Instructions for use

Title
SYNTHESIS OF PHOTOREACTIVE DIAZIRINYL SALICIN DERIVATIVE TO ELUCIDATE FUNCTIONAL ANALYSIS OF THE BITTER TASTE RECEPTOR

Author(s)
Sakurai, Munenori; Yoshida, Takuma; Wang, Lei; Murai, Yuta; Masuda, Katsuyoshi; Sakihama, Yasuko; Hashidoko, Yasuyuki; Hatanaka, Yasumaru; Hashimoto, Makoto

Citation
Heterocycles, 90(1), 698-705
https://doi.org/10.3987/COM-14-S(K)36

Issue Date
2015-01-01

Doc URL
http://hdl.handle.net/2115/58538

Type
article (author version)

File Information
68713(Hashimoto).pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
SYNTHESIS OF PHOTOREACTIVE DIAZIRINYL SALICIN DERIVATIVE TO ELUCIDATE FUNCTIONAL ANALYSIS OF THE BITTER TASTE RECEPTOR

Munenori Sakurai,a Takuma Yoshida,a Lei Wang,a Yuta Murai,a Katsuyoshi Masuda,b Yasuko Sakihama,a Yasuyuki Hashidoko,a Yasumaru Hatanaka,c and Makoto Hashimoto a,*

a Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan, b Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan, c Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2360 Sugitani, Toyama, 930-0194 Japan. E-mail: hasimoto@abs.agr.hokudai.ac.jp.

Abstract – Salicin (salicyl alcohol glucoside) is a substance well known for its bitter taste. A photoreactive diazirinyl derivative of salicin will be utilized for the functional analysis of interactions between the bitter taste receptor and salicin. Glucosides of salicyl derivatives are more difficult than phenol derivatives that are unsubstituted at the ortho-position. A diazirinyl salicin derivative was synthesized at moderate yields by glucosidation of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 2-hydroxy-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]-benzaldehyde in the presence of a phase-transfer catalyst, nBuEt3NBr, followed by reduction and deprotection.

This paper is dedicated to Prof. Dr. Isao Kuwajima on the occasion of his 77th birthday.
is construction of the diazirine moiety in the precursor of the phenyl glucoside derivative. However, glucosides of salicyl alcohol derivatives are more complicated than glucosides of the o-position unsubstituted phenol derivatives. Optimization of glucosidation of salicyl alcohol or salicyl aldehyde derivatives is essential to the synthesis of target diazirinyl derivatives of salicin. In this study, we report the synthesis of diazirinyl derivative and preliminary screening of glucosidations for salicyl alcohol and salicyl aldehyde derivatives.

We conducted retrosynthesis of the diazirinyl salicin derivative 1. Salicyl alcohol derivatives (4 and 5) were subjected to glucosidation with a donor derivative (2 or 3), as shown in route a in Scheme 1. Although route a seems to be straightforward construction of the salicin skeleton, few studies have described glucosidations of salicyl alcohol derivatives. Another route involves glucosidation with salicyl aldehyde derivatives (7) followed by reduction of the aldehyde group to primary alcohol (Scheme 1, route b). Although this route is an indirect method for constructing the target skeleton, others investigators used it in the glucosidation of salicyl aldehyde due to more effective glucoside formation than using salicyl alcohol derivatives. But comprehensive comparison of glucosidation for salicyl derivatives has not been reported yet. Several glucosidation routes for 2 and 3 using salicyl alcohol and salicyl aldehyde derivatives were screened as model reactions to synthesize the diazirinyl salicin derivative.

Scheme 1. Retrosynthesis of diazirinyl salicin derivative (1)

Scheme 2. Glucosidation of β-pentaacetylglucose 2 with salicyl derivatives 8–10.
Glucosidation of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranose (2) and 4-acetoxymethyl phenol with boron trifluoride etherate and triethylamine\(^8\) has been reported to result in good isolation yield. However, all salicyl derivatives (8–10, 1 - 1.5 eq), even though 2-acetoxymethyl phenol (9), with boron trifluoride etherate (1.4 - 2.5 eq) and triethylamine (0.3 - 0.5 eq) did not yield a glucosidated product. These results indicated that the reactivity of 2-acetoxymethyl substituted phenol was different from that of 4-acetoxymethyl substituted phenol (Scheme 2). The ortho-substitution phenols inhibited the glucosidations of 2 with BF\(_3\) etherate.

