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Bosonic representation of one-dimensional Heisenberg ferrimagnets

Shoji Yamamoto
Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
(Received 2 September 2003; published 23 February)2004

We present a comparative study of bosonic languages to describe one-dimensional Heisenberg ferrimagnets.
The ferrimagnetic Schwinger-boson mean-field theory demonstrated tst iy the antiferromagnetic modi-
fied spin-wave theory designed by Takahashi, and its ferrimagnetic variant proposed by Yaretaiotwe
employed to calculate the energy structure and the thermodynamics of various ferrimagnets. A modified
spin-wave scheme, which introduces a Lagrange multiplier keeping the native energy structure free from
temperature and thus differs from the original Takahashi scheme, is particularly stressed as a useful tool to
investigate one-dimensional quantum ferrimagnetism. The antiferromagnetic limit of these descriptions is also

considered.
DOI: 10.1103/PhysRevB.69.064426 PACS nuni®er75.10.Jm, 75.50.Gg, 75.40.Cx
[. INTRODUCTION tween massive and massless phases. Quasi-one-dimensional

mixed-spin systen?$?® were also investigated in order to
Significant efforts have been devoted to synthesizing lowexplain the inelastic-neutron-scattering findiftg® for the
dimensional ferrimagnets and understanding their quanturrare-earth nickelateR,BaNiOs.
behavior in recent years. The first example of one- In order to complement numerical tools and to achieve
dimensional  ferrimagnets, MnCu{S,0,),(H,0);  further understanding of the magnetic double structure of
-4.5H,0, was synthesized by Gleizes and Verdagwerd  ferrimagnetism, several authors have recently begun to con-
followed by a series of ordered bimetallic chain compodnds struct bosonic theories of low-dimensional quantum ferri-
in an attempt to design molecule-based ferromagh€®n-  magnets. The conventional spin-wave description of the
eschiet al* demonstrated another approach to alternatings round-state propertiéé:31-33a modified spin-wave scheme
spin chains hybridizing manganese complexes and nitronﬁor the low-temperature propertiés,and the Schwinger-
nitrqxide radicals. Th'e inorganic—organic hybrid strat_egyboson representation of the low-energy strudusnd the
e e o et nous e iemednamicd: ey all evel he potenl of bosoni
into a purely organic ferrimggnétMonosgin chains can ?a_mgqages for various ferrimagnetic systems. However, con-
| sidering the global argument and total understanding over the

be ferrimagnetic with polymerized exchange interactions . ) -
An example of such ferrimagnets is the ferromagnetic—bosonlc theory of feromagnets and antiferromagiiets,

antiferromagnetic bond-alternating copper tetramer ChaiIIlerrimagnets are still undeveloped in this context especially
compound Cu(@H;NCI),(Ns),.” The trimeric inter- in one dimension. In such circumstances, we represent one-

twining double-chain compound Q@ (PO,), (Ref. 8§ dimensional Heisenberg ferrimagnets_ in terms_ of the
is another solution to homometallic one-dimensional fer-SCchwinger bosons and the Holstein-Primakoff spin waves.
rimagnets, where the noncompensation of sublatticd@sed on a mean-field ansatz, the local constraints on the
magnetizations is of topological origin. Besides one-Schwinger bosons are relaxed and imposed only on the av-
dimensional ferrimagnets, metal-ion magnetic clusterg£rage. The conventional antiferromagnetic ~ spin-wave
such as [Mn;,0.(CHsCOO)s(H,0),] (Ref. 9 and formalisnf®*is modified, on the one hand following the
[Fey(N3CsHyg) sO,(OH)1,]8+, 20 for which resonant magne- Takahashi schem&*which was originally proposed for fer-
tization tunneling*~*was observed, are also worth mention- romagnets, while on the other hand introducing a slightly
ing as zero-dimensional ferrimagnets. different strategy® The Schwinger bosons and the modified
The discovery of ordered bimetallic chain compoundsspin waves both interpret the low-energy properties fairly
stimulated extensive theoretical interest {quasijone-  well identifying the ferrimagnetic long-range order with a
dimensional quantum ferrimagnets. Early effbttwere de-  Bose condensation, while the two languages are qualitatively
voted to numerically diagonalizing alternating-spin Heisen-distinguished in describing the thermodynamics. We demon-
berg chains. Numerical diagonalization, combined with thestrate that the modified spin-wave scheme is much better

