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Motion of a graph by R-curvature

AGE RS - BAEEZER =1 K (Toshio Mikami)
Department of Mathematics

Hokkaido University

1. Introduction.

In this talk we introduce our recent result:

H. Ishii and T. Mikami, Motion of a graph by R-vurvature, Hokkaido math-

ematical preprint series, No. 340.
Let us first introduce two definitions.

Definition 1 (R-curvature) Let R € L'(R%: [0,00),dz). Foru € C(R%:
R), we define the R-curvature of u as the finite Borel measure w(R,u,dx)

on R? given by

w(R,u, A) = / R(y)dy  for all Borel A C RY. (0.1)

Ugea0u(z)
Definition 2 (Motion by R-curvature) The graph of u € C([0,00) X

R?: R) is called the motion by R-curvature if the following holds: for any
0 € Co(RY:R) and any t > 0,



/ p(@)u(t,z)d /Rdtﬂ dx (0.2)

/ ds/Rd w(R,u(s,-),dx).

By the continuum limit of a class of infinite particle systems, we first
show the existence of the motion by R-curvature, and then the uniqueness
by the comparison theorem. We also show that the motion by R-curvature

is a viscosity solution to

(PDE)  Ou(t,x)/0t = x(u, Du(t, x),t,z)Det, (D*u(t,z))R(Du(t,z)),

where Du(t,z) = (Qu(t,z)/0x;)¢,, D*u(t,z) = (0*u(t, x)/0z;0x;)¢

2,0=17

1 if p € Ju(t, z),
X(u’p7 t’ :L') = .
0 otherwise,

Ou(t, z) denotes the subdifferential of the function z — wu(t, x), and for a real

d x d-symmetric matrix X,

Det X if X is nonnegative definite,
Det+X =
0 otherwise.

We introduce the definition of the viscosity solution to (PDE).
Definition 3 (Viscosity solution) (Viscosity subsolution)u € C((0,00)x

R?: R) is a viscosity subsolution of (PDE) if whenever ¢ € C%((0,00) x R%:
R) and u — ¢ < (u— ¢)(ty, xo),



0p(ty, o) /0t < x(u, Dp(ty, xy), to, :100)Det+(1)24,0(1507 zo))R(Dp(t,, z,)).

(Viscosity supersolution) u € C((0,00) x R? : R) is a viscosity supersolution

of (PDE) if whenever ¢ € C?((0,00) x RY: R) and u — ¢ > (u — ©)(t, To),

Op(to, 1) /0t > X~ (u, Dp(to, 7o), to, o) Dety (D*¢(ty, 10) ) R(Dp(t,, 2,)).

Here x~(v,p,t,z) =1 if

v(t,y) > v(t,z)+ < p,y —x > (y # x)

and if there exists € > 0 such that for all (s,y) € (0,00) x R satisfying

ly| > et and |s —t| <e,

v(s,y) >p-y+elyl,

and x~(v,p,t,z) = 0, otherwise.

Remark 1 If x (v,p,t,x) = 1 and s is close to t, then p € Ju(s,y) for

some y.

Finally we discuss under what condition the viscosity solution to (PDE)
is the motion by R-curvature.
2. Infinite particle systems and the motion by R-curvature.

In this section we construct the motion by R-curvature by the continuum

limit of infinite particle systems.



Fix ¢, | 0 as n — oo, and put
(A1), ||R]||p = [Jga R(y)dy >0, R >0, h € C(R?: R),
(A.2). |0h(RY) (= Uyeradh(z))] > 0,

Sp = {v:Z%n—R| Y (v(z)—h(z)) < o0,

2€Z%/n

(v(2) — h(2))/e, € NU{0} for all z € Z%/n}.

Let {Y,(k, ) }o<x be a Markov chain on S, such that Y;,(0,-) = h(-), and that

P(Y,(k+1,-) =v,.|Yn(k, ) =v) =w(R,0,{z})/w(R, Y,(0,-), R%),

where

; (x){v(m)—ken if x = 2,
" v(x) it x € (Z4/n)\{z}.

Let p,(t) be a Poisson process, with parameter nte'w(R, Y, (0, -), R%), which
is independent of Y,,. Put

Zn(t, 2) = Ya(pa(t), 2),

X, (t, x) = max(Z,(t, x), h(z)).

For f and g € C(R?: R), we put
de®er)(f,9) = Xmz1 27" min(supyy <, | f(2) — g(2)], 1)
Then we show that X, (¢, x) converges to the motion by R-curvature under

the following additional conditions.



(A.3). The closure of the set {z € R : h(x) < h(z)} does not contain any
line which is unbounded in two different directions.

