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Equivalent conditions on the central limit theorem
for a sequence of probability measures on R

Toshio Mikami*

Hokkaido University

ABSTRACT
In this paper we give equivalent conditions on the central limit theorem in total variation
norm for a sequence of probability measures on R. This generalizes Cacoullos, Papathana-
siou and Utev’s central limit theorem in L1-norm for a sequence of probability density
functions on R. We also give equivalent conditions on the central limit theorem in weak
convergence and those on the local limit theorem.

Key words and phrases; central limit theorem, total variation norm.

1. Introduction.

Let f be a probability density function on R such that
R

R yf(y)dy = µ and
R

R(y −
µ)2f(y)dy = σ2 < 1. Cacoullos and Papathanasiou (1989) introduced the following
function, called a covariance kernel or ω-function of f , to study the characterization of
probability distributions:

ω(x) ≡
Z x

−1
(µ− y)f(y)dy/[σ2f(x)] (1).

on the set {y ∈ R : f(y) > 0}.
It is known that ω(x)f(x) is also a probability density function on R and that f(x) is

normal iff ω(x) ≡ 1 (see Cacoullos, Papathanasiou and Utev, 1992).
Put

φ(x) ≡ (2π)−1/2 exp(−x2/2),

Φ(x) ≡
Z x

−1
φ(y)dy.

(2).

Then the following was given in Cacoullos, Papathanasiou and Utev, 1994 (Theorem 1.2),
which can also be stated as follows.
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Theorem 1.1. Let {fn}1n=1 be a sequence of probability density functions on R withR
R yfn(y)dy = 0 and

R
R y2fn(y)dy = 1 (n ≥ 1) and with interval supports. Denoting by

ωn the ω-function of fn (n ≥ 1), the following holds;

lim
n→1

Z
R

|φ(x)− fn(x)|dx = 0

iff lim
n→1

Z
|ωn(x)−1|>δ

fn(x)dx = 0 for any δ > 0.
(3).

Remark 1.1. It is easy to see that the following is also true (see Cacoullos, Papathanasiou
and Utev, 1994, and the proof of Theorem 1.2 below):

lim
n→1

Z
R

|ωn(x)− 1|fn(x)dx = 0

iff lim
n→1

Z
|ωn(x)−1|>δ

fn(x)dx = 0 for any δ > 0.
(4).

In this paper we extend Theorem 1.1 to a sequence of Borel probability measures
on (R,B(R)), using a different method from Cacoullos, Papathanasiou and Utev (CPU),
1994. We also give equivalent conditions on central and local limit theorems.

In section 2 we state our results which will be proved in section 3.

2. Main results.

In this section we state our results.
Let us first introduce our assumption

(A.1). {Pn}1n=1 is a sequence of probability measures on (R,B(R)) such that
R

R xPn(dx) =
0 and that

R
R x2Pn(dx) = 1 (n ≥ 1).

Before we state Theorem 2.1, we give the following definition.
Definition 2.1. For a probability measure P on (R,B(R)) such that

R
R yP (dy) = 0 andR

R y2P (dy) = 1, put for x ∈ R

W (P )(x) ≡
Z x

−1
−yP (dy) (5).

(cf. f§ in Lemma 2.2, CPU, 1994).
It is easy to see that W (P )(x) is a probability density function on R since

R
R yP (dy) =

0 and
R

R y2P (dy) = 1. We would also like to point out that W (P )(·) is defined on the whole
real line, though ω(·) is not; in fact this necessitated the restriction to interval support of
f in CPU’s proofs of the CLT.

Theorem 2.1. Suppose that (A.1) holds. Then (I), (II) and (III) are equivalent.

(I). limn→1 Pn(dx) = Φ(dx) weakly.
(II). W (Pn)(·) converges to φ(·), as n→1, uniformly on R.
(III). For any g ∈ C10 (R;R)
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lim
n→1

Z
R

g(x)(W (Pn)(x)dx− Pn(dx)) = 0.

For two probability measures P (dx) and Q(dx) on (R,B(R)), let

ρ(P,Q) ≡ sup
A∈B(R)

|P (A)−Q(A)| (6).

denote the total variation distance. For the sake of simplicity, we also write

ρ(P,W (P )) ≡ sup
A∈B(R)

|P (A)−
Z

A
W (P )(x)dx|. (7).

The following result plays a crucial role in the proof of Theorem 2.3.

Proposition 2.2. For any probability measures P (dx) such that
R

R xP (dx) = 0 and thatR
R x2P (dx) <1 and Q(dx) = q(x)dx on (R,B(R)) and r > 0,

|ρ(P,W (P ))− ρ(P,Q)| (8).

∑ 2r sup
|x|∑r

|q(x)−W (P )(x)| +
Z

|x|≥r
q(x)dx +

Z
|x|≥r

x2P (dx).

Finally we state our main result. It turns out that the following equivalence can be
shown via the weak convergence on the central limit theorem by way of Proposition 2.2.

Theorem 2.3. Suppose that (A.1) holds. Then (I) and (II) are equivalent.

(I). limn→1 ρ(Pn,W (Pn)) = 0.
(II). limn→1 ρ(Φ, Pn) = 0.
Remark 2.1. Theorem 2.3 generalizes Theorem 1.1 in view of the following: for any prob-
ability density functions f and g on R

2 sup
A∈B(R)

|
Z

A
f(x)dx−

Z
A

g(x)dx| =
Z

R
|f(y)− g(y)|dy.

