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Abstract

We study the asymptotic behavior, in the zero-noise limit, of solu-
tions to Schrödinger’s functional equations and that of h-path pro-
cesses, and give a new proof of the existence of the minimizer of
Monge’s problem with a quadratic cost.

1 Introduction.

Let L : Rd 7→ [0,1) be convex, P0 and P1 be Borel probability measures on
Rd, and put

V (P0, P1) := inf
ΩZ

Rd
L(√(x)− x)P0(dx) : P0√

−1 = P1

æ
. (1.1)

§Partially supported by the Grant-in-Aid for Scientific Research, No. 15340047 and
15340051, JSPS.
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The study of the minimizer of (1.1) can be considered as a special case of
Monge’s problem.

Kantorovich’s approach to Monge’s problem is to study the minimizer of
the following relaxed problem:

Ṽ (P0, P1) := inf
ΩZZ

Rd×Rd
L(y − x)µ(dxdy) (1.2)

: µ(dx×Rd) = P0(dx), µ(Rd × dy) = P1(dy)
æ
.

If there exists a Borel measurable function √, on Rd, such that the minimizer
of (1.2) is P0(dx)δ√(x)(dy), then V (P0, P1) = Ṽ (P0, P1) and √ is a minimizer
of (1.1).

This is called the Monge-Kantorovich problem and plays a crucial role in
many fields and has been studied by many authors (see [8, 20, 25] and the
references therein).

It is easy to see that the following holds:

Ṽ (P0, P1) = inf
Ω
E

∑Z 1

0
L

µ
dφ(t)

dt

∂
dt

∏æ
, (1.3)

where the infimum is taken over all absolutely continuous stochastic processes
{φ(t)}0∑t∑1 for which P (φ(t) ∈ dx) = Pt(dx) (t = 0, 1). (In this paper we
use the same notation P for different probability measures for the sake of
simplicity when it is not confusing.) Indeed, the minimizer of (1.3) is linear
in t (see e.g. [5], [10, p. 35]).

This implies that the minimizer of Monge’s problem with a quadratic cost
L(u) = |u|2 should be the zero-noise limit of h-path processes for Brownian
motion, which enables us not to use Kantorovich’s approach to study (1.1).
By an “h-path process for Brownian motion”, we mean an h-path process
obtained from a space-time harmonic function of Brownian motion (see (1.7)-
(1.10) and also [7, p. 566]).

To make the point clearer, we introduce Schrödinger’s functional equation
and then briefly describe an h-path process. For ε > 0 and x ∈ Rd, put

gε(x) :=
1

(2πε)d/2
exp

µ
−|x|2

2ε

∂
, (1.4)
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P1,ε(dy) :=
µ Z

Rd
gε(z − y)P1(dz)

∂
dy. (1.5)

The following is a special case of Schrödinger’s functional equations: find
nonnegative, σ-finite Borel measures (∫0,ε, ∫1,ε) for which8>><>>:

P0(dx) =
µR

Rd gε(x− y)∫1,ε(dy)
∂
∫0,ε(dx),

P1,ε(dy) =
µR

Rd gε(x− y)∫0,ε(dx)
∂
∫1,ε(dy).

(1.6)

It is known that there exists a unique solution (∫0,ε, ∫1,ε) to (1.6) (see [13],
and also [22] for the recent development).

Remark 1.1 (1.6) has a unique solution even if we replace P1,ε by P1. But,
if we replace P1,ε by P1 in (1.6) and consider P1 as the terminal distribution
of the h-path process given below, then we need technical assumptions (A.2)
and (A.3) in section 2 (see the discussion below Corollary 2.2 in section 2).

For ε > 0 and x ∈ Rd, put

hε(t, x) :=

( R
Rd gε(1−t)(x− y)∫1,ε(dy) (0 ∑ t < 1),

∫1,ε(dx)
dx (t = 1).

(1.7)

Let (≠,B, P ) be a probability space, {Bt}t≥0 be a right continuous, increas-
ing family of sub σ-fields of B, Xo be a Rd-valued, B0-adapted random
variable such that P (Xo)−1 = P0, and {W (t)}t≥0 denote a d-dimensional
(Bt)-Brownian motion such that W (0) = o (see e.g. [7], [10] or [12]).

The h-path process for
√

εW (·) in C([0, 1]) with an initial distribution
P0 and a terminal one P1,ε is the unique weak solution to the following (see
[14]): for t ∈ [0, 1],

Xε(t) = Xo +
Z t

0
bε(s, Xε(s))ds +

√
εW (t), (1.8)

where

bε(s, x) := εDx log hε(s, x) ((s, x) ∈ [0, 1)×Rd), (1.9)

and Dx := (@/@xi)d
i=1.

