HOKKAIDO UNIVERSITY

Title	Motion of agraph by R－curvature
Author（s）	Mikami，Toshio
Citation	京都大学数理解析研究所，1287，90－98
Issue Date	2002－09
Doc URL	http：／hdl．handle．net／2115／5882
Type	article（author version）
File Information	mikami1287．pdf

nstructions for use

Motion of a graph by R－curvature

北海道大学•理学研究科 三上 敏夫（Toshio Mikami）
Department of Mathematics
Hokkaido University

1．Introduction

In this talk we introduce our recent result：

H．Ishii and T．Mikami，Motion of a graph by R－vurvature，Hokkaido math－ ematical preprint series，No． 340.

Let us first introduce two definitions．

Definition 1 （ R－curvature）Let $R \in L^{1}\left(\mathbf{R}^{d}:[0, \infty), d x\right)$ ．For $u \in C\left(\mathbf{R}^{d}\right.$ ： $\mathbf{R})$ ，we define the R－curvature of u as the finite Borel measure $w(R, u, d x)$ on \mathbf{R}^{d} given by

$$
\begin{equation*}
w(R, u, A) \equiv \int_{\cup_{x \in A} \partial u(x)} R(y) d y \quad \text { for all Borel } A \subset \mathbf{R}^{d} . \tag{0.1}
\end{equation*}
$$

Definition 2 （Motion by R－curvature）The graph of $u \in C([0, \infty) \times$ $\mathbf{R}^{d}: \mathbf{R}$ ）is called the motion by R－curvature if the following holds：for any $\varphi \in C_{o}\left(\mathbf{R}^{d}: \mathbf{R}\right)$ and any $t \geq 0$,

$$
\begin{align*}
& \int_{\mathbf{R}^{d}} \varphi(x) u(t, x) d x-\int_{\mathbf{R}^{d}} \varphi(x) u(0, x) d x \tag{0.2}\\
= & \int_{0}^{t} d s \int_{\mathbf{R}^{d}} \varphi(x) w(R, u(s, \cdot), d x)
\end{align*}
$$

By the continuum limit of a class of infinite particle systems, we first show the existence of the motion by R-curvature, and then the uniqueness by the comparison theorem. We also show that the motion by R-curvature is a viscosity solution to
$(P D E) \quad \partial u(t, x) / \partial t=\chi(u, D u(t, x), t, x) \operatorname{Det}_{+}\left(D^{2} u(t, x)\right) R(D u(t, x))$,
where $D u(t, x) \equiv\left(\partial u(t, x) / \partial x_{i}\right)_{i=1}^{d}, D^{2} u(t, x) \equiv\left(\partial^{2} u(t, x) / \partial x_{i} \partial x_{j}\right)_{i, j=1}^{d}$,

$$
\chi(u, p, t, x) \equiv \begin{cases}1 & \text { if } p \in \partial u(t, x) \\ 0 & \text { otherwise }\end{cases}
$$

$\partial u(t, x)$ denotes the subdifferential of the function $x \mapsto u(t, x)$, and for a real $d \times d$-symmetric matrix X,

$$
\operatorname{Det}_{+} X \equiv \begin{cases}\operatorname{Det} X & \text { if } X \text { is nonnegative definite } \\ 0 & \text { otherwise }\end{cases}
$$

We introduce the definition of the viscosity solution to (PDE).

Definition 3 (Viscosity solution) (Viscosity subsolution) $u \in C((0, \infty) \times$ $\left.\mathbf{R}^{d}: \mathbf{R}\right)$ is a viscosity subsolution of (PDE) if whenever $\varphi \in C^{2}\left((0, \infty) \times \mathbf{R}^{d}\right.$: R) and $u-\varphi \leq(u-\varphi)\left(t_{o}, x_{o}\right)$,

$$
\partial \varphi\left(t_{o}, x_{o}\right) / \partial t \leq \chi\left(u, D \varphi\left(t_{o}, x_{o}\right), t_{o}, x_{o}\right) D e t_{+}\left(D^{2} \varphi\left(t_{o}, x_{o}\right)\right) R\left(D \varphi\left(t_{o}, x_{o}\right)\right)
$$

