoselectively; and (iii) the stereocenters, C9 and C12, adjacent to ethereal carbons, C10 and C11', respectively, should also be built stereoselectively and simultaneously with the formation of $\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11$ ' ether bond.

Figure 3-1. Nigricanoseid-A dimethyl ester (1-1) with a predicted (8 'S,2'" R)-configuration.

To date, many effective methods, for example, reductive etherification, ${ }^{1}$ Ireland-Claisen rearrangement, ${ }^{2}$ and aldol reactions, ${ }^{3}$ have been reported for stereoselective ether formation in the research field of total synthesis of naturally occurring cyclic ethers, ${ }^{4}$ of which the structures around the ether bonds were closely similar to the C9-C10-O-C11'-C12 region of $\mathbf{1 - 1}$. However, applicability of these methods to the construction of acyclic di-sec-alkyl ethers has not been examined. Therefore, the author intended to find out an effective solution for the above problems from the reported methods.

As a preliminary study, the author first planned to synthesize a series of simple model compounds, 3-1a-d (Figure 3-2), corresponding to the ether linkage between C16 and C20 fatty acid chains for the comparison of NMR spectra between natural 1-1 and each of 3-1a-d in order to estimate the stereochemistry at $\mathrm{C} 11^{\prime}$ and C 12 on the basis of the presumed C 8 ' and $\mathrm{C} 2{ }^{\prime \prime}$ configurations described in Chapter 2. Model compounds 3-1a-d would be assembled from aldehyde (8'S)-2-21 and sulfone 3-2a-d by a process including Julia-Kocienski olefination, ${ }^{5}$ alkyne formation at C5', Lindlar hydrogenation, and deprotection. Thus, stereoselective synthesis of 3-1a-d was first examined by a
process including reductive etherification. The preliminary results are described in Section 3-2.

3-1a

Figure 3-2. Model compounds 3-1a-d with a galactosyl glycerol, C20 lipid chain, and a mimic C10-O-C11' ether bond.

Scheme 3-1. Outline of the synthetic plan for 3-1a-d.

The author also examined the synthesis of an alternative series of model compounds, 3-3a-d (Figure 3-3). The model compounds, which have C 16 fatty acid chain and a mimic $\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11$ ' ether bond, were designed for the NMR comparison with 1-1 to find out a plausible combination of relative configurations at $\mathrm{C} 6, \mathrm{C} 9$ and C 10 of $\mathbf{1 - 1}$. The attempting synthesis of model compounds 3-3a-d based
on Ireland-Claisen rearrangement is described in Section 3-3.

Figure 3-3. Model compounds 3-3a-d with C16 lipid chain and a mimic C10-O-C11' ether bond.

For the construction of the C9-C10-O-C11'-C12 region of 1-1, an approach based on an asymmetric aldol reaction ${ }^{6}$ was also examined. The successful formation of the region is a key to achieving the total synthesis, and simultaneous generation of multi stereocenters with a stereocontrolled manner is required for efficiency. Therefore, an aldol approach for the construction of stereocenters at C9 and C10 was employed.

The synthetic plan for 1-1 is outlined in Scheme 3-2. At the final stage of the total synthesis of $\mathbf{1 - 1}$, the connection between aldehyde ($\mathbf{8}^{\prime} \mathbf{S}$)-2-21 and sulfone 3-4 by Julia-Kocienski olefination is scheduled. Sulfone 3-4 would be derived from 3-5 via the installation of C12-C16 chain. The C9-C10 bond of 3-5 is intended to be formed by an asymmetric aldol reaction of carboxylate/carboxamide 37 with aldehyde 3-6 having C6 stereocenter. In the plan, the preparation of 3-7 should also be performed in a stereoselective way.

The details of the experiments of the aldol reaction of 3-7 with several aldehydes are described in Section 3-4. Application of the aldol products to further synthesis is also examined. The results are mentioned in Section 3-6.

Scheme 3-2. Outline of the synthetic plan for 1-1 based on an asymmetric aldol reaction.

3-2. An Approach to the Construction of the C10-O-C11' Ether Bond by Reductive Acetal Cleavage

The approach to 3-2a-d is outlined in Scheme 3-2. The sulfone 3-2a was planned to be synthesized from alcohol 3-8a, which would be assembled by an acetylide coupling of epoxide 3-10a with alkyne 3-9. Epoxide 3-10a would be formed from triol 3-11. The construction of the ether bond of 3-11 corresponding the C10-O-C11' of 1-1 employed reductive etherification of acetal 3-12 , which would be preparable from commercially available L-(+)-diethyl tartrate (3-13). This approach would be available for the preparation of all four diastereomers 3-2a-d by use of both enantiomers of diethyl tartrate and by change of the method of the epoxide formation step.

3-2a

L-(+)-Diethyl tartrate (3-13)

3-8a

3-9

3-10a

Reductive Etherification

Scheme 3-3. Synthetic plan for sulfone 3-2a.

An attempt to synthesize 3-2a is shown in Scheme 3-4. L-(+)-Diethyl tartrate (3-13) was reacted with heptane-4-one to give acetal 3-12 (83\%), ${ }^{7}$ which was reductively cleaved by TiCl_{4} and $\mathrm{Et}_{3} \mathrm{SiH}^{8}$ to produce ether 3-14 (97%). After reduction of $\mathbf{3 - 1 4}$ with $\mathrm{LiAlH}_{4}(74 \%)$, the resulting triol $\mathbf{3 - 1 1}$ was subjected to one-pot sequential reactions with TBSCl and MsCl to afford 3-15. Treatment of 3-15 with TBAF induced removal of the TBS groups and the simultaneous formation of an epoxide to give 3-10a (98%). The Mitsunobu reaction ${ }^{9}$ of 3-10a with 1-phenyl- 1 H -tetrazole-5-thiol provided sulfide $\mathbf{3 - 1 6 a}(45 \%),{ }^{5}$ which was reacted with hept-1-yne under Yamaguchi's conditions ${ }^{10}$ to produce 3-17a even in modest yield (69%). The obtained small amount of 3-17a was oxidized with ammonium
molybdate hydrate and hydrogen peroxide ${ }^{11}$ to furnish only detectable amount of sulfone 3-18a (62%). Because of the limited amount of $\mathbf{3 - 1 8 a}$, the final protection reaction could not be conducted.

Although there was a low yielding process from 3-10a to 3-18a that should be improved, the validity of the ether formation method in this model synthesis was demonstrated. The improved synthesis of 3-2a-d will be conducted in the near future by other members of the author's laboratory.

Scheme 3-4. Attempting synthesis of sulfone 3-2a. Reagents and conditions: (a) heptan-4-one, PTS $\cdot \mathrm{H}_{2} \mathrm{O}$ (cat.), benzene, reflux, $24 \mathrm{~h}, 80 \%$; (b) $\mathrm{TiCl}_{4}, \mathrm{Et}_{3} \mathrm{SiH}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $23{ }^{\circ} \mathrm{C}, 15$ min, 97%; (c) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 23{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 74 \%$; (d) TBSCl (2.8 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq), DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$, then $\mathrm{MsCl}(2 \mathrm{eq}),. 23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (e) TBAF• $3 \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 23{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 98 \%$ over 2 steps; (f) 1-phenyl-1 H -tetrazole-5-thiol, DIAD, $\mathrm{PPh}_{3}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 14 \mathrm{~h}, 44 \%$; (g) hept-1-yne (3-9), $\mathrm{BuLi}, \mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 68 \%$; (h) ammonium molybdate hydrate (cat.), $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 13$ h, 59%.

3-3. An Alternative Approach to the Construction of the C10-O-C11' Ether Bond by IrelandClaisen Rearrangement

The synthetic plan for C16 lipid chain model compounds 3-3a-d is illustrated in Scheme 3-5. This route employs a chirality transferring version of Ireland-Claisen rearrangement ${ }^{12}$ for the stereoselective construction of the C10-O-C11' ether bond of the models. The C16 lipid chains of 3-3a-d are intended to be assembled by C-C bond formation between C 12 of $\mathbf{3 - 1 9}$ and C 11 of intermediates 3-20a-d using alkyne coupling and between C5 of 3-20a-d and C4 of organometallic reagent 3-21 via an epoxide ring opening reaction. Intermediates 3-20a-d would be derived from esters 3-21a,c, which would be synthesized stereoselectively from 3-(N,Ndiisopropylcarbamoyloxy)allyl glycolate esters 3-22a,c by Ireland-Claisen rearrangement .

Scheme 3-5.

The β-carbamoyloxy/alkoxy ether forming rearrangement was developed by Domon, Kawamura, and Nogoshi, previous members of the author's laboratory. ${ }^{13,14,15}$ The rearrangement generally showed good anti- or syn-stereoselectivity relied on the Z- or E-geometry of the 3-carbamoyloxyallyl/3-alkoxyallyl group of substrate glycolate esters, respectively. The
stereochemistry of the major rearrangement product is predictable by assuming a stable chair transition state from a Z-ketene silyl acetal derived from the substrate.

Thus, during the rearrangement, the stereochemistry at C 7 of $\mathbf{3 - 2 2}$ would be transferred to C 9 and C 10 of 3-21 via TS, and the configuration of C 9 would also be controlled by the Z / E-geometry of the 3-carbamoyloxyallyl group of 3-22.

Esters 3-22a,c are slated to be prepared from glycolic acid 3-23 and 3-carbamoyloxyallyl alcohol 3-24 or 3-25.

As a preliminary study, the synthesis of model compound 3-3a from 3-23 and 3-24 was attempted.

Scheme 3-6. Attempting synthesis of model compound 3-3a. Reagents and conditions: (a) 3-23 (1.5 eq), 3-24 EDCI•HCl, DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 96 \%$; (b) KHMDS, THF, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~min}$, then TMSCl, $-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then $0^{\circ} \mathrm{C}$, 15 min ; $\mathrm{TMSCHN}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, 47 \%$ from 3-22a (ds $=$ 10:1); (c) LiAlH_{4}, THF, $-15{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 100 \%$.; (d) TsCl, Et $3 \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 66 \%$ from 2 steps; (e) prop-1-yne (3-19), BuLi, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then 3-27a, HMPA, $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$, then $23^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

The attempt for the synthesis of 3-3a is illustrated in Scheme 3-6. Glycolic acid 3-23, easily preparable from heptan-1-ol and bromoacetic acid, was esterified with Z-3-(N,Ndiisopropylcarbamoyloxy)allyl alcohol 3-24, prepared according to the procedure developed by Domon ${ }^{13}$ and Nogoshi, ${ }^{14}$ to produce 3-22a (96\%). According to Nogoshi's procedure, ${ }^{14}$ ester 3-22a was treated with KHMDS in the presence of TMSCl in THF at $-78^{\circ} \mathrm{C}$, and the resulting ketene silyl acetal was warmed to $0^{\circ} \mathrm{C}$ to induce rearrangement. The resulting carboxylic acid was esterified with TMSCHN_{2} to give 3-21a selectively (47% over 2 steps; $\mathrm{ds}=10: 1$). The ester was then reduced to alcohol 3-26a, which was tosylated to give 3-27a (97% over 2 steps). The introduction of alkyne did not proceed under several conditions due to low reactivity of the tosylate 3-27a, thereby interrupting the synthesis of $\mathbf{3 - 3 a}$.

The improvement of the reactivity for the alkynylation step would be achieved by applying Kotsuki's method, ${ }^{16}$ which employed a triflate as a reactive leaving group. However, there was another problem in removal of the N, N-diisopropylcarbamoyl (Cb) protecting group. Although the Cb group is an inert protective group, it is known to be removed by treatment with MeLi. ${ }^{17}$ However, the Cb group of 3-26a resisted being removed, and this disturbed the verification of the stereochemistry at newly forming stereocenters (Scheme 3-7). Therefore, revision of the protecting group was required in this synthesis. Since Nogoshi reported a PMP protecting group as an easily removable ${ }^{14}$ substitute for the Cb group in his study on the ether-forming Ireland-Claisen rearrangement, this model synthesis should adopt the PMP group.

Thus, the author demonstrated the stereoselective formation of $\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11$ ' ether bond by Ireland-Claisen rearrangement though the synthesis of C16 lipid chain model compounds 3-3a-d have yet to be completed. The revised synthesis of 3-3a-d employing a PMP group and Kotsuki's alkyne installation method will be performed in the near future by other members of the author's laboratory.

Scheme 3-7. Attempt to remove the Cb group of 3-26a. Reagents and conditions: (a) MeLi, THF, $10^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

3-4. Application of an Asymmetric Aldol Reaction for the Construction of the C9-C10-O-C11'-

C12 Region

Next, aiming at simultaneous generation of stereocenters C9 and C10 in the synthesis of 3-4, a key intermediate for the total synthesis of $\mathbf{1 - 1}$, an asymmetric aldol reaction was examined for the C9-C10 bond formation. Since the stereochemistry of $\mathbf{1 - 1}$ has not yet been determined, the author proposed to establish a common method for the selective synthesis of all stereoisomers at C9 and C10. At the same time, the author intended to test the validity of the route to 3-4 and undertook the synthesis using a stereoisomer of the aldol reaction as a starting material.

As described in Section 3-1, sulfone 3-4 was planned to be assembled via the installation of C12-C16 alkyne chain (3-32) into 3-5 and the aldol reaction to connect 3-7 with $\mathrm{C} 9-\mathrm{C} 1$ chain 3-6 (Scheme 3-8). At the aldol reaction step, an asymmetric type reaction, such as Evans aldol reaction, was employed to achieve effective asymmetric induction at C 9 and C 10 in addition to segment elongation. Glycolic acid derivative 3-7 having stereocenters at C11' and C12' was intended to be assembled from naturally occurring chiral materials. Here, the synthesis of glycolic acid 3-33 having (11'R,12'S)-configuration was examined from 2-deoxy-D-ribose (3-34).

Scheme 3-8. An approach to sulfone 3-4 based on an asymmetric aldol reaction.

