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Bosonic representation of one-dimensional Heisenberg ferrimagnets

Shoji Yamamoto
Division of Physics, Hokkaido University, Sapporo 060-0810, Japan

~Received 2 September 2003; published 23 February 2004!

We present a comparative study of bosonic languages to describe one-dimensional Heisenberg ferrimagnets.
The ferrimagnetic Schwinger-boson mean-field theory demonstrated by Wuet al., the antiferromagnetic modi-
fied spin-wave theory designed by Takahashi, and its ferrimagnetic variant proposed by Yamamotoet al. are
employed to calculate the energy structure and the thermodynamics of various ferrimagnets. A modified
spin-wave scheme, which introduces a Lagrange multiplier keeping the native energy structure free from
temperature and thus differs from the original Takahashi scheme, is particularly stressed as a useful tool to
investigate one-dimensional quantum ferrimagnetism. The antiferromagnetic limit of these descriptions is also
considered.

DOI: 10.1103/PhysRevB.69.064426 PACS number~s!: 75.10.Jm, 75.50.Gg, 75.40.Cx

I. INTRODUCTION

Significant efforts have been devoted to synthesizing low-
dimensional ferrimagnets and understanding their quantum
behavior in recent years. The first example of one-
dimensional ferrimagnets, MnCu(S2C2O2)2(H2O)3
•4.5H2O, was synthesized by Gleizes and Verdaguer1 and
followed by a series of ordered bimetallic chain compounds2

in an attempt to design molecule-based ferromagnets.3 Can-
eschi et al.4 demonstrated another approach to alternating-
spin chains hybridizing manganese complexes and nitronyl
nitroxide radicals. The inorganic-organic hybrid strategy
realized more complicated alignments of mixed spins.5

There also exists an attempt at stacking novel triradicals
into a purely organic ferrimagnet.6 Monospin chains can
be ferrimagnetic with polymerized exchange interactions.
An example of such ferrimagnets is the ferromagnetic-
antiferromagnetic bond-alternating copper tetramer chain
compound Cu(C5H4NCl)2(N3)2.7 The trimeric inter-
twining double-chain compound Ca3Cu3(PO4)4 ~Ref. 8!
is another solution to homometallic one-dimensional fer-
rimagnets, where the noncompensation of sublattice
magnetizations is of topological origin. Besides one-
dimensional ferrimagnets, metal-ion magnetic clusters
such as @Mn12O12(CH3COO)16(H2O)4# ~Ref. 9! and
@Fe8(N3C6H15)6O2(OH)12#

81,10 for which resonant magne-
tization tunneling11–14was observed, are also worth mention-
ing as zero-dimensional ferrimagnets.

The discovery of ordered bimetallic chain compounds
stimulated extensive theoretical interest in~quasi-!one-
dimensional quantum ferrimagnets. Early efforts15 were de-
voted to numerically diagonalizing alternating-spin Heisen-
berg chains. Numerical diagonalization, combined with the
Lanczos algorithm16,17and a scaling technique,18 further con-
tributed to studying modern topics such as phase transitions
of the Kosterlitz-Thouless type17,19and quantized magnetiza-
tion plateaux.20,21Alternating-spin chains were further inves-
tigated by density-matrix renormalization-group22,23 and
quantum Monte Carlo24,25 methods in an attempt to illumi-
nate dual features of ferrimagnetic excitations. More general
mixed-spin chains were analyzed via the nonlinears
model26 with particular emphasis on the competition be-

tween massive and massless phases. Quasi-one-dimensional
mixed-spin systems27,28 were also investigated in order to
explain the inelastic-neutron-scattering findings29,30 for the
rare-earth nickelatesR2BaNiO5.

