<table>
<thead>
<tr>
<th>Title</th>
<th>Spontaneous regression of small cell lung cancer combined with cancer associated retinopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kitai, Hidenori; Sakakibara-Konishi, Jun; Oizumi, Satoshi; Hirohashi, Yoshihiko; Saito, Wataru; Kanda, Atsuhiro; Sato, Noriyuki; Nishimura, Masaharu</td>
</tr>
<tr>
<td>Citation</td>
<td>Lung Cancer, 87(1): 73-76</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-01</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/58435</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>revised_manuscript.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Spontaneous regression of small cell lung cancer combined with cancer associated retinopathy

Hidenori Kitai¹, Jun Sakakibara-Konishi¹, Satoshi Oizumi¹, Yoshihiko Hirohashi², Wataru Saito³, Atsuhiro Kanda³, Noriyuki Sato², Masaharu Nishimura¹

¹First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
²Department of Pathology, Sapporo Medical University, Sapporo, Japan
³Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

Affiliations: First Department of Medicine, Hokkaido University School of Medicine North 15, West 7, Kita-ku, Sapporo 060-8638, Japan

Phone +81-11-716-1161 (Ext.5911)
Fax +81-11-706-7899
E-mail: konishj@med.hokudai.ac.jp
Corresponding author: Jun Sakakibara-Konishi

Abbreviations: CAR = cancer associated retinopathy; CTL = cytotoxic T lymphocyte; EBUS-TBNA = endobronchial ultrasound-guided transbronchial needle aspiration; ERG = electroretinogram; SR = spontaneous regression; SCLC = small cell lung cancer

Key Words: Small cell lung cancer, Cancer associated retinopathy, Spontaneous regression, Recoverin
Abstract

Spontaneous regression (SR) is defined as the complete or partial disappearance of disease without anticancer treatments. We report a case of SR of small cell lung cancer (SCLC) combined with cancer associated retinopathy (CAR). A 65-year-old woman was admitted to our hospital to examine abnormal shadows of the lung with visual loss. She was diagnosed with SCLC associated with CAR. Subsequent chest X-ray and CT scan showed partial regression of both primary tumor and lymph node metastasis without anticancer treatment. Recoverin antigen was present on the tumor cells and anti-recoverin antibody was observed in the patient’s serum. Activation of recoverin-specific antitumor cytotoxic T lymphocyte (CTL) was observed in this patient. SCLC was considered to reduce spontaneously by the activation of recoverin-specific antitumor CTL. To the best of our knowledge, this is the first report of SR in SCLC combined with CAR.
1. INTRODUCTION

Small cell lung cancer (SCLC) accounts for 20% of lung cancers [1] and often leads to paraneoplastic syndrome, which is a remote effect on various organs without direct invasion or metastasis of tumor cells. Cancer associated retinopathy (CAR) is a rare paraneoplastic syndrome that is usually associated with SCLC [2]. Patients with CAR typically present with photosensitivity, ring scotoma, and attenuated retinal arteriole along with undetectable signals on an electroretinogram (ERG) [3]. The autoantibodies that react with photoreceptor proteins, including recoverin, might induce degeneration of photoreceptors and result in poor visual prognosis in patients with CAR [4]. It was reported that recoverin was expressed in tumor tissues in 68% of patients with SCLC and anti-recoverin antibodies were found in sera in 15% of those patients, respectively. However, none of these patients developed CAR [5].

Spontaneous regression (SR) is defined as the complete or partial disappearance of disease without effective anticancer treatments, continuing for 1 month. Although SR occurs in many types of cancers, it is rare, especially in SCLC [6, 7]. Here, we report a case of SR of SCLC combined
with CAR in a 65-year-old woman.

2. CASE REPORT

A 65-year-old woman with an existing smoking history of 35 pack-years was admitted to our hospital for evaluation of a right upper nodule revealed on a chest X-ray film (Fig. 1A). Chest computed tomography (CT) scan revealed a primary tumor in the right upper lobe with right supraclavicular and mediastinal lymph node swelling (Fig. 1B, C, D). Laboratory examination showed elevated levels of gastrin-releasing peptide precursor (pro-GRP) and neuron-specific enolase (NSE), at 115.0 pg/ml (normal range less than 80.9 pg/ml) and 15.5 ng/ml (less than 12.0 ng/ml), respectively. Tumor specimens of the right lower paratracheal lymph node obtained by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) were positive for neuroendocrine makers including CD56, chromogranin A and synaptophysin and confirmed the histological diagnosis of SCLC (Fig.2A).

The patient complained of blurred vision in both eyes 11 days after admission. Her best-corrected visual acuity was finger counting in the right eye and 0.1 in the left eye. Although funduscopic examination showed the
appearance of both eyes to be normal, Goldmann perimetry showed a large central scotoma in the right eye and a ring scotoma in the left eye. ERG showed poor responses in both eyes. Recoverin antigen was present in the lung cancer cells and anti-recoverin antibody was observed with high titer (1:2000) in the patient’s serum (Fig. 2B, 3). Finally, she was diagnosed with limited disease of SCLC (cT1bN3M0 stageIIIb) associated with CAR. After diagnosis of SCLC, chest X-ray and CT scan prior to anticancer treatment revealed the SCLC to have partially regressed. Furthermore, levels of both pro-GRP and NSE had already decreased before EBUS-TBNA examination, and decreased further to normal range. In vitro, IFN-γ ELISPOT assay was performed, using recoverin peptide to stimulate peripheral blood mononuclear cells taken from the patient. The number of CD8+ T cells secreting IFN-γ that reacted to R64 peptide (recoverin-derived HLA-A24 restricted peptide R64) was significantly larger than that of T cells without peptide in the patient (Fig. 4 A, B).