The synthesis of glycolic acid 3-33 is shown in Scheme 3-9. 2-Deoxy-D-ribose (3-34) was selected as a chiral starting material and was converted to isopropylidene acetal 3-35 according to literature procedure. ${ }^{18}$ Wittig reaction ${ }^{19}$ of $\mathbf{3 - 3 5}$ with more than two equivalent of hexylidenetriphenylphosphorane gave cis-alkene 3-36, which was then transformed to 6 -membered cyclic acetal 3-37 (54\% from 3-34). The preparation of the acetals was achieved efficiently over four steps from 3-34 with only one chromatographic purification. Etherification of alcohol 3-37 with bromoacetic acid gave glycolic acid 3-33 (99\%). ${ }^{20}$ The acid was then condensed with Evans type chiral auxiliaries, (S) - and (R)-4-benzyloxazolidin-2-ones, to produce amides 3-38 and 3-39 (100\% and 88%, respectively). Thus, substrate amides for the next aldol reactions were synthesized efficiently.

Scheme 3-9. Synthesis of amides 3-38 and 3-39. Reagents and conditions: (a) 2,2-dimethoxypropane, PTS• $\mathrm{H}_{2} \mathrm{O}$ (cat.), Dririte ${ }^{\circledR}$, acetone, DMF, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~h}$; (b) BuLi, $\mathrm{Ph}_{3} \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} \cdot \mathrm{Br}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, then 3-35, THF, $-78{ }^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) $\mathrm{AcOH}, 100^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then evaporation, then PhCHO , PTS $\cdot \mathrm{H}_{2} \mathrm{O}$ (cat.), PhH , reflux, $3 \mathrm{~h}, 54 \%$ from 3-34; (d) NaH , bromoacetic acid, THF, $0{ }^{\circ} \mathrm{C}$ to $23{ }^{\circ} \mathrm{C}, 1$ h, then 3-37, DMF-THF, $23{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}, 99 \%$; (e) Et N , pivaloyl chloride, THF, $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then lithium (S) - or (R)-4-benzyl-2-oxooxazolidin-3-ide in THF, $-20^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathbf{3 - 3 8}: 100 \%$ from 3-37, 3-39: 88\% from 3-37.

Entry	Subst.	Aldehyde	Conditions	Yield
1	3-38 (S)	Acrolein	$\mathrm{Bu}_{2} \mathrm{BOTf}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$	Complex Mixt.
2	3-39 (R)	Acrolein	$\mathrm{Bu}_{2} \mathrm{BOTf}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$	Complex Mixt.
3	3-38 (S)	Acrolein	LDA, THF, $-78{ }^{\circ} \mathrm{C}$	43\% (3-40; S,R,R)
4	3-38 (S)	Acrolein	LDA, THF-toluene, $-78{ }^{\circ} \mathrm{C}$	63\% (3-40; S,R,R)
5	3-39 (R)	Acrolein	LDA, THF-toluene, $-78{ }^{\circ} \mathrm{C}$	76\% (3-41; R,S,S)
6	3-38 (S)	$(E)-\beta$-lodoacrolein	LDA, THF-toluene, $-78{ }^{\circ} \mathrm{C}$	Complex Mixt.
7	3-38 (S)	3-42	LDA, THF-toluene, $-78{ }^{\circ} \mathrm{C}$	Complex Mixt.

$(E)-\beta$-lodoacrolein

3-42

Table 3-1. Aldol reactions of 3-38 and 3-39 with several aldehydes.

Next, Evans type asymmetric aldol reactions were examined with amides 3-38 and 3-39. Evans' method was selected because of the reliability of stereoselectivity and the easily removable nature of the oxazolidinone auxiliary. ${ }^{21}$ Selected results of the examined aldol reactions are illustrated in Table 3-1. First, the aldol reactions of 3-38 and 3-39 were performed with dibutylboron triflate according to standard boron aldol conditions (Entries 1 and 2). ${ }^{6}$ However, each reaction resulted only in decomposition of the substrate due to instability of the cyclic benzylidene acetal under Lewis acidic conditions in spite of the presence of amine base. Although several conditions using other boron reagents ${ }^{22}$ were examined, the desired aldol adduct could not be obtained. Therefore, the author next focused on the aldol reactions under basic conditions ${ }^{23}$ in hope of preventing decomposition of the substrate. Thus, amide 3-38 was treated with LDA in THF at $-78^{\circ} \mathrm{C}$, and the resulting lithium enolate was reacted with acrolein to produce aldol 3-40 as a major product in 43% yield (Entry 3). The moderate yield was due to decomposition of the substrate, which was attributable to ketene formation from the lithium enolate by α-elimination of the oxazolidinone group. When the solvent was changed from THF to a THF-toluene mixed system, decomposition of the substrate was suppressed, and the
yield of 3-40 was improved (63\%) (Entry 4). It should be noted that the reaction temperature was required to be maintained strictly at $-78^{\circ} \mathrm{C}$ during the reaction for good reproducibility of the aldol reaction. The substrate 3-39 having an (R)-oxazolidinone also reacted with acrolein in THF-toluene to give aldol adduct 3-41 selectively (76\%) (Entry 5).

Although the stereochemistry of aldol products 3-40 and 3-41 could not be determined at this stage, the complementary configurations of 3-40 and 3-41 owing to the stereocontrol by Evans' auxiliary were successfully determined after chemical conversion, which is described in the next section. It should be noted that the selective production of an anti-aldol derivative (3-40 or 3-41) is unusual in lithium-enolate aldol reactions using Evans' auxiliary. ${ }^{23}$

Then, in order to install C6 stereocenter and C1-C9 lipid chain, the aldol reaction of $\mathbf{3 - 3 8}$ was attempted with β-iodo-acrolein ${ }^{24}$ and 4-oxo-2-enal ${ }^{25}$ 3-42 corresponding to C1-C9 chain (Entries 6 and 7). However, these reactions only produced complex mixtures. Exploration of the aldehydes matched with the carbon chain elongation is now underway.

3-5. Determination of Stereochemistry at C9 and C10 Stereocenters of the Aldol Products

The determination of stereochemistry of newly formed stereocenters at C9 and C10 of aldol products 3-40 and 3-41 was performed by applying the chemical transformation and X-ray crystallographic or NMR analysis.

First, aldol 3-40 was converted to 8 -membered ring ether 3-45 as shown in Scheme 3-10. Reductive removal of the oxazolidinone of 3-40 produced diene alcohol 3-43 (58\%), which was then cyclized by ring-closing olefin metathesis (RCM) with Grubbs' second generation catalyst ${ }^{26}$ to afford cyclic ether 3-45 as a crystalline compound.

Scheme 3-10: Transformation of 3-40 to cyclic ether 3-45. Reagents and conditions: (a) $\mathrm{LiBH}_{4}, \mathrm{THF}$, MeOH , reflux, $3 \mathrm{~h}, 58 \%$; (b) 3-44 (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 11 h .

Figure 3-4. ORTEP diagram of cyclic ether 3-45.

The stereochemistry of 3-45 was determined by X-ray crystallographic analysis on the basis of the (11 'R,12'S)-configuration of $\mathbf{3 - 4 5}$, derived from 2-deoxy-D-ribose (Figure 3-4). Thus, the stereochemistry of carbon centers C9 and C10 of 3-40, generated by the aldol reaction, was determined to be $(9 R, 10 R)$.

The transformation of 3-41 to cyclic ether 3-47 was also performed in the same way (Scheme 3-11). Oxazolidinone 3-41 was reduced to give 3-46 ($<30 \%$), which was subjected to RCM in the presence of 3-44 to produce 3-47.

Scheme 3-11: Transformation of 3-41 to cyclic ether 3-47. Reagents and conditions: (a) $\mathrm{LiBH}_{4}, \mathrm{THF}$, MeOH , reflux, $3 \mathrm{~h},<30 \%$; (b) 3-44 (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 4 h .

Figure 3-5. ORTEP diagram of cyclic ether 3-47. One of two crystallographically independent molecules is shown.

The stereochemistry of 3-47 was also determined by X-ray crystallographic analysis on the
basis of the (11'R,12'S)-configuration of 3-47, derived from 2-deoxy-D-ribose (Figure 3-5). Thus, the stereochemistry of carbon centers C9 and C10 of 3-41, generated by the aldol reaction, was determined to be $(9 S, 10 S)$.

It is notable that, to the best of the author's knowledge, there is no report of systematic explanation for the stereochemistry of the lithium enolate aldol reaction using Evans-type chiral amides. Therefore, from the determined stereochemistry of aldol products 3-40 and 3-41, the author gave careful consideration to the stereochemical outcome of the lithium enolate aldol reaction of amides 3-38 and 3-39 with acrolein.

Although there are only a few examples of the lithium enolate aldol reactions of Evans-type chiral 2-alkoxyacetamides, Seeberger has reported a typical example: the aldol reaction of 2-(4methoxybenzyloxy)acetamide 3-48 with 3-49 mediated by LDA produced syn-aldol 3-50 as a major product (Table 3-2). ${ }^{23}$

Table 3-2. Seeberger's syn selective aldol reaction using a lithium enolate form 3-48.

It is well known that the deprotonation of Evans-type amides with alkali metal amide bases, such as LDA, selectively produces Z-enolates rather than sterically congested E-enolates. This fact also provides a foundation of Evans' asymmetric alkylation method. ${ }^{27}$ The production of syn-aldol 3-50 in Seeberger's aldol reaction would, therefore, be explained by the formation of a Z-enolate from 3-48 followed by an aldol reaction with aldehyde 3-49 via a stable chair-form cyclic transition state. This process is illustrated as path A from Z-enolate 3-52 to 3-58 in Scheme 3-12 (the stereochemistry
is enantiomeric to that of Seeberger's compounds). The carbamoyl and enolate groups of Z-enolate 3-52 make a plane, from which the benzyl group is projected out, by the coordination of the carbamoyl $\mathrm{O}=\mathrm{C}$ to the enolate lithium. Z-enolate 3-52 would react with an aldehyde from the less hindered face (from the backside of the benzyl group of the oxazolidinone) to form a stable chair formed transition state (3-54), in which the alkyl (R) group of the aldehyde is in an equatorial position. Thus, selective production of syn-aldol 3-50 (corresponding to 3-58) in Seeberger's aldol reaction as a typical example of normal lithium enolate Evans aldol reactions is rationalized.

Scheme 3-12. Plausible reaction pathways for the LDA induced aldol reaction.

However, the LDA-mediated aldol reactions of 3-38 and 3-39 exhibited anti-selectivity on the contrary to the syn-preference of normal Evans aldol reactions using lithium enolates. Because substrates 3-38 and 3-39 have a sterically congested 1,3-dioxane moiety on the oxygen atom at 2position of the acetamide group, a steric effect of this moiety may result in the production of E enolates (corresponding to 3-53 in Scheme 3-12), which would react with acrolein via a transition
state (corresponding to 3-57) having a non-coordinating oxazolidinone to produce anti-aldols (corresponding to 3-59) (path D). Alternatively, the following possibilities are also considered: after the normal formation of Z-enolates (3-52) from the substrates, the Z-enolates would reacted with acrolein via a twisted boat form cyclic transition state (corresponding to 3-55) (path B) or an acyclic transition state (corresponding to 3-56) (path C), which would avoid the steric repulsion between the congested 1,3-dioxane moiety and the vinyl group of acrolein, to afford anti-aldols (corresponding to 3-59).

The author next examined the trapping of lithium enolates from 3-38 and 3-39 as ketene silyl acetals to elucidate the E / Z-selectivity of the lithium enolates. The substrates were deprotonated with LDA in THF at $-78^{\circ} \mathrm{C}$, and the resulting lithium enolates were reacted with $\mathrm{Et}_{3} \mathrm{SiCl}$ to produce Z enolates 3-61 and 3-63 selectively. Each Z-enolate was fairly stable and obtained as a single product. The stereochemistry of enolates 3-61 and 3-63 was determined by NOE experiments: presence of the NOE correlations between H12' and the methylene protons of the TES group and between H 10 and the benzyl protons of the oxazolidinone group in both of 3-61 and 3-63 demonstrated their Zgeometries. Accordingly, it is suggested that original lithium enolates 3-60 and 3-61 have also Zgeometries.

Scheme 3-13. Trapping of Z-enolates from 3-38 and 3-39 as ketene silyl acetals.
Therefore, the participation of E-enolates from 3-38 and 3-39 in the production of anti-aldols

3-40 and 3-41 is excluded. Although the possible reaction pathways to 3-40 and 3-41 are limited to paths B and C in Scheme 3-12, it is difficult to determine the actual pathway for the anti-aldol formation at this stage.

3-6. Application of the Aldol Products for Further Synthesis

Next, in order to examine the validity of the route to 3-4, shown in Scheme 3-8, the author undertook the synthesis of model compounds 3-71 and 3-79 using aldol products 3-40 and 3-41, respectively.

Scheme 3-14. Reagents and conditions: (a) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow 23^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$; (b) $\mathrm{LiBH}_{4}, \mathrm{THF}, \mathrm{MeOH}, 60{ }^{\circ} \mathrm{C}, 40 \mathrm{~min}, 71 \%$ over 2 steps; (c) $\mathrm{Tf}_{2} \mathrm{O}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 20$ min, 63%; (d) hept-1-yne, BuLi, THF, $-78{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 92 \%$; (e) $\mathrm{BF}_{3} . \mathrm{OEt}_{2},\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}$, $35 \mathrm{~min}, 73 \%$; (f) 1-phenyl-1 H -tetrazole-5-thiol, DEAD, $\mathrm{PPh}_{3}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 76 \%$; g) TESCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (h) ammonium molybdate hydrate (cat.), $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{EtOH}, 0{ }^{\circ} \mathrm{C}, 46 \mathrm{~h}$; 30% over 2 steps.