It is known that for any Borel set A Ω C([0, 1]),
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P (Xε(·) ∈ A) = E
∑
hε(1, Xo +

√
εW (1))

hε(0, Xo)
: Xo +

√
εW (·) ∈ A

∏
. (1.10)

In particular,

P ((Xε(0), Xε(1)) ∈ dxdy) = µε(dxdy) := ∫0,ε(dx)gε(x− y)∫1,ε(dy), (1.11)

and P (Xε(1))−1 = P1,ε.
It is also known that the minimizer of the following is the h-path process

in (1.8) (see [11, 26]):

Vε(P0, P1,ε) := inf
Ω
E

∑Z 1

0
|u(t)|2dt

∏æ
, (1.12)

where the infimum is taken over all Rd-valued, (Bt)-progressively measurable
{u(t)}0∑t∑1 for which the distribution of Xo +

R 1
0 u(s)ds +

√
εW (1) is P1,ε,

provided that the right hand side of (1.12) is finite.
It seems likely that the h-path process converges, as ε → 0, to the min-

imizer of (1.3) with L(u) = |u|2. But it is not trivial that this limit is a
function of t and Xo since a continuous strong Markov process which is of
bounded variation in time is not always a function of the initial point and
time (see [23] and also [19]).

In this paper, independently of known results on the Monge-Kantorovich
problem, we show that Vε(P0, P1,ε) converges to V (P0, P1) and Xε(1) con-
verges, in L2, to the minimizer of (1.1) as ε → 0, when L(u) = |u|2. As a
by-product, we give a new proof of the existence of the minimizer of (1.1)
with L(u) = |u|2.

From a probabilistic interest, replacing P1,ε by P1 in (1.6)-(1.12), we also
show the similar result to above, under technical assumptions.

If P0(dx) is absolutely continuous with respect to dx (see (A.1) in section
2) and L(u) = |u|2, then it is known that (1.1) and (1.2) have the unique min-
imizers D'(x) and P0(dx)δD'(x)(dy) respectively, where ' : Rd 7→ (−1,1]
is convex (see [3, 4], and also [8, 15, 16, 20, 21, 25] and the reference therein,
and also [18, 19] for the continuum limit of (1.3)).

When L(u) = |u|, in [9] they studied (1.2) by the “p → 1” limit of
the minimization problem for which the Euler-Lagrange equation is the p-
Laplacian PDE under the assumption that P0 and P1 have disjoint compact

4



supports, and in [6] and [24] they studied (1.2) by the “q ↓ 1” limit of (1.2)
with L(u) = |u|q under the assumption that P0 and P1 have compact supports
(see also [1]).

In future we would like to study the zero noise limit of the minimizer of
(1.12) with a more general cost function L(u), instead of |u|2, and then apply
the result to Monge’s problem.

In section 2 we give our main result which will be proved in section 3.

2 Main Result.

In this section we give our main result. We first state assumptions.
(A.0) P0 and P1 are Borel probability measures, on Rd, which have finite
second moments, i.e., Z

Rd
|x|2(P0(dx) + P1(dx)) < 1.

(A.1) p0(x) := P0(dx)/dx exists.
Then the following holds.

Theorem 2.1 Suppose that (A.0) holds. Then {µε}ε∈(0,1] is tight, and any
weak limit point of {µε}ε∈(0,1] as ε → 0 is supported on a cyclically monotone
set.

For the readers’ convenience, we introduce the following.

Definition 2.1 The nonempty set A ∈ Rd×Rd is called cyclically monotone
if for any n ≥ 1 and any (xi, yi) ∈ A (i = 1, · · · , n),

nX
i=1

< yi, xi+1 − xi >∑ 0 (2.1)

(see e.g. [25, p. 80]), where xn+1 := x1, and < ·, · > denotes the inner
product in Rd.

Since a cyclically monotone set in Rd ×Rd is contained in the subdiffer-
ential of a proper lower semicontinuous convex function on Rd and since a
proper convex function is differentiable dx-a.e. in the interior of its domain
(see [25, pp. 52, 82]), we obtain the following.
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Corollary 2.1 Suppose that (A.0) and (A.1) hold. Then for any weak limit
point µ of {µε}ε∈(0,1] as ε → 0, there exists a proper lower semicontinuous
convex function ' : Rd 7→ (−1,1] such that

µ(dxdy) = P0(dx)δD'(x)(dy). (2.2)

Remark 2.1 If (A.1) holds and p1(y) := P1(dy)/dy exists (see (A.2) given
later), then Corollary 2.1 gives a new proof of the existence to the following
Monge-Ampère equation:

p0(x) = p1(D'(x)) det(D2'(x)) (2.3)

in the sense that P0(D')−1 = P1, where D2 := (@2/@xi@xj)d
i,j=1. For the

regularity results on the solution to (2.3), see [25, pp. 140-141], [5, Theorem
1.1] and the references therein.