In order to complement numerical tools and to achieve
further understanding of the magnetic double structure of
ferrimagnetism, several authors have recently begun to con-
struct bosonic theories of low-dimensional quantum ferri-
magnets. The conventional spin-wave description of the
ground-state properties,22,31–33a modified spin-wave scheme
for the low-temperature properties,34 and the Schwinger-
boson representation of the low-energy structure35 and the
thermodynamics,36 they all reveal the potential of bosonic
languages for various ferrimagnetic systems. However, con-
sidering the global argument and total understanding over the
bosonic theory of ferromagnets and antiferromagnets,37–47

ferrimagnets are still undeveloped in this context especially
in one dimension. In such circumstances, we represent one-
dimensional Heisenberg ferrimagnets in terms of the
Schwinger bosons and the Holstein-Primakoff spin waves.
Based on a mean-field ansatz, the local constraints on the
Schwinger bosons are relaxed and imposed only on the av-
erage. The conventional antiferromagnetic spin-wave
formalism48,49 is modified, on the one hand following the
Takahashi scheme37,38which was originally proposed for fer-
romagnets, while on the other hand introducing a slightly
different strategy.50 The Schwinger bosons and the modified
spin waves both interpret the low-energy properties fairly
well identifying the ferrimagnetic long-range order with a
Bose condensation, while the two languages are qualitatively
distinguished in describing the thermodynamics. We demon-
strate that the modified spin-wave scheme is much better
than the others at describing one-dimensional ferrimagnets.

II. FORMALISM

A practical model for one-dimensional ferrimagnets is
two kinds of spins,Sands (S.s), alternating on a ring with
antiferromagnetic exchange coupling between nearest neigh-
bors, as described by the Hamiltonian,
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H5J(
n51

N

~Sn•sn211sn•Sn!. ~2.1!

Hereafter, the distance between neighboring spins is repre-

sented bya. The simplest case, (S,s)5(1,1
2 ), has so far been

discussed fairly well using the matrix-product formalism,51 a
modified spin-wave scheme,50 the Schwinger-boson
representation,36 and modern numerical techniques.22–25 We
make further explorations into higher-spin systems and de-
velop the analytic argument in more detail.

A. Schwinger-boson mean-field theory

Let us describe each spin variable in terms of two kinds of
bosons as

Sn
15an

†an , Sn
z5 1

2 ~an1
† an2an2

† an2!,

sn
15bn1

† bn2 , sn
z5 1

2 ~bn1
† bn12bn2

† bn2!, ~2.2!

where the constraints

(
s56

ans
† ans52S, (

s56
bns

† bns52s, ~2.3!

are imposed on the bosons. Relaxing the constraints~2.3! as

(
n51

N

(
s56

ans
† ans52NS, (

n51

N

(
s56

bns
† bns52Ns,

~2.4!

and assuming the thermal average of the short-range antifer-
romagnetic order to be uniform and static as

^an1bñ22an2bñ1&T52V, ~2.5!

with ñ5n,n21, we obtain the mean-field Hamiltonian in
the momentum space as

HMF52NJSs14NJV224NJ~lS1ms!

22JV(
k

cosak~ak1bk22ak2bk11H.c.!

12J(
k

(
s56

~laks
† aks1mbks

† bks!, ~2.6!

wherel andm are the Lagrange multipliers due to the con-
straints~2.4!. Via the Bogoliubov transformation

aks5akscoshuk1sbk2s
† sinhuk ,

bks5bkscoshuk2sak2s
† sinhuk , ~2.7!

with

tanh 2uk5
2V cosak

l1m
, ~2.8!

the Hamiltonian~2.6! is diagonalized as

HMF52NJSs14NJV222NJl~2S11!22NJm~2s11!

12J(
k

vk1J(
k

(
s56

~vks
2 aks

† aks1vks
1 bks

† bks!,

~2.9!

where

vks
6 [vk

65vk6~m2l!,

vk5A~l1m!224V2cos2ak. ~2.10!

l, m, andV are determined through a set of equations

(
k

~ n̄ks
2 cosh2uk1n̄ks

1 sinh2uk1sinh2uk!5NS,

~2.11!

(
k

~ n̄ks
2 sinh2uk1n̄ks

1 cosh2uk1sinh2uk!5Ns,

~2.12!

(
k

~ n̄ks
2 1n̄ks

1 11!coshuksinhuk5NV, ~2.13!

where the thermal distribution functionsn̄ks
2 [^aks

† aks&T

and n̄ks
1 [^bks

† bks&T are required to minimize the free en-
ergy and given by

n̄ks
6 5

1

evks
6 /kBT21

. ~2.14!