: 17 H H - . . .
Lanczos fi|90”'[h_fjfis and a scaling techniqué further €oNn-  than the others at describing one-dimensional ferrimagnets.
tributed to studying modern topics such as phase transitions

of the Kosterlitz-Thouless typé*°and quantized magnetiza-
tion plateaux®?! Alternating-spin chains were further inves-
tigated by density-matrix renormalization-gréap® and
quantum Monte Carfd?° methods in an attempt to illumi- A practical model for one-dimensional ferrimagnets is
nate dual features of ferrimagnetic excitations. More generaiwvo kinds of spinsSands (S>s), alternating on a ring with
mixed-spin chains were analyzed via the nonlinear antiferromagnetic exchange coupling between nearest neigh-
modef® with particular emphasis on the competition be-bors, as described by the Hamiltonian,

Il. FORMALISM
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N Hye=2NJISsH4ANIOZ—2NIN(2S+1)— 2NJIu(2s+1)

=32, (Sysatse Sy (2.9
. . . . . +2‘J2 wk+‘]2 2 wkaakaak0+wkoﬂkaﬂka)

Hereafter, the distance between neighboring spins is repre- *
sented bya. The simplest caseS(s)=(1,3), has so far been (2.9
discussed fairly well using the matrix-product formalisha,
modified spin-wave scheni®, the Schwinger-boson
representatiof® and modern numerical techniqu&s?®We
make further explorations into higher-spin systems and de-
velop the analytic argument in more detail.

where

W= g == (u—\),

o =V(\+u)?—40%cogak. (2.10
A. Schwinger-boson mean-field theory N\, u, andQ are determined through a set of equations
Let us describe each spin variable in terms of two kinds of . o
bosons as > (ng,cosk b, +n, sint 6, +sint?6,) =NS,
k
Sy=aja,, Si=%(af;a,—a\_a ), (2.1
st=bl.b,_, =3, b,.—bl b, ), (2.2 > (ng,sintPo+n, cosk g+ sint?6,) =Ns,
k
where the constraints (2.12
2 al a,,=2S, 2 bl bn,=2s, (2.3 2k (N, + N, +1)coshgsinhg=NQ,  (2.13

are imposed on the bosons. Relaxing the constrgh8 as  where the thermal distribution function;k_oz(aloakoh
andn,,=(Bl By ) are required to minimize the free en-

2 2 an(rano' 2NS, z E b =2NS, ergy and giVen by
=1 o=%* =1 o==*
(2.9 — _ 1 014
ko™, - - i
and assuming the thermal average of the short-range antifer- eka/kBT— 1

romagnetic order to be uniform and static as ) o
The magnetic susceptibility is expressed as

(an by —an_bp)r=2Q, (2.9 (gug)?
_ B
with n=n,n—1, we obtain the mean-field Hamiltonian in X= 4kgT Zk T—E+ (r—z nk"(nk”+ . @13

the momentum space as

where we have set thggfactors of spinss ands both equal to

Hye=2NJISst 4NJQ2— 4NI(AS+ us) g. The internal energy should be given by
E=3(Eye+2NJSS—2NJS 2.1
—2JQ, cosak(ay: b, —a,_ by, +H.c) 2(Ewr 3 s (2.19
K where
+233 S (Al ag,+ubl b, 2.6 Ene=2NJSsH4NJQ2— 2NJ(2NS+2us+ A+ )
k o==*
where\ and u are the Lagrange multipliers due to the con- +232 wk+‘JZ > X N0, (217

T=% o=%

straints(2.4). Via the Bogoliubov transformation
Arovas and Auerbaéfi pointed out that relaxing the original

A, = ay,Coshb+ Bl sinh6, constraints(2.3) into Eq. (2.4) leads to double counting the
number of independent boson degrees of freedom. Therefore,
byo= Bk,COShb— oa}_ sinhéy, (2.7 in Eg. (2.16, we have corrected the mean-field artifact re-
i ducing the overestimated quantum fluctuation.
Wi
20) cosak B. Modified spin-wave theory: Takahashi scheme
tanh ZHkZW' (2.8 Next we consider a single-component bosonic representa-
tion of each spin variable at the cost of the rotational sym-
the Hamiltonian(2.6) is diagonalized as metry. We start from the Holstein-Primakoff transformation
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S, =v2S—-ajaya,,
s =b'J2s—blb, si=-s+blb,.