The following which can be proved from Theorem 2.1 and Corollary 2.1,
independently of known results on the Monge-Kantorovich problem [1, 3, 4,
15, 16, 21], is our main result.

Theorem 2.2 Suppose that (A.0) and (A.1) hold, and that L(u) = |u|2.
Then

lim
ε→0

Vε(P0, P1,ε) = V (P0, P1) < 1. (2.4)

In particular, D' in Corollary 2.1 is the unique minimizer of (1.1), and the
following holds:

lim
ε→0

E[
Z 1

0
|bε(t, Xε(t))− (D'(Xo)−Xo)|2dt] = 0, (2.5)

lim
ε→0

E[ sup
0∑t∑1

|Xε(t)− {Xo + t(D'(Xo)−Xo)}|2] = 0. (2.6)

The following is known on (1.1)-(1.3) with L(u) = |u|2.
(i) Suppose that (A.0) holds. Then a probability measure supported on a
cyclically monotone set in Rd ×Rd is a minimizer of (1.2) (see [15, 16] and
also [25, pp. 66, 82], [1, Theorem 3.2]).
(ii) Suppose that (A.0) and (A.1) hold. Then there exists a convex function
' such that P0(dx)δD'(x)(dy) is the unique minimizer of (1.2) (see [3, 4]).

Using these facts, we have the following.
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Corollary 2.2 (i) Suppose that (A.0) holds and that L(u) = |u|2. Then
any weak limit point of {µε}ε∈(0,1] as ε → 0 is a minimizer of (1.2). (ii)
Suppose in addition that (A.1) holds. Then µε weakly converges to the unique
minimizer of (1.2) as ε → 0.

In (1.6) we considered P1,ε, instead of P1, to avoid technical assumptions
in Theorem 2.2 (see Remark 1.1). As far as the zero-noise limit of h-path
processes is concerned, there is no reason to perturb the terminal distribution
P1. From a probabilistic interest, we discuss the zero-noise limit of h-path
processes for Brownian motion with the terminal distribution P1.

Repalce P1,ε by P1 in (1.6). Then there exists a unique solution (∫0,ε, ∫1,ε)
to (1.6) (see [13]). We define µε from (∫0,ε, ∫1,ε) in the same way as in (1.11).

If we assume
(A.2) p1(x) := P1(dx)/dx exists,
then we can define hε(t, x), Xε(t) and bε(s, x) in the same way as in (1.7)-
(1.9), respectively, by replacing (∫0,ε, ∫1,ε) by (∫0,ε, ∫1,ε) (see [14]).

If we assume in addition that the following holds:
(A.3)

R
Rd(log p1(x))P1(dx) < 1,

then Vε(P0, P1) is finite for ε > 0 and the similar result to Theorem 2.2 and
Corollary 2.2 holds for Xε. More precisely, the following holds.

Proposition 2.1 (i) Suppose that (A.0) holds and that L(u) = |u|2. Then
{µε}ε∈(0,1] is tight and any weak limit point of {µε}ε∈(0,1] as ε → 0 is a
minimizer of (1.2). (ii) Suppose in addition that (A.1) holds. Then µε weakly
converges to the unique minimizer of (1.2) as ε → 0. (iii) Suppose in addition
that (A.2) and (A.3) hold. Then Vε(P0, P1) is finite for ε > 0, and

lim
ε→0

Vε(P0, P1) = V (P0, P1), (2.7)

and for D' in Corollary 2.1,

lim
ε→0

E[ sup
0∑t∑1

|Xε(t)− {Xo + t(D'(Xo)−Xo)}|2] = 0. (2.8)

3 Proof.

In this section we prove our results stated in section 2.
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We first state and prove technical lemmas to prove Theorem 2.1. For x,
y ∈ Rd, m ≥ 1 and ε > 0, put

Hm,ε(x, y) := ε log
ΩZZ

Um(o)×Um(o)
exp

µ
< x, z1 > + < y, z0 >

ε

−< z0, z1 >

ε

∂
µε(dz0dz1)

æ
, (3.1)

Hi,m,ε(x) := ε log
µZ

Um(o)
gε(x−zj)∫j,ε(dzj)

∂
+

|x|2
2

(i, j = 0, 1, i 6= j), (3.2)

µ0,m,ε(dz0) := µε(dz0 × Um(o)), µ1,m,ε(dz1) := µε(Um(o)× dz1) (3.3)

(see (1.11)), where Um(o) := {x ∈ Rd : |x| < m}. Then the following holds.