Let us state another assumption and definition to state our final result.
(A.2). Pn(dx) = fn(x)dx for n ≥ 1.
Definition 2.2. For a probability density function f on R such that

R
R yf(y)dy = 0 andR

R y2f(y)dy = 1, put for x ∈ R,

W (f)(x) ≡
Z x

−1
−yf(y)dy. (9).

W (f) is defined on R and W (f)(x) = ω(x)f(x) on the set {y ∈ R : f(y) > 0} (cf.
(1)).

Proposition 2.4. Suppose that (A.1)-(A.2) hold. Then (I) and (II) are equivalent.

(I). limn→1 fn(·) = φ(·), uniformly on every compact subsets of R.
(II). limn→1W (fn)(·)/fn(·) = 1, uniformly on every compact subsets of R.
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3. Proof of results in section 2.
Let us first prove Theorem 2.1.
Proof of Theorem 2.1.
(Proof of (II) from (I)). For x ∈ R, take r for which r > |x|. Then

W (Pn)(x) =
Z x

−r
−yPn(dy) +

Z −r

−1
−yPn(dy) ≡ In,r + IIn,r.

From (I),

In,r →
Z x

−r
−yφ(y)dy (as n→1)

→
Z x

−1
−yφ(y)dy = φ(x) (as r →1);

and from (A.1), by Chebychev’s inequality

IIn,r ∑ 1/r → 0 (as r →1).

The convergence of W (Pn) at each point implies the uniform convergence of W (Pn)
on R, since W (P )(·) is nondecreasing on (−1, 0] and nonincreasing on [0,1), and since
φ(x) is continuous on R, and since lim|x|→1 φ(x) = 0.

Q. E. D.

(Proof of (I) from (II)). By (A.1), {Pn}n≥1 is tight. Therefore there exist a probability
measure Q on (R,B(R)) and a subsequence {Pnk}k≥1 which converges weakly to Q as
k →1.

In the same way as in Proof of (II) from (I), for x ∈ R, W (Pnk)(x) converges to
W (Q)(x) as k →1, and

W (Q)(x) =
Z x

−1
−yQ(dy) = φ(x),

from (II). This completes the proof.
Q. E. D.

(Proof of (III) from (I)). (II) implies that W (Pn)(x)dx converges to φ(x)dx as n → 1,
weakly. Since (I) and (II) are equivalent to each other, the proof is over.

Q. E. D.

(Proof of (I) from (III)). For any ' ∈ C10 (R;R)Z
R
['00(x)− x'0(x)]Pn(dx) =

Z
R

'00(x)[Pn(dx)−W (Pn)(x)dx]→ 0

as n → 1, from (III). This implies (I), since {Pn}n≥1 is tight from (A.1) and since φ(x)
is a unique solution of the following ; for any g ∈ C10 (R;R)
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Z
R
[g00(x)− xg0(x)]f(x)dx = 0,Z

R
f(x)dx = 1.

Q. E. D.

Next let us prove Proposition 2.2.
Proof of Proposition 2.2.
For r > 0, put Ur(o) ≡ {y ∈ R; |y| ∑ r}. Then we only have to prove the following;

ρ(W (P ), Q) (10).

∑ 2r sup
|x|∑r

|W (P )(x)− q(x)| +
Z

|x|≥r
x2P (dx) + Q(Ur(o)c),

since

|ρ(P,W (P ))− ρ(P,Q)| ∑ ρ(W (P ), Q).

Let us prove (10). For any A ∈ B(R),

Z
A

W (P )(x)dx−Q(A)

=
Z

A∩Ur(o)
(W (P )(x)− q(x))dx +

Z
A∩Ur(o)c

W (P )(x)dx−Q(A ∩ Ur(o)c),

and from the assumption on P ,

Z
|x|>r

W (P )(x)dx =
Z

|x|>r
(
Z x

−1
−yP (dy))dx

=
Z 1

r
(
Z 1

x
yP (dy))dx +

Z −r

−1
(
Z x

−1
−yP (dy))dx

=
Z 1

r
y(y − r)P (dy) +

Z −r

−1
y(y + r)P (dy)

∑
Z 1

r
y2P (dy) +

Z −r

−1
y2P (dy).

Q. E. D.

Finally we prove Theorem 2.3.
Proof of Theorem 2.3.
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(I) and (II) implies (III) and (I) in Theorem 2.1, respectively, and henceforth (II) in
Theorem 2.1.

This completes the proof. In fact, by Proposition 2.2, from (A.1), for r > 0

|ρ(Pn,W (Pn))− ρ(Pn,Φ)| (12).

∑ r sup
|x|∑r

|φ(x)−W (Pn)(x)| +
Z

|x|≥r
φ(x)dx + 1−

Z
|x|∑r

x2Pn(dx)

→
Z

|x|≥r
φ(x)dx + 1−

Z
|x|∑r

x2φ(x)dx

(as n→1, from Theorem 2.1, (I) and (II))
→ 0 (as r →1).

Q. E. D.

Finally we prove Proposition 2.4.
Proof of Proposition 2.4.
(Proof of (II) from (I)). From (I), by Theorem 2.1, limn→1W (fn)(·) = φ(·), uniformly on
R. This and (I) implies (II).

Q. E. D.

(Proof of (I) from (II)). By (II), for any g ∈ C10 (R;R),

lim
n→1

Z
R

g(x)[W (fn)(x)− fn(x)]dx = 0.

Therefore by Theorem 2.1, limn→1W (fn)(·) = φ(·), uniformly on R. Hence as n→1,

fn(·) = W (fn)(·){W (fn)(·)/fn(·)}−1 → φ(·),
uniformly on every compact subsets of R from (II).

Q. E. D.
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