The magnetic susceptibility is expressed as

x5
~gmB!2

4kBT (
k

(
t56

(
s5↑,↓

n̄ks
t ~ n̄ks

t 11!, ~2.15!

where we have set theg factors of spinsS ands both equal to
g. The internal energy should be given by

E5 1
2 ~EMF12NJSs!22NJSs, ~2.16!

where

EMF52NJSs14NJV222NJ~2lS12ms1l1m!

12J(
k

vk1J(
k

(
t56

(
s56

n̄ks
t vks

t . ~2.17!

Arovas and Auerbach44 pointed out that relaxing the original
constraints~2.3! into Eq. ~2.4! leads to double counting the
number of independent boson degrees of freedom. Therefore,
in Eq. ~2.16!, we have corrected the mean-field artifact re-
ducing the overestimated quantum fluctuation.

B. Modified spin-wave theory: Takahashi scheme

Next we consider a single-component bosonic representa-
tion of each spin variable at the cost of the rotational sym-
metry. We start from the Holstein-Primakoff transformation
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Sn
15A2S2an

†anan , Sn
z5S2an

†an ,

sn
15bn

†A2s2bn
†bn, sn

z52s1bn
†bn . ~2.18!

TreatingSands asO(S)5O(s), we can expand the Hamil-
tonian with respect to 1/S as

H522NJSs1E11E01H11H01O~S21!, ~2.19!

whereEi andHi give theO(Si) quantum corrections to the
ground-state energy and the dispersion relations, respec-
tively. Via the Bogoliubov transformation

ak5akcoshuk2bk
†sinhuk ,

bk5bkcoshuk2ak
†sinhuk , ~2.20!

they are written as

E1522NJ@2ASsG2~S1s!L#, ~2.21a!

E0522NJFG21L22SAS

s
1As

SDGLG , ~2.21b!

Hi5J(
k

@v i
2~k!ak

†ak1v i
1~k!bk

†bk

1g i~k!~akbk1ak
†bk

†!#, ~2.22!

where

G5
1

2N (
k

cosak sinh 2uk , ~2.23!

L5
1

2N (
k

~cosh 2uk21!, ~2.24!

v1
6~k!5~S1s!cosh 2uk22ASscosak sinh 2uk6~S2s!

[vk6~S2s!, ~2.25a!

v0
6~k!5F SAS

s
1As

SDG22LGcosh 2uk2F2G2SAS

s

1As

SDLGcosak sinh 2uk6SAS

s
2As

SD ,

~2.25b!

g1~k!52ASscosak cosh 2uk2~S1s!sinh 2uk ,
~2.26a!

g0~k!5F2G2SAS

s
1As

SDLGcosak cosh 2uk

2F SAS

s
1As

SDG22LGsinh 2uk . ~2.26b!

H0 originally consists of quartic bosonic terms and has been
decomposed by means of the Wick theorem. The residual

two-body interactions have been neglected so as to keep the
ferromagnetic excitation branch gapless.

The conventional spin-wave scheme naively diagonalize
the Hamiltonian~2.19! and ends up with the number of
bosons diverging with increasing temperature. In order to
suppress this thermal divergence, Takahashi38 considered
optimizing the bosonic distribution functions under zero
magnetization and obtained an excellent description of the
low-temperature thermodynamics for low-dimensional
Heisenberg ferromagnets. For ferrimagnets, this idea is still
useful34,50 but never applies away from the low-temperature
region as it is. The zero-magnetization constraint plays a role
of keeping the number of bosons finite under ferromagnetic
interactions but does not work so under antiferromagnetic
interactions. Takahashi38 and Hirschet al.39 proposed con-
straining the staggered magnetization, instead of the uniform
magnetization, to be zero as the antiferromagnetic version of
the modified spin-wave theory. Their scheme was applied to
extensive antiferromagnets in both two38,39,52–55and one40,41

dimensions. The conventional spin-wave procedure assumes
that spins on one sublattice point predominantly up, while
those on the other predominantly down. The modified spin-
wave treatment restores the sublattice symmetry. We con-
sider the naivest generalization of the antiferromagnetic
modified spin-wave scheme to ferrimagnets.