Lemma 3.1 (i) For any m ≥ 1 and ε > 0 for which µε(Um(o)×Um(o)) > 0,
and any x and y ∈ Rd,

Hm,ε(x, y) = H0,m,ε(x) + H1,m,ε(y) + ε log(2πε)d/2, (3.4)

µε(dz0dz1) = exp
µ

1

ε
(< z0, z1 > −Hm,ε(z0, z1))

∂
µ0,m,ε(dz0)µ1,m,ε(dz1), (3.5)

Hm,ε(x, y) = ε log
ΩZZ

Um(o)×Um(o)
exp

µ
< x, z1 > + < y, z0 >

ε

−Hm,ε(z0, z1)

ε

∂
µ0,m,ε(dz0)µ1,m,ε(dz1)}. (3.6)

(ii) For any m ≥ 1 and ε > 0 for which µε(Um(o)×Um(o)) > 0, Hm,ε(·, ·) is
convex, and for any x and y ∈ Rd,

|Hm,ε(x, y)| ∑ (|x| + |y|)m + m2 − ε log µε(Um(o)× Um(o)). (3.7)

Proof. We first prove (i). (3.4) can be obtained from (1.11) and (3.1)-(3.2)
easily. (3.5) holds from (1.11), (3.4) and from the following: for i, j = 0, 1
for which i 6= j,
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µi,m,ε(dzi)

∫i,ε(dzi)
=

Z
Um(o)

gε(zi − zj)∫j,ε(dzj) = exp
µ

1

ε

µ
Hi,m,ε(zi)− |zi|2

2

∂∂
. (3.8)

(3.6) can be obtained from (3.1) and (3.5) easily.
Next we prove (ii). Hm,ε(·, ·) is convex since for any ∏ ∈ (0, 1) and any

(x, y), (x̃, ỹ) ∈ Rd ×Rd,

Hm,ε(∏x + (1− ∏)x̃, ∏y + (1− ∏)ỹ)

= ε log
ΩZZ

Um(o)×Um(o)
exp

µ
∏(< x, z1 > + < y, z0 > − < z0, z1 >)

ε

∂
× exp

µ
(1− ∏)(< x̃, z1 > + < ỹ, z0 > − < z0, z1 >)

ε

∂
µε(dz0dz1)

æ
∑ ∏Hm,ε(x, y) + (1− ∏)Hm,ε(x̃, ỹ)

by Hölder’s inequality. (3.7) can be obtained from (3.1) easily.
Q. E. D.

Remark 3.1 For x ∈ Rd, m ≥ 1, ε > 0, and i, j = 0, 1 (i 6= j),

Hi,m,ε(x) = ε log
µZ

Um(o)

1

(2πε)d/2
exp

µ
1

ε
(< x, zj > −Hj,m,ε(zj))

∂
µj,m,ε(dzj)

∂
from (3.2) and (3.8).

Lemma 3.2 Suppose that (A.0) holds. Then for any sequence {εn}n≥1 for
which εn → 0 as n → 1, there exist a subsequence {εn(k)}k≥1 and m0 ≥ 1
such that Hm,εn(k)

is convergent in C(Rd ×Rd) as k → 1 for all m ≥ m0.
In particular,

m 7→ Hm := lim
k→1

Hm,εn(k)
(: Rd ×Rd 7→ (−1,1)) (3.9)

is nondecreasing on {m0, m0 + 1, · · ·},

(x, y) 7→ H(x, y) := lim
m→1Hm(x, y) ∈ (−1,1] (3.10)
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is convex on Rd ×Rd,

< x, y > −H(x, y) ∑ 0 ((x, y) ∈ supp(P0)× supp(P1)), (3.11)

and the following set is cyclically monotone:

S := {(x, y) ∈ supp(P0)× supp(P1)| < x, y >= H(x, y)}. (3.12)

Proof. There exist m0 ≥ 1 such that for any m ≥ m0, {Hm,εn}n≥1 is bounded
in U`+1(o)× U`+1(o) for any ` ≥ 1 from (3.7) and from the following:

1− µε(Um(o)× Um(o)) (3.13)