Glucosidation of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (3) and phenol derivatives in the presence of phase-transfer catalysts is one of the mild reactions used for the construction of β-glucoside. The phase-transfer catalysts dimethylaminopyridine\(^9\) and benzyltriethylammonium bromide\(^10\) did not yield any glucosidation products (Scheme 3 entries 1 to 6). However, n-butyltriethylammonium bromide\(^11\) improved glucosidation with salicyl derivatives. Although salicyl alcohol derivatives (8 and 9) did not undergo glucosidation, salicyl aldehyde (10) produced the glucoside, 11, at moderate yield (Scheme 3 entries 7 to 9). The anomeric proton coupling constant of compound 11 (\(J = 7.6\) Hz) define the β-configuration. Hence, diazirinyl salicin derivatives were synthesized with diazirinyl salicyl aldehyde derivative in the presence of the phase-transfer catalyst, n-BuEt\(_3\)NBr.

Diazirinyl salicyl aldehyde derivative 7\(^12\) was subjected to glucosidation with an equivalent of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (3) and nBuEt\(_3\)NBr at rt to afford 12 at low yield (9%,
Scheme 4 entry 1). 2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl bromide (3) was completely consumed under these conditions. The isolated yield of 12 improved with 2 equivalents of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (3) and 2.5 equivalents of nBuEt$_3$NBr (Scheme 4 entries 2–4). The anomeric proton coupling constant of compound 12 (δ 5.18 ppm, $J = 7.6$ Hz) define the β-configuration.

![Image of Scheme 4]

Scheme 4. Glucosidation of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (3) with diazirinyl salicylaldehyde (7).

The aldehyde in compound 12 was subjected to reduction to primary alcohol with NaBH$_4$ (84 %), followed by deacetylation with sodium methoxide (36%) to produce the diazirinyl salicin derivative, 1 (Scheme 5).

![Image of Scheme 5]

Scheme 5. Synthesis of the diazirinyl salicin derivative, 1.

Compound 1 was subjected to a photoirradiation experiment with black light (100 W) to ensure its photoreactivity.13 Decay at approximately 360 nm was measured in a time-dependent manner (Scheme 6). Although higher reactivity of generated carbene afforded complex photolysis mixture, main product was identified as methanol adduct of 1 (FD-MS, m/z 398).14 The half-life of diazirinyl moiety on compound 1 was found to be 0.78 min by using a semilogarithmic plot. These results indicated that 1 had sufficient reactivity for photoaffinity labeling. Hence, further functional analysis of the bitter receptor is underway.
Scheme 6. Photolysis of diazirinyl salicin (1) in methanol (1 mM) under black light (100W). UV spectra of the photolysis were recorded every minute for 15 min.

EXPERIMENTALS

General methods. NMR spectra were measured by JEOL EX-270 and ECA-500 spectrometers. ESI-TOF-MS data were obtained with a Waters UPLC ESI-TOF mass spectrometer. Optical rotation data were obtained with a JASCO DIP-370 polarimeter at 23°C.

2-[(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)oxy]-benzaldehyde (11)15

Benzaldehyde 10 (0.1287 g, 1.05 mmol), 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide 3 (0.4811 g, 1.17 mmol) and n-BuEt$_3$NBr (0.3888 g, 1.17 mmol) were dissolved in CH$_2$Cl$_2$ (10 mL). A solution of sodium hydroxide (5%, 4 mL) was added to the above solution. The reaction mixture was stirred at rt for 20 h vigorously and diluted with CHCl$_3$. The diluted solution was washed with cold 1 M HCl solution and brine, dried over MgSO$_4$, and concentrated. The residue was purified by silica gel column chromatography (hexane / AcOEt = 3 / 1) to afford 11 (0.2185 g, 46%) as colorless solid. 1H-NMR (CDCl$_3$) δ: 10.35 (1H, s), 7.87 (1H, dd, $J = 7.7, 1.8$ Hz), 7.56 (1H, ddd, $J = 8.7, 7.0, 1.4$ Hz), 7.19 (1H, t, $J = 7.6$ Hz), 7.12 (1H, d, $J = 8.2$ Hz), 5.41 - 5.30 (2H, m), 5.23 - 5.16 (1H, m), 5.19 (1H, d, $J = 7.6$ Hz), 4.30 (1H, dd, $J = 12.5, 5.3$ Hz), 4.18 (1H, dd, $J = 12.4, 2.5$ Hz), 3.90 (1H, ddd, $J = 10.1, 5.2, 2.5$ Hz), 2.08 (1H, s), 2.07 (1H, s), 2.06 (1H, s), 2.05 (1H, s); 13C-NMR (CDCl$_3$) δ: 189.06, 170.43, 170.12, 169.30, 169.14, 158.74, 135.64, 128.31, 126.28, 123.61, 116.00, 99.07, 72.23, 70.92, 68.18, 61.76, 20.53; $[\alpha]_D^\circ$ -29.0 (c 1.0, CHCl$_3$).