z_c_ At
S,=S—a,a,,

(2.18

TreatingSands asO(S)=0(s), we can expand the Hamil-

tonian with respect to Fas

H=—2NJISStE;+Ey+H;+Ho+O(S™ 1), (2.19

whereE; andH; give theO(S') quantum corrections to the

ground-state energy and the dispersion relations,
tively. Via the Bogoliubov transformation

a,= a,coshf— Blsinh 6, ,
b,= Bcoshb— alsinh O, (2.20

they are written as

E,=—2NJ[2\/Sd — (S+s)A], (2.213

F2+A2—< \E+ \E)FA}, (2.21b

Hs@ [w; (K afa+ o] (K) BBy

Eo=—2NJ

+%i(K) (Bt al BD1, (2.22
where

1 i

I'=—— >, cosaksinh 26, (2.23
2N 4
1

A=—-— > (cosh2,—1), (2.24)
2N %

w; (k)= (S+s)cosh M, —2\/Ssosak sinh 26, + (S—s)
(2.253

S
coshmk—[ZF—< \[g
k sinh 26, = \[S \f

cosak sinh 26, .+ S 3/

(2.25h

——wk_(S—S),
J

y1(k)=2+\/Sscosak cosh 2, — (S+s)sinh 26, ,

(e
o Gra

wg (K)=

A

cosak cosh 29,

sinh26,. (2.26h
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two-body interactions have been neglected so as to keep the
ferromagnetic excitation branch gapless.

The conventional spin-wave scheme naively diagonalize
the Hamiltonian(2.19 and ends up with the number of
bosons diverging with increasing temperature. In order to
suppress this thermal divergence, Takah#shonsidered
optimizing the bosonic distribution functions under zero
magnetization and obtained an excellent description of the
low-temperature thermodynamics for low-dimensional
Heisenberg ferromagnets. For ferrimagnets, this idea is still

reSPelisefuP* > but never applies away from the low-temperature

region as it is. The zero-magnetization constraint plays a role
of keeping the number of bosons finite under ferromagnetic
interactions but does not work so under antiferromagnetic
interactions. TakahasHiand Hirschet al*® proposed con-
straining the staggered magnetization, instead of the uniform
magnetization, to be zero as the antiferromagnetic version of
the modified spin-wave theory. Their scheme was applied to
extensive antiferromagnets in both t#3%%2~%and oné®4*
dimensions. The conventional spin-wave procedure assumes
that spins on one sublattice point predominantly up, while
those on the other predominantly down. The modified spin-
wave treatment restores the sublattice symmetry. We con-
sider the naivest generalization of the antiferromagnetic
modified spin-wave scheme to ferrimagnets.

The constraint of zero staggered magnetization reads

> (alay+blb,)=N(S+s). (2.27)
n
In order to enforce this condition, we first introduce a

Lagrange multiplier and diagonalize the effective Hamil-
tonian

H=H+2JvY, (ala,+b'b,). (2.29
n

Then the ground-state energy and the dispersion relations are
obtained as

Eq=—2NJSstE;, E;=E;+4NJAv, (2.29
wp =07 (k), o7 (k)=w;(k)+2vcosh,,
(2.30
keeping only the bilinear terms and as
Ey= —2NJSs+E;+E,, (2.31)
wi =07 (K)+ wy (), (2.32

considering theD(S") interactions as well. In terms of the
spin-wave distribution functions

1
= (2.33

e“’l:/kBT— 1 !

