Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase

Tatsuya Ishiyama, Takeru Yano, and Shigeo Fujikawa
Division of Mechanical Science, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

(Received 21 May 2004; accepted 7 September 2004; published online 11 November 2004)

The kinetic boundary condition for the Boltzmann equation at an interface between a polyatomic vapor and its liquid phase is investigated by the numerical method of molecular dynamics, with particular emphasis on the functional form of the evaporation part of the boundary condition, including the evaporation coefficient. The present study is an extension of a previous one for argon [Ishiyama, Yano, and Fujikawa, Phys. Fluids 16, 2899 (2004)] to water and methanol, typical examples of polyatomic molecules. As in the previous study, molecular dynamics simulations of vapor–liquid equilibrium states and those of evaporation from liquid into a virtual vacuum are carried out for water and methanol. In spite of the formation of molecular clusters in the vapor phase and the presence of the preferential orientation of molecules at the interface, essentially the same results as in the previous study are obtained. When the bulk liquid temperature is relatively low, the evaporation part is the product of the half range Maxwellian for the translational velocity of molecules of saturated vapor at the temperature of the bulk liquid phase, the equilibrium distribution of rotational energy of molecules at the temperature, and the evaporation coefficient (or the condensation coefficient in the equilibrium state). The evaporation coefficients of water and methanol are determined without any ambiguity as decreasing functions of the temperature, and are found to approach unity with the decrease of the temperature. © 2004 American Institute of Physics. [DOI: 10.1063/1.1811674]

I. INTRODUCTION

The behavior of a vapor adjacent to an interface between the vapor and its condensed phase can be determined by solving the Boltzmann equation (or a model equation) with a kinetic boundary condition at the interface. The kinetic boundary condition widely used can be written as the sum of an evaporation part αf^e and a reflection part $(1-\alpha)f^r$,

$$ f^\text{out} = \alpha f^e + (1-\alpha)f^r \quad (\xi_z > 0), $$

where f^out is the distribution function of outgoing molecules from the interface, α is a parameter between zero and unity, sometimes called the condensation coefficient, f^e is the equilibrium distribution of saturated vapor at the temperature of the condensed phase, f^r is usually the distribution function of the diffuse reflection at the temperature, and ξ_z is the velocity component normal to the interface (for simplicity, we consider an interface at rest). A number of problems have been solved with this type of kinetic boundary condition (see Refs. 1 and 2 and references therein). However, its physical validity still remains to be established, and the related studies on the basis of the molecular dynamics (MD) method have just been started. In the present paper, we investigate the validity of this type of kinetic boundary condition at the interface of a polyatomic vapor and its own liquid phase by MD method, with particular emphasis on the functional form of the evaporation part.

Previously, we have studied the kinetic boundary condition at an interface between argon vapor and its condensed phase. In the study, we have executed MD simulations of vapor–liquid (or solid) equilibrium states and those of evaporation from the liquid (or solid) phase into a virtual vacuum. Thereby, we have demonstrated that, in the case that the temperature of the bulk condensed phase T_l is near the triple point temperature of argon, the distribution function for molecules evaporating into virtual vacuum is given by $\alpha e f^e$, where ρ_e is the saturated vapor density, $\rho e f^e$ is the half-Maxwellian of saturated vapor defined as

$$ \rho e f^e = \frac{\rho_e}{(2\pi R T_l)^{3/2}} \exp \left(-\frac{\xi_z^2}{2RT_l} \right) \left(\xi_z > 0 \right) $$

(R is the gas constant and ξ_z and ξ_x are the velocity components tangential to the interface), and αe is the evaporation coefficient (or the condensation coefficient in the equilibrium state) defined by the ratio of a mass flux evaporating into virtual vacuum $\langle f^p \rangle_{\text{evap}}$ to the outgoing mass flux in the equilibrium state $\langle J_{\text{out}} \rangle_{e}$,

$$ \alpha e = \frac{\langle f^p \rangle_{\text{evap}}}{\langle J_{\text{out}} \rangle_{e}} $$

(see Fig. 1 and Sec. II for detail). The evaporation part in the kinetic boundary condition represents spontaneous evaporation, which is independent of the condition of vapor, and...
hence it is unchanged whether the condensed phase is contact with the vapor or exposed to a virtual vacuum. Therefore, one can regard the distribution function for molecules evaporating into virtual vacuum, Eq. (2), as the evaporation part in the kinetic boundary condition. We have thus shown that the evaporation part in Eq. (1) is valid in relatively low temperature cases.\(^6\) The determination of the functional form of the reflection part in various nonequilibrium conditions may require a number of nonequilibrium MD simulations because it depends on the state of the vapor and such nonequilibrium computations are underway.

Here, we note that there is an experimental result corresponding to the virtual vacuum simulation,\(^7\) where it is shown that the velocity distribution of sodium atoms emitted from liquid surface is a Maxwellian and the evaporation coefficient is unity. The evaporation of dimer sodium has also been studied there. However, the distributions of angular velocity and rotational energy of the dimer have not been discussed, and the evaporation coefficient has not been measured.\(^8\)

In this paper, we shall extend our previous study to the cases of water and methanol, typical examples of polyatomic molecules for which the vapor–liquid coexistence is possible at room temperature. The simulations are carried out in a similar way to the previous one, but a more careful and detailed analysis is required, because of the additional degrees of freedom for internal motions and the polarity due to uneven sharing of the bonding electron pair. In particular, the latter induces the formation of molecular clusters in vapor phase and the presence of the preferential orientation of molecules at the interface. Nevertheless, we arrive at essentially the same conclusions as the previous study. That is, the evaporation part can be expressed as

\[\alpha_v \rho_0 \tilde{g}^* (\xi > 0), \]

(4)

in relatively low temperature cases, where \(\rho_0 \tilde{g}^* \) is the half-Maxwellian for translational motions of center of mass of a polyatomic molecule, which is equal to that given in the right-hand side of Eq. (2) for a monatomic molecule, and \(\tilde{g}^* \) is the equilibrium distribution associated with internal motions of polyatomic molecule of \(n \) degree of freedom,

\[\tilde{g}^* = \frac{E^{n/2-1}}{\Gamma(n/2)(kT_c)^{n/2}} \exp \left(-\frac{E}{kT_c} \right) \left(0 \leq E < \infty \right) \]

(5)

\((k \text{ is the Boltzmann constant, } E \text{ is the energy of internal motion of one molecule, and } \Gamma \text{ is the gamma function). The symbol } ^* \text{ signifies a normalized distribution function and the superscript } ^* \text{ represents that the distribution of molecules is in an equilibrium state. Equation (4) has been utilized for the analysis of the effects of internal degree of freedom on inverted temperature profiles between evaporating and condensing parallel plates.\(^8\) The main objective of the present study is to examine the validity of Eq. (4) with Eqs. (2), (3), and (5) for the cases of water and methanol by the numerical method of molecular dynamics.}

In the following section, we shall provide the outline of the method of analysis. After the description of the computational method in Sec. III, the numerical results and discussion are given in Sec. IV, and followed by conclusions in Sec. V.

