<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>多発消失性白点症候群における網膜層厚と脈絡膜循環動態の経時的変化</td>
</tr>
<tr>
<td>著者</td>
<td>橋本 勇希</td>
</tr>
<tr>
<td>印刷出所</td>
<td>北海道大学</td>
</tr>
<tr>
<td>通過番号</td>
<td>配架番号：</td>
</tr>
</tbody>
</table>

Note:

北海道大学 Collection of Scholarly and Academic Papers: HUSCAP
学 位 論 文

多発消失性白点症候群における網膜層厚と
脈絡膜循環動態の経時的変化
(Changes in retinal layer thickness and choroidal blood flow
velocity in multiple evanescent white dot syndrome)

2015年 3月
北海道大学
橋本 勇希
多発消失性白点症候群における網膜層厚と脈絡膜循環動態の経時的変化
(Changes in retinal layer thickness and choroidal blood flow velocity in multiple evanescent white dot syndrome)
目次

発表論文目録および学会発表目録 1 頁

I. 緒言 ... 3 頁
 1. 網膜および脈絡膜の解剖 3 頁
 2. OCT とは ... 4 頁
 3. LSFG とは ... 5 頁

略語表 .. 7 頁

II. MEWDS における網膜層厚および脈絡膜循環動態の変化 8 頁
 1. MEWDS とは ... 8 頁
 2. MEWDS の網膜厚層別解析 8 頁
 3. MEWDS の網膜厚の変化 10 頁
 4. MEWDS の脈絡膜循環動態の変化 15 頁

III. 総括および考案 .. 20 頁

謝辞 ... 23 頁

引用文献 ... 24 頁

本文における図、表の一部は Acta Ophthalmologica および Graefe’s Archive for Clinical and Experimental Ophthalmology へ掲載されたものと同一であり、copyright は Wiley publication に属する。
発表論文目録および学会発表目録

本研究の一部は以下の論文に発表した。
1. **Yuki Hashimoto, Wataru Saito, Michiyuki Saito, Kiriko Hirooka, Chikako Yoshizawa, Kousuke Noda, Susumu Ishida**
 “Retinal outer layer thickness increases with regression of multiple evanescent white dot syndrome and visual improvement positively correlates with photoreceptor outer segment length”

2. **Yuki Hashimoto, Wataru Saito, Michiyuki Saito, Kiriko Hirooka, Shohei Mori, Kousuke Noda, Susumu Ishida**
 “Decreased choroidal blood flow velocity in the pathogenesis of multiple evanescent white dot syndrome”

本研究の一部は以下の学会に発表した。
1. 橋本勇希、齋藤航、齋藤理幸、石田晋
 「多発消失性白点症候群における脈絡膜循環動態の経時的変化」
 第50回網膜硝子体学会、2011年12月2日（金）、東京国際フォーラム（東京）

2. 橋本勇希、齋藤航、齋藤理幸、吉澤史子、野田航介、石田晋
 「Laser speckle flowgraphyを施行した小児多発消失性白点症候群の1例」
 第37回日本小児眼科学会、2012年6月29日（金）、名古屋国際会議場（名古屋）

3. 橋本勇希、齋藤航、齋藤理幸、藤谷顕雄、吉澤史子、野田航介、石田晋
 「多発消失性白点症候群における網膜厚層別解析による経時的変化」
 第51回網膜硝子体学会、2012年12月2日（日）、甲府富士屋ホテル（山梨）

4. **Yuki Hashimoto, Wataru Saito, Michiyuki Saito, Kiriko Hirooka, Shohei Mori, Kousuke Noda, Susumu Ishida**
 “Changes in retinal layer thickness and choroidal blood flow velocity in multiple evanescent white dot syndrome”
The World ophthalmology Congress, 2014 年 4 月 2 日（水）、東京国際フォーラム（東京）
Ⅰ．緒言
近年、眼科検査機器は日進月歩の進歩を遂げている。特に網膜の形態を詳細に観察することのできる光干渉断層計（optical coherence tomography: OCT）や脈絡膜循環動態を定量的に測定することのできる laser speckle flowgraphy（LSFG）により、多くの網脈絡膜疾患の新知見が明らかとなり、新しい疾患概念の確立や病態の解明に寄与している。