2-[(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)oxy]-4-[3-(trifluoromethyl)-3H-diazirine-3-yl]-benzaldehyde (12)
Diazirinylbenzaldehyde 7 (0.0553 g, 0.24 mmol), 2,3,4,6-tetra-O-acetyl-\(\alpha\)-D-glucopyranosyl bromide 3 (0.2862 g, 0.48 mmol), and n-BuEt3NBr (0.1938 g, 0.60 mmol) were dissolved in CH\(_2\)Cl\(_2\) (4 mL). A solution of sodium hydroxide (5%, 4 mL) was added. The reaction mixture was stirred at rt for 21 h and diluted with CHCl\(_3\). The diluted solution was washed with cold 1 M HCl solution and brine, dried over MgSO\(_4\), and concentrated. The residue was purified by silica gel column chromatography (hexane / AcOEt = 3 / 1 to hexane / AcOEt = 1 / 1) to afford 12 (0.0875 g, 65%) as colorless solid.

\[^1\]H-NMR (CDCl\(_3\)) \(\delta\): 10.30 (1H, s), 7.88 (1H, d, \(J = 8.2\) Hz), 6.97 (1H, d, \(J = 8.9\) Hz), 6.94 (1H, s), 5.41-5.30 (2H, m), 5.37, 5.23-5.13 (1H, m), 5.18 (1H, d, \(J = 7.6\) Hz), 4.27 (1H, dd, \(J = 5.3, 12.5\) Hz), 4.20 (1H, dd, \(J = 2.6, 12.5\) Hz), 3.95 (1H, ddd, \(J = 2.6, 5.3, 9.9\) Hz), 2.13 (3H, s), 2.07 (3H, s), 2.06 (3H, s), 2.05 (3H, s).

\[^13\]C-NMR (CDCl\(_3\)) \(\delta\): 187.99, 170.59, 170.07, 169.33, 169.13, 158.41, 136.54, 128.96, 126.55, 121.68 (q, \(J_{\text{CF}} = 274.9\) Hz), 121.24, 113.92, 98.88, 72.59, 72.17, 70.68, 67.92, 61.87, 28.45 (q, \(J_{\text{CF}} = 39.1\) Hz), 20.55.

\[^{19}\]F-NMR (CDCl\(_3\)) \(\delta\): -64.57. \([\alpha]_D +7.3\) (c 1.0, MeOH). HRMS-FD (m/z) M\(^+\) calcd for C\(_{23}\)H\(_{23}\)F\(_3\)N\(_2\)O\(_{11}\) 560.1254, found 560.1238.

2-[(2,3,4,6-tetra-O-acetyl-\(\beta\)-D-glucopyranosyl)oxy]-4-[3-(trifluoromethyl)-3\(\text{H}\)-diazirine-3-yl]-benzyl alcohol (13)

The diazirinyl tetraacetyl phenylglucoside derivative 12 (0.0673 g, 0.12 mmol) was dissolved in methanol and cooled to 0 °C and NaBH\(_4\) (0.0054 g, 0.14 mmol) was added to the reaction mixture. The reaction mixture was stirred at rt for 4 h. After acidification of the solution with 1 M HCl at 0 °C the reaction mixture was extracted with CH\(_2\)Cl\(_2\). The organic solution was dried over MgSO\(_4\), filtrated, and concentrated. The residue was purified by silica gel column chromatography (hexane / AcOEt = 1 / 1) to afford diazirinyl tetraacetyl salicin derivative 13 (0.0567 g, 84%) as colorless solid.