II. OUTLINE OF ANALYSIS

As in the previous study,\(^5\) we first define a distribution function of spontaneous evaporation \(f_{\text{evap}}^{\text{sp}} \) as a distribution function of molecules evaporating from the interface and independent of the condition of incident vapor molecules. This means that \(f_{\text{evap}}^{\text{sp}} \) is unchanged whether the condensed phase is contact with the vapor or exposed to virtual vacuum, and it should be determined by the temperature in the bulk condensed phase only. An arbitrary \(f_{\text{out}} \) given by MD simulation can then be split into two parts, \(f_{\text{evap}}^{\text{sp}} \) and the remainder, i.e.,

\[f_{\text{out}} = f_{\text{evap}}^{\text{sp}} + f_{\text{ref}} \]

(6)

where \(f_{\text{ref}} = f_{\text{evap}}^{\text{sp}} - f_{\text{evap}}^{\text{ref}} \). Putting \(f_{\text{out}} \) in the form of Eq. (6) enables us to verify the evaporation part of Eq. (1) in the method explained below. The splitting may also be regarded as the extraction of an inherent property of the bulk condensed phase from \(f_{\text{out}} \). We shall remark that we do not intend classifying every individual outgoing molecule as either evaporated or reflected one in a vapor–liquid two-phase system; the complete classification may be impossible as mentioned in Refs. 5 and 6.

If the condensed phase is exposed to virtual vacuum, there are no incoming and reflected molecules at the interface, and hence we have

\[f_{\text{out}} = f_{\text{evap}}^{\text{sp}} (\xi > 0). \]

(7)

Accordingly, the functional form of \(f_{\text{evap}}^{\text{sp}} \) can be determined by an MD simulation of evaporation into virtual vacuum. In Sec. IV, we execute the virtual vacuum simulation by eliminating vapor molecules at a distance near the interface, and evaluate a normalized distribution function \(\rho_c f_{\text{evap}}^{-1} \) by counting the number of evaporating molecules, where \(\rho_c \) is the density of molecules evaporating into virtual vacuum,

\[\rho_c = \iiint_{\xi > 0} f_{\text{evap}}^{\text{sp}} dE d\xi_1 d\xi_2 d\xi_3. \]

(8)

The examination of the functional form of \(\rho_c f_{\text{evap}}^{-1} \) in Sec. IV D shows that

\[\rho_c f_{\text{evap}}^{-1} = 2 \tilde{g}^* \tilde{g}^* (\xi > 0) \]

(9)

holds in relatively low temperature cases for water and methanol, where \(\tilde{f}^* \) and \(\tilde{g}^* \) are defined by Eqs. (2) and (5), respectively.
where \(k \) by the temperature of the condensed phase

\[
\langle J_{\text{evap}}^p \rangle = \int \int \int_{\xi_j > 0} \int_0^\infty \xi_j f_{\xi_j}^p dE d\xi_j d\xi_z = \rho_e \sqrt{\frac{2RT_e}{\pi}},
\]

(10)

\[
\langle J_{\text{out}} \rangle = \int \int \int_{\xi_j > 0} \int_0^\infty \xi_j \rho_e f_{\xi_j}^g dE d\xi_j d\xi_z = \rho_e \sqrt{\frac{RT_e}{2\pi}}.
\]

(11)

Substituting Eqs. (10) and (11) into Eq. (3) immediately gives

\[
\rho_e = \frac{1}{2} \alpha_e \rho_c.
\]

(12)

Thus, we can show that \(f_{\text{evap}}^p = \alpha_e \rho_e \hat{g} \) for water and methanol.

The parameter \(\alpha \) in the right-hand side of Eq. (1) has often been called the condensation coefficient. The precise definition of the condensation coefficient \(\alpha_e \) is

\[
\alpha_e = \frac{\langle J_{\text{cond}} \rangle}{\langle J_{\text{coll}} \rangle},
\]

(13)

where \(\langle J_{\text{cond}} \rangle \) is a condensing mass flux at the interface and \(\langle J_{\text{coll}} \rangle \) is a collision mass flux.\(^9\) By definition, \(\alpha_e \) is affected by the condition of vapor, while \(\alpha_e \) is uniquely determined by the temperature of the condensed phase [see Eqs. (3), (10), and (11)]. In the equilibrium state, as can readily be seen from Fig. 1, \(\langle J_{\text{coll}} \rangle = \langle J_{\text{out}} \rangle = \langle J_{\text{out}} \rangle \) and \(\langle J_{\text{coll}} \rangle = \langle J_{\text{evap}}^p \rangle \), and hence the evaporation coefficient is equal to the condensation coefficient in the equilibrium state, i.e., \(\alpha_e = \alpha_e \). In Sec. IV C, we shall present the relation between the evaporation coefficient defined by Eq. (3) and the temperature in the bulk condensed phase for water and methanol [Eq. (13) is not used]. The result for water qualitatively agrees with that obtained in Ref. 10. However, in Ref. 10, Eq. (13) was evaluated in vapor–liquid equilibrium MD simulations by counting the number of molecules reflected from the interface and using the mass conservation law,

\[
\langle J_{\text{cond}} \rangle = \langle J_{\text{coll}} \rangle - \langle J_{\text{ref}} \rangle,
\]

(14)

where \(\langle J_{\text{ref}} \rangle = \langle J_{\text{out}} \rangle - \langle J_{\text{evap}}^p \rangle \) is a reflected mass flux at the interface (see Fig. 1). The result therefore includes some ambiguity arising from the definition of the reflected molecule. As mentioned earlier, the complete classification of every individual molecule outgoing from the interface as either evaporated or reflected one in a vapor–liquid two-phase system may be impossible. This is because the reflected molecules in many cases once condense into the inside of the interface before being reemitted, and therefore it is difficult to define the reflected molecule without ambiguity. Our method is free from such ambiguity thanks to the analysis based on the virtual vacuum simulation.