The constraint of zero staggered magnetization reads

(
n

~an
†an1bn

†bn!5N~S1s!. ~2.27!

In order to enforce this condition, we first introduce a
Lagrange multiplier and diagonalize the effective Hamil-
tonian

H̃5H12Jn(
n

~an
†an1bn

†bn!. ~2.28!

Then the ground-state energy and the dispersion relations are
obtained as

Eg522NJSs1Ẽ1 , Ẽ15E114NJLn, ~2.29!

vk
65ṽ1

6~k!, ṽ1
6~k!5v1

6~k!12n cosh 2uk ,
~2.30!

keeping only the bilinear terms and as

Eg522NJSs1Ẽ11E0 , ~2.31!

vk
65ṽ1

6~k!1v0
6~k!, ~2.32!

considering theO(S0) interactions as well. In terms of the
spin-wave distribution functions

n̄k
65

1

evk
6/kBT21

, ~2.33!

the internal energy and the magnetic susceptibility are ex-
pressed as56
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E5Eg1(
k

(
t56

n̄k
tvk

t , ~2.34!

x5
~gmB!2

3kBT (
k

(
t56

n̄k
t~ n̄k

t11!. ~2.35!

uk , defining the Bogoliubov transformation~2.20!, is deter-
mined through

g1~k!22n sinh 2uk[g̃1~k!50, ~2.36!

provided we treatH0 as a perturbation toH1.

C. Modified spin-wave theory: A different scheme

Although the Takahashi scheme overcomes the difficulty
of sublattice magnetizations diverging thermally, the ob-
tained thermodynamics is still far from satisfactory~see Fig.
2 later on!. Within the conventional spin-wave theory, the
quantum spin reduction, that is, the quantum fluctuation of
the ground-state sublattice magnetization per unit cell, reads

^an
†an&T505^bn

†bn&T50[d

5E
0

p S1s

A~S2s!214Sssin2~k/2!

dk

2p
2

1

2
,

~2.37!

and diverges atS5s. The Takahashi scheme settles this
quantum divergenceas well as thethermal divergence. How-
ever, the number of bosons does not diverge in the ferrimag-
netic ground state. Without quantum divergence, it is not
necessary to modify the dispersion relations~2.25a! into the
temperature-dependent form~2.30!. While the thermody-
namics should be modified, the quantum mechanics may be
left as it is.

Such an idea leads to the Bogoliubov transformation free
from temperature replacing Eq.~2.36! by g1(k)50, that is,

tanh 2uk5
2ASscosak

S1s
. ~2.38!

The ground-state energy and the dispersion relations are sim-
ply given by

Eg522NJSs1E1 , vk
65v1

6~k!, ~2.39!

within the up-to-O(S1) treatment and by

Eg522NJSs1E11E0 , vk
65v1

6~k!1v0
6~k!,

~2.40!

in the up-to-O(S0) treatment. They are nothing but theT
50 findings in the Takahashi scheme.

At finite temperatures we replaceak
†ak and bk

†bk in the
spin-wave Hamiltonian~2.22! by

n̄k
7[ (

n2,n150

`

n7Pk~n2,n1!, ~2.41!

wherePk(n
2,n1) is the probability ofn2 ferromagnetic and

n1 antiferromagnetic spin waves appearing in the
k-momentum state and satisfies

(
n2,n1

Pk~n2,n1!51 ~2.42!

for all k’s. Then the free energy is written as

F5Eg1J(
k

(
n2,n1

Pk~n2,n1! (
t56

ntvk
t

1kBT(
k

(
n2,n1

Pk~n2,n1!ln Pk~n2,n1!.

~2.43!

We minimize the free energy with respect toPk(n
2,n1)

enforcing a condition

^Sn
z2sn

z&T12d[^:Sn
z2sn

z :&T

5S1s2
S1s

N (
k

(
t56

n̄k
t

vk
50,

~2.44!

as well as the trivial constraints~2.42!. In the second-side
compact expression, the normal ordering is taken with re-
spect to both operatorsa andb. Equation~2.44! claims that
the thermal fluctuation (S1s)(k(nk

21nk
1)/vk should cancel

the full, or classical, Néel order (S1s)N rather than the
quantum-mechanically reducedone (S1s22d)N. Without
consideration of the quantum fluctuation 2d, which is absent
from ferromagnets but peculiar to ferrimagnets, the present

TABLE I. The Schwinger-boson~SB!, linear-modified-spin-wave~LMSW!, perturbational interacting-
modified-spin-wave~PIMSW!, and numerical diagonalization~exact! calculations of the ground-state energy
Eg and the zero-temperature antiferromagnetic excitation gapD0 for the spin-(S,s) ferrimagnetic Heisenberg
chains.