The synthesis of sulfone 3-71 is shown in Scheme 3-14. First, the hydroxyl group of 3-40 was protected with TBSOTf to give 3-64, which was subjected to the removal of the oxazolidinone group under reductive conditions to provide alcohol 3-65 (71\% over two steps). Alcohol 3-65 was reacted with $\mathrm{Tf}_{2} \mathrm{O}$ to produce triflate 3-66 (63\%). The coupling reaction of 3-66 with a lithium acetylide derived from hept-1-yne afforded 3-67 in good yield (92\%). As described above, a tosyloxy group at the similar position in 3-27a could not be substituted by lithium pentynylide. High leaving ability of the triflyloxy group would enhance the reactivity of the alkyne coupling reaction. Although the reductive cleavage of the benzylideneacetal group was then attempted with DIBALH ${ }^{28}$, $\mathrm{NaBH}_{3} \mathrm{CN} / \mathrm{TMSCl}^{29}$, or borane/Lewis acid ${ }^{30}$, the desired benzyl ether could not be obtained. Therefore, the benzylideneacetal of 3-67 was removed by treatment with 1,2-ethanedithiol and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}{ }^{31}$ to give diol 3-68 in 73% yield along with a small amount of a triol. Mitsunobu reaction of 3-68 with 1-phenyl- 1 H -tetrazole-5-thiol selectively produced sulfide 3-69 (76\%), which was protected with TESCl to give 3-70. Finally, oxidation of 3-70 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of ammonium molybdate hydrate afforded 3-71 in 30\% yield over two steps. Thus, the model compound 3-71 was successfully synthesized from aldol product 3-40 in eight steps. This route is expected to be usable to the preparation of 3-4, a key intermediate for the total synthesis of $\mathbf{1 - 1}$.

Toward the model compound 3-78, the C9,C10-epimer of 3-71, the same eight-step process was applied to aldol 3-41 (Scheme 3-15). Indeed, the process has successfully produced sulfide 3-77, which would be converted to 3-78 in two steps.

Scheme 3-15. Reagents and conditions: (a) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 80 \%$; (b) LiBH_{4}, THF, MeOH, $60^{\circ} \mathrm{C}, 2 \mathrm{~h}, 80 \%$; (c) $\mathrm{Tf}_{2} \mathrm{O}, 2,6-$ lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 15$ min then $0{ }^{\circ} \mathrm{C}, 40 \mathrm{~min}$, 89%; (d) hept-1-yne, BuLi, THF, $-78{ }^{\circ} \mathrm{C}, 9 \mathrm{~h}, 88 \%$; (e) $\mathrm{BF}_{3} . \mathrm{OEt}_{2},\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 95 \mathrm{~min}$, 85%; (f) 1-phenyl-1H-tetrazole-5-thiol, DEAD, PPh_{3}, THF, $0{ }^{\circ} \mathrm{C}, 40 \mathrm{~min},<92 \%$.

3-7. Conclusion

The synthesis of the C9-C10-O-C11'-C12 region of nigricanoside-A dimethyl ester (1-1) was selected as the second subject of the thesis. The synthesis includes the following problems: (i) formation of di-sec-alkyl ether should be achieved in good yield; (ii) the ethereal carbons, C10 and C11', should be constructed stereoselectively; and (iii) the stereocenters, C9 and C12, adjacent to ethereal carbons, C10 and C11', respectively, should also be built stereoselectively and simultaneously with the formation of $\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11$ ' ether bond. The author intended to find an effective solution for the above problems and performed the following studies.

The author first planned to synthesize a series of simple model compounds, 3-1a-d (Figure 32), corresponding to the ether linkage between C16 and C20 fatty acid chains for the comparison of NMR spectra between natural 1-1 and each of 3-1a-d in order to estimate the stereochemistry at C11' and C 12 ' on the basis of the presumed C 8 ' and $\mathrm{C} 2{ }^{\prime} "$ configurations described in Chapter 2. The attempting synthesis of 3-2a was started from L-(+)-diethyl tartrate through a process including reductive cleavage of cyclic acetal to form an ether bond corresponding to $\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11$ ' ether bond. Although the synthesis of 3-2a has yet to be completed, the validity of the ether formation method in this model synthesis was demonstrated.

The author also examined the synthesis of an alternative series of model compounds, 3-3a-d (Figure 3-3). The model compounds, which have C 16 fatty acid chain and a mimic C10-O-C11' ether bond, were designed for the NMR comparison with 1-1 to find out a plausible combination of relative configurations at $\mathrm{C} 6, \mathrm{C} 9$ and C 10 of $\mathbf{1 - 1}$. For the formation of $\mathrm{C} 10-\mathrm{O}-\mathrm{C} 11$ ' ether bond in the model synthesis of 3-3a, an ether forming Ireland-Claisen rearrangement was applied. As a result, while the synthesis of 3-3a was suspended due to a protecting group problem, the stereoselective formation of C10-O-C11' ether bond by Ireland-Claisen rearrangement was successfully demonstrated.

For the construction of the C9-C10-O-C11'-C12 region of $\mathbf{1 - 1}$, an approach based on an asymmetric aldol reaction was also examined. The successful formation of the region is a key to achieving the total synthesis, and simultaneous generation of multi stereocenters with a stereocontrolled manner is required for efficiency. Therefore, an aldol approach for the construction of stereocenters at C9 and C10 was examined in the synthesis of 3-4, a key intermediate for the total
synthesis of 1-1. As a result, the author found a lithium enolate aldol reaction using Evans-type amide effective for the stereoselective construction of C11'-O-C10-C9 region. Interestingly, a substratespecific, anti-stereoselectivity in the aldol reaction despite the normal Z-geometrical selectivity in the enolate formation step was observed. Furthermore, the synthesis of sulfone 3-71, a model for 3-4, from aldol products $\mathbf{3 - 4 0}$ was achieved to demonstrate the validity of the synthetic route to $\mathbf{3 - 4}$. The synthesis of model sulfone 3-78 from 3-41 was also examined, and intermediate sulfide 3-77 was successfully obtained in good yield.

References

1. (a) Nicolaou, K. C.; Hwang, C.-K., Nugiel, D. A. J. Am. Chem. Soc. 1989, 111, 4136. TMSOTf$\mathrm{Et}_{3} \mathrm{SiH}$ system, (b) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron, Lett. 1979, 4679. (c) Sassaman, M. B.; Kotian, K. D.; Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1987, 52, 4314. (d) Sassaman, M. B.; Prakash, G. K. S.; Olah, G. A. Tetrahedron 1988, 44, 3771. $\mathrm{SnCl}_{4}-\mathrm{Et}_{3} \mathrm{SiH}$ system, (e) Mori, A.; Ishihara, K.; Yamamoto, H. Tetrahedron Lett. 1986, 27, 987. Reduction of 6-membered cyclic acetals and hemiacetals with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}-\mathrm{Et}_{3} \mathrm{SiH}$ system, (f) Rolf, D.; Gray, G. R. J. Am. Chem. Soc. 1982, 104, 3539. (g) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
2. (a) Whitesell, J. K.; Matthews, R. S.; Helbling, A. M. J. Org. Chem. 1978, 43, 784. (b) Bartlett, P. A.; Tanzella, D. J.; Barstow, J. F. J. Org. Chem. 1982, 47, 3941. (c) Sato, T; Tajima, K.; Fujisawa, T. Tetrahedron Lett. 1983, 24, 729. (d) Burke, S. D.; Fobare, W. F.; Pacofsky, G. J. J. Org. Chem. 1983, 48, 5221. (e) Gould, T. J.; Balestra, M.; Wittman, M. D.; Gary, J. A.; Rossano, L. T.; Kallmerten, J. J. Org. Chem. 1987, 52, 3889. (f) Ireland, R. E.; Wilcox, C. S. Tetrahedron Lett. 1977, 18, 2839. (g) Ireland, R. E.; Thaisrivongs, S.; Vanier, N.; Wilcox, C. S. J. Org. Chem. 1980, 45, 48. (h) Ireland, R. E.; Thaisrivongs, S.; Wilcox, C. S. J. Am. Chem. Soc. 1980, 102, 1155. (i) Ireland, R. E.; Anderson, R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.; Thaisrivongs, S.; Wilcox, C. S. J. Am. Chem. Soc. 1983, 105, 1988. (j) Schaus, S. E.; Brånalt, J.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 4876. (k) Wallace, G. A.; Scott, R. W.; Heathcock, C. H. J. Org. Chem. 2000, 65, 4145.
3. (a) Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 5, 591. (b) Crimmins, M. T.; She, J. Synlett 2004, 1371. (c) Crimmins, M. T.; McDougall, P. J.; Emmitte, K. A. Org. Lett. 2005, 7, 4033. (d) Crimmins, M. T.; Choy, A. L. J. Org. Chem. 1997, 62, 7548. (e) Crimmins M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653. (f) Kobayashi, S.; Takahashi, Y.; Komano, K.; Alizadeh, B. H.; Kawada, Y.; Oishi, T.; Tanaka, S.; Ogasawara, Y.; Sasaki, S.; Hirama, M. Tetrahedron. 2004, 60, 8375.
4. Reviews: (a) Nakata, T. Chem. Rev. 2005, 105, 4314. (b) Inoue, M. Chem. Rev. 2005, 105, 4379. (c) Sasaki, M. In Topics in Heterocyclic Chemistry; Gupta, R. R.; Kiyota, H., Eds.; Springer:

Berlin, 2006; Vol. 5, pp 149. (d) Fujiwara, K. In Topics in Heterocyclic Chemistry; Gupta, R. R.; Kiyota, H., Eds.; Springer: Berlin, 2006; Vol. 5, pp 97.
5. Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 9, 26
6. (a) Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120. (b) Evans D. A.; Tedrow J. S.; Shaw J. T.; Downey C. W. J. Am. Chem. Soc. 2002, 124, 392.
7. Rueffer, M. E.; Fort, L. K.; MacFarland D. K. Tetrahedron: Asymmetry 2004, 15, 3297.
8. Sun, H.; Lin, Y.-J.; Wu, Y.-L.; Wu. Y. Synlett, 2009, 15, 2473.
9. Mitsunobu, O. Synthesis 1981, 13, 1.
10. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
11. Williams, D. R.; Ihle, D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383.
12. (a) Ireland, R. E.; Muller, R. H.; Willard, A. K. J. Am. Chem. Soc.1976, 98, 2868. A review: (b) McFarland, C. M.; McIntosh, M. C. In The Claisen Rearrangement, Hiersemann, M.; Nubbemeyer, U., Eds.; Wiley-VCH: Weinheim, 2007, p 117.
13. Domon, D. Ph.D. thesis, Hokkaido University, 2008.
14. Nogoshi, K. Ph.D. thesis, Hokkaido University, 2012.
15. Nogoshi, K.; Domon, D.; Fujiwara, K.; Kawamura, N.; Katoono, R.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2013, 54, 676.
16. Kotsuki, H.; Kadota, I.; Ochi, M. Tetrahedron Lett. 1990, 31, 4609.
17. Fujiwara, K.; Kawamura, N.; Kawai, H.; Suzuki T. Tetrahedron Letters 2009, 50, 1236.
18. Barbat, J.; Gelas, J.; Horton. D. Carbohydr. Res. 1983, 116, 312.
19. Furstner, A.; Schlede, M. Adv. Synth. Catal. 2002, 344, 657.
20. Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2011, 133, 12584.
21. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
22. Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441
23. Stallforth, P.; Adibekian, A.; Seeberger, P. H. Org. Lett. 2008, 10, 1573.
24. (a) Marek, I.; Meyer, C.; Normant, J.-F. Org. Synth. 1997, 74, 194. (b) Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666.
25. (a) Chung, W. K.; Lam, S. K.; Lo, B.; Liu, L. L.; Wong, W.-T.; Chiu, P. J. Am. Chem. Soc. 2009, 131, 4556. (b) Kobayashi, Y.; Nakano, M.; Kumar, G. B.; Kishihara, K. J. Org. Chem. 1998, 63, 7505-7515
26. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953
27. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.
28. Takano, S.; Akiyama. M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 12, 1593.
29. Box, V.; Hollingsworth, R.; Roberts, E. Heterocycles 1980, 14, 1713.
30. Hernandez-torres, J. M.; Liew, S.-T.; Anchkar, J.; Wei, A. Synthesis 2002, 487.
31. Konosu, T.; Oida, S. Chem. Pharm. Bull. 1991, 39, 2212.

Experimental Section

General Methods

All reactions sensitive to air or moisture were carried out under an argon atmosphere in freshly distilled dry solvent under anhydrous conditions, unless, otherwise noted. Sensitive liquids and solutions were transferred by syringe-septum and cannula techniques. All commercially available reagents were used without further purification with the following exceptions. Tetrahydrofuran (THF) was distilled from sodium-benzophenone ketyl under argon. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and benzene were distilled from CaH_{2} prior to use. All reactions were monitored by thin-layer chromatography (TLC) with precoated silica gel $\left(\mathrm{SiO}_{2}\right)$ plates (Merck, silica gel $60 \mathrm{~F}_{254}$). Plates were visualized by ultraviolet light and by treatment with acidic anisaldehyde or phosphomolybdic acid stain followed by heating. Flash chromatography was performed on YMC Silica Gel 60 (230-400 mesh) as a stationary phase. Melting points were measured on a YANAGIMOTO micro-melting apparatus without calibration. Optical rotations were recorded on a JASCO P-1020 digital polarimeter. Infrared spectra (IR) were measured on a JEOL JIR-WINSPEC100 infrared spectrometer in noted states and are reported in wave numbers $\left(\mathrm{cm}^{-1}\right) .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNMAL300 (${ }^{1} \mathrm{H}$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75 MHz$)$ or a JNM- $\alpha-400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$)$ magnetic resonance spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra are reported as chemical shifts (δ) in parts-per- million (ppm) based on tetramethylsilane (0.00 ppm) or the residual solvent signal (for example, $\mathrm{C}_{6} \mathrm{HD}_{5}$ as 7.15 ppm) as an internal standard. The following abbreviations are used to describe spin multiplicity: $\mathrm{s}=\mathrm{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad}, \mathrm{dd}=$ double doublets, $\mathrm{dt}=\mathrm{double}$ triplets, td=triple doublets, and ddd=double double doublets; other combination is derived from those listed. Coupling constants (J) are reported in Hertz $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra are reported as chemical shifts (δ) in ppm based on the solvent signal (for example, ${ }^{13} \mathrm{CDCl}_{3}$ as $77.0 \mathrm{ppm} ;{ }^{13} \mathrm{C}^{12} \mathrm{C}_{5} \mathrm{D}_{6}$ as 128 $\mathrm{ppm})$ as an internal standard. Low and high resolution mass spectra were measured on a JEOL JMS600 H mass spectrometer under electron ionization (EI) condition and a JEOL JMS-SX102A mass spectrometer under field desorption (FD) condition.