III. COMPUTATIONAL METHOD

We execute MD simulations for vapor–liquid equilibrium states and nonequilibrium steady states of evaporation into a virtual vacuum. Several cases of the temperature of the liquid phase \(T_e \) are computed: 300 K \(\leq T_e \leq 460 \) K for water and 260 K \(\leq T_e \leq 390 \) K for methanol. Typical examples for equilibrium states are shown in Fig. 2. The computational method is as a whole the same as that used in the previous study for monatomic molecule.\(^6\) In this section, we shall explain an intermolecular potential used in the present simulations for polyatomic molecules at some length, and then summarize the features of the methods for equilibrium and virtual vacuum simulations. To make the present paper self-contained, we do not suppress the important information in the computational method, even though it is described in Ref. 6.

A. Intermolecular potential

MD simulation numerically solves the equations of motions for molecules in a simulation cell (see Fig. 2). We
integrate the equations of motions transformed with the quaternion algorithm\(^\text{11}\) by the leap-frog method with the time step 0.5 fs. As the intermolecular potential, we adopt transferable intermolecular potential with three points (TIP3P)\(^\text{12}\) for water and optimized potential for liquid simulations (OPLS)\(^\text{13}\) for methanol, since they are widely used\(^\text{14,15}\) and the computation time is not so large; we have to run many simulations to obtain a large number of samples for the accurate construction of the distribution function.

Both potentials are three-site rigid models consisted of Lennard-Jones 12-6 potential and Coulomb potential. According to these models, the intermolecular potential between a site \(m\) of a molecule and a site \(n\) of a different molecule can be written as

\[
\phi_{mn} = 4\varepsilon_{mn}\left[\left(\frac{\sigma_{mn}}{r_{mn}}\right)^{12} - \left(\frac{\sigma_{mn}}{r_{mn}}\right)^{6}\right] + \frac{z_m e_0 z_n e_0}{4\pi\varepsilon_0} \left[\frac{1}{r_{mn}} + \frac{r_{mn}}{r_{cut}^3} - \frac{2}{r_{cut}}\right],
\]

where \(r_{mn}\) is the distance between the site \(m\) and the site \(n\), \(z_m e_0\) and \(z_n e_0\) are partial charges for the sites, \(e_0\) is the elementary charge, \(\varepsilon_0\) is the dielectric constant of vacuum, and \(\sigma_{mn}\) and \(\sigma_{mn}\) are the usual Lennard-Jones parameters (see Tables I and II). As indicated in Eq. (15), the electrostatic term is shifted and scaled smoothly to zero at \(r_{cut}\) (0.9 nm), and lattice summation techniques are not used. The applicability of the shifted and scaled Coulomb potential has been confirmed in Ref. 16, and it is known that the use of the Ewald summation to the vapor–liquid two-phase system leads to some unnatural behaviors.\(^\text{17}\) The Lennard-Jones part also is truncated at the same cutoff distance \(r_{cut}\).

The molecular geometries of TIP3P water and OPLS methanol are shown in Fig. 3, where the symbol \(-\) denotes the body-fixed principal axes on which the inertial tensor is diagonal. Since TIP3P water and OPLS methanol are nonlinear three-site rigid models, the number of the internal degrees of freedom of a molecule is \(n=3\), and \(E\) in Eq. (5) is the internal energy associated with rotational motions, written as

\[
E = \frac{I_x \omega_x^2 + I_y \omega_y^2 + I_z \omega_z^2}{2},
\]

where \(I_j\) and \(\omega_j(j=x,y,z)\) are, respectively, the principal moment of inertia and the angular velocity around the \(j\) axis indicated in Fig. 3. The principal moments of inertia \(I_x\), \(I_y\), and \(I_z\) are, respectively, 1.77, 1.16, and 0.61 (\(\text{g}\cdot\text{Å}^2/\text{mol}\)) for TIP3P water, and 17.47, 16.73, and 0.74 (\(\text{g}\cdot\text{Å}^2/\text{mol}\)) for OPLS methanol.

B. Equilibrium simulation

In the equilibrium simulations, the periodic boundary conditions are imposed for all three directions of the simulation cell with dimensions \(L_x \times L_y \times L_z\) (see Fig. 2). For both cases of water and methanol, in lower temperature cases of \(T_\ell \approx 350\ \text{K}\), we set \(L_x \times L_y \times L_z = 50 \times 50 \times 200\ \text{Å}^3\), in which \(N=2000\) molecules are contained. At higher temperatures \(T_\ell \approx 360\ \text{K}\), we increase \(L_x\) to 400 Å and \(N\) to 4000.

After equilibrating the system, we continue the simulation for 5 ns and accumulate the configurations of all molecules in the cell every 1 ps. Since the system has two interfaces, the number of samples \(N_s=10000\). The ensemble averages for various macroscopic quantities can be evaluated from \(N_s\) sampled configurations. For example, an averaged density is calculated by

\[
\rho = \frac{1}{N_s \Xi_p} \sum_{N_s} \sum_{n=1}^{m'} m',
\]

where \(\Xi_p\) is a volume element in the physical space, \(m'\) is the mass of the \(n\)th molecule (all molecules have the same mass), and \(\sum_{n=1}^{m'} m'\) denotes the summation of the mass of the molecules whose center of mass are contained in \(\Xi_p\).

The averaged bulk vapor density (saturated vapor density) \(\rho_v\) and bulk liquid density \(\rho_l\) of TIP3P water and OPLS methanol obtained from the equilibrium simulations are shown in Tables III and IV. As can be seen from the tables, TIP3P and OPLS models give large values of saturated vapor density compared with experimental ones. In a preliminary

Table I. The parameters of TIP3P model for water.

<table>
<thead>
<tr>
<th>Geometry of molecule</th>
<th>Lennard-Jones parameters</th>
<th>Partial charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{OH} (\text{Å}))</td>
<td>(0.9572)</td>
<td>(104.52^\circ)</td>
</tr>
<tr>
<td>(\angle\text{HOH} (\text{Å}))</td>
<td>(3.1507)</td>
<td>(76.5289)</td>
</tr>
<tr>
<td>(\varepsilon_{OO} (\text{Å}))</td>
<td>(-0.834)</td>
<td>(0.417)</td>
</tr>
</tbody>
</table>

Table II. The parameters of OPLS model for methanol.