(S,s)5(1,1
2 ) (S,s)5( 3

2 , 1
2 ) (S,s)5( 3

2 ,1)

Approach Eg /NJ D0 /J Eg /NJ D0 /J Eg /NJ D0 /J

SB 21.45525 1.77804 21.96755 2.84973 23.86270 1.62152
LMSW 21.43646 1 21.95804 2 23.82807 1
PIMSW 21.46084 1.67556 21.96983 2.80253 23.86758 1.52139
Exact 21.4541(1) 1.759(1) 21.9672(1) 2.842(1) 23.861(1) 1.615(5)
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scheme breaks even the conventional spin-wave achievement
at low temperatures. Numerically solving the thermodynamic
Bethe-Ansatz equations, Takahashi and Yamada57 suggested
that the conventional spin-wave theory correctly gives the
low-temperature leading term of the specific heat. Both the
Takahashi scheme with Eq.~2.27! and the different scheme
with Eq. ~2.44! indeed keep unchanged the conventional
spin-wave findings

C

NkB
;

3

4
AS2s

Ss

z~ 3
2 !

A2p
t1/2~T→0!, ~2.45!

where t5kBT/J within the up-to-O(S1) treatment, whilet
5kBT/gJ with g511G/ASs2(S1s)L/Ss in the up-to-
O(S0) treatment. The conventional spin-wave approach
gives no quantitative information on the magnetic suscepti-
bility, whereas the modified theory reveals

xJ

N~gmB!2
;

Ss~S2s!2

3
t22 ~T→0!. ~2.46!

In terms of the optimum distribution functions

n̄k
65

1

e[Jvk
6

2n(S1s)/vk]/kBT21
, ~2.47!

the free energy at the thermal equilibrium is written as

F5Eg1n~S1s!N2kBT(
k

(
t56

ln~11n̄k
t!, ~2.48!

where n is the Lagrange multiplier due to the constraint
~2.44!.

III. RESULTS

First we calculate the ground-state energyEg and the an-
tiferromagnetic excitation gapvk50

1 and compare them with
numerical findings in Table I. AtT50, the Takahashi
scheme and the different scheme both given50 and lead to
the conventional spin-wave findings. Higher-order spin-wave
calculation32 of the ground-state properties is feasible, while
more sophisticated series-expansion technique58 has recently
been proposed. We are fully convinced that the spin-wave
treatment better works for larger spins. Table I further shows
that the spin-wave approach is better justified with increasing
S/s as well asSs, which is because the quantityS2s fills
the role of suppressing the divergence in Eq.~2.37!. On the
other hand, the Schwinger-boson approach constantly gives
highly precise estimates of the low-energy properties. Figure
1 further demonstrates that the Schwinger-boson mean-field
theory is highly successful in describing the low-lying exci-
tations. Both the bosonic languages well interpret the ferro-
magnetic excitations, whereas the linear spin waves consid-
erably underestimate the antiferromagnetic excitation
energies. The quantum correlation has much effect on the
antiferromagnetic excitation mode and such an effect is well
included into the Schwinger-boson calculation even at the
mean-field level.

Next we calculate the thermodynamic properties. Figure 2
shows the temperature dependence of the specific heat. The
Schwinger-boson mean-field theory is still highly successful

FIG. 1. The Schwinger-boson~SB!, linear-modified-spin-wave~LMSW!, perturbational interacting-modified-spin-wave~PIMSW!, and
quantum Monte Carlo~QMC! calculations of the dispersion relations of the ferromagnetic (vk

2) and antiferromagnetic (vk
1) elementary

excitations for the spin-(S,s) ferrimagnetic Heisenberg chains at zero temperature.