\[^1\]H-NMR (CDCl\(_3\)) \(\delta\): 7.40 (1H, d, \(J = 7.9\) Hz), 6.92 (1H, d, \(J = 7.9\) Hz), 6.84 (1H, s), 5.34 (1H, t, \(J = 5.9\) Hz), 5.33 (1H, dd, \(J = 13.4, 17.3\) Hz), 5.13 (2H, dd, \(J = 8.2, 17.8\) Hz), 4.65 (1H, dd, \(J = 13.5\) Hz), 4.56 (1H, d, \(J = 13.2\) Hz), 4.23 (1H, d, \(J = 5.6\) Hz), 4.21 (1H, d, \(J = 2.6\) Hz), 3.91 (1H, dq, \(J = 2.6, 9.7\) Hz), 2.37 (1H, br s), 2.11 (3H, s), 2.10 (3H, s), 2.07 (3H, s), 2.05 (3H, s).

\[^{13}\]C-NMR (CDCl\(_3\)) \(\delta\): 170.66, 170.06, 169.68, 169.39, 154.58, 132.94, 129.88, 129.72, 121.99 (q, \(J_{\text{CF}} = 274.3\) Hz), 121.71, 113.26, 99.16, 72.41, 72.21, 70.97, 68.10, 61.90, 60.36, 28.30 (q, \(J_{\text{CF}} = 40.2\) Hz), 20.63, 20.55.

\[^{19}\]F-NMR (CDCl\(_3\)) \(\delta\): -65.06. \([\alpha]_D +7.3\) (c 1.0, MeOH). HRMS-FD (m/z) M\(^+\) calcd for C\(_{23}\)H\(_{23}\)F\(_3\)N\(_2\)O\(_{11}\) 562.1410, found 562.1410.

2-Hydroxymethyl-5-[3-(trifluoromethyl)-3\(\text{H}\)-diazirine-3-yl]phenyl-\(\beta\)-D-glucopyranoside (1)

To a solution of diazirinyl pentaacetyl salicin derivative 13 (47.5 mg, 0.084 mmol) in MeOH (2 mL), a solution of NaOMe in MeOH (28%, 25 μL) was added at 0 °C, and the reaction mixture was stirred at rt for 1 h. After the reaction, the mixture was concentrated in vacuo. The residue was purified by silica gel
column chromatography (CH$_2$Cl$_2$ / MeOH = 4 / 1) to afford diazirinyl salicin 1 (0.0120 g, 36%) as colorless solid. 1H-NMR (CD$_3$OD) δ: 7.38 (1H, d, $J = 8.2$ Hz), 6.95 (1H, s), 6.84 (1H, d, $J = 7.9$ Hz), 4.76-4.73 (1H, d), 4.67 (1H, d, $J = 14.2$ Hz), 4.52 (1H, d, $J = 13.8$ Hz), 3.79 (1H, d, $J = 11.9$ Hz), 3.62 (1H, dd, $J = 3.1$, 12.4 Hz), 3.43-3.33 (4H, m), 1.19 (1H, br s). 13C-NMR (CD$_3$OD), δ: 156.86, 134.82, 130.25, 129.92, 123.59 (q, 1J$_{CF}$ = 274.9 Hz), 121.77, 115.01, 103.26, 78.32, 77.96, 74.86, 71.19, 62.30, 60.10, 29.45 (q, 2J$_{CF}$ = 40.2 Hz). 19F-NMR(CD$_3$OD) δ: -66.89. [α]$_D$ -23.1 (c 1.0, MeOH).

Photolysis of compound 1 in methanol

A 1 mM degassed methanolic solution of the diazirinyl salicin 1 was placed in a quartz cuvette. Photolysis was carried out with 100 W black-light at a distance of 5cm from surface of light source. Spectra were measured after each minute, and then the half-life was calculated from the decrements of the absorbance around 360 nm.

ACKNOWLEDGEMENTS

MH thanks the Fugaku Foundation for financial support. Part of this work was performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices”

REFERENCES