Compound 3-12:

To a solution of L-(+)-Diethyl tartrate ($7.112 \mathrm{~g}, 34.49 \mathrm{mmol}$) in benzene (50 ml) were added heptan-4-one ($2.40 \mathrm{ml}, 17.23 \mathrm{mmol}$) and PTS $\cdot \mathrm{H}_{2} \mathrm{O}(327 \mathrm{mg}, 1.72 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred and refluxed for 24 h . Then, satd. aq. NaHCO_{3} was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=20$) to give 3-12 $(4.146 \mathrm{~g}, 13.71 \mathrm{mmol}, 80 \%$ from heptan-4-one).

3-12: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.31(6 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.35-1.50(4 \mathrm{H}, \mathrm{m})$, $1.63-1.71(4 \mathrm{H}, \mathrm{m}), 4.27(4 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.69(2 \mathrm{H}, \mathrm{s})$.

Compound 3-14:

To a solution of 3-12 ($4.146 \mathrm{~g}, 13.71 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ were added $\mathrm{TiCl}_{4}(3.00 \mathrm{ml}$, 27.4 $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{SiH}(4.38 \mathrm{ml}, 27.4 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, the mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 15 min . Then, satd. aq. NaHCO_{3} was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=20$) to give 3-14 (4.048 g, 13.30 mmol, 97%).

3-14: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85-0.93(6 \mathrm{H}, \mathrm{m}), 1.15-1.54(8 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.32$ $(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{OH}), 3.33-3.43(1 \mathrm{H}, \mathrm{m}), 4.14-4.36(4 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{d}$,
$J=1.5 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{dd}, J=1.5,9.2 \mathrm{~Hz})$.

Compound 3-11:

To a solution of $\mathbf{3 - 1 4}(4.048 \mathrm{~g}, 13.30 \mathrm{mmol})$ in THF $(100 \mathrm{ml})$ were added $\mathrm{LiAlH}_{4}(1.00 \mathrm{~g}, 26.4 \mathrm{mmol})$ at $-15^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min at $-15^{\circ} \mathrm{C}$ and then for 15 h at $23^{\circ} \mathrm{C}$. Then, additional $\mathrm{LiAlH}_{4}(0.20 \mathrm{~g}, 5.3 \mathrm{mmol})$ was added, and stirred for 40 min . Then, satd. aq. Rochelle salt was added, and the mixture was stirred for a while. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5 \rightarrow 1 \rightarrow \mathrm{EtOAc}$) to give 3-11 (2.16 g, $9.80 \mathrm{mmol}, 74 \%$).

3-11: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92(6 \mathrm{H}$, brt, $J=7.1 \mathrm{~Hz}), 1.25-1.60(8 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.72$ $(1 \mathrm{H}$, brs, OH$), 2.81(1 \mathrm{H}$, brs, OH$), 3.39-3.49(1 \mathrm{H}, \mathrm{m}), 3.49-3.55(1 \mathrm{H}, \mathrm{m}), 3.66-3.85(2 \mathrm{H}, \mathrm{m})$.

Compound 3-10a:

To a solution of 3-11 ($254.9 \mathrm{mg}, 1.157 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.483 \mathrm{ml}, 3.47$ mmol), DMAP (one crystal), and TBSCl ($348.8 \mathrm{mg}, 2.314 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and then the mixture was stirred for 12 h . Then, additional $\mathrm{TBSCl}(87.2 \mathrm{mg}, 0.578 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.483 \mathrm{ml}, 3.47 \mathrm{mmol})$ were added, and the mixture was stirred for 6 h . Then, additional $\mathrm{TBSCl}(52.3 \mathrm{mg}, 0.347 \mathrm{mmol})$ was added, and the mixture was stirred for 2 h . Then, to the resulting mixture was added $\mathrm{MsCl}(0.0894$ $\mathrm{ml}, 1.16 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then, additional $\mathrm{MsCl}(0.0894 \mathrm{ml}$,
1.16 mmol) was added, and the mixture was stirred for 30 min . Then, the solution was directly concentrated in vacuo. The resulting residue was roughly purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give crude 3-15. After the crude 3-15 was dissolved in THF (30 ml), TBAF• $3 \mathrm{H}_{2} \mathrm{O}$ ($965 \mathrm{mg}, 3.061 \mathrm{mmol}$) was added to the solution at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 16 h . Then, the solution was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5 \rightarrow 1)$ to give 3-10a $(229.0 \mathrm{mg}, 1.132 \mathrm{mmol}$, $98 \%)$.

3-10a: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(6 \mathrm{H}, \mathrm{brt}, J=7.1 \mathrm{~Hz}), 1.25-1.57(8 \mathrm{H}, \mathrm{m}), 2.07(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.71$ $(1 \mathrm{H}, \mathrm{dd}, J=2.7,5.2 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=4.1,5.2 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{ddd}, J=2.7,4.1,6.1 \mathrm{~Hz}), 3.25$ $(1 \mathrm{H}, \operatorname{brdt}, J=3.9,5.8 \mathrm{~Hz}), 3.38-3.48(1 \mathrm{H}, \mathrm{m}), 3.62-3.72(2 \mathrm{H}, \mathrm{m}), 3.73-3.83(2 \mathrm{H}, \mathrm{m})$.

Compound 3-16a:

To a solution of 3-10a ($13.3 \mathrm{mg}, 0.0657 \mathrm{mmol}$) in THF (1 ml) were added $\mathrm{PPh}_{3}(24.0 \mathrm{mg}, 0.0920$ $\mathrm{mmol})$ and 1-phenyl-1 H -tetrazole-5-thiol (PTSH) $(16.4 \mathrm{mg}, 0.0920 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . To the mixture was added DIAD ($0.0192 \mathrm{ml}, 0.0920 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 14 h . Then, the mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=15 \rightarrow 10$) to give 3-16a ($10.6 \mathrm{mg}, 0.0292 \mathrm{mmol}, 44 \%$).

3-16a: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.83(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.20-1.53(8 \mathrm{H}, \mathrm{m})$, $2.76(1 \mathrm{H}, \mathrm{dd}, J=2.6,5.1 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=3.9,5.1 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{ddd}, J=2.6,3.9,5.1 \mathrm{~Hz})$, 3.43-3.50 ($1 \mathrm{H}, \mathrm{m}$), $3.55(1 \mathrm{H}, \mathrm{dd}, J=6.4,12.7 \mathrm{~Hz}), 3.63-3.70(1 \mathrm{H}, \mathrm{m}), 3.74(1 \mathrm{H}, \mathrm{dd}, J=4.4,12.7 \mathrm{~Hz})$, 7.50-7.65 (5H, m).

Compound 3-17a:

To a solution of hept-1-yne ($0.0256 \mathrm{ml}, 0.197 \mathrm{mmol}$) in THF $(0.4 \mathrm{ml})$ was added $\mathrm{BuLi}(1.67 \mathrm{M}$ in hexane, $0.118 \mathrm{ml}, 0.197 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 35 min . To the mixture was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.0240 \mathrm{ml}, 0.195 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min at the same temperature. To the mixture was added a solution of $\mathbf{3 - 1 6 a}(10.6 \mathrm{mg}, 0.0292 \mathrm{mmol})$ in THF $(0.3$ ml), and the mixture was stirred for 45 min at the same temperature. Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with hexane several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=15 \rightarrow 10$) to give $\mathbf{3 - 1 7 a}$ ($9.3 \mathrm{mg}, 0.020 \mathrm{mmol}, 68 \%$).

3-17a: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 1.20-1.60(14 \mathrm{H}, \mathrm{m}), 2.13-2.20(2 \mathrm{H}, \mathrm{m}), 2.53-2.59(2 \mathrm{H}, \mathrm{m}), 3.42-3.52(2 \mathrm{H}, \mathrm{m}), 3.77-3.88(3 \mathrm{H}$, $\mathrm{m}), 7.50-7.65(5 \mathrm{H}, \mathrm{m})$.

Compound 3-18a:

To 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.050 \mathrm{ml}, 0.490 \mathrm{mmol})$ was added ammonium molybdate hydrate $\left\{\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}$ (a catalytic amount) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then, to a solution of 3-17a (2.0.mg, 0.0044 mmol) in $\mathrm{EtOH}(1 \mathrm{ml})$ was added the above yellow oxidant solution at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 13 h . Then, the reaction was quenched with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was
purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 7 \rightarrow 5$) to give 3-18a (1.3 mg , $0.0026 \mathrm{mmol}, 59 \%)$.

3-18a: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.82-0.95 (9H, m), 1.20-1.60 (14H, m), 2.11-2.19 ($2 \mathrm{H}, \mathrm{m}$), 2.47-2.54 $(2 \mathrm{H}, \mathrm{m}), 3.78-3.90(2 \mathrm{H}, \mathrm{m}), 3.90-4.00(3 \mathrm{H}, \mathrm{m}), 7.59-7.65(3 \mathrm{H}, \mathrm{m}), 7.70-7.75(2 \mathrm{H}, \mathrm{m})$.

Compound 3-23:

To a solution of heptan-4-ol ($750 \mathrm{mg}, 6.45 \mathrm{mmol}$) in DMF (2 ml) were added $\mathrm{NaH}(563 \mathrm{mg}, 55 \%$ in oil, 12.9 mmol) and bromoacetic acid ($1.34 \mathrm{~g}, 9.64 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for several hours. Although the reaction was exothermal, the reaction was allowed to stand without cooling. During the exothermal reaction, additional DMF (7 ml) was added. Until the end of the reaction (checked by TLC), the solution turned brown. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was acidified and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, two times, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc) to give 3-23 ($915 \mathrm{mg}, 5.25 \mathrm{mmol}, 81 \%$).

3-23: a pale yellow oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(6 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.27-1.61(8 \mathrm{H}, \mathrm{m}), 3.40-3.49(1 \mathrm{H}, \mathrm{m}), 4.09$ (2H, s).

Compound 3-22a:

To a solution of 3-24 ($165.0 \mathrm{mg}, 0.5475 \mathrm{mmol}$), 3-23 ($143.1 \mathrm{mg}, 0.8210 \mathrm{mmol}$), and DMAP (a catalytic amount) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{ml})$ was added EDCI ($157.4 \mathrm{mg}, 0.8210 \mathrm{mmol}$) at $23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 14 h . Then, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10$ $\rightarrow 5$) to give 3-22a ($240.1 \mathrm{mg}, 0.5246 \mathrm{mmol}, 96 \%$).

3-22a: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87-0.97(6 \mathrm{H}, \mathrm{m}), 1.22-1.60(20 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s})$, 3.31-3.40 $(1 \mathrm{H}, \mathrm{m}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=5.0,8.8 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=6.5,8.8 \mathrm{~Hz}), 3.90-4.10(2 \mathrm{H}, \mathrm{m})$, $4.06(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}), 4.16-4.24(1 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6,9.7 \mathrm{~Hz})$, $5.92(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=0.9,7.6,9.7 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=0.9,6.6 \mathrm{~Hz})$.

Compound 3-21a:

To a solution of 3-22a ($244.7 \mathrm{mg}, 0.5347 \mathrm{mmol}$) in THF (8.0 ml) was added KHMDS (0.5 M in toluene, $3.2 \mathrm{ml}, 1.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 2 min . To the mixture was added $\operatorname{TMSCl}(0.203 \mathrm{ml}, 1.60 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and then for 15 min at $0^{\circ} \mathrm{C}$. Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was
extracted with $\mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOAc}^{2}$ and CHCl_{3}. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was dissolved in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml} / 1 \mathrm{ml})$. To the solution was added $\mathrm{TMSCHN}_{2}\left(1.0 \mathrm{M} \mathrm{in}^{2} \mathrm{Et}_{2} \mathrm{O}, 1.6 \mathrm{ml}, 1.6 \mathrm{mmol}\right)$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, the mixture was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 8$ $\rightarrow 1 \rightarrow$ EtOAc) to give 3-21a ($118.0 \mathrm{mg}, 0.2502 \mathrm{mmol}, 47 \%, \mathrm{ds}=10: 1$).

3-21a: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.21(12 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.22-1.54(8 \mathrm{H}, \mathrm{m})$, $1.38(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 3.29-3.38(1 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{brt}, J=7.8 \mathrm{~Hz}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.90(2 \mathrm{H}, \mathrm{br}-$ $\mathrm{sp}, J=6.6 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, J=6.2,7.9 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{brq}, J=6.9 \mathrm{~Hz})$, $5.45(1 \mathrm{H}, \mathrm{brt}, J=6.9 \mathrm{~Hz}), 5.71(1 \mathrm{H}, \mathrm{dd}, J=7.1,15.7 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{dd}, J=7.0,15.7 \mathrm{~Hz})$.

Compound 3-26a:

To a solution of 3-21a ($118.0 \mathrm{mg}, 0.2502 \mathrm{mmol}$) in THF (3 ml) was added $\mathrm{LiAlH}_{4}(9.5 \mathrm{mg}, 0.25$ mmol) at $-10^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and one drop of $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture. Then, one drop of $4 \mathrm{M} \mathrm{aq}$.NaOH was added, and additional 10 drops of $\mathrm{H}_{2} \mathrm{O}$ was added. The resulting suspension was filtered through a Celite pad, and the filtrate was concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5 \rightarrow 2$) to give 3-26a ($114.0 . \mathrm{mg}, 0.2570 \mathrm{mmol}$, 100\%).

3-26a: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86-0.95(6 \mathrm{H}, \mathrm{m}), 1.17-1.57(8 \mathrm{H}, \mathrm{m}), 1.22(12 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 1.39$ $(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{brs}), 3.37-3.48(1 \mathrm{H}, \mathrm{m}), 3.38-3.70(4 \mathrm{H}, \mathrm{m}), 3.92(2 \mathrm{H}, \mathrm{br}-\mathrm{sp}, J=6.7$ $\mathrm{Hz}), 4.09(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.3 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{brq}, J=6.9 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{brt}, J=5.3 \mathrm{~Hz}), 5.70(1 \mathrm{H}$, brdd, $J=6.9,15.6 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{dd}, J=5.9,15.6 \mathrm{~Hz})$.