%‘\+|

H, originally consists of quartic bosonic terms and has beetthe internal energy and the magnetic susceptibility are ex-
decomposed by means of the Wick theorem. The residugiressed a8
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within the up-toO(S?) treatment and by

E=Es+> nfwf, (2.34
koor== Eg=—2NJSSFE;+Ep, = w1 (K)+og(k),
2 (2.40
(9ue) — . .
3T ; 2, NNt 1). (239  in the up-toO(SP) treatment. They are nothing but the
B = =0 findings in the Takahashi scheme.
0, defining the Bogoliubov transformatid@.20), is deter- At finite temperatures we replauzaiai< and ,BE,Bk in the
mined through spin-wave Hamiltoniar{2.22) by
k) — 2w sinh 26,="y, (k) =0, 2.3 S
. y1(K) k 7.1( ) (2.36 v 2 n*Pk(nf,n+), (2.47)
provided we treat{, as a perturbation ti,. n~.nt=0
- _ _ whereP,(n~,n") is the probability oin~ ferromagnetic and
C. Modified spin-wave theory: A different scheme n* antiferromagnetic spin waves appearing in the

Although the Takahashi scheme overcomes the difficultk-momentum state and satisfies
of sublattice magnetizations diverging thermally, the ob-
tained thermodynamics is still far from satisfacttﬁsyee Fig. 2 P (n~,n*)=1 (2.42
2 later on. Within the conventional spin-wave theory, the n-nt
guantum spin reduction, that is, the quantum fluctuation 0; , . :
the ground-state sublattice magnetization per unit cell, read®’ all k's. Then the free energy is written as

<a§an>T:O:<blbn>T:0§5 F=Eg+J; Z+ P(n™,n™) Z+ N"wg
n 'n T2
_fw S+s dk 1
0 (S—s)2+4Ssi(ki2) 27 2’ JrkBTZk > P(n,nH)InP(n~,n*).

n~,nt

(2.37 (2.43
and diverges atS=s. The Takahashi scheme settles this L . _ 4
guantum divergencas well as thehermal divergenceHow- Z\ﬁommlm:gozh;tigﬁe energy with respect By(n-.n")
ever, the number of bosons does not diverge in the ferrimag- 9

netic ground state. Without quantum divergence, it is not 7_ oz /T2
necessary to modify the dispersion relati¢@<253 into the (Si=sp)r+20=(:S;—s )t
temperature-dependent forif2.30. While the thermody- S+s le
namics should be modified, the quantum mechanics may be =S+s— — E —=0,
left as it is. N T =% o
Such an idea leads to the Bogoliubov transformation free (2.44

fi t t lacing E(R.36 b k)=0, that is, - . .
fom temperature replacing EQ-36 by (k) ars as well as the trivial constraint®.42. In the second-side

2./Sxosak compact expression, the normal ordering is taken with re-
Sts (2.38  spect to both operators and 3. Equation(2.44) claims that

the thermal fluctuationg+s) =, (n, +n, )/ oy should cancel

The ground-state energy and the dispersion relations are sirthe full, or classica] Neel order G+s)N rather than the

tanh 20,=

ply given by guantum-mechanically reducezhe S+s—26)N. Without
.. consideration of the quantum fluctuatio@,2wvhich is absent
Eg=—2NJSstE;, oy =w;i(k), (239 from ferromagnets but peculiar to ferrimagnets, the present

TABLE |. The Schwinger-bosoriSB), linear-modified-spin-wavéLMSW), perturbational interacting-
modified-spin-wavéPIMSW), and numerical diagonalizatidexac) calculations of the ground-state energy
E4 and the zero-temperature antiferromagnetic excitation\gafor the spin-g,s) ferrimagnetic Heisenberg

chains.

(S9)=(13) (S9)=(3.3) (S9)=(3.1)
Approach Eg/NJ Ag/d Ey/NJ Ag/d Ey/NJ Ag/d
SB —1.45525 1.77804 —1.96755 2.84973 —3.86270 1.62152
LMSW —1.43646 1 —1.95804 2 —3.82807 1
PIMSW —1.46084 1.67556 —1.96983 2.80253 —3.86758 1.52139
Exact —1.4541(1) 1.759(1) —1.9672(1) 2.842(1) —3.861(1) 1.615(5)
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4.0

o QMC

(@) (L112) () (3/2,122) (©)(3/2,1)

00 0.2 04 0.6 08 1.000 02 04 0.6 038 1000 0.2 04 0.6 08 10
2ak/w

FIG. 1. The Schwinger-bosof$B), linear-modified-spin-wavéLMSW), perturbational interacting-modified-spin-wa(IMSW), and
quantum Monte Carl¢QMC) calculations of the dispersion relations of the ferromagnetig)(and antiferromagneticaf;) elementary
excitations for the sping,s) ferrimagnetic Heisenberg chains at zero temperature.

scheme breaks even the conventional spin-wave achievemenhere v is the Lagrange multiplier due to the constraint
at low temperatures. Numerically solving the thermodynamiq2.44).