<table>
<thead>
<tr>
<th>Geometry of molecule</th>
<th>Lennard-Jones parameters</th>
<th>Partial charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{OH} (\text{Å}))</td>
<td>(0.9451)</td>
<td>(108.53^\circ)</td>
</tr>
<tr>
<td>(\angle\text{MH} (\text{Å}))</td>
<td>(3.775)</td>
<td>(104.155)</td>
</tr>
<tr>
<td>(\varepsilon_{SM} (\text{Å}))</td>
<td>(3.071)</td>
<td>(85.513)</td>
</tr>
<tr>
<td>(\varepsilon_{OO} (\text{Å}))</td>
<td>(-0.700)</td>
<td>(0.435)</td>
</tr>
<tr>
<td>(\varepsilon_{SM} (\text{Å}))</td>
<td>(0.265)</td>
<td>(0.265)</td>
</tr>
</tbody>
</table>
where \(\rho(z) = \rho_e + \frac{\rho_i - \rho_e}{2} \tanh \left(\frac{z - Z_m}{0.455 \delta} \right), \) (18)

where \(Z_m \) and \(\delta \) are, respectively, the center of the transition layer and the 10–90 thickness (see Tables III and IV), which are estimated by a least-squares method.

C. Virtual vacuum simulation

In the virtual vacuum simulations, we introduce a perfectly absorbing boundary at a distance from the interface and eliminate molecules there (Fig. 5), while the periodic boundary conditions are applied in the \(x \) and \(y \) directions. Molecules evaporate into the virtual vacuum through the perfectly absorbing boundary and the interface recedes with time as a result of the evaporation. The steady evaporation state is realized on the moving coordinate

\[
z^* = z - (Z_m - v_x t) / \delta, \quad v_x = J_e / \rho_i,
\]

where \(t \) is the time from the beginning of the virtual vacuum simulation, \(J_e \) is a molecular flux evaporating into virtual vacuum, and \(v_x \) is the speed of the moving coordinate. The averaged values for macroscopic quantities and the distribution functions are evaluated on the moving coordinate \(z^* \). The evaporation flux \(J_e \) is estimated at each time step at \(z^* = L^*_m \), where we set the perfectly absorbing boundary (see Fig. 5).

The control of the temperature in the bulk liquid phase is important for the realization of the steady evaporation state. Using the velocity scaling method, we control the temperature of the liquid phase in the region \(z^* < -L^*_m \) as shown schematically in Fig. 5. As the result, the averaged temperature of the bulk liquid phase is kept almost uniform and constant at a specified \(T_c \). Anisimov et al. have executed a similar virtual vacuum simulation for monatomic molecules. However, since they have controlled not the temperature in the bulk liquid phase but the temperature at the floor of MD cell, a large temperature gradient has appeared in the bulk liquid phase (see Fig. 3 in Ref. 22). This leads to an unfavorable situation where one cannot determine the reference temperature uniquely.

TABLE III. The results of equilibrium and virtual vacuum simulations for water. The values in parentheses in \(\rho_e \) and \(\rho_i \) columns are experimental ones, and \(\langle J_e \rangle = \rho_i \sqrt{RT_e} / (2 \pi) \) is the outgoing (or incoming) molecular mass flux in the equilibrium state at \(T_e \).

<table>
<thead>
<tr>
<th>(T_e / T_{c, r}) (K)</th>
<th>(\rho_e) (10^{-3} g/cm^3)</th>
<th>(\rho_i) (g/cm^3)</th>
<th>(\delta) (Å)</th>
<th>(\langle J_e \rangle) [g/(cm^2 s)]</th>
<th>(\langle J_e^\text{up} \rangle) [g/(cm^2 s)]</th>
<th>(\langle J_e^\text{down} \rangle) [g/(cm^2 s)]</th>
<th>(\alpha_e)</th>
<th>(\rho_i) (10^{-3} g/cm^3)</th>
<th>(\alpha_p) [10^{-3} g/cm^3]</th>
<th>(\alpha_{p} / 2) [10^{-3} g/cm^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 (0.581)</td>
<td>0.07 (0.03)</td>
<td>0.95 (1.00)</td>
<td>5.31</td>
<td>1.03</td>
<td>1.02</td>
<td>0.00</td>
<td>0.99</td>
<td>0.032</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>340 (0.659)</td>
<td>0.51 (0.17)</td>
<td>0.91 (0.98)</td>
<td>6.13</td>
<td>8.10</td>
<td>7.41</td>
<td>0.41</td>
<td>0.92</td>
<td>0.24</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>360 (0.698)</td>
<td>1.01 (0.38)</td>
<td>0.89 (0.97)</td>
<td>6.73</td>
<td>16.51</td>
<td>14.41</td>
<td>1.11</td>
<td>0.87</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>380 (0.737)</td>
<td>2.18 (0.75)</td>
<td>0.86 (0.95)</td>
<td>8.04</td>
<td>36.38</td>
<td>29.47</td>
<td>3.83</td>
<td>0.81</td>
<td>1.01</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>400 (0.775)</td>
<td>3.73 (1.37)</td>
<td>0.83 (0.94)</td>
<td>8.97</td>
<td>63.89</td>
<td>49.89</td>
<td>7.18</td>
<td>0.78</td>
<td>1.72</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>420 (0.814)</td>
<td>6.54 (2.35)</td>
<td>0.79 (0.92)</td>
<td>10.03</td>
<td>114.89</td>
<td>81.47</td>
<td>15.97</td>
<td>0.71</td>
<td>2.87</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>440 (0.853)</td>
<td>11.50 (3.83)</td>
<td>0.76 (0.90)</td>
<td>11.44</td>
<td>206.85</td>
<td>128.40</td>
<td>33.41</td>
<td>0.62</td>
<td>4.42</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>460 (0.892)</td>
<td>20.08 (5.98)</td>
<td>0.71 (0.88)</td>
<td>13.15</td>
<td>369.21</td>
<td>184.10</td>
<td>57.70</td>
<td>0.50</td>
<td>6.10</td>
<td>5.01</td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV. The results of equilibrium and virtual vacuum simulations for methanol. The values in parentheses in \(\rho_s \) and \(\rho_t \) columns are experimental ones, and \(\langle J \rangle_c = \rho_e \sqrt{RT_c/(2\pi)} \) is the outgoing (or incoming) molecular mass flux in the equilibrium state at \(T_c \).