Compound 3-27a:

To a solution of 3-26a ($100.0 \mathrm{mg}, 0.2254 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.127 \mathrm{ml}, 0.902$ mmol), DMAP (one crystal), and $\mathrm{TsCl}(64.5 \mathrm{mg}, 0.338 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 24 h at $23^{\circ} \mathrm{C}$. The reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 5 \rightarrow 2$) to give 3-27a ($89.0 \mathrm{mg}, 0.149 \mathrm{mmol}, 66 \%$). 3-27a: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(6 \mathrm{H}, \mathrm{brt}, J=7.1 \mathrm{~Hz}), 1.13-1.42(20 \mathrm{H}, \mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}$, s), $2.44(3 \mathrm{H}, \mathrm{s}), 3.32-3.41(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=4.3,6.3 \mathrm{~Hz}), 3.87(2 \mathrm{H}$, br-sp, $J=6.8 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,10.5 \mathrm{~Hz}), 4.03-4.10(2 \mathrm{H}, \mathrm{m}), 4.48(1 \mathrm{H}, \mathrm{brq}, J=6.8 \mathrm{~Hz}), 5.28$ $(1 \mathrm{H}, \mathrm{brt}, J=5.0 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{dd}, J=6.8,15.7 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{dd}, J=6.2,15.7 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, J$ $=8.3 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$.

Compound 3-37:

To a solution of $\mathbf{3 - 3 4}(8.21 \mathrm{~g}, 61.2 \mathrm{mmol})$ in DMF (100 ml) were added Drierite ${ }^{\circledR}(4.0 \mathrm{~g})$, 2methoxypropene ($11.4 \mathrm{ml}, 122 \mathrm{mmol}$), and PTS $\cdot \mathrm{H}_{2} \mathrm{O}(40.0 \mathrm{mg}, 0.210 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . To the mixture was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{mg}, 0.943 \mathrm{mmol})$, and the mixture was stirred for a while. Then, the mixture was filtered through a Celite pad, and the pad was washed with acetone. The filtrate was concentrated in vacuo to give crude 3-35, which was used in the next reaction without further purification.
**The same process from 3-34 to $\mathbf{3 - 3 5}$ was performed alternatively with 4.05 g (30.2 mmol) of $\mathbf{3 - 3 4}$
as the second batch. The resulting crude 3-35 was combined with the above first batch product.** To a suspension of hexyltriphenylphosphonium bromide ($80.3 \mathrm{~g}, 188 \mathrm{mmol}$) in THF (400 ml) was added $\operatorname{BuLi}(1.64 \mathrm{M}$ in hexane, $114.1 \mathrm{ml}, 187.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h. During the reaction, the solution turned red. Then, to the resulting ylide solution was added a solution of the above combined crude 3-35 (the sum of two batches, $<91.4 \mathrm{mmol}$) in THF (90 ml) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 17 h at $23^{\circ} \mathrm{C}$. The reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $3: 1$ mixture of hexane and $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Then, the resulting residue was suspended in hexane and filtered through a Celite pad. The pad and the residue $\left(\mathrm{Ph}_{3} \mathrm{PO}\right)$ were washed thoroughly with hexane-EtOAc (4:1), and the filtrate was concentrated in vacuo. This operation, which was carried out to remove the $\mathrm{Ph}_{3} \mathrm{PO}$ from 3-36, was repeated until no white solid $\left(\mathrm{Ph}_{3} \mathrm{PO}\right)$ was observed in crude 3-36. The resulting crude 3-36 was used in the next reaction without further purification.

To the above crude 3-36 were added $\mathrm{AcOH}(140 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, and the mixture was stirred for 1 h at $100^{\circ} \mathrm{C}$. Then the mixture was concentrated in vacuo. The residual AcOH was removed by repeated azeotropic removal of acetic acid with toluene. The resulting crude triol was used in the next reaction without further purification.

To a solution of the above crude triol in benzene (200 ml) were added benzaldehyde ($12.0 \mathrm{ml}, 119$ mmol) and PTS $\cdot \mathrm{H}_{2} \mathrm{O}$ (a catalytic amount), and the mixture was stirred and relfuxed for 1.5 h with azeotropic removal of $\mathrm{H}_{2} \mathrm{O}$ (by a Dean-Stark trap). Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane/EtOAc=5) to give 3-37 (14.26 g, $49.10 \mathrm{mmol}, 54 \%$ over 4 steps, sum of two batches).

3-37: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.23-1.44(6 \mathrm{H}, \mathrm{m}), 2.05-2.15(2 \mathrm{H}, \mathrm{m}), 2.38-$ $2.51(1 \mathrm{H}, \mathrm{m}), 2.60-2.72(1 \mathrm{H}, \mathrm{m}), 3.55-3.79(2 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{brt}, J=10.2 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=4.8$, $10.5 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{s}), 5.51-5.66(2 \mathrm{H}, \mathrm{m}), 7.30-7.42(3 \mathrm{H}, \mathrm{m}), 7.45-7.52(2 \mathrm{H}, \mathrm{m})$.

Compound 3-33:

To a suspension of oil free NaH , which was prepared from commercial NaH in oil (55% in oil, 671.3 $\mathrm{mg}, 15.38 \mathrm{mmol}$) by washing with hexane under argon atmosphere, in THF (7 ml) was added a solution of bromoacetic acid $(1.12 \mathrm{~g}, 8.06 \mathrm{mmol})$ in THF (5 ml) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and for 50 min for $23^{\circ} \mathrm{C}$. To the mixture was added a solution of $\mathbf{3 - 3 7}(1.12 \mathrm{~g}$, $3.86 \mathrm{mmol})$ in DMF $(7 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 17 h at $23{ }^{\circ} \mathrm{C}$. The reaction was quenched with 1 M aq. HCl , and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and CHCl_{3} several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give crude $\mathbf{3 - 3 3}(1.34 \mathrm{~g}, 3.84 \mathrm{mmol}, 99 \%)$, which was used in the next reaction without further purification.

3-33: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 1.24-1.42(6 \mathrm{H}, \mathrm{m}), 2.00-2.10(2 \mathrm{H}, \mathrm{m}), 2.41-$ $2.53(1 \mathrm{H}, \mathrm{m}), 2.60-2.71(1 \mathrm{H}, \mathrm{m}), 3.46(1 \mathrm{H}, \mathrm{ddd}, J=5.0,9.2,10.0 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{brt}, J=10.5 \mathrm{~Hz})$, $3.73(1 \mathrm{H}, \mathrm{ddd}, J=3.8,7.2,9.2 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{s}), 4.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0,10.8 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{s}), 5.48-$ $5.62(2 \mathrm{H}, \mathrm{m}), 7.31-7.41(3 \mathrm{H}, \mathrm{m}), 7.43-7.50(2 \mathrm{H}, \mathrm{m})$.

Compound 3-38:

To a solution of carboxylic acid $\mathbf{3 - 3 3}(2.91 \mathrm{~g}, 8.36 \mathrm{mmol})$ in THF (50 ml) were added $\mathrm{Et}_{3} \mathrm{~N}(3.50 \mathrm{ml}$,
$25.1 \mathrm{mmol})$ and pivaloyl chloride ($2.01 \mathrm{ml}, 16.3 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at the same temperature. To a solution of (S)-4-benzyloxazolidin-2-one ($1.91 \mathrm{~g}, 10.8 \mathrm{mmol}$) in THF $(50 \mathrm{ml})$ was added $\mathrm{BuLi}\left(1.64 \mathrm{M}\right.$ in hexane, $6.12 \mathrm{ml}, 10.0 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then, the solution of lithium (S)-4-benzyl-2-oxooxazolidin-3-ide was added to the above mixed anhydride solution at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10$ $\rightarrow 8 \rightarrow 4 \rightarrow 1 \rightarrow \mathrm{EtOAc})$ to give $\mathbf{3 - 3 8}(4.29 \mathrm{~g}, 8.45 \mathrm{mmol}, \sim 100 \%)$.

3-38: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 1.22-1.41(6 \mathrm{H}, \mathrm{m}), 2.02-2.14(2 \mathrm{H}, \mathrm{m}), 2.51$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8,14.3 \mathrm{~Hz}), 2.66-2.86(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=9.5,13.5 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=3.3$, $13.5 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{ddd}, J=5.0,9.4,9.9 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{t}, J=10.4 \mathrm{~Hz}), 3.71-3.80(1 \mathrm{H}, \mathrm{m}), 4.21-4.36$ $(2 \mathrm{H}, \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{dd}, J=5.0,10.9 \mathrm{~Hz}), 4.64-4.76(1 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J$ $=17.8 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{s}), 5.48-5.64(2 \mathrm{H}, \mathrm{m}), 7.18-7.24(2 \mathrm{H}, \mathrm{m}), 7.27-7.40(6 \mathrm{H}, \mathrm{m}), 7.45-7.52(2 \mathrm{H}$, m).

Compound 3-40:

To a solution of carboxylic acid 3-33 (3.16 g, 9.07 mmol) in THF (30 ml) was added $\mathrm{Et}_{3} \mathrm{~N}(3.80 \mathrm{ml}$, $27.3 \mathrm{mmol})$ and pivaloyl chloride ($2.20 \mathrm{ml}, 18.1 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at the same temperature. To a solution of (R)-4-benzyloxazolidin-2-one ($2.41 \mathrm{~g}, 13.6 \mathrm{mmol}$) in THF $(30 \mathrm{ml})$ was added $\operatorname{BuLi}(1.64 \mathrm{M}$ in hexane, $8.29 \mathrm{ml}, 13.6 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 45 min . Then, the solution of lithium (R)-4-benzyl-2-oxooxazolidin-3-ide was added to the
above mixed anhydride solution at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $=10$ $\rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow$ EtOAc) to give $\mathbf{3 - 3 9}$ ($4.03 \mathrm{~g}, 7.94 \mathrm{mmol}, 88 \%$).

3-39: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 1.20-1.42(6 \mathrm{H}, \mathrm{m}), 2.02-2.14(2 \mathrm{H}, \mathrm{m}), 2.44-$ $2.57(1 \mathrm{H}, \mathrm{m}), 2.68-2.86(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=9.4,13.5 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=3.1,13.5 \mathrm{~Hz}), 3.45$ $(1 \mathrm{H}, \operatorname{brdt}, J=5.1,9.6 \mathrm{~Hz}), 3.73(1 \mathrm{H}$, brt, $J=10.4 \mathrm{~Hz}), 3.71-3.81(1 \mathrm{H}, \mathrm{m}), 4.20-4.34(2 \mathrm{H}, \mathrm{m}), 4.53$ $(1 \mathrm{H}, \mathrm{dd}, J=5.0,10.7 \mathrm{~Hz}), 4.63-4.74(1 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{d}, J=17.9 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{d}, J=17.9 \mathrm{~Hz})$, $5.49(1 \mathrm{H}, \mathrm{s}), 5.48-5.65(2 \mathrm{H}, \mathrm{m}), 7.17-7.24(2 \mathrm{H}, \mathrm{m}), 7.26-7.40(6 \mathrm{H}, \mathrm{m}), 7.44-7.53(2 \mathrm{H}, \mathrm{m})$.

Compound 3-40:

To a solution of 3-38 ($654.8 \mathrm{mg}, 1.290 \mathrm{mmol}$) in toluene (10 ml) was added dropwise LDA [ca. 0.97 M in THF \{prepared from diisopropyl amine ($1.0 \mathrm{ml}, 7.14 \mathrm{mmol}$) and BuLi (1.65 M in hexane, 3.6 $\mathrm{ml}, 5.94 \mathrm{mmol}$) in THF $(1.5 \mathrm{ml})\}, 2.58 \mathrm{ml}, 2.51 \mathrm{mmol}]$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$. To the mixture was added acrolein $(0.171 \mathrm{ml}, 2.56 \mathrm{mmol})$ in one portion, and the mixture was stirred for 5 min . The reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 8 \rightarrow 6 \rightarrow 3 \rightarrow$ EtOAc) to give 3-40 ($460.6 \mathrm{mg}, 63 \%$).

3-40: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 1.22-1.40(6 \mathrm{H}, \mathrm{m}), 2.02-2.12(2 \mathrm{H}, \mathrm{m}), 2.34-$ $2.45(1 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{OH}), 2.60-2.76(1 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{dd}, J=9.9,13.4 \mathrm{~Hz}), 3.30-$ $3.44(2 \mathrm{H}, \mathrm{m}), 3.70-3.79(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{t}, J=10.6 \mathrm{~Hz}), 4.17-4.36(3 \mathrm{H}, \mathrm{m}), 4.40-4.48(1 \mathrm{H}, \mathrm{m})$, 4.67-4.77 $(1 \mathrm{H}, \mathrm{m}), 5.32(1 \mathrm{H}$, brd, $J=10.5 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 5.43(1 \mathrm{H}$, brd, $J=17.1 \mathrm{~Hz})$, $5.47(1 \mathrm{H}, \mathrm{s}), 5.48-5.62(2 \mathrm{H}, \mathrm{m}), 6.06(1 \mathrm{H}, \mathrm{ddd}, J=5.8,10.5,17.1 \mathrm{~Hz}), 7.21-7.27(2 \mathrm{H}, \mathrm{m}), 7.27-7.38$ (6H, m), 7.44-7.49 (2H, m).

Compound 3-41:

To a solution of $\mathbf{3 - 3 9}(1.35 \mathrm{~g}, 2.66 \mathrm{mmol})$ in toluene $(25 \mathrm{ml})$ was added dropwise LDA [ca. 0.98 M in THF \{prepared from diisopropyl amine $(1.5 \mathrm{ml}, 10.7 \mathrm{mmol})$ and $\mathrm{BuLi}(1.64 \mathrm{M}$ in hexane, 6.0 ml , $9.84 \mathrm{mmol})$ in THF $(2.5 \mathrm{ml})\}, 8.0 \mathrm{ml}, 7.84 \mathrm{mmol}]$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 35 min at $-78^{\circ} \mathrm{C}$. To the mixture was added acrolein ($0.532 \mathrm{ml}, 7.98 \mathrm{mmol}$) in one portion, and the mixture was stirred for 10 min . The reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 8)$ to give $3-41(1.14 \mathrm{~g}, 2.02 \mathrm{mmol}$, $76 \%)$.