The patient was treated with chemotherapy comprising cisplatin (80 mg/m²) on day 1 and etoposide (100 mg/m²) on days 1, 2, and 3. In addition, oral prednisolone (40 mg daily) was initiated for CAR and gradually tapered
When four courses of chemotherapy had been completed, the primary tumor and lymph-node metastasis had reduced and a good partial response was achieved. Furthermore, her visual acuity had markedly improved, to 0.6 in the right eye and 1.0 in the left eye with amelioration of the visual field defects.

3. DISCUSSION

In this case, reduction of SCLC occurred prior to any anticancer treatment. SR of malignancy has been reported in almost all types of human cancer, but is rare in SCLC with only six previous cases having been reported [8-13]. All previous cases were associated with paraneoplastic sensory neuronopathy, which is caused by anti-neuronal antibodies such as anti-Hu. To the best of our knowledge, this is the first report of SR in SCLC combined with CAR.

Although the reasons for SR remain unclear, a possible hypothesis would be induction of tumor immunologic reaction. Maeda et al. have reported that the recoverin-specific cytotoxic T lymphocyte (CTL) was induced in the peripheral blood of cancer patients with CAR and caused tumor cell
regression in experimental mouse-model-grafted recoverin-expressing tumor cells [14]. In our patient, activation of recoverin-specific antitumor CTL for R64 peptide was observed. Thus, antitumor immunity against recoverin might have resulted in SR in this case.

In conclusion, this is the first report of SR in SCLC combined with CAR. SCLC was considered to reduce spontaneously by immune response induced by recoverin. In addition, immediate diagnosis and anticancer therapy is valuable not only for decreasing tumor burden but also for recovering visual disorder in SCLC combined with CAR.

Conflicts of interest statement: None declared.

Source of funding: None declared.
References

Fig. 1.

Chest X-ray and CT show spontaneous regression of primary tumor and lymph node metastasis in the present case. (A) Right upper mass (arrow) in first examination. (B) Primary tumor in the right S2 in first examination. (C) Right supraclavicular lymph-node metastasis (arrow) in first examination. (D) Mediastinal lymph node metastasis in first examination. (E) Partial spontaneous regression of the right upper mass, subsequent chest X-ray. (F) The primary tumor, (G) right supraclavicular lymph node and (H) mediastinal lymph node decreased, subsequent CT.
Fig. 1
Fig. 2.

Microscopic appearance of tumor biopsy specimen. (A) Hematoxylin-eosin staining shows small-cell carcinoma cell pattern (original magnification, 100×, 400×). (B) The presence of recoverin antigen on the tumor cells was verified by immunohistochemistry (original magnification, 400×). Positive control: small cell carcinoma (SBC1) tumors established in xenograft mouse models. Negative control: adenocarcinoma and human normal lung.
Fig. 2

A

[Images of tissue samples with labeled structures: Rosette-like structure and Mitosis]

B

SBC1 (positive control)

Adenocarcinoma (negative control)

Tumor tissue in this case

Normal lung (negative control)
Western blot analysis revealed the predicted protein band of approximately 49 kDa [recombinant human recoverin (23 kDa)-fusion GST (glutathione S-transferase, 26 kDa) protein] in patient's serum. Patient's and control serum were diluted at 1:2000.
Fig. 3
IFN-γ ELISPOT assay using patient’s peripheral blood mononuclear cells stimulated by recoverin peptide in vitro. Recoverin-derived HLA-A24 restricted R64 peptide (AYAQHVFRSF), HIV env-derived peptide (RYLRDQQLLGI) (negative control) and CMV LMP2-derived peptide (TYGPVFMSL) (positive control) were synthesized and purchased from Life Technologies (Carlsbad, CA). (A) The representative data of IFN-γ ELISPOT assay in this patient and a healthy donor. (B) The number of IFN-γ spots that reacted to R64 peptides was significantly higher than that of T cells without peptide in the patient.
Fig. 4

A

<table>
<thead>
<tr>
<th>Patient</th>
<th>Healthy donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recoverin peptide (R04 peptide)</td>
<td>Recoverin peptide (R04 peptide)</td>
</tr>
<tr>
<td>Negative control (HIV env-peptide)</td>
<td>Negative control (HIV env-peptide)</td>
</tr>
<tr>
<td>Positive control (CMV LMP-2 peptide)</td>
<td>Positive control (CMV LMP-2 peptide)</td>
</tr>
<tr>
<td>Peptide(-)</td>
<td>Peptide(-)</td>
</tr>
</tbody>
</table>

B

Patient

Healthy donor

$P=0.028$ $P<0.01$ $P=0.07$