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Motion of a graph by R-curvature

北海道大学 ·理学研究科　　三上　敏夫 (Toshio Mikami)

Department of Mathematics

Hokkaido University

1. Introduction.

In this talk we introduce our recent result:

H. Ishii and T. Mikami, Motion of a graph by R-vurvature, Hokkaido math-

ematical preprint series, No. 340.

Let us first introduce two definitions.

Definition 1 (R-curvature) Let R ∈ L1(Rd : [0,1), dx). For u ∈ C(Rd :

R), we define the R-curvature of u as the finite Borel measure w(R, u, dx)

on Rd given by

w(R, u, A) ≡
Z
∪x∈A@u(x)

R(y)dy for all Borel A Ω Rd. (0.1)

Definition 2 (Motion by R-curvature) The graph of u ∈ C([0,1) ×
Rd : R) is called the motion by R-curvature if the following holds: for any

' ∈ Co(Rd : R) and any t ≥ 0,
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Z
Rd

'(x)u(t, x)dx−
Z
Rd

'(x)u(0, x)dx (0.2)

=
Z t

0
ds

Z
Rd

'(x)w(R, u(s, ·), dx).

By the continuum limit of a class of infinite particle systems, we first

show the existence of the motion by R-curvature, and then the uniqueness

by the comparison theorem. We also show that the motion by R-curvature

is a viscosity solution to

(PDE) @u(t, x)/@t = χ(u, Du(t, x), t, x)Det+(D2u(t, x))R(Du(t, x)),

where Du(t, x) ≡ (@u(t, x)/@xi)d
i=1, D2u(t, x) ≡ (@2u(t, x)/@xi@xj)d

i,j=1,

χ(u, p, t, x) ≡
8><>: 1 if p ∈ @u(t, x),

0 otherwise,

@u(t, x) denotes the subdifferential of the function x 7→ u(t, x), and for a real

d× d-symmetric matrix X,

Det+X ≡
8><>: DetX if X is nonnegative definite,

0 otherwise.

We introduce the definition of the viscosity solution to (PDE).

Definition 3 (Viscosity solution) (Viscosity subsolution) u ∈ C((0,1)×
Rd : R) is a viscosity subsolution of (PDE) if whenever ' ∈ C2((0,1)×Rd :

R) and u− ' ∑ (u− ')(to, xo),
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@'(to, xo)/@t ∑ χ(u, D'(to, xo), to, xo)Det+(D2'(to, xo))R(D'(to, xo)).

(Viscosity supersolution) u ∈ C((0,1)×Rd : R) is a viscosity supersolution

of (PDE) if whenever ' ∈ C2((0,1)×Rd : R) and u− ' ≥ (u− ')(to, xo),

@'(to, xo)/@t ≥ χ−(u, D'(to, xo), to, xo)Det+(D2'(to, xo))R(D'(to, xo)).

Here χ−(v, p, t, x) = 1 if

v(t, y) > v(t, x)+ < p, y − x > (y 6= x)

and if there exists ε > 0 such that for all (s, y) ∈ (0,1) × Rd satisfying

|y| > ε−1 and |s− t| < ε,

v(s, y) > p · y + ε|y|,

and χ−(v, p, t, x) = 0, otherwise.

Remark 1 If χ−(v, p, t, x) = 1 and s is close to t, then p ∈ @v(s, y) for

some y.

Finally we discuss under what condition the viscosity solution to (PDE)

is the motion by R-curvature.

2. Infinite particle systems and the motion by R-curvature.

In this section we construct the motion by R-curvature by the continuum

limit of infinite particle systems.
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Fix εn ↓ 0 as n →1, and put

(A.1). ||R||L1 ≡ R
Rd R(y)dy > 0, R ≥ 0, h ∈ C(Rd : R),

(A.2). |@h(Rd)(≡ ∪x∈Rd@h(x))| > 0,

Sn ≡ {v : Zd/n 7→ R| X
z∈Zd/n

(v(z)− h(z)) < 1,

(v(z)− h(z))/εn ∈ N ∪ {0} for all z ∈ Zd/n}.

Let {Yn(k, ·)}0∑k be a Markov chain on Sn such that Yn(0, ·) = h(·), and that

P (Yn(k + 1, ·) = vn,z|Yn(k, ·) = v) = w(R, v̂, {z})/w(R, Ŷn(0, ·),Rd),

where

vn,z(x) ≡
8><>: v(x) + εn if x = z,

v(x) if x ∈ (Zd/n)\{z}.
Let pn(t) be a Poisson process, with parameter ndε−1

n w(R, Ŷn(0, ·),Rd), which

is independent of Yn. Put

Zn(t, z) ≡ Yn(pn(t), z),

Xn(t, x) ≡ max(Ẑn(t, x), h(x)).

For f and g ∈ C(Rd : R), we put

dC(Rd:R)(f, g) ≡ P
m≥1 2−m min(sup|x|∑m |f(x)− g(x)|, 1).

Then we show that Xn(t, x) converges to the motion by R-curvature under

the following additional conditions.
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(A.3). The closure of the set {x ∈ Rd : ĥ(x) < h(x)} does not contain any

line which is unbounded in two different directions.

(A.4). For any p 6∈ @h(Rd) and C ∈ R,

Z
Rd

max(< p, x > +C − h(x), 0)dx = 1.