3-41: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 1.20-1.40(6 \mathrm{H}, \mathrm{m}), 2.04-2.16(2 \mathrm{H}, \mathrm{m}), 2.26-$ $2.41(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{OH}), 2.66(1 \mathrm{H}, \mathrm{dd}, J=10.6,13.6 \mathrm{~Hz}), 2.75-2.94(1 \mathrm{H}, \mathrm{m}), 3.23-$ $3.46(2 \mathrm{H}, \mathrm{m}), 3.54-3.77(2 \mathrm{H}, \mathrm{m}), 4.18-4.34(2 \mathrm{H}, \mathrm{m}), 4.45-4.52(2 \mathrm{H}, \mathrm{m}), 4.68-4.80(1 \mathrm{H}, \mathrm{m}), 5.31(1 \mathrm{H}$, brd, $J=10.5 \mathrm{~Hz}), 5.42(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \operatorname{brd}, J=17.2 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{s}), 5.47-5.61(2 \mathrm{H}$, $\mathrm{m}), 6.03(1 \mathrm{H}, \mathrm{ddd}, J=5.7,10.5,17.2 \mathrm{~Hz}), 7.16-7.39(8 \mathrm{H}, \mathrm{m}), 7.41-7.50(2 \mathrm{H}, \mathrm{m})$.

Compound 3-43:

To a solution of $\mathbf{3 - 4 0}(80.3 \mathrm{mg}, 0.142 \mathrm{mmol})$ in THF $(1.0 \mathrm{ml})$ and $\mathrm{MeOH}(0.5 \mathrm{ml})$ was added LiBH_{4} $(10 \mathrm{mg}, 0.459 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at $70^{\circ} \mathrm{C}$. Then the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ sat solution and was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=5 \rightarrow 4 \rightarrow$ EtOAc) and HPLC (YMC-Pack SIL-06-5 $\mu \mathrm{m}, 500 \mathrm{~mm} \times 20 \mathrm{mmID}$, hexane/EtOAc) to give $\mathbf{3 - 4 3}$ ($32.3 \mathrm{mg}, 0.0827 \mathrm{mmol}, 58 \%$).

3-43: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 1.20-1.42(6 \mathrm{H}, \mathrm{m}), 2.00-2.10(2 \mathrm{H}, \mathrm{m}), 2.21$ $(1 \mathrm{H}$, brs, OH$), 2.34-2.50(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}$, brs, OH$), 2.60-2.76(1 \mathrm{H}, \mathrm{m}), 3.44-3.80(6 \mathrm{H}, \mathrm{m}), 4.34-$ $4.44(2 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}$, brd, $J=10.5 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{brd}, J=17.2 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{s}), 5.48-5.64(2 \mathrm{H}$, $\mathrm{m}), 5.86-5.99(1 \mathrm{H}, \mathrm{m}), 7.30-7.40(3 \mathrm{H}, \mathrm{m}), 7.44-7.52(2 \mathrm{H}, \mathrm{m})$.

Compound 3-45:

To a solution of $\mathbf{3 - 4 3}(27.3 \mathrm{mg}, 0.0699 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added Grubbs' second generation catalyst (3-44) ($1.3 \mathrm{mg}, 0.0015 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred and refluxed for 2 h . Then, the reaction was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=4 \rightarrow 1 \rightarrow \mathrm{EtOAc}$) to give 3-45 as a crystalline
compound. Pure single crystals for X-ray crystallographic analysis were obtained by recrystallization ($\mathrm{Et}_{2} \mathrm{O} /$ hexane).

Crystal data for 3-45: Crystals were obtained by recrystallizing from $\mathrm{Et}_{2} \mathrm{O} /$ hexane. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}, M=$ 292.33, colorless needle, $0.600 \times 0.010 \times 0.010 \mathrm{~mm}^{3}$, monoclinic $\mathrm{P} 2_{1}(\mathrm{No} 4),. a=8.589(4) \AA, b=$ 4.806(2) $\AA, c=17.432(7) \AA, \beta=98.331(5)^{\circ}, V=712.0(5) \AA^{3}, D_{\mathrm{c}}(Z=2)=1.363 \mathrm{~g} \mathrm{~cm}^{-3}$. A total 744 unique data ($2 \theta_{\max }=58.5^{\circ}$) were measured at $\mathrm{T}=173 \mathrm{~K}$ by Rigaku Mercury CCD apparatus (Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71075 \AA$) . Numerical absorption correction was applied ($\mu=1.007 \mathrm{~cm}^{-1}$). The structure was solved by the direct method (SIR2004) and refined by the full-matrix least-squares method of F^{2} with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms were located at the calculated positions and refined with riding. The final $R 1$ and $w R 2$ values are 0.0882 (all data) and 0.2518 (all data), respectively, for 3032 reflections and 191 parameters. Estimated standard deviations are $0.005-0.011 \AA$ for bond lengths and $0.3-0.6^{\circ}$ for bond angles, respectively.

ORTEP diagram of cyclic ether 3-45.

Compound 3-46:

To a solution of $\mathbf{3 - 3 9}(92.4 \mathrm{mg}, 0.182 \mathrm{mmol})$ in THF (2 ml) was added dropwise LDA [ca. 0.97 M in THF \{prepared from diisopropyl amine ($1.0 \mathrm{ml}, 7.14 \mathrm{mmol}$) and $\mathrm{BuLi}(1.65 \mathrm{M}$ in hexane, 3.6 ml , $5.94 \mathrm{mmol})$ in THF $(1.5 \mathrm{ml})\}, 0.546 \mathrm{ml}, 0.530 \mathrm{mmol}]$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 \min at $-78^{\circ} \mathrm{C}$. To the mixture was added acrolein $(0.10 \mathrm{ml}, 1.5 \mathrm{mmol})$ in one portion, and the mixture was stirred for 15 min . The reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give crude 3-41.

To a solution of the above crude $\mathbf{3 - 4 1}$ in THF (1.0 ml) and $\mathrm{MeOH}\left(0.5 \mathrm{ml}\right.$) was added LiBH_{4} (an excess amount) at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 6 h at the same temperature. Then the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ sat solution and was extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by HPLC (YMC-Pack SIL-06-5 $\mu \mathrm{m}, 500 \mathrm{~mm} \times 20 \mathrm{mmID}$, hexane/EtOAc $=2 / 3$) to give $\mathbf{3 - 4 6}(21.3 \mathrm{mg}, 0.0545 \mathrm{mmol}, 30 \%$ over two steps $)$.

3-46: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.22-1.40(6 \mathrm{H}, \mathrm{m}), 2.00-2.10(2 \mathrm{H}, \mathrm{m}), 2.40-$ $2.50(1 \mathrm{H}, \mathrm{m}), 2.63-2.71(1 \mathrm{H}, \mathrm{m}), 3.46(1 \mathrm{H}, \mathrm{brq}, J=4.5 \mathrm{~Hz}), 3.51-3.65(2 \mathrm{H}, \mathrm{m}), 3.65-3.72(1 \mathrm{H}, \mathrm{m})$, 3.74-3.84 ($2 \mathrm{H}, \mathrm{m}$), 4.25-4.31 $(1 \mathrm{H}, \mathrm{m}), 4.36-4.42(1 \mathrm{H}, \mathrm{m}), 5.27(1 \mathrm{H}$, brd, $J=10.6 \mathrm{~Hz}), 5.39(1 \mathrm{H}$, brd, $J=17.3 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{s}), 5.48-5.63(2 \mathrm{H}, \mathrm{m}), 5.91(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.9,10.6,17.3 \mathrm{~Hz}), 7.30-7.40(3 \mathrm{H}$, m), 7.43-7.50 $(2 \mathrm{H}, \mathrm{m})$.

Compound 3-47:

To a solution of $\mathbf{3 - 4 6}(21.3 \mathrm{mg}, 0.0545 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was added Grubbs' second generation catalyst (3-44) ($1.2 \mathrm{mg}, 0.0014 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$, and the mixture was stirred and refluxed for 4 h . Then, the reaction was directly concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel + florisil, $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow$ hexane/EtOAc $=1 \rightarrow 1 / 3$) to give 3-47 as a crystalline compound. Pure single crystals for X-ray crystallographic analysis were obtained by recrystallization ($\mathrm{Et}_{2} \mathrm{O} /$ hexane $)$.

Crystal data for 3-47: Crystals were obtained by recrystallizing from $\mathrm{Et}_{2} \mathrm{O} /$ hexane. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}, M=$ 292.33, colorless needle, $0.400 \times 0.200 \times 0.010 \mathrm{~mm}^{3}$, monoclinic $\mathrm{P} 2{ }_{1}$ (No. 4), $a=16.487$ (11) \AA, $b=$ 4.461(3) $\AA, c=20.93(2) \AA, \beta=112.934(13)^{\circ}, V=1418(2) \AA^{3}, D_{\mathrm{c}}(Z=4)=1.370 \mathrm{~g} \mathrm{~cm}^{-3}$. A total 744 unique data ($2 \theta_{\max }=58.6^{\circ}$) were measured at $\mathrm{T}=173 \mathrm{~K}$ by Rigaku Mercury CCD apparatus (Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71075 \AA$). Numerical absorption correction was applied ($\mu=1.011 \mathrm{~cm}^{-1}$). The structure was solved by the direct method (SIR2004) and refined by the full-matrix least-squares method of F^{2} with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms were located at the calculated positions and refined with riding. The final $R 1$ and $w R 2$ values are 0.0856 (all data) and 0.2307 (all data), respectively, for 4898 reflections and 379 parameters. Estimated standard deviations are $0.006-0.012 \AA$ for bond lengths and $0.4-0.7^{\circ}$ for bond angles, respectively.

ORTEP diagram of cyclic ether 3-47. One of two crystallographically independent molecules is shown.

Compound 3-61:

To a solution of $\mathbf{3 - 3 8}(85.0 \mathrm{mg}, 0.167 \mathrm{mmol})$ in THF (2 ml) was added dropwise LDA [ca. 0.97 M in THF \{prepared from diisopropyl amine ($1.0 \mathrm{ml}, 7.14 \mathrm{mmol}$) and $\mathrm{BuLi}(1.65 \mathrm{M}$ in hexane, 3.6 ml , $5.94 \mathrm{mmol})$ in THF $(1.5 \mathrm{ml})\}, 0.502 \mathrm{ml}, 0.486 \mathrm{mmol}]$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 \min at $-78^{\circ} \mathrm{C}$. To the mixture was added $\operatorname{TESCl}(0.084 \mathrm{ml}, 0.50 \mathrm{mmol})$ in one portion, and the mixture was stirred for 2 h . The reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=15 \rightarrow 10 \rightarrow 7 \rightarrow 1 \rightarrow$ EtOAc) to give 3-61 ($71.8 \mathrm{mg}, 0.115 \mathrm{mmol}, 69 \%$).

3-61: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{HD}_{5}$ as 7.15 ppm) $\delta 0.79-0.91\left(9 \mathrm{H}, \mathrm{m},-\mathrm{SiCH}_{2}-, \mathrm{H} 2 \mathrm{O}^{\prime}\right), 1.05-1.13(9 \mathrm{H}$,
$\mathrm{m}), 1.15-1.24(4 \mathrm{H}, \mathrm{m}), 1.24-1.34(2 \mathrm{H}, \mathrm{m}), 2.02-2.14(2 \mathrm{H}, \mathrm{m}), 2.24\left(1 \mathrm{H}, \mathrm{dd}, J=10.2,13.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\right.$ $\mathrm{Ph}), 2.47-2.57(1 \mathrm{H}, \mathrm{m}), 2.70-2.79(1 \mathrm{H}, \mathrm{m}), 2.98\left(1 \mathrm{H}, \mathrm{dd}, J=3.9,13.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.50-3.60(3 \mathrm{H}$, $\mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{dt}, J=3.3,7.8 \mathrm{~Hz}, \mathrm{H} 12$ '), 3.86-3.96 ($2 \mathrm{H}, \mathrm{m}$), 4.32-4.44 ($1 \mathrm{H}, \mathrm{m}$), $5.28(1 \mathrm{H}, \mathrm{s}), 5.52-5.62$ $(1 \mathrm{H}, \mathrm{m}), 5.70-5.82(1 \mathrm{H}, \mathrm{m}), 5.77(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 10), 6.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.98-7.09(3 \mathrm{H}, \mathrm{m}), 7.10-7.26$ $(3 \mathrm{H}, \mathrm{m}), 7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz})$.

Compound 3-63:

To a solution of $\mathbf{3 - 3 9}(60.8 \mathrm{mg}, 0.119 \mathrm{mmol})$ in THF (2 ml) was added dropwise LDA [ca. 0.97 M in THF \{prepared from diisopropyl amine ($1.0 \mathrm{ml}, 7.14 \mathrm{mmol}$) and $\mathrm{BuLi}(1.65 \mathrm{M}$ in hexane, 3.6 ml , $5.94 \mathrm{mmol})$ in THF $(1.5 \mathrm{ml})\}, 0.359 \mathrm{ml}, 0.384 \mathrm{mmol}]$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 \min at $-78^{\circ} \mathrm{C}$. To the mixture was added $\operatorname{TESCl}(0.060 \mathrm{ml}, 0.36 \mathrm{mmol})$ in one portion, and the mixture was stirred for 2 h . The reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=15 \rightarrow 10 \rightarrow 7 \rightarrow 1 \rightarrow \mathrm{EtOAc}$) to give 3-63 ($44.5 \mathrm{mg}, 0.0716 \mathrm{mmol}, 60 \%$).