(Viscosity supersolution) $u \in C\left((0, \infty) \times \mathbf{R}^{d}: \mathbf{R}\right)$ is a viscosity supersolution of $(P D E)$ if whenever $\varphi \in C^{2}\left((0, \infty) \times \mathbf{R}^{d}: \mathbf{R}\right)$ and $u-\varphi \geq(u-\varphi)\left(t_{o}, x_{o}\right)$,

$$
\partial \varphi\left(t_{o}, x_{o}\right) / \partial t \geq \chi^{-}\left(u, D \varphi\left(t_{o}, x_{o}\right), t_{o}, x_{o}\right) \operatorname{Det}_{+}\left(D^{2} \varphi\left(t_{o}, x_{o}\right)\right) R\left(D \varphi\left(t_{o}, x_{o}\right)\right) .
$$

Here $\chi^{-}(v, p, t, x)=1$ if

$$
v(t, y)>v(t, x)+<p, y-x>\quad(y \neq x)
$$

and if there exists $\varepsilon>0$ such that for all $(s, y) \in(0, \infty) \times \mathbf{R}^{d}$ satisfying $|y|>\varepsilon^{-1}$ and $|s-t|<\varepsilon$,

$$
v(s, y)>p \cdot y+\varepsilon|y|,
$$

and $\chi^{-}(v, p, t, x)=0$, otherwise.

Remark 1 If $\chi^{-}(v, p, t, x)=1$ and s is close to t, then $p \in \partial v(s, y)$ for some y.

Finally we discuss under what condition the viscosity solution to (PDE) is the motion by R-curvature.

2. Infinite particle systems and the motion by R-curvature.

In this section we construct the motion by R-curvature by the continuum limit of infinite particle systems.

Fix $\varepsilon_{n} \downarrow 0$ as $n \rightarrow \infty$, and put
(A.1). $\|R\|_{L^{1}} \equiv \int_{\mathbf{R}^{d}} R(y) d y>0, R \geq 0, h \in C\left(\mathbf{R}^{d}: \mathbf{R}\right)$,
(A.2). $\left|\partial h\left(\mathbf{R}^{d}\right)\left(\equiv \cup_{x \in \mathbf{R}^{d}} \partial h(x)\right)\right|>0$,

$$
\begin{aligned}
& S_{n} \equiv\left\{v: \mathbf{Z}^{d} / n \mapsto \mathbf{R} \mid \sum_{z \in \mathbf{Z}^{d} / n}(v(z)-h(z))<\infty,\right. \\
&\left.(v(z)-h(z)) / \varepsilon_{n} \in \mathbf{N} \cup\{0\} \text { for all } z \in \mathbf{Z}^{d} / n\right\} .
\end{aligned}
$$

Let $\left\{Y_{n}(k, \cdot)\right\}_{0 \leq k}$ be a Markov chain on S_{n} such that $Y_{n}(0, \cdot)=h(\cdot)$, and that

$$
P\left(Y_{n}(k+1, \cdot)=v_{n, z} \mid Y_{n}(k, \cdot)=v\right)=w(R, \hat{v},\{z\}) / w\left(R, \hat{Y}_{n}(0, \cdot), \mathbf{R}^{d}\right),
$$

where

$$
v_{n, z}(x) \equiv \begin{cases}v(x)+\varepsilon_{n} & \text { if } x=z \\ v(x) & \text { if } x \in\left(\mathbf{Z}^{d} / n\right) \backslash\{z\}\end{cases}
$$

Let $p_{n}(t)$ be a Poisson process, with parameter $n^{d} \varepsilon_{n}^{-1} w\left(R, \hat{Y}_{n}(0, \cdot), \mathbf{R}^{d}\right)$, which is independent of Y_{n}. Put

$$
\begin{gathered}
Z_{n}(t, z) \equiv Y_{n}\left(p_{n}(t), z\right), \\
X_{n}(t, x) \equiv \max \left(\hat{Z}_{n}(t, x), h(x)\right) .
\end{gathered}
$$