1．網膜および脈絡膜の解剖
網膜は 10 層の組織から構成される神経膜であり、それぞれの組織で複雑な処理が行われている。例えば、光刺激は網膜外層にある視細胞で神経信号に変換され、網膜内層にある双極細胞、網膜神経節細胞を介して視神経に伝えられる。これが視覚の第一ニューロンである。網膜内層は網膜動脈から必要な酸素や栄養の供給を受けていている。そして、視細胞を含む網膜外層は特に視機能との関連が強いことが知られている（図 1）。
脈絡膜は網膜の外側に位置し、Bruch 膜、脈絡膜毛細血管板、脈絡膜中大血管層、上脈絡膜の 4 層の組織から構成され、眼内血流の約 90%を占める。視細胞への酸素や栄養の供給、老廃物の代謝は脈絡膜毛細血管板が担っている。網膜外層を維持する上で非常に重要な組織である。また、光感受によって温度が上昇する網膜に対して、冷却機能があるラジエーターの役割を持つとも言われている（図 1）。

図 1 正常眼黄斑部の光干渉断層計像。網膜は 10 層から構成され、網膜内層は網膜血管から、視細胞を含む網膜外層は脈絡膜から酸素や栄養の供給を受けている。
2. OCT とは

OCT は眼科分野の CT や MRI と評される画像診断機器であり、近年目覚ましい発展を遂げている検査機器の 1 つである。測定原理は、820nm の近赤外光を発振し、眼内からの反射波と参照鏡からの参照光の合成により画像が得られる。短時間（数秒）でかつ非侵襲的な測定が可能である。OCT で得られる B-scan 画像は、網膜の断層像を描出する。下の図はサルの黄斑部の組織切片であるが（図 2A）、OCT での B-scan では組織切片と同様にそれぞれの層を明瞭に観察することが可能である（図 2B）。

図 2（A）サルの黄斑部の組織切片。（B）ヒト黄斑部の OCT における B-scan 所見。

視細胞は、光明所で働き視力および色覚に関与する錐体細胞と、暗所で働く杆体細胞から成る。特にここで注目すべきは網膜外層の構造である。OCT では視細胞付近に 3 本の高反射のラインがあり、1 番上の高反射が視細胞内節外節接合部（photoreceptor inner/outer segment junction: IS/OS）、真ん中の高反射のラインが錐体細胞外節端（cone outer segment tip: COST）、そして、1 番下の高反射が網膜色素上皮（retinal pigment epithelium: RPE）を示す（図 2B の赤枠内）。視細胞形態を示すと考えられる IS/OS と COST クラインは網膜疾患の視機能に深く関与していることが知られており 1, 2、同部の障害は網膜疾患の視機能障害に大きく関わる。特に、視細胞外節は視機能の根源であり、この外節の機能および形態変化をとらえることは臨床上極めて大きな意味を持つ。近年では、IS/OS クラインの後端から RPE の前終までの距離である視細胞外節（photoreceptor outer segment: PROS）長が網膜疾患の視機能に関連があると報告されており 3, 4、視機能との関連を示す新たな index として注目されている。

また、現在の OCT では、B-scan 画像を重ねることで構成される C-scan により、
網膜の三次元画像を描出することもできる。それにより網膜厚の疑似カラー化（図3A）と、黄斑部を中心とした6mmサークル内の網膜厚を9セクターに分けて自動的に数値化することが可能である（図3B）。さらに網膜層別厚を得ることも可能となり、網膜全層厚として内境界膜（internal limiting membrane: ILM）からRPEを、網膜血管が豊富な網膜内層厚としてILMから内網状層（inner plexiform layer: IPL）までを、視細胞が主に存在する網膜外層厚として外顆粒層（outer nuclear layer: ONL）からRPEまでを層別に測定することも可能である（図3C）。我々は最近、この方法を用いて、黄斑部に線維性の膜が発生することで視力低下を生じる特発性黄斑上膜において、硝子体手術で黄斑上膜の除去後に、黄斑部の網膜内層厚が有意に減少し、網膜外層厚がPROS長の伸長に依存しながら有意に増加することを報告した4。