3-63: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{HD}_{5}$ as 7.15 ppm) $\delta 0.83-0.93\left(9 \mathrm{H}, \mathrm{m},-\mathrm{SiCH}_{2}-, \mathrm{H}_{2} 0^{\prime}\right), 1.10(9 \mathrm{H}, \mathrm{t}, J=$ $7.9 \mathrm{~Hz}), 1.20-1.47(6 \mathrm{H}, \mathrm{m}), 2.19\left(1 \mathrm{H}, \mathrm{dd}, J=9.9,13.4 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{Ph}\right), 2.20-2.28(2 \mathrm{H}, \mathrm{m}), 2.56-2.66$ $(1 \mathrm{H}, \mathrm{m}), 2.80-2.90(1 \mathrm{H}, \mathrm{m}), 2.91\left(1 \mathrm{H}, \mathrm{dd}, J=4.2,13.4 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.49-3.58(3 \mathrm{H}, \mathrm{m}), 3.70-3.77$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 12 \mathrm{l}), 3.84-3.95(2 \mathrm{H}, \mathrm{m}), 4.21-4.26(1 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{s}), 5.63-5.72(1 \mathrm{H}, \mathrm{m}), 5.74(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H} 10), 5.79-5.87(1 \mathrm{H}, \mathrm{m}), 6.77-6.82(2 \mathrm{H}, \mathrm{m}), 7.00-7.10(3 \mathrm{H}, \mathrm{m}), 7.10-7.16(1 \mathrm{H}, \mathrm{m}), 7.18-7.24(2 \mathrm{H}$, m), 7.62-7.66 ($2 \mathrm{H}, \mathrm{m}$).

Compound 3-64:

To a solution of $\mathbf{3 - 4 0}(323.5 \mathrm{mg}, 0.5739 \mathrm{mmol})$ and 2,6-lutidine (0.163 ml , 1.42 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 $\mathrm{ml})$ was added TBSOTf $(0.198 \mathrm{ml}, 0.861 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 80 min at the same temperature and then for 2 h at $23^{\circ} \mathrm{C}$. Then, MeOH (an excess amount) was added to the mixture, and the mixture was concentrated in vacuo to give crude 3-64. [Pure 3-64 was obtained through purification of crude mixture from an alternative batch by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 1)$. 3-64: a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}+1.9\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.08(3 \mathrm{H}, \mathrm{s}), 0.13(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{s}), 1.20-1.42(6 \mathrm{H}$, $\mathrm{m}), 2.00-2.12(2 \mathrm{H}, \mathrm{m}), 2.28-2.41(1 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{dd}, J=11.2,13.2 \mathrm{~Hz}), 2.82-2.93(1 \mathrm{H}, \mathrm{m}), 3.32-$ $3.48(2 H, m), 3.62-3.78(2 H, m), 4.10-4.33(3 H, m), 4.46-4.54(1 H, m), 4.62-4.75(1 H, m), 5.20-5.31$ $(2 \mathrm{H}, \mathrm{m}), 5.37(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{s}), 5.45-5.60(2 \mathrm{H}, \mathrm{m}), 5.92-6.06(1 \mathrm{H}, \mathrm{m}), 7.19-7.26(2 \mathrm{H}$, $\mathrm{m}), 7.26-7.40(6 \mathrm{H}, \mathrm{m}), 7.40-7.50(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3}\right),-4.4\left(\mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$, $18.2(\mathrm{C}), 22.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right), 27.5\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right)$, $38.3\left(\mathrm{CH}_{2}\right), 55.5(\mathrm{CH}), 66.9\left(\mathrm{CH}_{2}\right), 69.5\left(\mathrm{CH}_{2}\right), 75.2(\mathrm{CH}), 75.6(\mathrm{CH}), 80.6(\mathrm{CH}), 81.9(\mathrm{CH}), 100.7$ $(\mathrm{CH}), 117.5\left(\mathrm{CH}_{2}\right), 124.7(\mathrm{CH}), 126.0(\mathrm{CH} \times 2), 127.4(\mathrm{CH}), 128.1(\mathrm{CH} \times 2), 128.7(\mathrm{C}), 129.0(\mathrm{CH} \times 2)$, 129.2 (CH×2), 132.3 (CH), 135.2 (CH), 136.6 (C), 137.8 (CH), 153.0 (C), 171.1 (C).]

To a solution of the above crude 3-64 in THF (10 ml) was added $\mathrm{LiBH}_{4}(50.0 \mathrm{mg}, 2.29 \mathrm{mmol}$), and the mixture was stirred for 40 min at $60^{\circ} \mathrm{C}$ and 10 min at $23^{\circ} \mathrm{C}$. Then, the mixture was diluted with MeOH and 1 M aq. HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 8$) to give 3-65 (205.3 mg, $0.4067 \mathrm{mmol}, 71 \%$ over 2 steps).

3-65: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 0.92(9 \mathrm{H}, \mathrm{s}), 1.22-$
$1.40(6 \mathrm{H}, \mathrm{m}), 1.99-2.10(2 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OH}), 2.23-2.42(1 \mathrm{H}, \mathrm{m}), 2.68-2.78(1 \mathrm{H}, \mathrm{m})$, $3.41(1 \mathrm{H}$, brq, $J=4.2 \mathrm{~Hz}), 3.48-3.76(5 \mathrm{H}, \mathrm{m}), 4.24-4.31(1 \mathrm{H}, \mathrm{m}), 4.38-4.47(1 \mathrm{H}, \mathrm{m}), 5.24(1 \mathrm{H}$, brd, $J=10.5 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{s}), 5.45-5.61(2 \mathrm{H}, \mathrm{m}), 5.89(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.3,10.5$, $17.1 \mathrm{~Hz}), 7.30-7.40(3 \mathrm{H}, \mathrm{m}), 7.43-7.51(2 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0\left(\mathrm{CH}_{3}\right),-4.4\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 22.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3} \times 3\right)$, $27.5\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{CH}_{2}\right), 70.0\left(\mathrm{CH}_{2}\right), 72.7(\mathrm{CH}), 75.6(\mathrm{CH}), 80.9$ $(\mathrm{CH}), 81.9(\mathrm{CH}), 100.7(\mathrm{CH}), 116.9\left(\mathrm{CH}_{2}\right), 124.9(\mathrm{CH}), 126.0(\mathrm{CH} \times 2), 128.1(\mathrm{CH} \times 2), 128.7(\mathrm{CH})$, $132.0(\mathrm{CH}), 137.8(\mathrm{C}+\mathrm{CH})$.

Compound 3-66:

To a solution of 3-65 ($64.0 \mathrm{mg}, 0.127 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ were added 2,6-lutidine (0.044 ml , $0.38 \mathrm{mmol})$, and $\mathrm{Tf}_{2} \mathrm{O}(0.043 \mathrm{ml}, 0.25 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min . The reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was roughly purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 1$) to give triflate 3-66 ($50.9 \mathrm{mg}, 0.0799 \mathrm{mmol}, 63 \%$, a colorless oil), which was used immediately in the next reaction.

Compound 3-67:

To a solution of pent-1-yne ($0.070 \mathrm{ml}, 0.71 \mathrm{mmol}$) in THF (0.8 ml) was added $\operatorname{BuLi}(1.65 \mathrm{M}$ in hexane, $0.363 \mathrm{ml}, 0.599 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . To the solution of pent-1-yn-1yllithium was added a solution of 3-66 (50.9 mg, 0.0799 mmol$)$ in THF $(1.0 \mathrm{ml})$ at $\quad-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 6 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with hexane and $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 4 \rightarrow 1 \rightarrow 0$) to give 3-67 ($40.8 \mathrm{mg}, 0.0735 \mathrm{mmol}, 92 \%$).

3-67: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(3 \mathrm{H}, \mathrm{s}), 0.09(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{s}), 0.99$ $(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.22-1.40(6 \mathrm{H}, \mathrm{m}), 1.53(2 \mathrm{H}, \mathrm{sx}, J=7.2 \mathrm{~Hz}), 1.96-2.10(2 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{tt}, J=$ $2.4,7.0 \mathrm{~Hz}), 2.23-2.38(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{td}, J=2.4,5.9 \mathrm{~Hz}), 2.76-2.86(1 \mathrm{H}, \mathrm{m}), 3.46-3.63(4 \mathrm{H}, \mathrm{m})$, 4.22-4.28 ($1 \mathrm{H}, \mathrm{m}$), 4.42-4.50 ($1 \mathrm{H}, \mathrm{m}$), $5.21(1 \mathrm{H}$, brd, $J=10.4 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \operatorname{brd}, J=17.3 \mathrm{~Hz}), 5.44$ $(1 \mathrm{H}, \mathrm{s}), 5.44-5.61(2 \mathrm{H}, \mathrm{m}), 5.90(1 \mathrm{H}$, ddd, J = 6.7, 10.4, 17.3 Hz$), 7.28-7.40(3 \mathrm{H}, \mathrm{m}), 7.43-7.52(2 \mathrm{H}$, m).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.9\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 20.8\left(\mathrm{CH}_{2}\right)$, $22.3\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3} \times 3\right), 27.5\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 70.2\left(\mathrm{CH}_{2}\right)$, $73.3(\mathrm{CH}), 75.7(\mathrm{CH}), 76.3(\mathrm{C}), 81.1(\mathrm{CH}), 82.1(\mathrm{CH}), 82.3(\mathrm{C}), 100.7(\mathrm{CH}), 116.9\left(\mathrm{CH}_{2}\right), 125.2(\mathrm{CH})$, $126.1(\mathrm{CH} \times 2), 128.1(\mathrm{CH} \times 2), 128.6(\mathrm{CH}), 131.9(\mathrm{CH}), 137.6(\mathrm{CH}), 138.1(\mathrm{C})$.

Compound 3-68:

To a solution of 3-67 ($166.2 \mathrm{mg}, 0.2995 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml) were added ethanedithiol (0.063 $\mathrm{ml}, 0.75 \mathrm{mmol})$ and $\mathrm{BF}_{3} . \mathrm{OEt}(0.056 \mathrm{ml}, 0.45 \mathrm{mmol})$ at $-50^{\circ} \mathrm{C}$, and the mixture was stirred for 35 min . Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=20 \rightarrow 10 \rightarrow 4 \rightarrow 1 \rightarrow \mathrm{EtOAc}$) to give 3-68 ($101.7 \mathrm{mg}, 0.2179 \mathrm{mmol}, 73 \%$) and a triol ($23.0 \mathrm{mg}, 0.0652 \mathrm{mmol}, 22 \%$).

3-68: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.97$ $(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.22-1.41(6 \mathrm{H}, \mathrm{m}), 1.52(2 \mathrm{H}, \mathrm{sx}, J=7.2 \mathrm{~Hz}), 1.95-2.08(2 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{tt}, J=$ $2.3,7.1 \mathrm{~Hz}), 2.16-2.54(4 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}$, brs, OH$), 2.98(1 \mathrm{H}$, brs, OH$), 3.50-3.87(5 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}$, brdd, $J=4.6,7.3 \mathrm{~Hz}), 5.22-5.30(2 \mathrm{H}, \mathrm{m}), 5.30-5.58(2 \mathrm{H}, \mathrm{m}), 5.85-5.96(1 \mathrm{H}, \mathrm{m})$.

Compound 3-69:

To a solution of 3-68 ($10.2 \mathrm{mg}, 0.0229 \mathrm{mmol}$), $\mathrm{PPh}_{3}(6.6 \mathrm{mg}, 0.025 \mathrm{mmol}$), and 1-phenyl- 1 H -tetrazole-5-thiol (PTSH) ($12.2 \mathrm{mg}, 0.0688 \mathrm{mmol}$) in THF (0.6 ml) was added DIAD (0.0049 ml , 0.025 mmol) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . Then, to the mixture was added an additional

DIAD ($0.0025 \mathrm{ml}, 0.013 \mathrm{mmol}$), and the mixture was stirred for 50 min . Then, the mixture was diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=20 \rightarrow 12 \rightarrow$ 5) to give 3-69 (11.0 mg, $0.0175 \mathrm{mmol}, 76 \%)$.

3-69: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.09(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.93$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.20-1.51(8 \mathrm{H}, \mathrm{m}), 1.94-2.12(4 \mathrm{H}, \mathrm{m}), 2.12-2.54(4 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=7.7$, $13.8 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{ddd}, J=3.3,5.5,8.0 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{dd}, J=3.4,13.8 \mathrm{~Hz}), 3.76-3.94(3 \mathrm{H}, \mathrm{m})$, $4.33(1 \mathrm{H}, \mathrm{dd}, J=3.3,7.5 \mathrm{~Hz}), 5.19-5.27(2 \mathrm{H}, \mathrm{m}), 5.43-5.58(2 \mathrm{H}, \mathrm{m}), 5.86(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.5,10.0$, $17.7 \mathrm{~Hz}), 7.50-7.62(5 \mathrm{H}, \mathrm{m})$.

Compound 3-71:

To a solution of 3-69 ($11.0 \mathrm{mg}, 0.0175 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ were added imidazole (11.9 mg , $0.0175 \mathrm{mmol})$ and $\operatorname{TESCl}(0.0079 \mathrm{ml}, 0.053 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 6 h . Then the mixture was diluted with hexane and filtered through a Celite pad. The residue was washed with hexane several times. The filtrate was concentrated in vacuo to give crude 3-70 $\left[{ }^{1} \mathrm{H}\right.$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.59(6 \mathrm{H}, \mathrm{q}, J=7.9 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.87-0.96(15 \mathrm{H}, \mathrm{m})$, 1.22-1.38 (6H, m), 1.43 ($2 \mathrm{H}, \mathrm{sx}, \mathrm{J}=7.2 \mathrm{~Hz}$), 1.92-2.06 ($4 \mathrm{H}, \mathrm{m}$), 2.24-2.38 (4H, m), $3.50(1 \mathrm{H}, \mathrm{dd}, J$ $=6.1,13.6 \mathrm{~Hz}), 3.71-3.78(1 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=4.4,13.6 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{dt}, J=2.7,6.5 \mathrm{~Hz})$, 4.08-4.15 ($1 \mathrm{H}, \mathrm{m}$), 4.30-4.36 ($1 \mathrm{H}, \mathrm{m}$), $5.15(1 \mathrm{H}, \operatorname{brd}, J=10.4 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=17.3 \mathrm{~Hz}), 5.32-$ $5.52(2 \mathrm{H}, \mathrm{m}), 5.86(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.4,10.4,17.3 \mathrm{~Hz}), 7.51-7.63(5 \mathrm{H}, \mathrm{m})$.$] , which was used to the next$ reaction without further purification.