For f and $g \in C\left(\mathbf{R}^{d}: \mathbf{R}\right)$, we put

$$
d_{C\left(\mathbf{R}^{d}: \mathbf{R}\right)}(f, g) \equiv \sum_{m \geq 1} 2^{-m} \min \left(\sup _{|x| \leq m}|f(x)-g(x)|, 1\right) .
$$

Then we show that $X_{n}(t, x)$ converges to the motion by R-curvature under the following additional conditions.
(A.3). The closure of the set $\left\{x \in \mathbf{R}^{d}: \hat{h}(x)<h(x)\right\}$ does not contain any line which is unbounded in two different directions.
(A.4). For any $p \notin \partial h\left(\mathbf{R}^{d}\right)$ and $C \in \mathbf{R}$,

$$
\int_{\mathbf{R}^{d}} \max (<p, x>+C-h(x), 0) d x=\infty .
$$

Theorem 1 Suppose that (A.1) and (A.3)-(A.4) hold. Then there exists a unique continuous solution u to (1.2) with $u(0, \cdot)=h$. Suppose in addition that (A.2) holds. Then the following holds: for any $\gamma>0$ and $T>0$,

$$
\lim _{n \rightarrow \infty} P\left(\sup _{0 \leq t \leq T} d_{C\left(\mathbf{R}^{d}: \mathbf{R}\right)}\left(X_{n}(t, \cdot), u(t, \cdot)\right) \geq \gamma\right)=0 .
$$

Remark 2 (A.3) holds when $d=1$. If h is convex, then (A.4) holds.

We give the properties of the motion by R-curvature.

Theorem 2 Suppose that (A.1) holds. Let $u \in C\left([0, \infty) \times \mathbf{R}^{d}: \mathbf{R}\right)$ be the solution to (1.2) with $u(0, \cdot)=h$. Then:
(a) $t \mapsto u(t, x)$ is nondecreasing.
(b) $u=\max (\hat{u}, h)$
(c) $u(t, x)-\hat{u}(t, x) \leq h(x)-\hat{h}(x)$. In particular, if $h(x)=\hat{h}(x)$, then $u(t, x)=$ $\hat{u}(t, x)$.

Suppose in addition that (A.4) holds. Then:
(d) For any $t>0, \partial u\left(t, \mathbf{R}^{d}\right)=\partial h\left(\mathbf{R}^{d}\right)$.

$$
\int_{\mathbf{R}^{d}}(u(t, x)-h(x)) d x=t \cdot w\left(R, h, \mathbf{R}^{d}\right) .
$$

(e) Let $\bar{u} \in C\left([0, \infty) \times \mathbf{R}^{d}: \mathbf{R}\right)$ be the solution to (1.2) with $u(0, \cdot)=\hat{h}$. If $u(s, \cdot)-\hat{u}(s, \cdot) \neq h-\hat{h}$ for some $s \in(0, \infty)$, then $\bar{u}(t, \cdot)-\hat{u}(t, \cdot) \neq 0$ for all $t \geq s$.

According to the above theorem, (a) any graph moves upward by R curvature, (b) those points on any graph moving by R-curvature do not move as far as they stay in its cavities, (c) the height between any graph moving by R-curvature and its convex envelope is nonincreasing as it evolves, (d) any graph moving by R-curvature sweeps in time $t>0$ a region with volume given by $t \cdot w\left(R, h, \mathbf{R}^{d}\right)$, and (e) for the motion of a graph by R-curvature, taking its convex envelope at time $t>0$ and evolving up to time t starting with the convex envelope of the initial graph give different graphs in general, if the initial graph is not convex.

3. Motion by R-curvature and the viscosity solution.

In this section we discuss the relation between the motion by R-curvature and the viscosity solution to (PDE).
(A.5). $R \in C\left(\mathbf{R}^{d}:[0, \infty)\right)$.

Theorem 3 Suppose that (A.1) and (A.5) hold. Then a continuous solution u to (1.2) with $u(0, \cdot)=h$ is a viscosity solution to (PDE).