∑
RR

Rd×Rd(|x|2 + |y|2)µε(dxdy)

m2
=

R
Rd |x|2P0(dx) +

R
Rd |y|2P1,ε(dy)

m2

=

R
Rd |x|2P0(dx) +

RR
Rd×Rd |x + y|2gε(x)dxP1(dy)

m2

∑
R
Rd |x|2P0(dx) + 2(εd +

R
Rd |y|2P1(dy))

m2
→ 0 (as m →1)

from (A.0), uniformly for ε = εn (n ≥ 1). Hence for any m ≥ m0 and
any ` ≥ 1, {Hm,εn}n≥1 contains a uniformly convergent subsequence on
U`(o) × U`(o) since Hm,εn(·, ·) is convex from Lemma 3.1, (ii) (see [2, p.
21, Theorem 3.2]). By the diagonal method, {Hm,εn}n≥1 contains a conver-
gent subsequence {Hm,εm,n}n≥1 in C(Rd × Rd). In particular, we can take
{εm,n}n≥1 so that m 7→ {εm,n}n≥1 is nonincreasing on {m0, m0 + 1, · · ·}. Put

εn(k) := εk+m0−1,k+m0−1 (k ≥ 1).

Then Hm,εn(k)
is convergent in C(Rd ×Rd) as k →1 for all m ≥ m0.

m 7→ Hm is nondecreasing on {m0, m0 + 1, · · ·} since

Hm+1,εn(k)
≥ Hm,εn(k)

(k ≥ 1)

for all m ≥ m0 from (3.1). Hence for any (x, y) ∈ Rd × Rd, Hm(x, y) is
convergent or diverges to 1 as m →1.

As the limit of convex functions, H(·, ·) in (3.10) is convex in Rd ×Rd.
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For any (x, y) ∈ supp(P0)× supp(P1), r > 0, m ≥ r + |x| + |y| + m0 and
k ≥ 1, from (3.6),

Hm,εn(k)
(x, y) (3.14)

≥ inf
(z0,z1)∈Ur(x)×Ur(y)

{< x, z1 > + < y, z0 > −Hm,εn(k)
(z0, z1)}

+εn(k) log{µ0,m,εn(k)
(Ur(x))µ1,m,εn(k)

(Ur(y))}.
Since Hm,εn(k)

converges to Hm as k →1, uniformly on every compact subset

of Rd ×Rd,

inf
(z0,z1)∈Ur(x)×Ur(y)

(< x, z1 > + < y, z0 > −Hm,εn(k)
(z0, z1)) (3.15)

→ inf
(z0,z1)∈Ur(x)×Ur(y)

(< x, z1 > + < y, z0 > −Hm(z0, z1)) (as k →1)

→ 2 < x, y > −Hm(x, y) (as r → 0)

→ 2 < x, y > −H(x, y) (as m →1).

From (A.0), for sufficiently large m ≥ 1,

lim inf
ε→0

{µ0,m,ε(Ur(x))µ1,m,ε(Ur(y))} > 0. (3.16)

Indeed,

µ0,m,ε(Ur(x))µ1,m,ε(Ur(y))

= {P0(Ur(x))− µε(Ur(x)× Um(o)c)}{P1,ε(Ur(y))− µε(Um(o)c × Ur(y))}.

µε(Ur(x)× Um(o)c) ∑ 1

m2

Z
Rd

|z|2P1,ε(dz) ∑ 2(εd +
R
Rd |z|2P1(dz))

m2

as in (3.13), and

µε(Um(o)c × Ur(y)) ∑ 1

m2

Z
Rd

|z|2P0(dz),

lim inf
ε→0

P1,ε(Ur(y)) ≥ P1(Ur(y))
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since P1,ε weakly converges to P1 as ε → 0. Hence (3.16) holds since for
(x, y) ∈ supp(P0)× supp(P1),

(P0 × P1)(Ur(x)× Ur(y)) > 0.

(3.14)-(3.16) implies (3.11).
The set S is cyclically monotone. Indeed, for any k, ` ≥ 1, (x1, y1), · · · , (x`, y`) ∈

S and m ≥ m0, putting x`+1 := x1,

X̀
i=1

(Hm,εn(k)
(xi+1, yi)−Hm,εn(k)

(xi, yi)) = 0 (3.17)

from (3.4). Let k →1 and then m →1. Then from (3.11),

X̀
i=1

< yi, xi+1 − xi >∑ X̀
i=1

(H(xi+1, yi)−H(xi, yi)) = 0. (3.18)

(Notice that H(xi, yi) is finite for all i = 1, · · · , `.)
Q. E. D.

