The SKINT1-like Gene Is Inactivated in Hominoids But Not in All Primate Species: Implications for the Origin of Dendritic Epidermal T Cells [an abstract of dissertation and a summary of dissertation review]

Author(s): Hassan, Rania Hassan Mohamed

Issue Date: 2015-03-25

Doc URL: http://hdl.handle.net/2115/58747

Rights(URL): http://creativecommons.org/licenses/by-nc-sa/2.1/jp/

Type: theses (doctoral - abstract and summary of review)

Additional Information: There are other files related to this item in HUSCAP. Check the above URL.

File Information: Rania_Hassan_Mohamed_Hassan_abstract.pdf (論文内容の要旨)
The SKINT1-like Gene Is Inactivated in Hominoids But Not in All Primate Species: Implications for the Origin of Dendritic Epidermal T Cells

Background: The $\gamma^6\delta^+$ dendritic epidermal T-cells (DETCs) are the residential T-cells in mouse epidermis expressing the invariant $V\gamma5V\delta1$ TCR and have a critical role for skin immunosurveillance and homeostasis. DETCs are generated by positive selection in the fetal thymus during the narrow period from embryonic day 14.5 to 18.5, after which they migrate to the skin. Skint1 gene is composed of 7 coding exons expressing an immunoglobulin protein exclusively in thymic epithelial cells and keratinocytes at embryonic day 15 and continue to adulthood. Skint1 duplicated in mice to form Skint family which is in turn considered as a member of butyrophilin (BTN) family. Skint-1 protein is suggested as the first and indispensable component for selection of the invariant DETC. Rat and cow have Skint1 orthologs with protein topology and structure similar to that of mouse, in addition, they have high population of DETC-like cells expressing $\gamma\delta$ TCR with limited variability. In contrast, Skint1 has multiple in-frame premature termination codons in both human and chimpanzee, moreover, humans don't posses neither high population nor monomorphic epidermal $\gamma\delta$ T cells. It is noteworthy that the presence of Skint1 is correlated with presence of a restricted cutaneous T cell population. It will be of particular interest to determine when Skint1 rendered inactive in the mammalian phylogeny and concomitantly DETCs are lost.

Methods: To detect at which stage in primate evolution Skint1 inactivation took place, we analyzed the predicted SKINT1L sequences in primate species. We called here Skint1 of all mammalian species other than mice as SKINT1L. Cloning and sequencing were done to characterize the SKINT1L of cynomolgus
macaque as a representative of Old World Monkeys (OWM). Using RT-PCR and immunohistochemical staining, we also examined the epidermal γδ T cell population in cynomolgus macaque investigating the functionality of SKINT1L. To better understand the evolution of the Skint1/SKINT1L gene family, and more generally the entire SKINT gene family, we extended our bioinformatics to mammals other than primates.

Results: We found that all hominoids SKINT1L has a common inactivating mutation, but that Old World monkeys have apparently functional SKINT1L sequences and the epidermal resident γδ T cells in cynomolgus macaques contains a population of dendritic-shaped γδ T cells expressing an invariant Vγ10Vδ1 T-cell receptors. We demonstrated also that SKINT1L emerged in an ancestor of placental mammals, but was inactivated or lost multiple times in mammalian evolution.

Discussion and conclusions: SKINTL family and in turn SKINT1L are highly evolved through the mammalian evolution, They have been emerged in an ancestor of eutheria and lost or inactivated multiple times in the mammalian phylogeny which suggest a concomitant loss of the skin-resident γδ T cells in the orders lacking in consequence to SKINT1L deficiency.