Bethe-Ansatz equations, Takahashi and Yamasaggested

that the conventional spin-wave theory correctly gives the

low-temperature leading term of the specific heat. Both the . RESULTS

Takahashi scheme with EQR.27) and the different scheme )

with Eq. (2.44 indeed keep unchanged the conventional First we calculate the ground-state enefgyand the an-

spin-wave findings tiferromagnetic excitation gap,_, and compare them with
numerical findings in Table I. AtT=0, the Takahashi
c 3 [s5=s¢®) scheme and the different scheme both givze0 and lead to

o~ A /——tllz(THO), (2.45 the conventional spin-wave findings. Higher-order spin-wave

Nkg 4 Ss \2m calculatiori? of the ground-state properties is feasible, while

. 1 _ more sophisticated series-expansion techriftnas recently
where t=kgT/J within the up-to©(S’) treatment, whilet  peen proposed. We are fully convinced that the spin-wave
= kBJ/ yJ with y=1+T/Ss- (Sts)A/Ssin the up-to-  treatment better works for larger spins. Table | further shows
O(S’) treatment. The conventional spin-wave approachhat the spin-wave approach is better justified with increasing
gives no quantitative information on the magnetic susceptis/s as well asSs which is because the quanti§-s fills

bility, whereas the modified theory reveals the role of suppressing the divergence in E237). On the
other hand, the Schwinger-boson approach constantly gives
xJ SgS—s)? 5 highly precise estimates of the low-energy properties. Figure
N(gug)? - 3 = (1=0). (248 1 further demonstrates that the Schwinger-boson mean-field
theory is highly successful in describing the low-lying exci-
In terms of the optimum distribution functions tations. Both the bosonic languages well interpret the ferro-
magnetic excitations, whereas the linear spin waves consid-
. 1 erably underestimate the antiferromagnetic excitation
L= , (2.47  energies. The quantum correlation has much effect on the

gl —r(St)lodiksT 1 antiferromagnetic excitation mode and such an effect is well

included into the Schwinger-boson calculation even at the
mean-field level.
Next we calculate the thermodynamic properties. Figure 2
F=E.+ (S+5)N—KkaT IN(1+n70), (2.4 show§ the temperature dlependence. of the §pecn‘|c heat. The
gl ) B 2k Tzr ( o, (249 Schwinger-boson mean-field theory is still highly successful

the free energy at the thermal equilibrium is written as

20

(@) (1,1/2) (b) (3/2,1/2) (©) 312,1)

D e m e

e A
S L e e || |

—SB
----- LMSW(Takahashi)
— = -PIMSW(Takahashi)
--------- LMSW(Yamamoto)
---PIMSW(Yamamoto)

C/Nkg
5

0.0 1.0 20 3.00.0 1.0 kT 1 20 3000 1.0 20 30
FIG. 2. (Color online The Schwinger-bosofSB), linear-modified-spin-wavéLMSW), perturbational interacting-modified-spin-wave
(PIMSW), and quantum Monte Carl@MC) calculations of the specific he@tas a function of temperature for the spi®4) ferrimagnetic
Heisenberg chains. The modified spin waves are constructed in two different ways, the Takahashi(3ekahwshi and the different
scheme(Yamamoto.
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(@) (1,1/2) (b) (3/2,172) @GR __gp

e v PIMSW(Takahashi)

0.0 1.0 20 3.0 00 10 kT1 20 3.000 1.0 2.0 3.0
FIG. 3. The ferromagneticaf,_o) and antiferromagnetice;_,) excitation gaps as functions of temperature for the sgis)(ferri-
magnetic Heisenberg chains calculated by the Schwinger béS@8)sand the perturbationally interacting modified spin way#@BvISW)
based on the Takahashi scheme.

at low temperatures, while with increasing temperature, it In the Schwinger representation and the modified spin-

rapidly breaks down failing to reproduce the Schottky-typewave treatment based on the Takahashi scheme, the energy

peak. The mean-field order paramefermonotonically de- spectrum depends on temperature. Since the low-energy

creases with increasing temperature and reaches zero at band structure is well reflected in the thermal behavior and
can directly be observed through inelastic-neutron-scattering