FIG. 2. ~Color online! The Schwinger-boson~SB!, linear-modified-spin-wave~LMSW!, perturbational interacting-modified-spin-wave
~PIMSW!, and quantum Monte Carlo~QMC! calculations of the specific heatC as a function of temperature for the spin-(S,s) ferrimagnetic
Heisenberg chains. The modified spin waves are constructed in two different ways, the Takahashi scheme~Takahashi! and the different
scheme~Yamamoto!.
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at low temperatures, while with increasing temperature, it
rapidly breaks down failing to reproduce the Schottky-type
peak. The mean-field order parameterV monotonically de-
creases with increasing temperature and reaches zero at

kBT

J
5

S1s11

ln~111/S!1 ln~111/s!
. ~3.1!

Above this temperature,V sticks at zero suggesting no anti-
ferromagnetic correlation in the system. The onset of the
paramagnetic phase at a finite temperature is a mean-field
artifact and the particular temperature~3.1! is an increasing
function ofSands. The modified spin-wave theory based on
the Takahashi scheme also fails to describe the Schottky
peak. Because of the Lagrange multipliern, which turns out
a monotonically increasing function of temperature, the dis-
persion relations~2.30! lead to endlessly increasing energy
and thus nonvanishing specific heat at high temperatures.
Only the modified spin-wave theory based on the different
scheme succeeds in interpreting the Schottky peak. Since the
antiferromagnetic excitation gap is significantly improved by
the inclusion of theO(S0) correlation, the interacting modi-
fied spin waves reproduce the location of the Schottky peak
fairly well. Mixed-spin trimeric chain ferrimagnets have re-
cently been synthesized5 and their low-temperature thermal
properties were well elucidated by the modified spin-wave
theory.34 However, it was unfortunate that the additional con-
straint was imposed on the uniform magnetization and there-
fore the higher-temperature properties were much less illu-
minated. Controlling the staggered magnetization instead
based on the different scheme, we can fully investigate such
polymeric chain compounds as well.

In the Schwinger representation and the modified spin-
wave treatment based on the Takahashi scheme, the energy
spectrum depends on temperature. Since the low-energy
band structure is well reflected in the thermal behavior and
can directly be observed through inelastic-neutron-scattering
measurements, we investigate the ferromagnetic (vk50

2 ) and
antiferromagnetic (vk50

1 ) excitation gaps as functions of
temperature in Fig. 3. The Schwinger-boson mean-field
theory claims that the antiferromagnetic gap should first de-
crease and then increase with increasing temperature, while
the modified spin-wave theory predicts that the excitation
energies of both modes should be monotonically increasing
functions of temperature. We find a similar contrast between
the two languages applied to ladder ferrimagnets.35,59 In the
case of Haldane-gap antiferromagnets, both the Schwinger-
boson and modified-spin-wave41 findings, together with the
nonlinear-s-model calculations,60,61 commonly suggest that
the Haldane gap is a simply activated function of tempera-
ture. Extensive measurements on spin-1 antiferromagnetic
Heisenberg chain compounds62–64 also report that the
Haldane massive mode is shifted upward with increasing
temperature. Neutron-scattering experiments on ferrimag-
netic chain compounds may solve the present disagreement
between the Schwinger-boson and modified-spin-wave cal-
culations of the antiferromagnetic excitation gap as a func-
tion of temperature.

Figure 4 shows the temperature dependence of the
magnetic-susceptibility-temperature product, which eluci-
dates ferromagnetic and antiferromagnetic features coexist-
ing in ferrimagnets.25 xT diverges at low temperatures in a
ferromagnetic fashion but approaches the high-temperature

FIG. 3. The ferromagnetic (vk50
2 ) and antiferromagnetic (vk50

1 ) excitation gaps as functions of temperature for the spin-(S,s) ferri-
magnetic Heisenberg chains calculated by the Schwinger bosons~SB! and the perturbationally interacting modified spin waves~PIMSW!
based on the Takahashi scheme.