<table>
<thead>
<tr>
<th>(T_c/(T_e/T_o)) (K)</th>
<th>(\rho_e) (10(^{-3}) g/cm(^3))</th>
<th>(\rho_t) (g/cm(^3))</th>
<th>(\delta) (Å)</th>
<th>(\langle J \rangle_c) [g/(cm(^2)s)]</th>
<th>(\langle J \rangle_{e/\text{eq}}) [g/(cm(^2)s)]</th>
<th>(\langle J \rangle_{e/\text{eq}}) [g/(cm(^2)s)]</th>
<th>(\alpha_e)</th>
<th>(\rho_e) (10(^{-3}) g/cm(^3))</th>
<th>(\alpha_p/2) (10(^{-3}) g/cm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>260 (0.644)</td>
<td>0.14 (0.025)</td>
<td>0.75 (0.82)</td>
<td>7.01</td>
<td>1.41</td>
<td>1.25</td>
<td>0.08</td>
<td>0.88</td>
<td>0.060</td>
<td>0.060</td>
</tr>
<tr>
<td>300 (0.743)</td>
<td>1.40 (0.25)</td>
<td>0.70 (0.78)</td>
<td>8.73</td>
<td>15.60</td>
<td>11.21</td>
<td>1.34</td>
<td>0.72</td>
<td>0.61</td>
<td>0.50</td>
</tr>
<tr>
<td>310 (0.768)</td>
<td>2.21 (0.39)</td>
<td>0.69 (0.78)</td>
<td>9.25</td>
<td>25.06</td>
<td>17.19</td>
<td>3.48</td>
<td>0.69</td>
<td>0.95</td>
<td>0.76</td>
</tr>
<tr>
<td>320 (0.793)</td>
<td>2.99 (0.61)</td>
<td>0.67 (0.77)</td>
<td>9.87</td>
<td>34.41</td>
<td>22.56</td>
<td>5.54</td>
<td>0.66</td>
<td>1.32</td>
<td>0.98</td>
</tr>
<tr>
<td>330 (0.817)</td>
<td>4.68 (0.91)</td>
<td>0.66 (0.76)</td>
<td>10.50</td>
<td>54.67</td>
<td>34.14</td>
<td>8.42</td>
<td>0.62</td>
<td>1.82</td>
<td>1.46</td>
</tr>
<tr>
<td>340 (0.842)</td>
<td>7.32 (1.33)</td>
<td>0.64 (0.75)</td>
<td>11.35</td>
<td>86.77</td>
<td>49.01</td>
<td>12.84</td>
<td>0.56</td>
<td>2.63</td>
<td>2.07</td>
</tr>
<tr>
<td>350 (0.867)</td>
<td>10.16 (1.91)</td>
<td>0.62 (0.74)</td>
<td>12.29</td>
<td>122.17</td>
<td>66.61</td>
<td>22.18</td>
<td>0.55</td>
<td>3.73</td>
<td>2.77</td>
</tr>
<tr>
<td>360 (0.892)</td>
<td>13.85 (2.67)</td>
<td>0.60 (0.72)</td>
<td>13.58</td>
<td>168.95</td>
<td>82.55</td>
<td>31.70</td>
<td>0.49</td>
<td>4.81</td>
<td>3.38</td>
</tr>
<tr>
<td>370 (0.917)</td>
<td>19.56 (3.68)</td>
<td>0.58 (0.71)</td>
<td>15.41</td>
<td>241.80</td>
<td>98.70</td>
<td>38.10</td>
<td>0.41</td>
<td>6.24</td>
<td>3.99</td>
</tr>
<tr>
<td>380 (0.941)</td>
<td>29.86 (4.98)</td>
<td>0.54 (0.70)</td>
<td>17.55</td>
<td>374.12</td>
<td>128.89</td>
<td>51.29</td>
<td>0.34</td>
<td>7.85</td>
<td>5.14</td>
</tr>
<tr>
<td>390 (0.966)</td>
<td>45.74 (6.65)</td>
<td>0.51 (0.69)</td>
<td>20.42</td>
<td>580.56</td>
<td>160.04</td>
<td>63.14</td>
<td>0.28</td>
<td>9.94</td>
<td>6.30</td>
</tr>
</tbody>
</table>

In the previous paper,\(^6\) we have verified that the results of virtual vacuum simulations are hardly affected by the choices of \(L_g^* \) and \(L_c^* \), if \(L_g^* \) and \(L_c^* \) are in the ranges of \(2 \leq L_g^* \leq 4 \) and \(0 \leq L_c^* \leq 1 \), respectively. In the present study, we set \(L_g^* = 4 \) and \(L_c^* = 1 \) as in the previous paper.\(^23\)

The virtual vacuum simulation is started from a configuration obtained in the equilibrium simulation. At the time when the number of molecules in a region \(z^* < L_g^* \) decreases to 1000 due to the evaporation into virtual vacuum, we stop the simulation to avoid sampling erroneous configurations. Since this leads to the shortage of the number of samples for ensemble averages, we run seven more simulations starting from different initial conditions.\(^6\)

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we shall present the numerical results for the virtual vacuum simulation. We discuss the detailed property of evaporation into virtual vacuum, thereby clarifying the characteristics of the distribution function of evaporating molecules in the case of water and methanol.

A. Spontaneous-evaporation flux

We shall start with the verification of steadiness of the evaporation into virtual vacuum for water and methanol, because the realization of the steady evaporation state implies the existence of the spontaneous-evaporation mass flux \(\langle J_{\text{sp}} \rangle_c \) determined by the bulk liquid temperature \(T_c \) only. The time evolution of a mass flux passing through the perfectly absorbing boundary \(z^* = L_g^* \) is shown in Fig. 6. In the figure, \(\langle J \rangle_c \) is a mass flux in the positive \(z^* \) direction averaged for a small time interval. In the cases of lower temperature [Figs. 6(a) and 6(c)], an almost steady molecular mass flux is generated from the beginning of the virtual vacuum simulation, as in the case of 85 K for argon (see Fig. 5 in Ref. 6). Even for a higher temperature case [Fig. 6(d)], one can see that an almost steady state is established after an initial transient state dies out, which was also observed at 130 K in the case of argon. It is worth noting that \(\langle J_{\text{out}} \rangle_c \) is almost equal to or larger than \(\langle J \rangle_{\text{evap}} \) at lower \(T_c \), and the difference between them increases more and more as \(T_c \) increases.