図3 OCTのC-scan。
眼底からの反射光はセンサー平面上にスペックルパターンを形成するが、赤血球に動きがあるとそのスペックルパターンにぼやけが生じ、部分的に画像のコントラストが低下する（図4B）。コントラストの二乗に反比例する値をmean blur rate（MBR）として各点を構成し、二次元画像上に眼底血流画像を再構成する。LSFGを行うことで、網脈絡膜や視神経乳頭の任意の部位で、血流速度の相対値の指標であるMBRを得ることができる。また、視神経乳頭から黄斑部にかけて、MBRを疑似カラー化することにより、眼球中心部の網脈絡膜血流動態をカラーマップとして見ることができる。寒色系が血流速度の低下を、暖色系は血流速度の上昇を示す（図4C）。検査時間も約4秒と短く簡便であり、再現性も良好であることから7、様々な疾患における網脈絡膜血流速度を、経時的にかつ定量的に評価するのに適していると考えられる。我々は以前、代表的な脈絡膜炎症性疾患であるVogt-小柳-原田病（原田病）8や地図状脈絡膜炎9、急性帯状潜在性網膜外層症10、acute macular neuroretinopathy（AMN）11,12、点状脈絡膜内層症（punctate inner choroidopathy: PIC）13において、急性期に黄斑部MBRが減少し、寛解期にMBRが有意に上昇したことを示し、これらの網脈絡膜疾患の病態に炎症性脈絡膜循環障害が生じることを報告した。

今回我々は、OCTおよびLSFGを用いて、多発消失性白点症候群（multiple evanescent white dot syndrome: MEWDS）における網膜の形態および脈絡膜の循環動態の経時的変化について検討し、新知見を得たので報告する。
略語表

本文中および図中で使用した略語は以下のとおりである。

<table>
<thead>
<tr>
<th>略号</th>
<th>言説</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMN</td>
<td>acute macular neuroretinopathy</td>
</tr>
<tr>
<td>COST</td>
<td>cone outer segment tip</td>
</tr>
<tr>
<td>FA</td>
<td>fluorescein angiography</td>
</tr>
<tr>
<td>GCL</td>
<td>ganglion cell layer</td>
</tr>
<tr>
<td>ICGA</td>
<td>indocyanine green angiography</td>
</tr>
<tr>
<td>ILM</td>
<td>internal limiting membrane</td>
</tr>
<tr>
<td>IPL</td>
<td>inner plexiform layer</td>
</tr>
<tr>
<td>IS/OS</td>
<td>photoreceptor inner/outer segment junction</td>
</tr>
<tr>
<td>logMAR</td>
<td>logarithm minimum angle of resolution</td>
</tr>
<tr>
<td>LSFG</td>
<td>laser speckle flowgraphy</td>
</tr>
<tr>
<td>MBR</td>
<td>mean blur rate</td>
</tr>
<tr>
<td>MD</td>
<td>mean deviation</td>
</tr>
<tr>
<td>MEWDS</td>
<td>multiple evanescent white dot syndrome</td>
</tr>
<tr>
<td>NFL</td>
<td>nerve fiber layer</td>
</tr>
<tr>
<td>OCT</td>
<td>optical coherence tomography</td>
</tr>
<tr>
<td>ONL</td>
<td>outer nuclear layer</td>
</tr>
<tr>
<td>OPP</td>
<td>ocular perfusion pressure</td>
</tr>
<tr>
<td>PIC</td>
<td>punctate inner choroidopathy</td>
</tr>
<tr>
<td>PROS</td>
<td>photoreceptor outer segment</td>
</tr>
<tr>
<td>RPE</td>
<td>retinal pigment epithelium</td>
</tr>
<tr>
<td>原田病</td>
<td>Vogt-小柳-原田病</td>
</tr>
</tbody>
</table>
II. MEWDSにおける網膜層厚および脈絡膜循環動態の変化

1. MEWDSとは

MEWDSは、1984年にJampolらによって報告された疾患概念で14、近視を伴った若年者の女性の片眼に好発し、一過性に網膜に白点が出現する比較的稀な疾患である。自然経過で視機能が改善する予後良好な疾患として知られている。原因は不明であるが、この疾患にOCTのB-scanを行った過去の報告では、急性期に白点部および黄斑部に一致してIS/OSラインが障害され、覚解期に回復することから、MEWDSでは視細胞を含む網膜外層が一過性に障害されることで視機能を低下させると考えられている15。一方、この疾患では、網膜の循環を調べることができるフルオレセイン蛍光眼底造影（fluorescein angiography: FA）において、網膜内層にある網膜血管に網膜血管炎を併発することが知られている14,16。しかし、網膜内層または外層厚が経過中どのように変化するか、そして、網膜層厚と視機能との関連についての検討はされていない。

MEWDSでは、脈絡膜の循環を評価できるインドシアニングリーン蛍光眼底造影（indocyanine green angiography: ICGA）の知見として、急性期に検眼鏡でみられる網膜の白点およびそれ以外の部位においても多数の低蛍光像が生じることが古くから知られている17,18。この所見の解釈として、脈絡膜の毛細血管である脈絡膜毛細血管板を栄養する血管が閉塞するためと考えられ、それゆえ、脈絡膜循環障害がこの疾患の病態に関与することが以前から指摘されていた17,18。しかし、ICGAは定性的な検査であるため、その評価は難しく、同検査の欠点でもある。よって、これまでにMEWDSに対して脈絡膜循環動態を定量的かつ経時的に検討した報告はない。