(A.4). For any p € Oh(R?) and C € R,

/ max(< p,x > +C — h(z),0)dr = oo.
Rd

Theorem 1 Suppose that (A.1) and (A.3)-(A.4) hold. Then there ezists a
unique continuous solution w to (1.2) with u(0,-) = h. Suppose in addition

that (A.2) holds. Then the following holds: for any v >0 and T > 0,

lim P( sup demer)(Xalt, "), u(t, ")) >v) =0.

nToo 0<t<T

Remark 2 (A.3) holds when d = 1. If h is convez, then (A.4) holds.
We give the properties of the motion by R-curvature.

Theorem 2 Suppose that (A.1) holds. Let u € C([0,00) x R : R) be the
solution to (1.2) with u(0,-) = h. Then:
(a) t — u(t,x) is nondecreasing.
(b) u = max(a, h)
(¢) u(t, ) —a(t, z) < h(x)—h(z). In particular, if h(z) = h(z), then u(t, ) =
u(t, ).
Suppose in addition that (A.4) holds. Then:
(d) For any t > 0, du(t,R%) = Oh(RY).

/Rd(u(t, ) — h(z))dz = t - w(R, h, RY).



(¢) Let uw € C([0,00) x R : R) be the solution to (1.2) with u(0,-) = h. If
u(s, ) —a(s,-) # h— h for some s € (0,00), then u(t,-) —a(t,-) # 0 for all

t > s.

According to the above theorem, (a) any graph moves upward by R-
curvature, (b) those points on any graph moving by R-curvature do not move
as far as they stay in its cavities, (c) the height between any graph moving
by R-curvature and its convex envelope is nonincreasing as it evolves, (d)
any graph moving by R-curvature sweeps in time ¢ > 0 a region with volume
given by t - w(R, h,R%), and (e) for the motion of a graph by R-curvature,
taking its convex envelope at time ¢ > 0 and evolving up to time ¢ starting
with the convex envelope of the initial graph give different graphs in general,
if the initial graph is not convex.

3. Motion by R-curvature and the viscosity solution.

In this section we discuss the relation between the motion by R-curvature
and the viscosity solution to (PDE).
(A.5). Re C(R?:[0,00)).

Theorem 3 Suppose that (A.1) and (A.5) hold. Then a continuous solu-
tion u to (1.2) with u(0,-) = h is a viscosity solution to (PDE).

Theorem 3 means that the motion by R-curvature is the viscosity solution
to (PDE). To discuss under what condition the reverse is true, we discuss
the uniqueness of the viscosity solution to (PDE).

(A.6). R(z) > R(rx) for any r > 1 and x € R%.
(A.7). inf, 4, h(x)/|z| > 0.



(A.8). There exists a constant C' > 0 such that h(z+y)+h(x—y)—2h(z) < C
for all (z,y) € R? x Uy(0), where Uy(0) = {y € R?: |y| < 1}.

Theorem 4 Suppose that (A.1) and (A.3)-(A.8) hold. Then there ezists a
unique continuous viscosity solution u to (PDE) with u(0,-) = h in the space

of continuous functions v for which

sup{|v(t,z) — h(z)| : (t,x) € [0,T] x R*} < oo for all T > 0.
w s also a unique continuous solution to (1.2) with u(0,-) = h.

We restrict our attention to Gauss curvature flow and give a finer result.

For ACc R?and v: A — R, put

epi(v) ={(z,y) 1z € A, y > v(z)}.

For » > 0, put

W (x) = inf{y € R | U((x,y)) Cepilh)} (v € RY).

Under the following condition, we give the comparison theorem for the
continuous viscosity solution to (PDE).
(A1). R(y) = (1+ |y|*>)~@*+Y/2 and h € C(R?: R).
(A.2).

linellilnf{liﬂioglf[lim inf(h(0x) — h"(z))]} > 0,

|z[—o0



lim{ sup (h(z) — h(0x))} = 0.

011 " pcRra
Theorem 5 Suppose that (A.1)-(A.2)" hold. Then for any viscosity sub-
solution u and supersolution v, of (PDE) in the space C([0,00) x R : R),
such that u(0,-) < h <wv(0,-), u < wv.

Remark 3 (A.2) holds if there exists a convex function hy : R% — R such

that ho(z) — oo as |x| — oo and that

lim [h(z) — ho(z)] = 0.

|z|—o0

In fact, the following holds:

lim [h(fx) — h"(z)] =00 forall® > 1,7 >0,

|z =00

lim{ sup [h(z) — h(0z)]} = 0.

011 " zeRrd
The following corollary is better than Theorem 4 in that we can consider

the viscosity solution in the entire space C(R? : R).

Corollary 1 Suppose that (A.1)-(A.2)" and (A.3)-(A.4) hold. Then there
exists a unique continuous viscosity solution u to (PDE) with u(0,-) = h. u

is also a unique continuous solution to (1.2) with u(0,-) = h.
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