FIG. 4. ~Color online! The Schwinger-boson~SB!, linear-modified-spin-wave~LMSW!, perturbational interacting-modified-spin-wave
~PIMSW!, and quantum Monte Carlo~QMC! calculations of the susceptibility-temperature productxT as a function of temperature for the
spin-(S,s) ferrimagnetic Heisenberg chains. The modified spin waves are constructed in two different ways, the Takahashi scheme~Taka-
hashi! and the different scheme~Yamamoto!.
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paramagnetic behavior showing an antiferromagnetic in-
crease. The modified spin waves much better describe the
magnetic behavior than the Schwinger bosons. The spin
waves modified along with the Takahashi scheme better
work at high temperatures, while those along with the differ-
ent scheme precisely reproduce the low-temperature behav-
ior. Both calculations converge into the paramagnetic behav-
ior xkBT/N(gmB)25@S(S11)1s(s11)#/3 at high
temperatures, whereas the Schwinger-boson mean-field
theory again breaks down at the particular temperature~3.1!.
Considering that numerical tools less work at low tempera-
tures, we realize the superiority of the different scheme-
based modified spin-wave theory all the more.

Finally we calculate another type of ferrimagnet in order
to demonstrate the constant applicability of the present dif-
ferent scheme. Figure 5 shows the thermodynamic proper-
ties of the ferromagnetic-ferromagnetic-antiferromagnetic-
antiferromagnetic bond-tetrameric spin-1

2 Heisenberg chain,

H5 (
n51

N

@JAF~S4n23•S4n221S4n22•S4n21!

2JF~S4n21•S4n1S4n•S4n11!#, ~3.2!

where we have set all theg factors equal for simplicity. The
different modified spin-wave scheme again successfully re-
produces the Schottky peak of the specific heat. The interact-
ing modified spin waves further interpret the low-

temperature shoulderlike structure. The characteristic
minimum of the susceptibility-temperature product is unfor-
tunately less reproduced but the calculation again correctly
gives the paramagnetic susceptibility at sufficiently high
temperatures. A recent experiment65 on a single-crystal
sample of Cu(C5H4NCl)2(N3)2,7 which may be described
by the Hamiltonian~3.2!, has reported that the specific heat
exhibits a double-peaked structure as a function of tempera-
ture. There is indeed a possibility of an additional peak ap-
pearing at low temperatures as the ratioJF /JAF moves away
from unity.66 However, no parameter assignment has yet suc-
ceeded in interpreting all the observations consistently. There
are further chemical attempts to synthesize novel ferrimag-
nets. Organic ferrimagnets6,67 are free from magnetic anisot-
ropy and thus suitable for analyzing in terms of the modified
spin waves.

IV. SUMMARY AND DISCUSSION

We have demonstrated the Schwinger-boson mean-field
representation and the modified spin-wave treatment of one-
dimensional Heisenberg ferrimagnets. The Schwinger bosons
form an excellent language at low temperatures but rapidly
lose their validity with increasing temperature. The modified
spin-wave theory is more reliable in totality provided the
number of bosons is controlled without modifying the native
energy structure. On the other hand, the Schwinger-boson
representation can be extended to anisotropic systems68 more
reasonably because it is rotationally invariant in contrast to
the modified spin-wave theory. While the temperature depen-
dence of the antiferromagnetic excitation gapvk50

1 is left to
solve experimentally, we are now convinced that the bosonic
languages remain effective in low dimensions and may be
applied to extensive ferrimagnets.69 Besides ground-state
properties and thermodynamics, quantum spin dynamics70,71

can be investigated through the modified spin-wave scheme.
We further mention our findings in the antiferromagnetic

limit with the view of realizing the close relation between the
two bosonic languages. We equalizes with Sand set 2N, the
number of spins, equal toL for the Hamiltonian~2.1!. At S
5s, the ground-state sublattice magnetization~2.37! di-
verges and therefore the different modified spin-wave
scheme is no more applicable. We have to settle the quan-
tum, as well as thermal, divergence inevitably employing the

TABLE II. The Schwinger-boson~SB!, linear-modified-spin-wave~LMSW!, perturbational interacting-
modified-spin-wave~PIMSW!, full-diagonalization interacting-modified-spin-wave~FDIMSW!, and quan-
tum Monte Carlo~QMC!72 calculations of the ground-state energyEg and the lowest excitation gapD0 for
the spin-S antiferromagnetic Heisenberg chains~Ref. 72!.