B _ (3.0 measurements, we investigate the ferromagnesjc ) and

J  In(1+1/S)+In(1+1/s) antiferromagnetic ¢,_,) excitation gaps as functions of

Above this temperaturd) sticks at zero suggesting no anti- {€mperature in Fig. 3. The Schwinger-boson mean-field
ferromagnetic correlation in the system. The onset of thdheory claims that the antiferromagnetic gap should first de-
paramagnetic phase at a finite temperature is a mean-fiefease and then increase with increasing temperature, while
artifact and the particular temperatu@1) is an increasing the modified spin-wave theory predicts that the excitation
function of Sands. The modified spin-wave theory based on energies of both modes should be monotonically increasing
the Takahashi scheme also fails to describe the Schottkunctions of temperature. We find a similar contrast between
peak. Because of the Lagrange multiplierwhich turns out  the two languages applied to ladder ferrimagrigfS.In the

a monotonically increasing function of temperature, the discase of Haldane-gap antiferromagnets, both the Schwinger-
persion relationg2.30 lead to endlessly increasing energy boson and modified-spin-wat/efindings, together with the
and thus nonvanishing specific heat at high temperaturesonlineare-model calculation§®* commonly suggest that
Only the modified spin-wave theory based on the differenthe Haldane gap is a simply activated function of tempera-
scheme succeeds in interpreting the Schottky peak. Since there. Extensive measurements on spin-1 antiferromagnetic
antiferromagnetic excitation gap is significantly improved byHeisenberg chain compour?ds®* also report that the
the inclusion of thed(S®) correlation, the interacting modi- Haldane massive mode is shifted upward with increasing
fied spin waves reproduce the location of the Schottky peakemperature. Neutron-scattering experiments on ferrimag-
fairly well. Mixed-spin trimeric chain ferrimagnets have re- netic chain compounds may solve the present disagreement
cently been synthesizeé@nd their low-temperature thermal between the Schwinger-boson and modified-spin-wave cal-
properties were well elucidated by the modified spin-waveculations of the antiferromagnetic excitation gap as a func-
theory®* However, it was unfortunate that the additional con-tion of temperature.

straint was imposed on the uniform magnetization and there- Figure 4 shows the temperature dependence of the
fore the higher-temperature properties were much less illumagnetic-susceptibility-temperature product, which eluci-
minated. Controlling the staggered magnetization insteadates ferromagnetic and antiferromagnetic features coexist-
based on the different scheme, we can fully investigate suchmg in ferrimagnet$® T diverges at low temperatures in a

kgT St+s+1

polymeric chain compounds as well. ferromagnetic fashion but approaches the high-temperature
20 60 30
: o QMC :
- +++-LMSW(Takahashi) ]
40 - — -PIMSW(Takahashi) 2.0
--------- LMSW(Yamamoto)

----- PIMSW(Yamamoto)

-3 600 $20

50 o_o - ———-

ggs@iggﬁ’m S

kT N (gt
=]

& "0 oy

2 S sl Ay
= O5%on 5 00 RS20 ~ R0056E i

b G212 © Gl

30 0'00.0 1.0 20 3.0

(a) (1,172)
0965 L0 2.0 7000 1.0

2.0
kT /T

FIG. 4. (Color online The Schwinger-bosofSB), linear-modified-spin-wavéLMSW), perturbational interacting-modified-spin-wave
(PIMSW), and quantum Monte Carl@MC) calculations of the susceptibility-temperature prody€tas a function of temperature for the
spin-(S,s) ferrimagnetic Heisenberg chains. The modified spin waves are constructed in two different ways, the TakahashiTsélaeme
hash) and the different schemgamamotg.
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Y o oac ©®) temperature shoulderlike structure. The characteristic
"o N G— SMSW(Ymnmom) minimum of the susceptibility-temperature product is unfor-
"'ffc @8  — PIMSW(Yamamoto) tu_nately less reproducgd but the 'cgliculation aga_\in corrgctly
-.90 < 46060000004 gives the paramagnetic susce.pnblllty at sgfﬂmently high
N S temperatures. A recent experim@nton a single-crystal
‘°~»o\_b_”_ = sample of Cu(€H,NCI),(Ns),,” which may be described
o by the Hamiltonian(3.2), has reported that the specific heat
1.0 kgl /J 2.0 50" 00 10 kgl /J 2.0 30 exhibits a double-peaked structure as a function of tempera-