After the steady state is reached, an averaged net mass flux \(\langle J \rangle_{\text{net}} \) is calculated at various points on the moving coordinate, where \(\langle J \rangle_{\text{net}} \) denotes the difference of mass fluxes in the positive and negative \(z^* \) directions, which are averaged for a sufficiently long time interval in the steady state. The spatial uniformity of the net mass flux is clearly shown in Fig. 7. We can therefore define the spontaneous-evaporation flux by the net flux in the virtual vacuum simu-
The density of vapor evaporating into virtual vacuum and the spontaneous-evaporation flux in the steady state are tabulated in Tables III and IV.

B. Cluster formation

In Fig. 8, the trajectories of molecules evaporating into virtual vacuum in the steady state are shown, where a solid line represents the projection of the trajectory of center of mass of a molecule into the zt plane and the time $t=0$ is taken at an arbitrary time in the steady state. In the cases of lower temperature [Figs. 8(a) and 8(c)], all molecules evaporated from the condensed phase go straight toward the virtual vacuum, while in the higher temperature cases [Figs. 8(b) and 8(d)], there are several molecules that move toward the condensed phase. This is caused by the molecular interaction in the vapor phase. Furthermore, some molecules in double or triple helical motions can be seen in the figure. Such groups are referred to as clusters. Notice that the clusters are not formed in the vapor region but emitted from the interface.

Hill24 defined a cluster as a collection of monomers that are each energetically bound to at least one other monomer. According to his definition, the ith molecule is regarded as a part of a cluster when the sum of the relative kinetic energy and the potential energy to any jth molecule is negative,

$$\frac{(p_{i}\cdot p_{j})^2}{2m_{i}} + U_{ij} < 0, \quad U_{ij} = \sum_{m} \sum_{n} \phi_{mn},$$

(20)

where p_{i} is the momentum of the ith molecule, and U_{ij} is the potential energy between the ith and jth molecules. Using this definition, we can define an evaporating cluster mass flux by counting the number of molecules evaporating into virtual vacuum with satisfying the condition Eq. (20). Figure 9 shows the ratio of the average of the evaporating cluster mass flux $\langle J_{evap}^{c} \rangle$ to the average of the spontaneous-evaporation mass flux $\langle J_{evap}^{sp} \rangle$, where the result for argon is also plotted. One can see that the ratio $\langle J_{evap}^{c} \rangle / \langle J_{evap}^{sp} \rangle$ increases as the bulk liquid temperature T_{l} approaches the
critical temperature. This may be due to the strong hydrogen bonding.15 In fact, as shown in Fig. 9, the argon clusters are rarely formed even in high temperature cases. The cluster formation is a characteristic feature of associating fluids such as water and methanol.

C. Evaporation coefficient

Since we have already obtained \(\langle j^{\text{sp}} \rangle \) as a function of \(T_e \) in Sec. IV A, the evaporation coefficient \(\alpha_e \) can easily be evaluated from Eq. (3). The results for water and methanol are presented in Fig. 10, together with those by other authors6 (see also Tables III and IV). Note that, in the present paper6 and in other papers,10,25 \(\alpha_e \) is called the condensation coefficient in the equilibrium state (the reason is explained in Sec. II).

Although theoretical and experimental studies have so far reported various values of the evaporation coefficient of water from \(10^{-4} \) to unity at near room temperature (\(T_e/T_{cr} = 0.5 \)) (see Ref. 26), our result shows that \(\alpha_e \) of water is close to unity at around \(T_e/T_{cr} = 0.6 \) and slowly decreases with increase in \(T_e \). The result for methanol is almost the same as that for water. In the latest experiment for condensation of methanol vapor in a shock tube by Fujikawa \textit{et al.},27 they reported that \(\alpha_e \) of methanol near equilibrium state was nearly unity at \(T_e/T_{cr} = 0.57 \).

Let us compare our results with those of other molecular dynamics studies. Nagayama and Tsuruta10 calculated the condensation coefficient \(\alpha_e \) of water. Their results agree with ours (see Fig. 10), although their definitions of \(\alpha_e \) includes some ambiguity as mentioned in Sec. II. Matsumoto25 examined the condensation coefficient \(\alpha_e \) for methanol, and reported that the values were about 0.2 (see Fig. 10) and the temperature dependence of \(\alpha_e \) for methanol was not significant. In Ref. 25, they calculated the correlation of incident and outgoing molecules, and defined the reflected molecules as outgoing molecules that correlate with incident molecules strongly. Therefore, their definition of reflected molecules (and hence the definition of \(\alpha_e \)) also contains some uncertainty.

As mentioned in Sec. II, an evaporated molecule and a reflected one may be indistinguishable in a vapor–liquid coexistence state. The only clearly defined quantities are the mass flux and distribution function of molecules evaporating into virtual vacuum, except for outgoing and incoming molecules. The concept of reflection, such as an incident molecule bounces back on a surface, which has been implicitly assumed in the previous studies,10,25 inevitably contains uncertainties.

D. Distribution functions for translational and internal motions

Now, we shall evaluate the distribution function of the translational velocity of molecules evaporating into virtual vacuum, \(\hat{f}^{\text{trans}} \). In MD simulations, the distribution function of the translational velocity of the center of mass of molecule can be calculated by

\[
\hat{f}^{\text{trans}} = \hat{f}_j \hat{f}_j \hat{f}_z, \quad \hat{f}_j = \frac{1}{\rho N_j} \sum_{\Xi_j} \sum_{m^j} m^j,
\]

where \(\hat{f}_j \) is the marginal distribution of the \(j \)-component of translational velocity \((j=x,y,z) \), \(\Xi_j \) is a one-dimensional volume element in the \(j \)-direction in the three-dimensional molecular velocity space, and \(\Xi_j \cap \Xi_j \) denotes a four-dimensional volume element in the six-dimensional phase space. Here, we recall that \(\hat{f}^{\text{trans}} \) signifies that the distribution function is normalized by the density. Equation (21) assumes that \(\xi_x, \xi_y, \) and \(\xi_z \) are the independent random variables. As a check of a necessary condition for statistical independence, it is confirmed that the correlation coefficients between them are small compared with unity.