Theorem 3 means that the motion by R-curvature is the viscosity solution to (PDE). To discuss under what condition the reverse is true, we discuss the uniqueness of the viscosity solution to (PDE).
(A.6). $R(x) \geq R(r x)$ for any $r \geq 1$ and $x \in \mathbf{R}^{d}$.
(A.7). $\inf _{x \neq o} h(x) /|x|>0$.
(A.8). There exists a constant $C>0$ such that $h(x+y)+h(x-y)-2 h(x) \leq C$ for all $(x, y) \in \mathbf{R}^{d} \times U_{1}(o)$, where $U_{1}(o) \equiv\left\{y \in \mathbf{R}^{d}:|y|<1\right\}$.

Theorem 4 Suppose that (A.1) and (A.3)-(A.8) hold. Then there exists a unique continuous viscosity solution u to (PDE) with $u(0, \cdot)=h$ in the space of continuous functions v for which

$$
\sup \left\{|v(t, x)-h(x)|:(t, x) \in[0, T] \times \mathbf{R}^{d}\right\}<\infty \text { for all } T>0 .
$$

u is also a unique continuous solution to (1.2) with $u(0, \cdot)=h$.

We restrict our attention to Gauss curvature flow and give a finer result. For $A \subset \mathbf{R}^{d}$ and $v: A \mapsto \mathbf{R}$, put

$$
\operatorname{epi}(v)=\{(x, y): x \in A, y \geq v(x)\}
$$

For $r>0$, put

$$
h^{r}(x)=\inf \left\{y \in \mathbf{R} \mid U_{r}((x, y)) \subset \operatorname{epi}(h)\right\} \quad\left(x \in \mathbf{R}^{d}\right)
$$

Under the following condition, we give the comparison theorem for the continuous viscosity solution to (PDE).
(A.1)'. $R(y)=\left(1+|y|^{2}\right)^{-(d+1) / 2}$ and $h \in C\left(\mathbf{R}^{d}: \mathbf{R}\right)$.
(A.2)'.

$$
\liminf _{\theta \downarrow 1}\left\{\liminf _{r \rightarrow \infty}\left[\liminf _{|x| \rightarrow \infty}\left(h(\theta x)-h^{r}(x)\right)\right]\right\}>0,
$$

$$
\lim _{\theta \downharpoonright 1}\left\{\sup _{x \in \mathbf{R}^{d}}(h(x)-h(\theta x))\right\}=0 .
$$

Theorem 5 Suppose that (A.1)'-(A.2)' hold. Then for any viscosity subsolution u and supersolution v, of (PDE) in the space $C\left([0, \infty) \times \mathbf{R}^{d}: \mathbf{R}\right)$, such that $u(0, \cdot) \leq h \leq v(0, \cdot), u \leq v$.

Remark $\mathbf{3}$ (A.2)' holds if there exists a convex function $h_{0}: \mathbf{R}^{d} \mapsto \mathbf{R}$ such that $h_{0}(x) \rightarrow \infty$ as $|x| \rightarrow \infty$ and that

$$
\lim _{|x| \rightarrow \infty}\left[h(x)-h_{0}(x)\right]=0 .
$$

In fact, the following holds:

$$
\begin{gathered}
\lim _{|x| \rightarrow \infty}\left[h(\theta x)-h^{r}(x)\right]=\infty \quad \text { for all } \theta>1, r>0 \\
\lim _{\theta \downarrow 1}\left\{\sup _{x \in \mathbf{R}^{d}}[h(x)-h(\theta x)]\right\}=0
\end{gathered}
$$

The following corollary is better than Theorem 4 in that we can consider the viscosity solution in the entire space $C\left(\mathbf{R}^{d}: \mathbf{R}\right)$.

Corollary 1 Suppose that (A.1)'-(A.2)' and (A.3)-(A.4) hold. Then there exists a unique continuous viscosity solution u to (PDE) with $u(0, \cdot)=h$. u is also a unique continuous solution to (1.2) with $u(0, \cdot)=h$.

Acknowledgement: We woule like to thank Prof. K. Ishii for informing us the following paper:
G. Barles, S. Biton and O. Ley, Quelque résultats d'unicité pour l'equation du mouvement par courbure moyenne dans \mathbf{R}^{N}, preprint, Theorem 4.1, where they studied a similar result to Theorem 5 for the mean curvature flow with a convex coercive initial function.