To 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.200 \mathrm{ml}, 1.76 \mathrm{mmol})$ was added ammonium molybdate hydrate $\left\{\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}(7.9 \mathrm{mg}, 0.18 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then, to a solution of the above crude 3-70 in EtOH (0.5 ml) was added the above yellow oxidant solution at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 46 h . Then, TBHP (0.9 M in toluene, 2 drops) and MeOH were added to the mixture, and the mixture was stirred for 40 min . Then, the reaction was quenched with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=30 \rightarrow 4)$ to give 3-71 ($4.1 \mathrm{mg}, 0.0053 \mathrm{mmol}, 30 \%$ over two steps $)$.

3-71: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.03(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.61(6 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.86-$ $0.98(15 \mathrm{H}, \mathrm{m}), 1.22-1.38(6 \mathrm{H}, \mathrm{m}), 1.45(2 \mathrm{H}, \mathrm{sx}, J=7.2 \mathrm{~Hz}), 1.94-2.40(8 \mathrm{H}, \mathrm{m}), 3.79(1 \mathrm{H}, \mathrm{dt}, J=3.4$, $6.5 \mathrm{~Hz}), 3.98-4.08(2 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{dd}, J=3.2,15.6 \mathrm{~Hz}), 4.25-4.31(1 \mathrm{H}, \mathrm{m}), 4.35-4.40(1 \mathrm{H}, \mathrm{m})$, 5.12-5.26 ($2 \mathrm{H}, \mathrm{m}$), 5.26-5.40 (1H, m), 5.42-5.52 ($1 \mathrm{H}, \mathrm{m}$), $5.78(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.6,10.4,17.2 \mathrm{~Hz}$), 7.57$7.64(3 \mathrm{H}, \mathrm{m}), 7.64-7.72(3 \mathrm{H}, \mathrm{m})$.

Compound 3-72:

To a solution of 3-41 (1.14 g, 2.02 mmol) and 2,6-lutidine ($0.500 \mathrm{ml}, 4.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml) was added TBSOTf $(0.640 \mathrm{ml}, 2.78 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . Then, an additional TBSOTf ($0.150 \mathrm{ml}, 0.653 \mathrm{mmol}$) was added, and the mixture was stirred for 4 h . Then, the mixture was diluted with CHCl_{3} and MeOH and concentrated in vacuo. The resultant residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 \rightarrow 6)$ to give 3-72 $(1.09 \mathrm{~g}, 1.61$ mmol, 80%).

3-72: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.08(3 \mathrm{H}, \mathrm{s}), 0.13(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 0.92(9 \mathrm{H}, \mathrm{s}), 1.22-$ $1.40(6 \mathrm{H}, \mathrm{m}), 2.00-2.14(2 \mathrm{H}, \mathrm{m}), 2.22-2.40(1 \mathrm{H}, \mathrm{m}), 2.57(1 \mathrm{H}, \mathrm{dd}, J=10.8,13.1 \mathrm{~Hz}), 2.70-2.83(1 \mathrm{H}$, $\mathrm{m}), 3.32-3.45(2 \mathrm{H}, \mathrm{m}), 3.56-3.74(2 \mathrm{H}, \mathrm{m}), 4.09-4.30(2 \mathrm{H}, \mathrm{m}), 4.42-4.54(2 \mathrm{H}, \mathrm{m}), 4.64-4.77(1 \mathrm{H}, \mathrm{m})$, $5.20-5.28(2 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 5.42-5.61(2 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{s}), 5.94(1 \mathrm{H}, \mathrm{ddd}, J=7.2$, $10.5,17.1 \mathrm{~Hz}), 7.19-7.26(2 \mathrm{H}, \mathrm{m}), 7.26-7.39(6 \mathrm{H}, \mathrm{m}), 7.42-7.51(2 \mathrm{H}, \mathrm{m})$.

Compound 3-73:

To a solution of 3-72 ($1.09 \mathrm{~g}, 1.61 \mathrm{mmol}$) in THF (20 ml) and $\mathrm{MeOH}(5.0 \mathrm{ml})$ was added LiBH_{4} $(190.6 \mathrm{mg}, 8.75 \mathrm{mmol})$, and the mixture was stirred for 2 h at $60^{\circ} \mathrm{C}$. Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 1)$ to give 3-73 ($651.3 \mathrm{mg}, 1.290 \mathrm{mmol}, 80 \%$).

3-73: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{s}), 1.20-$ $1.40(6 \mathrm{H}, \mathrm{m}), 2.00-2.10(2 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OH}), 2.37-2.50(1 \mathrm{H}, \mathrm{m}), 2.64-2.75(1 \mathrm{H}, \mathrm{m})$, $3.39(1 \mathrm{H}, \mathrm{brq}, J=4.6 \mathrm{~Hz}), 3.55(2 \mathrm{H}, \mathrm{brd}, J=7.2 \mathrm{~Hz}), 3.57-3.68(1 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{dd}, J=5.0,6.0$ $\mathrm{Hz}), 4.19(1 \mathrm{H}, \mathrm{brt}, J=5.5 \mathrm{~Hz}), 4.33-4.43(1 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{brd}, J=10.6 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{d}, J=17.1$ $\mathrm{Hz}), 5.45(1 \mathrm{H}, \mathrm{s}), 5.48-5.62(2 \mathrm{H}, \mathrm{m}), 5.85(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.6,10.6,17.1 \mathrm{~Hz}), 7.29-7.38(3 \mathrm{H}, \mathrm{m}), 7.42-$ $7.50(2 \mathrm{H}, \mathrm{m})$.

Compound 3-74:

To a solution of 3-73 (273.3 mg, 0.5414 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ were added 2,6-lutidine (0.156 ml , $1.35 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(0.181 \mathrm{ml}, 1.08 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min at $78^{\circ} \mathrm{C}$ and for 40 min at $0{ }^{\circ} \mathrm{C}$. Then, the reaction was quenched with 1 M aq. HCl , and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was roughly purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=10 \rightarrow 4$) to give triflate 3-74 ($306.8 \mathrm{mg}, 0.4818 \mathrm{mmol}, 89 \%$, a colorless oil), which was used immediately in the next reaction.

Compound 3-75:

3-74

3-75

To a solution of pent-1-yne ($0.300 \mathrm{ml}, 3.04 \mathrm{mmol}$) in THF (3 ml) was added $\operatorname{BuLi}(1.64 \mathrm{M}$ in hexane, $1.52 \mathrm{ml}, 2.49 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 25 min at $-78^{\circ} \mathrm{C}, 15 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$, and 10 min at $-78^{\circ} \mathrm{C}$. To the solution of pent-1-yn-1-yllithium was added a solution of 3-74 (306.8 mg, 0.4818 mmol) in THF (3 ml) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 9 h . Then, the reaction was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with hexane and $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane $/ E t O A c=10 \rightarrow 1$) to give 3-75 ($235.4 \mathrm{mg}, 0.4242 \mathrm{mmol}, 88 \%$).

3-75: a colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 0.92(9 \mathrm{H}, \mathrm{s}), 0.98$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.22-1.40(6 \mathrm{H}, \mathrm{m}), 1.52(2 \mathrm{H}, \mathrm{sx}, J=7.4 \mathrm{~Hz}), 2.00-2.18(4 \mathrm{H}, \mathrm{m}), 2.28-2.49(3 \mathrm{H}$, $\mathrm{m}), 2.68-2.78(1 \mathrm{H}, \mathrm{m}), 3.44-3.62(4 \mathrm{H}, \mathrm{m}), 4.21-4.27(1 \mathrm{H}, \mathrm{m}), 4.38-4.48(1 \mathrm{H}, \mathrm{m}), 5.16-5.29(2 \mathrm{H}, \mathrm{m})$, $5.43(1 \mathrm{H}, \mathrm{s}), 5.44-5.60(2 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.8,10.4,17.3 \mathrm{~Hz}), 7.29-7.38(3 \mathrm{H}, \mathrm{m}), 7.42-7.50$ (2H, m).

Compound 3-76:

To a solution of 3-75 ($200.4 \mathrm{mg}, 0.3612 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml) were added ethanedithiol (0.100 $\mathrm{ml}, 1.31 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}(0.100 \mathrm{ml}, 0.803 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 95 min. Then, the reaction was quenched with satd. aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica gel, hexane \rightarrow hexane/EtOAc $=20 \rightarrow 4 \rightarrow$ EtOAc) to give 3-76 (143.0 mg, $0.3064 \mathrm{mmol}, 85 \%)$ and a triol $(10.3 \mathrm{mg}, 0.0292 \mathrm{mmol}, 8 \%)$.

3-76: a colorless oil;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{s}), 0.97$ $(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.20-1.42(6 \mathrm{H}, \mathrm{m}), 1.51(2 \mathrm{H}, \mathrm{sx}, J=7.1 \mathrm{~Hz}), 1.96-2.09(2 \mathrm{H}, \mathrm{m}), 2.09-2.18(2 \mathrm{H}$, $\mathrm{m}), 2.21-2.33(2 \mathrm{H}, \mathrm{m}), 2.37-2.53(2 \mathrm{H}, \mathrm{m}), 3.21-3.30(1 \mathrm{H}, \mathrm{m}), 3.48-3.88(4 \mathrm{H}, \mathrm{m}), 4.26-4.34(1 \mathrm{H}, \mathrm{m})$, 5.20-5.30 ($2 \mathrm{H}, \mathrm{m}$), 5.30-5.60 ($2 \mathrm{H}, \mathrm{m}$), 5.83-5.98 ($1 \mathrm{H}, \mathrm{m}$).

Compound 3-77:

To a solution of $\mathbf{3 - 7 6}(9.0 \mathrm{mg}, 0.0193 \mathrm{mmol}), \mathrm{PPh}_{3}(15.2 \mathrm{mg}, 0.0579 \mathrm{mmol})$, and 1-phenyl- 1 H -tetrazole-5-thiol (PTSH) ($10.3 \mathrm{mg}, 0.0578 \mathrm{mmol}$) in THF (0.4 ml) was added DIAD (0.0050 ml , 0.025 mmol) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 25 min . Then, additional DIAD (two drops) was added, and the mixture was stirred for 15 min . Then, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and MeOH and concentrated in vacuo. The resulting residue was suspended with hexane, and the mixture was filtered through a Celite pad. The residue was washed with hexane several times. The filtrate was concentrated in vacuo to give crude 3-77 (11.1 mg, $<0.0177 \mathrm{mmol},<92 \%$).

3-77: a colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.02(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 0.96$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.20-1.40(6 \mathrm{H}, \mathrm{m}), 1.51(2 \mathrm{H}, \mathrm{sx}, J=7.3 \mathrm{~Hz}), 1.94-2.17(4 \mathrm{H}, \mathrm{m}), 2.24-2.52(4 \mathrm{H}$, $\mathrm{m}), 3.57-3.66(1 \mathrm{H}, \mathrm{m}), 3.76-3.82(2 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{dd}, J=3.4,13.8 \mathrm{~Hz}), 3.82-3.88(1 \mathrm{H}, \mathrm{m}), 3.90-$ $3.99(1 \mathrm{H}, \mathrm{m}), 4.20-4.26(1 \mathrm{H}, \mathrm{m}), 5.11-5.24(2 \mathrm{H}, \mathrm{m}), 5.45-5.58(2 \mathrm{H}, \mathrm{m}), 5.86(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.2,10.3$, $17.2 \mathrm{~Hz}), 7.50-7.62(5 \mathrm{H}, \mathrm{m})$.

Acknowledgements

All the studies described in this dissertation were carried out under the supervision of Professor Dr. Takanori SUZUKI, Department of Chemistry, Faculty of Science, Hokkaido University. The author would like to express deeply his sincere gratitude to Professor Suzuki for his guidance and constant encouragement throughout the course of this work, for preparation of this thesis and for helpful discussion.

The author wishes to thank sincerely Professor Dr. Hajime ITO, Department of Applied Science and Engineering, Faculty of Engineering, Hokkaido University and Associate Professor Dr. Kenshu FUJIWARA, Professor Dr. Keiji TANINO, and Professor Dr. Hideaki OIKAWA, Department of chemistry, Faculty of Science, Hokkaido University, for their participation to the preliminary examination of the author's dissertation and their helpful discussions. Especially for Associate Professor FUJIWARA, the author would like to express special thanks for his help to the author's study and his encouragement. Without of his guidance and persistent help this dissertation would not have been possible.

The author would like to be thankful to Associate Professor Dr. Hidetoshi KAWAI, Department of Chemistry, Faculty of Science, Tokyo University of Science, and Ryo KATOONO, Department of chemistry, Faculty of Science, Hokkaido University, for their helpful suggestion and encourages.

The author express appreciation to Dr. Eri FUKUSHI at GC-MS \&NMR Laboratory, Graduate School of Agriculture, Hokkaido University, for the measurement of mass spectra.

Heartfelt thanks are also given to all other members in the Suzuki's laboratory. They often afforded beneficial advice to the author and encouraged him. Especially, the author express the grateful thanks to Dr. Keita TANAKA, Dr. Kazuhisa WADA, Mr. Yuki, SUZUKI, Mr. Takuto SATO, Mr. Yusuke SANO, Mr. Takayuki TSUNODA, they encouraged the author through his research work and daily life.

Thanks are also give to Dr. Yasushi KATAGIRI, Dr. Yuta HIROSE, Dr. Keisuke NOGOSHI, Mr. Yuta KIKUCHI, Mr. Shun-ichi MURATA, Dr. Yusuke ISHIGAKI, Dr. Youhei MIURA, Mr. Yoshinori TANI, Ms. Natsumi KAWAMURA for their helpful encouragements. In particular, Dr.

Yasushi, HIROSE, and NOGOSHI, their support and care helped the author overcome trouble and stay focused on his graduate study. The author greatly values their friendship and he deeply appreciates their support.

Finally, the author would like to express the largest gratitude to his parents, Ritsuko and Masanori KINASHI, older brother, Kenji, grandparents, Shigeru and Shizuko UEYAMA, and his aunt, Tomoko UEYAMA, for their financial support, encouragement and understanding of his outlook. they have been a true and great supporters and have unconditionally loved the author during good and bad times, the author is forever grateful.

September 2013

[^0]: ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2(\mathrm{C}), 25.2\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3} \times 3\right), 28.2$