Theorem 1 Suppose that (A.1) and (A.3)-(A.4) hold. Then there exists a

unique continuous solution u to (1.2) with u(0, ·) = h. Suppose in addition

that (A.2) holds. Then the following holds: for any ∞ > 0 and T > 0,

lim
n→1P ( sup

0∑t∑T
dC(Rd:R)(Xn(t, ·), u(t, ·)) ≥ ∞) = 0.

Remark 2 (A.3) holds when d = 1. If h is convex, then (A.4) holds.

We give the properties of the motion by R-curvature.

Theorem 2 Suppose that (A.1) holds. Let u ∈ C([0,1) ×Rd : R) be the

solution to (1.2) with u(0, ·) = h. Then:

(a) t 7→ u(t, x) is nondecreasing.

(b) u = max(û, h)

(c) u(t, x)−û(t, x) ∑ h(x)−ĥ(x). In particular, if h(x) = ĥ(x), then u(t, x) =

û(t, x).

Suppose in addition that (A.4) holds. Then:

(d) For any t > 0, @u(t,Rd) = @h(Rd).

Z
Rd

(u(t, x)− h(x))dx = t · w(R, h,Rd).
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(e) Let u ∈ C([0,1) ×Rd : R) be the solution to (1.2) with u(0, ·) = ĥ. If

u(s, ·)− û(s, ·) 6= h− ĥ for some s ∈ (0,1), then u(t, ·)− û(t, ·) 6= 0 for all

t ≥ s.

According to the above theorem, (a) any graph moves upward by R-

curvature, (b) those points on any graph moving by R-curvature do not move

as far as they stay in its cavities, (c) the height between any graph moving

by R-curvature and its convex envelope is nonincreasing as it evolves, (d)

any graph moving by R-curvature sweeps in time t > 0 a region with volume

given by t · w(R, h,Rd), and (e) for the motion of a graph by R-curvature,

taking its convex envelope at time t > 0 and evolving up to time t starting

with the convex envelope of the initial graph give different graphs in general,

if the initial graph is not convex.

3. Motion by R-curvature and the viscosity solution.

In this section we discuss the relation between the motion by R-curvature

and the viscosity solution to (PDE).

(A.5). R ∈ C(Rd : [0,1)).

Theorem 3 Suppose that (A.1) and (A.5) hold. Then a continuous solu-

tion u to (1.2) with u(0, ·) = h is a viscosity solution to (PDE).

Theorem 3 means that the motion by R-curvature is the viscosity solution

to (PDE). To discuss under what condition the reverse is true, we discuss

the uniqueness of the viscosity solution to (PDE).

(A.6). R(x) ≥ R(rx) for any r ≥ 1 and x ∈ Rd.

(A.7). infx 6=o h(x)/|x| > 0.
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(A.8). There exists a constant C > 0 such that h(x+y)+h(x−y)−2h(x) ∑ C

for all (x, y) ∈ Rd × U1(o), where U1(o) ≡ {y ∈ Rd : |y| < 1}.

Theorem 4 Suppose that (A.1) and (A.3)-(A.8) hold. Then there exists a

unique continuous viscosity solution u to (PDE) with u(0, ·) = h in the space

of continuous functions v for which

sup{|v(t, x)− h(x)| : (t, x) ∈ [0, T ]×Rd} < 1 for all T > 0.

u is also a unique continuous solution to (1.2) with u(0, ·) = h.

We restrict our attention to Gauss curvature flow and give a finer result.

For A Ω Rd and v : A 7→ R, put

epi(v) = {(x, y) : x ∈ A, y ≥ v(x)}.

For r > 0, put

hr(x) = inf{y ∈ R | Ur((x, y)) Ω epi(h)} (x ∈ Rd).

Under the following condition, we give the comparison theorem for the

continuous viscosity solution to (PDE).

(A.1)’. R(y) = (1 + |y|2)−(d+1)/2 and h ∈ C(Rd : R).

(A.2)’.

lim inf
θ↓1

{lim inf
r→1 [lim inf

|x|→1
(h(θx)− hr(x))]} > 0,
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lim
θ↓1

{ sup
x∈Rd

(h(x)− h(θx))} = 0.

Theorem 5 Suppose that (A.1)’-(A.2)’ hold. Then for any viscosity sub-

solution u and supersolution v, of (PDE) in the space C([0,1) ×Rd : R),

such that u(0, ·) ∑ h ∑ v(0, ·), u ∑ v.

Remark 3 (A.2)’ holds if there exists a convex function h0 : Rd 7→ R such

that h0(x) →1 as |x| → 1 and that

lim
|x|→1

[h(x)− h0(x)] = 0.

In fact, the following holds:

lim
|x|→1

[h(θx)− hr(x)] = 1 for all θ > 1, r > 0,

lim
θ↓1

{ sup
x∈Rd

[h(x)− h(θx)]} = 0.

The following corollary is better than Theorem 4 in that we can consider

the viscosity solution in the entire space C(Rd : R).

Corollary 1 Suppose that (A.1)’-(A.2)’ and (A.3)-(A.4) hold. Then there

exists a unique continuous viscosity solution u to (PDE) with u(0, ·) = h. u

is also a unique continuous solution to (1.2) with u(0, ·) = h.
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