Remark 3.2 H is lower semicontinuous since Hm ↑ H as m → 1 and
since Hm ∈ C(Rd ×Rd) as a finite convex function for sufficiently large m
(see the proof of Lemma 3.2). If H(x, y) and H(a, b) are finite, then H(x, b)
and H(a, y) are also finite since for sufficienlty large m ≥ 1, from (3.10) and
(3.17),

−1 < Hm(x, b) + Hm(a, y) ∑ H(x, b) + H(a, y) = H(x, y) + H(a, b) < 1.

In particular,

H(x, y) = H(x, b) + H(a, y)−H(a, b).

(Proof of Theorem 2.1.) {µε}ε∈(0,1] is tight from (3.13) (see e.g. [12, p. 7]).
Take a weakly convergent subsequence {µεn}n≥1 and denote by µ its weak
limit, where εn → 0 as n →1.

By taking m0 ≥ 1 and a subsequence {εn(k)}k≥1, construct a convex
function H as in Lemma 3.2.
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From (3.11)-(3.12), we only have to show the following to complete the
proof:

µ({(x, y)| < x, y > −H(x, y) < 0}) = 0. (3.19)

By the monotone convergence theorem and Lemma 3.2,

µ({(x, y)| < x, y > −H(x, y) < 0}) (3.20)

= lim
r↓0

( lim
m↑1

µ({(x, y)| < x, y > −Hm(x, y) < −r})).

For any m ≥ m0, Hm,εn(k)
converges to Hm as k →1, uniformly on every

compact subset of Rd ×Rd. Therefore for any R > 0,

µ({(x, y)| < x, y > −Hm(x, y) < −r, |x|, |y| < R}) (3.21)

∑ lim inf
k→1

µεn(k)
({(x, y)| < x, y > −Hm(x, y) < −r, |x|, |y| < R})

∑ lim inf
k→1

µεn(k)
({(x, y)| < x, y > −Hm,εn(k)

(x, y) < −r/2, |x|, |y| < R})

∑ lim inf
k→1

exp
µ
− r

2εn(k)

∂
= 0 (from (3.5)).

Notice that the set {(x, y)| < x, y > −Hm(x, y) < −r, |x|, |y| < R} is open
since Hm ∈ C(Rd ×Rd) from Lemma 3.1, (ii).

Letting R →1 in (3.21), we obtain (3.19) from (3.20).
Q. E. D.

Next we prove Theorem 2.2.
(Proof of Theorem 2.2). The proof of (2.4) is devided into the following:

lim inf
ε→0

Vε(P0, P1,ε) ≥ V (P0, P1), (3.22)

lim sup
ε→0

Vε(P0, P1,ε) ∑ V (P0, P1) < 1. (3.23)

To prove (3.22), we only have to show that for any {εn}n≥1 for which
εn → 0 and E[

R 1
0 |bεn(s, Xεn(s))|2ds] is convergent as n →1,

lim
n→1E[

Z 1

0
|bεn(s, Xεn(s))|2ds] ≥ V (P0, P1) (3.24)
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(see (1.8) for notation). (3.24) holds since {Xεn(·)}n≥1 is tight in C([0, 1]),
and since any weak limit point X(·) of {Xεn(·)}n≥1 is an absolutely continuous
stochastic process (see e.g. [19, Lemmas 2-3]), and

lim
n→1E[

Z 1

0
|bεn(s, Xεn(s))|2ds] (3.25)

≥ E[
Z 1

0

ØØØØdX(s)

ds

ØØØØ2ds] ≥ E[|X(1)−X(0)|2] ≥ V (P0, P1)

from (1.11) and (2.2) (see e.g. [19, the proof of (3.17)]).
Next we prove (3.23). Take √ for which P0√−1 = P1, which is possible

from Corollary 2.1. Then from (A.0),

V (P0, P1) ∑ E[|√(Xo)−Xo|2] ∑ 2
Z
Rd

|x|2(P0(dx) + P1(dx)) < 1. (3.26)

Put

Xε,√(t) := Xo + t(√(Xo)−Xo) +
√

εW (t). (3.27)

Then P (Xε,√(1))−1 = P1,ε, which implies (3.23).
By (2.2), (2.4) and (3.25), D' in Corollary 2.1 is a minimizer of (1.1)

with L(u) = |u|2. The uniqueness of the minimizer of (1.1) with L(u) = |u|2
is can be shown easily (see e.g. [25, p. 69]).

(2.5)-(2.6) is an easy consequence of (2.4). For t ∈ [0, 1],

|Xε(t)− {Xo + t(D'(Xo)−Xo)}| (3.28)

∑
Z 1

0
|bε(s, Xε(s))− (D'(Xo)−Xo)|ds +

√
ε sup

0∑t∑1
|W (t)|.