In Fig. 11, the velocity distributions of molecules evaporating into virtual vacuum at \(z^* = L_g^* \) are plotted for some temperatures. The abscissa \(\zeta_j = \xi_j / \sqrt{2RT_e} \) is the \(j \)-component of the normalized molecular velocity. Figure 11 shows that, for both water and methanol, the translational velocity distributions of \(\zeta_x \) and \(\zeta_y \), denoted by triangles and squares, are small compared with unity. The distribution of \(\zeta_z \) is represented by a solid curve. However, the distributions for relatively high \(T_e \) cases slightly shift to lower temperature distributions. The decrease of temperature of evaporating molecules will be discussed briefly in Sec. IV E.
For relatively low \(T_\ell \) cases shown in Figs. 11(a) and 11(d), the velocity distribution of \(\zeta \) denoted by closed circles becomes nearly a one-dimensional normalized Maxwellian \((1/\sqrt{\pi})\exp(-\zeta^2)\), and the dashed curve a one-dimensional normalized half-Maxwellian \((2/\sqrt{\pi})\exp(-\zeta^2)\) for \(\zeta > 0 \) \((\Xi_s = 0.2L, \delta \) and \(\Xi_s = 0.375\sqrt{2RT_\ell} \)).

At relatively low \(T_\ell \), on the other hand, the distribution function of \(\zeta \) deviates from the half-Maxwellian. From the molecular trajectories shown in Figs. 8(b) and 8(d) in higher \(T_\ell \) cases, one can see that some trajectories in the vapor region have negative gradient, which means that \(\zeta < 0 \), due to the intermolecular collisions or the cluster formation. These complicated interactions result in the excitation of molecules with negative normal velocity. Furthermore, as shown in Fig. 9, the ratio \((P_a^{\text{evap}})/P_a^{\text{evap}}\) increases with increase in \(T_\ell \) and this leads to the increase in the number of molecules with negative normal velocity. At the same time, the molecular interaction reduces the number of molecules whose normal velocities are positive and small [Figs. 11(c) and 11(f)].

The mean free path of saturated vapor is shown in Table V. The mean free math in saturated vapor for water and methanol, evaluated by the formula for equilibrium state of hard-sphere gas, \(\ell = 1/\sqrt{2\pi \sigma^2 (\rho_s/m)} \), where \(\sigma = 2.641 \) Å for water and 3.626 Å for methanol (Ref. 28).

\[
\begin{array}{cccccc}
\text{Water} & \text{Methanol} \\
T_\ell (K) & \ell (\text{Å}) & T_\ell (K) & \ell (\text{Å}) \\
300 & 13864 & 260 & 6687 \\
340 & 1884 & 300 & 650 \\
360 & 951 & 310 & 411 \\
380 & 443 & 320 & 304 \\
400 & 259 & 330 & 195 \\
420 & 148 & 340 & 124 \\
440 & 84 & 350 & 90 \\
460 & 48 & 360 & 66 \\
\end{array}
\]

Next, we shall move on to the distribution function associated with the internal (rotational) motion of molecules evaporating into virtual vacuum, \(\hat{g}_\alpha \). The distribution function of the angular velocity around the principal axes of molecule can be calculated by

\[
\hat{g}_\alpha = \hat{g}_x \hat{g}_y \hat{g}_z = \frac{1}{\rho N_s \Xi_p \Xi_j} \sum_{i \in I_{j}} \sum_{m'} m',
\]

where \(\Xi_j \) is a one-dimensional volume element around the \(j \) axis in the three-dimensional angular velocity space \((j = x, y, z)\). In Fig. 12, we plot the angular velocity distributions of molecules evaporating into virtual vacuum at \(z^* = L_g^* \). The abscissa \(\nu_j = \omega_j \sqrt{T_\ell / kT} \) in the figure denotes the normalized angular velocity component around the \(j \) axis. As can be seen from Fig. 12, the angular velocity distributions are isotropic and are nearly the Maxwellians for all temperatures, although the vapor is in an extreme nonequilibrium condition, i.e., evaporation into virtual vacuum. It is also confirmed that the correlation coefficients between each component of angular velocity and translational velocity are small compared with unity.

Furthermore, we shall calculate a rotational energy distribution of molecules evaporating into virtual vacuum \(\hat{g}_{\text{rot}} \) by

\[
\hat{g}_{\text{rot}} = \hat{g}_x \hat{g}_y \hat{g}_z.
\]
where the normalized equilibrium distribution of rotational energy is defined by Eq. (5). Note that the distribution of internal energy is related to that of angular velocity through Eq. (16).

Since the correlation coefficient between each component of translational velocity and rotational energy can be proved to be small compared with unity, the distribution function of molecules evaporating into virtual vacuum f_{evap} may be written as the product of ρ_e, f_{trans}, and \hat{g}_{rot}:

$$f_{\text{evap}} = \rho_e f_{\text{trans}} \hat{g}_{\text{rot}} = 2 \rho_e f_{e} \hat{g}^*,$$

where \hat{g}^* is the normalized equilibrium distribution of rotational energy. Note that the distribution of internal energy is related to that of angular velocity through Eq. (16).

The evaporation part in Eq. (1) is thus validated physically for water and methanol in relatively low temperature case. In Tables III and IV, ρ_e evaluated directly by MD simulations and $(1/2)\alpha_e\rho_e$ are tabulated. It can be seen from the tables that, as T_e decreases, the numerical value of ρ_e and $(1/2)\alpha_e\rho_e$ approach each other, because the translational velocity distribution function approaches the half-Maxwellian.
E. Velocity and temperature near the interface

In the kinetic theory, the velocity and temperatures are given by

\[v_j = \frac{1}{\rho \int} \xi_j f \, d\xi \, dE \quad (j = x, y, z), \]

\[T^v_j = \frac{1}{\rho R} \int (\xi_j - v_j)^2 f \, d\xi \, dE \quad (j = x, y, z), \]

\[T^{rot} = \frac{2}{n m \rho R} \int E f \, d\xi \, dE, \]

where \(T^v_j \) and \(T^{rot} \) are the temperatures associated with the \(j \) component of translational velocity and with the rotational energy, respectively. If the distribution \(f \) is equal to the half-Maxwellian \(\alpha e^x (\xi_j > 0) \), we immediately have

\[v_x = v_y = 0, \quad v_z = \sqrt{\frac{2RT_\ell}{\pi}}, \]

\[T^v_x = T^v_y = T^{rot} = T_\ell, \quad T^v_z = \left(1 - \frac{2}{\pi} \right) T_\ell. \]

In this section, we shall compare the velocity and temperatures obtained by MD simulation with those given by Eqs. (31) and (32), and make brief comments on the difference between them. The definitions of \(v_j, T^v_j, \) and \(T^{rot} \) in MD simulation are omitted to avoid the repetition of complicated expressions.