2. MEWDSの網膜厚層別解析

対象と診断

対象は2010年10月から2012年8月の間に北海道大学病院を受診したMEWDS患者8例8眼（男性1例、女性7例）であり、患者の臨床像が診療録を元に後ろ向きに調査された。平均年齢は31.6±13.6歳（16〜55歳）、平均観察期間は17.7±8.0か月（4〜26か月）、患眼の平均屈折異常は-6.7±2.3D（-3.0〜-10.0D）であった。

MEWDSの診断基準は、1) 急性の視力および視野障害を生じるが、視機能は早期に回復する、2) 後極部から中央周辺部網膜に網膜外層レベルの白点が多発し（図6A）、黄斑部に顆粒状変化を伴う。白点は数週間で自然に消失する、3) FAでは初期から白点に一致して過蛍光（図6B）、ICGAでは初期には異常がないが、後期で白点より広範囲で低蛍光を示す（図6C）、4) 視野、蛍光眼底造影所見な
どは、視機能異常の回復に伴って正常に戻る、である。治療に関して、7例は無治療で経過観察したが、1例は脈絡膜新生血管を合併していたことから、ベマシズマブ硝子体内注射およびトリアムシノロンアセトニド後部テノン囊下注射による治療を施行後、プレドニゾロン30mg/日からの内服投与が約2か月間続けられた。

患者背景を表1にまとめる。

<table>
<thead>
<tr>
<th>症例</th>
<th>年齢</th>
<th>性別</th>
<th>患眼</th>
<th>經過期間</th>
<th>屈折</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>F</td>
<td>R</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>F</td>
<td>R</td>
<td>26</td>
<td>-7.75</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>F</td>
<td>L</td>
<td>23</td>
<td>-6.75</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>F</td>
<td>L</td>
<td>21</td>
<td>-3</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>M</td>
<td>L</td>
<td>19</td>
<td>-10</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>F</td>
<td>L</td>
<td>14</td>
<td>-6.75</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>F</td>
<td>L</td>
<td>9</td>
<td>-8.25</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>F</td>
<td>R</td>
<td>4</td>
<td>-3.75</td>
</tr>
</tbody>
</table>

(表1)

眼科学的検査

初診時に対象群の両眼に視力検査・ハンフリー視野検査（30-2 Swedish interactive threshold algorithm standard test）・FA・ICGA（F10 Digital Ophthalmoscope；株式会社ニデック、蒲郡、日本）・OCT（RS-3000またはRS-3000 Advance；株式会社ニデック、蒲郡、日本）、網膜電図を施行した。患眼に対して視力とOCTを初診、初診後1、3か月後に行い、それらの平均値を各時期で統計学的に比較検討した。

OCT検査

各時期にOCTのB-scanとC-scanが行われた。C-scanモード（6×6mm黄斑部マップ）を用いて、網膜全層厚（ILM-RPE）、網膜内層厚（ILM-IPL）（図5A）、網膜外層厚（ONL-RPE）（図5D）が自動的に測定された。さらに網膜内層厚をより詳細に調べるために、網膜内層厚をILMから網膜神経細胞層（nerve fiber layer: NFL）までのILM-NFL厚（図5B）と網膜神経節細胞層（ganglion cell layer: GCL）からIPL（図5C）までのGCL-IPL厚に分けて解析も行われた。また、B-scanモードを用いて中心窩PROS長の測定が手動で行われた。この測定は、全ての眼科的所見をmaskした状態でキャリパー機能を用いて検者2名によって測定され、その平均値が算出された（図5E）。僚眼（正常眼）に対しては、初診時と初診後3か月後に測定が行われた。
図5 OCTのC-scanを用いた網膜層別厚の自動測定部位。PROS長のみ手動で測定された。

統計解析
結果は全て平均±標準偏差で示した。視力の結果は統計解析に際して対数視力（logarithm minimum angle of resolution: logMAR値）に変換された。対数視力・各網膜厚の変化の検定にウィルコクソンの符号付検定が用いられた。また、PROS長と対数視力の関係を調べる目的でスピアマン順位相関係数が用いられた。全ての検討においてP値が0.05未満を有意と判定した。