ture. There is indeed a possibility of an additional peak ap-
FIG. 5. The linear-modified-spin-wau&MSW), perturbational pearing at low temperatures as the rallltd‘]AF moves away
interacting-modified-spin-wavePIMSW), and quantum Monte  from unity®® However, no parameter assignment has yet suc-
Carlo (QMC) calculations of the specific heaC and the  ceeded in interpreting all the observations consistently. There
susceptibility-temperature produgfl as functions of temperature gre further chemical attempts to synthesize novel ferrimag-
for the sping bond-tetrameric ferrimagnetic Heisenberg chain of nets. Organic ferrimagnét@ are free from magnetic anisot-
Jr=Jae - The modified spin waves are constructed on the dif‘ferenrropy and thus suitable for analyzing in terms of the modified

scheme. spin waves.

paramagnetic behavior showing an antiferromagnetic in-
crease. The modified spin waves much better describe the IV. SUMMARY AND DISCUSSION
magnetic behavior than the Schwinger bosons. The spin

waves modified along with the Takahashi scheme better We have demonstrated the Schwinger-boson mean-field
work at high temperatures, while those along with the differ-representation and the modified spin-wave treatment of one-

ent scheme precisely reproduce the low-temperature beh?ﬁimensional Heisenberg ferrimagnets. The Schwinger bosons

ior. Both calculations converge into the paramagnetic beha orm a”.exc‘?”?”t '?‘”9“6‘96 at low temperatures but ra.p.idly
ior  xkeT/N(gue)?=[S(S+1)+s(s+1)]/3 at high lose their validity with increasing temperature. The modified

temperatures, whereas the Schwinger-boson mean-fie@in'wave theory is more reliable in totality provided the

theory again breaks down at the particular tempera@u® number of bosons is controlled without modifying the native
Considering that numerical tools less work at low tempera—energy structure. Obn the oghedr hanq, the _Schmg;ger—boson
tures, we realize the superiority of the different scheme!EPrésentation can be extended to anisotropic systenwe

based modified spin-wave theory all the more reasonably because it is rotationally invariant in contrast to
Finally we calculate another type of ferrimagnet in orderthe modified spin-wave theory. Wh|!e the temper_ature depen-
to demonstrate the constant applicability of the present difdence of the antiferromagnetic excitation gaf g is left to

ferent scheme. Figure 5 shows the thermodynamic prope§_olve experimenFaIIy, we are now convinceq that the bosonic
ties of the ferromagnetic-ferromagnetic-antiferromagneticl2nguages remain effective in low dimensions and may be

antiferromagnetic bond-tetrameric spinHeisenberg chain, aPplied to extensive ferrimagnéts.Besides ground-state
properties and thermodynamics, quantum spin dyndfhics

N can be investigated through the modified spin-wave scheme.
H= ", [Iar(San—3"San—2+San_2-San_1) We further mention our findings in the antiferromagnetic
n=1 limit with the view of realizing the close relation between the
— I(San-1-Sunt San- Sans )1, (3.2 two bosonic languages. We equaleeith Sand set A, the

number of spins, equal tb for the Hamiltonian(2.1). At S
where we have set all thgfactors equal for simplicity. The =s, the ground-state sublattice magnetizatih37) di-
different modified spin-wave scheme again successfully reverges and therefore the different modified spin-wave
produces the Schottky peak of the specific heat. The interacscheme is no more applicable. We have to settle the quan-
ing modified spin waves further interpret the low- tum, as well as thermal, divergence inevitably employing the

TABLE II. The Schwinger-bosoriSB), linear-modified-spin-wavéLMSW), perturbational interacting-
modified-spin-wave(PIMSW), full-diagonalization interacting-modified-spin-wavEDIMSW), and quan-
tum Monte Carlo(QMC)2 calculations of the ground-state eneigy and the lowest excitation ga, for
the spinS antiferromagnetic Heisenberg chaiief. 72.