As shown in Figs. 14(a) and 14(d), \(T^v_\ell \) (triangle) obtained by MD simulation shows good agreement with the theoretical value \(T_\ell \) in the vapor region for low \(T_\ell \) cases. As \(T_\ell \) increases, however, \(T^v_\ell \) in the vapor region becomes a little bit smaller than the theoretical one. One can also see that the differences of \(v_z \) (cross) and \(T^v_z \) (open circle) by MD simulation from the theoretical ones (dashed line and dash-dotted line) in the vapor region are small at low \(T_\ell \) and grow with the increase of \(T_\ell \). This is because the increase of \(T_\ell \) enhances the appearance of molecules with negative molecular velocity component \(\xi_z < 0 \) (see Fig. 11), and the qualitatively similar results have already been found in the case of argon.\(^6\)

Note that, at the absorbing boundary, it happens that a molecule interacting with other one is eliminated, and this leads to the nonmonotonic behavior of velocity and temperature shown in Fig. 14.

Figure 15 shows the rotational temperature distribution near the interface. In the case of lower \(T_\ell, T^{rot} \) in the vapor phase almost agrees with the theoretical one, whereas, for higher \(T_\ell \) case, \(T^{rot} \) decreases (see Fig. 13).

The decrease of \(T^v_\ell \) and \(T^{rot} \) and increase of \(T^v_z \) from the corresponding theoretical ones are caused by the local equilibration as a result of intermolecular collisions in the transition layer as in the case of argon.\(^6\)

F. Molecular orientational distribution in virtual vacuum simulation

In Refs. 15 and 29, an orientational structure near the interface in equilibrium states was studied for water and methanol. In this work, we have looked into the orientational distribution of molecules near the interface in the vapor region. The definition of orientational angle is shown in Fig. 16. The ranges of the variables are, respectively, \(0 \leq \theta \leq \pi/2 \) and \(0 \leq \phi \leq \pi \) for water, and \(0 \leq \theta \leq \pi \) and \(0 \leq \phi \leq \pi \) for methanol.
FIG. 17. (Color). Normalized orientational distribution $P(\theta, \varphi)$ in virtual vacuum simulation for water (upper side) and methanol (lower side). The region of $P=0.159$ (green color) denotes isotropic distribution ($\varphi_0=0.2$, $L_{\varphi}=0.2$, $L_{\theta}=\pi/36$, and $\varphi_0=\pi/36$).
metrical symmetry, the range of T water. A normalized molecular orientational distribution near water and methanol molecules. Let \mathbf{x}, \mathbf{y}, and \mathbf{z} be vectors in the directions of principal axes of inertia, which are defined in Fig. 3. As shown in Fig. 16, let θ be an angle between \mathbf{y} and \mathbf{z}, where \mathbf{z} is a vector normal to the interface in the direction from the condensed to vapor phases. Let φ be an angle between \mathbf{x} and $\mathbf{z} \times \mathbf{y}$. Note that, owing to the geometrical symmetry, the range of φ is restricted to $[0, \pi/2]$ for water. A normalized molecular orientational distribution $P(\theta, \varphi)$ can then be calculated by

$$P(\theta, \varphi) = \frac{1}{pN_3\Xi_{\theta}\Xi_{\varphi}} \sum_{J_{l \varphi}} \sum_{J_{w \varphi}} m^i,$$

where Ξ_{θ} and Ξ_{φ} are one-dimensional volume elements in the one-dimensional θ and φ spaces, respectively. Figure 17 shows the normalized orientational distributions of water and methanol molecules in the steady evaporation state at $z = -2$ (the inside of the condensed phase), $z = 0$ (the center of the transition layer), and $z = 2$ (the inside of the vapor phase) for several temperatures.

As can readily be seen, at the center of the transition layer, some structure of orientational distribution exists. For water, when $T_c/T_{cr} = 0.659$ one can see a weak anisotropy near $\theta \approx \pi/2$ and $\varphi \approx \pi/2$, and it moves to $\theta \approx 0$ with an increase in T_c. For methanol, the strong anisotropy is observed when $T_c/T_{cr} = 0.743$ and the peak of $P(\theta, \varphi)$ exists around $\theta = \pi/2$ and $\varphi = 0$. As T_c increases, however, the distribution becomes flat.

On the other hand, the distributions inside the condensed phase are isotropic at all temperatures, and those inside the vapor phase can also be regarded as isotropic ones except for fluctuations due to the shortage of samples. That is, although the water and methanol molecules inside the transition layer exhibit the strong orientational ordering, the molecules emitted from the interface does not have any preferential orientations, as expected from the fact that the distribution of angular velocity is almost the Maxwellian.

V. CONCLUSIONS

We have carried out the MD simulations of vapor–liquid equilibrium and steady evaporation into the virtual vacuum for water and methanol. The distribution function of molecules evaporating into virtual vacuum has been accurately obtained. We have demonstrated that in relatively low temperature case the distribution function is the product of the evaporation coefficient, the half-Maxwellian of translational molecular velocity, and the equilibrium distribution of rotational energy. The evaporation coefficients of water and methanol are also determined without any ambiguity as a decreasing function of the bulk liquid temperature, and their values are found to become close to unity with decrease in the temperature.

Irrespective of the cluster formation and the preferential orientation of molecules at the interface, which are characteristic features of polyatomic molecule with uneven sharing of the bonding electron pair, we have obtained qualitatively the same results as in the case of argon. As the result of the present study, the physical appropriateness of the evaporation part in the kinetic boundary condition is confirmed for polyatomic molecule as well as for monatomic molecule.

2 Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002).
9 The collision mass flux (J_{coll}) is defined as

$$J_{\text{coll}} = -\int_0^\infty \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\text{coll}}(E) dE d\mathbf{x} d\mathbf{z},$$

where f_{coll} is the distribution function for molecules incoming to the interface, and J_{coll} is evaluated from Eq. (14) and $(J_{\text{coll}}) = (J_{\text{coll}}) - (J'_{\text{coll}})$ (see also Fig. 1).
23 In high temperature case, the transition layer extends close to \(z^* \approx 2 \), and hence we cannot set \(\ell_g \) at \(z^* \approx 2 \).