E[ sup
0∑t∑1

|W (t)|2] ∑ 4d (3.29)

(see e.g. [12, p. 34]), and from (2.4),

E[
Z 1

0
|bε(s, Xε(s))− (D'(Xo)−Xo)|2ds] (3.30)
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= E[
Z 1

0
|bε(s, Xε(s))|2ds + |D'(Xo)−Xo|2]
−2E[< Xε(1)−Xo −

√
εW (1), D'(Xo)−Xo >]

→ 2V (P0, P1)− 2E[< D'(Xo)−Xo, D'(Xo)−Xo >] = 0 as ε → 0.

Indeed,

E[< W (1), D'(Xo)−Xo >] =< E[W (1)], E[D'(Xo)−Xo] >= 0.

For any R > 0, taking fR ∈ C(Rd : [0, 1]) for which fR(x) = 1 (|x| ∑ R) and
fR(x) = 0 (|x| ≥ R + 1),

E[< Xε(1), D'(Xo)−Xo >]

= E[< Xε(1), D'(Xo)−Xo > {1− fR(Xε(1))fR(D'(Xo)−Xo)}]
+E[< Xε(1), D'(Xε(0))−Xε(0) >

×fR(Xε(1))fR(D'(Xε(0))−Xε(0))].

E[| < Xε(1), D'(Xo)−Xo > |{1− fR(Xε(1))fR(D'(Xo)−Xo)}]
∑

q
E[|D'(Xo)−Xo|2]E[|Xε(1)|2 : |Xε(1)| ≥ R]

+
q

E[|Xε(1)|2]E[|D'(Xo)−Xo|2 : |D'(Xo)−Xo| ≥ R] → 0

as R →1, uniformly in ε ∈ [0, 1]. Since (Xε(0), Xε(1)) weakly converges to
(Xo, D'(Xo)) as ε → 0 by the uniqueness of the minimizer of V (P0, P1), one
can assume, by taking a new probability space (≠̃, B̃, P̃ ), that (Xε(0), Xε(1))
converges to (Xo, D'(Xo)) as ε → 0, P̃ -a.s., by Skhorohod’s theorem (see
e.g. [12, p. 9]). Put

A := {y ∈ Rd|'(y) < 1, @'(y) = {D'(y)}}.
Then Xo ∈ A a.s. from (A.1) and ∩r>0@'(Ur(x)) = {D'(x)} for any x ∈ A
(see [25, p. 54]), from which the following holds:
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E[< Xε(1), D'(Xε(0))−Xε(0) > fR(Xε(1))fR(D'(Xε(0))−Xε(0))]

→ Ẽ[< D'(Xo), D'(Xo)−Xo > fR(D'(Xo))fR(D'(Xo)−Xo) : Xo ∈ A]

(as ε → 0)

→ E[< D'(Xo), D'(Xo)−Xo >] (as R →1).

(3.28)-(3.30) imply (2.5)-(2.6).
Q. E. D.

We give technical lemmas and then prove Proposition 2.1.

Lemma 3.3 (see [17, Lemma 2.5]). Suppose that (A.2) holds. Then for any
ε > 0,

Vε(P0, P1) = 2εE
∑
log

Ω
hε(1, Xε(1))

hε(0, Xε(0))

æ∏
(3.31)

(see above Proposition 2.1 for notation). Vε(P0, P1) is also the infimum ofZ 1

0

Z
Rd

|b(t, x)|2q(t, x)dtdx (3.32)

over all (b, q) for which

q(t, x) ≥ 0 dx− a.e.,
Z
Rd

q(t, x)dx = 1 for all t ∈ [0, 1], (3.33)

q(0, x)dx = P0(dx), q(1, x)dx = P1(dx), (3.34)

and for which the following holds: for any f ∈ C1
o (Rd) and any t ∈ [0, 1],

Z
Rd

f(x)(q(t, x)− q(0, x))dx (3.35)

=
Z t

0
ds

Z
Rd

µ
ε

2
4f(x)+ < b(t, x), Df(x) >

∂
q(s, x)dx,

where 4 :=
Pd

i=1 @2/@x2
i .
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Remark 3.3 Suppose that (A.1) and (A.2) hold and that supp(P0)∪supp(P1)
is bounded. Then it is known that Ṽ (P0, P1) is the infimum of (3.32) over all
(b, q) for which (3.33)-(3.35) hold for ε = 0 and for which ∪0∑t∑1supp(q(t, ·))
is bounded (see [5] or [25, p. 239]).

Lemma 3.4 Suppose that (A.0), (A.2) and (A.3) hold. Then for any ε > 0,
Vε(P0, P1) is finite. In particular, V1(P1,1, P1) is finite.