S=1 S=2 S=3
Approach Eq/LJ Ag/d E,/LJ Ag/d Eqy/LJ Ag/d
SB —1.396148 0.08507 —4.759769 0.00684 —10.1231 0.00295
LMSW —1.361879 0.07200 —4.726749 0.00626 —10.0901 0.00279
PIMSW —1.394853 0.07853 —4.759760 0.00655 —10.1231 0.00287
FDIMSW —1.394617 0.08507 —4.759759 0.00684 —10.1231 0.00295
QMC —1.401481(4) 0.41048(6) —4.761249(6) 0.08917(4) —10.1239(1) 0.01002(3)
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0.4

Takahashi scheme. Besides the perturbational treatment d-9[; @ N 5

; i i i / QMC (b)
Ho, we may consider the full diagonalization &f;+ H,, 0.8 e S— ! ---SB ‘
where the ground-state energy and the dispersion relation i %[ T o e
are still given by Egs(2.31) and (2.32, respectively, but S| oo o S e FDMSW (Takahashi)
with 6, satisfying © 3 ,» %o o, 3 : ; ;

02 / oo,
71(K)+ 70(k)=0. 4. 005 10 kgT/J 2.0 700 10 kgT/J 2.0 30

Such an idea applied to ferrimagnets ends in gapped ferro- FIG. 6. The linear-modified-spin-wa\&MSW), perturbational
magnetic excitations and misreads the low-energy physicénteracting-modified-spin-wave (PIMSW),  full-diagonalization
The perturbational series-expansion approach is highly sudateracting-modified-spin-wavéFDIMSW), and quantum Monte
cessful in the case of ferrimagnéfs>> Focussing our interest  Carlo (QMC) calculations of the specific he&t and the suscepti-
on Haldane-gap antiferromagnets, we list the bosonic calcuRility x as functions of temperature for the spin-1 antiferromagnetic
lations of the ground-state properties in Table II. The bosoni¢i€isenberg chain. The modified spin waves are constructed on the
languages interpret the ground-state correlation very well butakahashi scheme.
underestimate the Haldane gap considerably. Indeed the e . . -
cannot detect the topological terms responsible for vanishingeak of the specific heat, but it describes .the. susceppbmty
gap’® but they are still qualitatively consistent with the ery well except for the low-temperature findings attribut-
nonlineare-model quantum field theory, yielding the low- able to th_e unde_resnmate of th_e_HaIdane gap. We may expect
temperature limiting behaviablfzo—Aooce*AO’T (Refs. 41, the modlflec_j spin waves to efficiently d_ep|ct t_he dynamic, as
61) and the large-spin asymptotic behavikgoe™ ™S, %4:46.73 well as static, _susce.pt|b|I|t)_/ for extensive spin-gapped anti-
The Schwinger-boson mean-field theory and the fuII—fergSg:f[”ilg2(atos;c 'gzllejdé?rgeizzgngdiif;]ﬁg ?rc:‘ronra;meet;hemaelther
d!agonal|zat|on interacting modified spin-wave treatr_nentgpin gapped or not, there is a possibility of a fermionic
give the same estimate of the Haldane gap. The SChW'ngefénguag€5'76 which is in principle compact, being superior
boson dispersion relatidi2.10) indeed coincides analytically - . '

; ; A . o . to any bosonic representation.
with that of the fuII—dlagonallzatllon mteractmg modified spin In the case of ferromagnets, the Holstein-Primakoff
e o eresng 0L 80 Uosons are areacy agonal n he momentum st
obtained by replacing botla,; (b,) and a’. (b') by suggesting no quantum fluctuation in the ground state, and

B T . nt \-nl therefore the present scheme turns out equivalent to the Ta-

V2S—ag ay (y2s—by;by;) in the transformatiori2.2). kahashi scheme. The different-scheme-based modified spin-

Figure 6 shows the thermodynamic calculations for theyave theory is the very method for low-dimensional ferri-
spin-1 antiferromagnetic Heisenberg chain. We learn that thg,agnets and is ready for extensive explorations.
Schwinger-boson mean-field theory does not work at all for
spin-gapped antiferromagnets at finite temperatures, which is ACKNOWLEDGMENTS
in contrast with its fairly good representation of the low-
temperature thermodynamics for ferrimagnetic chains. On The authors are grateful to M. Takahashi and H. Hori for
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