S51 S52 S53

Approach Eg /LJ D0 /J Eg /LJ D0 /J Eg /LJ D0 /J

SB 21.396148 0.08507 24.759769 0.00684 210.1231 0.00295
LMSW 21.361879 0.07200 24.726749 0.00626 210.0901 0.00279
PIMSW 21.394853 0.07853 24.759760 0.00655 210.1231 0.00287
FDIMSW 21.394617 0.08507 24.759759 0.00684 210.1231 0.00295
QMC 21.401481(4) 0.41048(6) 24.761249(6) 0.08917(4) 210.1239(1) 0.01002(3)

FIG. 5. The linear-modified-spin-wave~LMSW!, perturbational
interacting-modified-spin-wave~PIMSW!, and quantum Monte
Carlo ~QMC! calculations of the specific heatC and the
susceptibility-temperature productxT as functions of temperature
for the spin-12 bond-tetrameric ferrimagnetic Heisenberg chain of
JF5JAF . The modified spin waves are constructed on the different
scheme.

BOSONIC REPRESENTATION OF ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 69, 064426 ~2004!

064426-7



Takahashi scheme. Besides the perturbational treatment of
H0, we may consider the full diagonalization ofH11H0,
where the ground-state energy and the dispersion relations
are still given by Eqs.~2.31! and ~2.32!, respectively, but
with uk satisfying

g̃1~k!1g0~k!50. ~4.1!

Such an idea applied to ferrimagnets ends in gapped ferro-
magnetic excitations and misreads the low-energy physics.
The perturbational series-expansion approach is highly suc-
cessful in the case of ferrimagnets.32,33Focussing our interest
on Haldane-gap antiferromagnets, we list the bosonic calcu-
lations of the ground-state properties in Table II. The bosonic
languages interpret the ground-state correlation very well but
underestimate the Haldane gap considerably. Indeed they
cannot detect the topological terms responsible for vanishing
gap,73 but they are still qualitatively consistent with the
nonlinear-s-model quantum field theory, yielding the low-
temperature limiting behaviorvk50

1 2D0}e2D0 /T ~Refs. 41,
61! and the large-spin asymptotic behaviorD0}e2pS.44,46,73

The Schwinger-boson mean-field theory and the full-
diagonalization interacting modified spin-wave treatment
give the same estimate of the Haldane gap. The Schwinger-
boson dispersion relation~2.10! indeed coincides analytically
with that of the full-diagonalization interacting modified spin
waves at zero temperature. This is interesting but not so sur-
prising, because the Holstein-Primakoff bosons~2.18! are
obtained by replacing bothan↑ (bn↓) and an↑

† (bn↓
† ) by

A2S2an↓
† an↓ (A2s2bn↑

† bn↑) in the transformation~2.2!.
Figure 6 shows the thermodynamic calculations for the

spin-1 antiferromagnetic Heisenberg chain. We learn that the
Schwinger-boson mean-field theory does not work at all for
spin-gapped antiferromagnets at finite temperatures, which is
in contrast with its fairly good representation of the low-
temperature thermodynamics for ferrimagnetic chains. On
the other hand, the modified spin-wave treatment maintains
its validity to a certain extent. Indeed the Takahashi scheme
still fails to reproduce the antiferromagnetic Schottky-type

peak of the specific heat, but it describes the susceptibility
very well except for the low-temperature findings attribut-
able to the underestimate of the Haldane gap. We may expect
the modified spin waves to efficiently depict the dynamic, as
well as static, susceptibility for extensive spin-gapped anti-
ferromagnets including spin ladders.74 As for the thermal
properties of one-dimensional antiferromagnets, whether
spin gapped or not, there is a possibility of a fermionic
language,75,76 which is in principle compact, being superior
to any bosonic representation.

In the case of ferromagnets, the Holstein-Primakoff
bosons are already diagonal in the momentum space,37,56

suggesting no quantum fluctuation in the ground state, and
therefore the present scheme turns out equivalent to the Ta-
kahashi scheme. The different-scheme-based modified spin-
wave theory is the very method for low-dimensional ferri-
magnets and is ready for extensive explorations.
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