Proof. Replace µε by µε (see above Proposition 2.1 for notation) in (3.1)
and denote by Hm,ε a function obtained from (3.1). Then, from (3.2), (3.4),
(3.8), (3.31) and (A.2),

Vε(P0, P1) = E[|Xε(0)|2 + |Xε(1)|2 − 2H1,ε(Xε(0), Xε(1))] (3.36)

+2ε
Z
Rd

(log p1(x))P1(dx) + 2ε log(2πε)d/2.

From (3.1), (3.7), (3.13) and (A.0), for sufficiently large m ≥ 1,

E[H1,ε(Xε(0), Xε(1))] ≥ E[Hm,ε(Xε(0), Xε(1))] > −1. (3.37)

This together with (A.3) completes the proof.
Q. E. D.

(Proof of Proposition 2.1). The proof of (i) and (ii) is almost the same as
that of Corollary 2.2. Most parts of the proof of (iii) is almost the same as
that of Theorem 2.2. In fact, from Lemma 3.4, the only thing we have to
prove is the following:

lim sup
ε→0

Vε(P0, P1) ∑ V (P0, P1). (3.38)

Take √ for which P0√−1 = P1, which is possible from Corollary 2.1. For
r ∈ (0, 1/2), solve Schrödinger’s functional equation:

P1,ε(1−r)(dx) =
µZ

Rd
gεr(x− y)∫1,r,ε(dy)

∂
∫0,r,ε(dx), (3.39)

P1(dy) =
µZ

Rd
gεr(x− y)∫0,r,ε(dx)

∂
∫1,r,ε(dy).
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For t ∈ [0, 1− r], put

Xr,ε(t) := Xo + t
√(Xo)−Xo

1− r
+
√

εW (t), (3.40)

and solve the following: for t ∈ [1− r, 1]

Xr,ε(t) = Xr,ε(1− r)+
Z t

1−r
br,ε(s, Xr,ε(s))ds+

√
ε(W (t)−W (1− r)), (3.41)

where

br,ε(s, x) := εDx log
µZ

Rd
gε(1−s)(x− y)∫1,r,ε(dy)

∂
.

Then, from Lemma 3.3,

Vε(P0, P1) ∑ E[|√(Xo)−Xo|2]
1− r

+ E[
Z 1

1−r
|br,ε(s, Xr,ε(s))|2ds] (3.42)

since Xr,ε(0) = Xo and PXr,ε(1)−1 = P1.
We prove the following to complete the proof: for any r ∈ (0, 1/2),

lim
ε→0

E[
Z 1

1−r
|br,ε(s, Xr,ε(s))|2ds] = 0. (3.43)

Put

pr,ε(t, x) :=

( R
Rd g ε(1−r)(1−t)

r
(x− y)P1(dy) (1− r ∑ t < 1),

p1(x) (t = 1).
(3.44)

Then

pr,ε(1− r, x)dx = P1,ε(1−r)(dx),

and pr,ε(t, x) is a weak solution to the following: for t ∈ [1− r, 1),

@pr,ε(t, x)

@t
=

ε

2
4pr,ε(t, x)− div

Ωµ
ε

2r

∂
Dxpr,ε(t, x)

pr,ε(t, x)
pr,ε(t, x)

æ
. (3.45)
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Hence, from Lemmas 3.3 and 3.4, for ε < 1,

E[
Z 1

1−r
|br,ε(s, Xr,ε(s))|2ds] (3.46)

∑
Z 1

1−r
dt

Z
Rd

ØØØØµ ε

2r

∂
Dxpr,ε(t, x)

pr,ε(t, x)

ØØØØ2pr,ε(t, x)dx

=
ε

4r(1− r)

Z 1

1−ε(1−r)
ds

Z
Rd

ØØØØDxp 1
2 ,1(s, x)

p 1
2 ,1(s, x)

ØØØØ2p 1
2 ,1(s, x)dx → 0 (as ε → 0),

where we used the following change of variable:

ε(1− r)(1− t)

r
= 1− s,

and the following:

Z 1

1−ε(1−r)
ds

Z
Rd

ØØØØDxp 1
2 ,1(s, x)

p 1
2 ,1(s, x)

ØØØØ2p 1
2 ,1(s, x)dx

∑
Z 1

0
ds

Z
Rd

ØØØØDxp 1
2 ,1(s, x)

p 1
2 ,1(s, x)

ØØØØ2p 1
2 ,1(s, x)dx = V1(P1,1, P1) < 1.

Q. E. D.
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[11] Föllmer H, Random fields and diffusion processes, in École d’Été de
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