3. MEWDSの網膜厚の変化

臨床経過
黄斑部から中間周辺部に散在していた白点は（図6A）、全例で3か月以内に消失した。初診時に行われたFAでは初期から白点に一致して過蛍光を示した（図6B）。また、1眼においては網膜静脈周囲炎を示唆する網膜血管壁の組織染と血管からの蛍光漏出を示した。初診時にICGA後期相で観察された多発性の低蛍光斑は（図6C）、初診3か月後に再検できた6眼では、消失または減少した。脈絡膜新生血管を合併した症例は、前述した治療後、網膜への滲出性変化は消失し、再発はなかった。全例で経過中、MEWDSの再発や眼合併症、薬の副作用などは観察されなかった。
図 6 MEWDS の代表所見（16 歳、男児）。(A) 眼底写真。黄斑部から中間周辺部にかけて白点が散在している（黄色矢頭）。また、中心窩には顆粒状変化を伴っている（白矢頭）。(B) フルオレセイン蛍光眼底造影写真。白点部に一致して初期から過蛍光を示す。 (C) インドシアニングリーン蛍光眼底造影写真では、後期に白点部よりも広範囲に低蛍光を示す。

視力と視野の変化
平均対数視力 (logMAR 値) は、初診時 0.68 ± 0.55、1か月後 0.03 ± 0.13、3か月後-0.03 ± 0.18 となり、視力は初診時と比べて1か月後から有意に改善した（各々 P = 0.01）。また、ハンフリー視野検査における感度の指標である平均 mean deviation（MD）値は、初診時-5.07 ± 3.40dB、3か月後-1.98 ± 0.93dB となり、初診3か月で有意に上昇した（P = 0.01）。

黄斑部網膜外層形態
OCT の B-scan を用いて判定した黄斑部の網膜外層形態において、初診時の IS/OS ラインは正常が0眼（0.0%）、不連続が3眼（37.5%）、消失が5眼（62.5%）であった。また COST ラインは正常が0眼（0.0%）、不連続が2眼（25.0%）、消失が7眼（87.5%）であった。初診3か月後の IS/OS ラインは正常が6眼（75.0%）、不連続が2眼（25.0%）、消失が0眼（0.0%）であり、COST ラインは正常が3眼（37.5%）、不連続が3眼（37.5%）、消失が2眼（25.0%）であった。

各網膜層厚の変化
網膜厚の推移を表 2 にまとめる。
MEWDS眼では、黄斑部の網膜全層厚は初診時と比べて、初診1か月後で有意な変化はなかった（各々P=0.17）。網膜内層厚（ILM-IPL厚）は初診時と比べて、初診1か月後から有意に減少した（図7A、各々P=0.01）。ILM-NFL厚は初診時と比べて、1か月後から有意に減少したが（図7A、各々P=0.01）、GCL-IPL厚は経過中有意な変化を示さなかった（各々P=0.17、P=0.32）。一方、網膜外層厚は、初診時と比べて3か月後で有意に増加した（図7A、P=0.02）。一方、僚眼の黄斑部網膜層厚は、いずれの網膜層厚に経過中有意な変化はなかった（全層厚、P=0.06、図7A；内層厚、P=0.26、図7B；ILM-NFL厚、P=0.85、GCL-IPL厚、P=0.50、図7C；外層厚、P=0.60）。

MEWDS眼と僚眼の初診時または3か月後の網膜層厚を比較すると、網膜全層厚では有意な変化はなかった（各々P=0.93、P=0.39）。網膜内層厚は初診時にMEWDS眼が僚眼に比べて有意に肥厚したが（図7A、P=0.01）、3か月後では両者に有意差はなかった（図7A、P=0.32）。ILM-NFL厚では、初診時にMEWDS眼は僚眼に比べて有意に肥厚したが（図7B、P=0.02）、3か月後では両者に有意差はなかった（図7B、P=0.13）。GCL-IPL厚は、初診および3か月後ともにMEWDS眼と僚眼に有意な変化はなかった（各々P=0.60、P=0.52）。網膜外層厚は初診時にMEWDS眼が僚眼に比べて有意に減少したが（図7C、P=0.01）、3か月後では両者に有意差はなかった（図7C、P=0.20）。

<table>
<thead>
<tr>
<th></th>
<th>初診時</th>
<th>1か月後</th>
<th>3か月後</th>
<th>初診時</th>
<th>3か月後</th>
</tr>
</thead>
<tbody>
<tr>
<td>網膜全層厚</td>
<td>304.8 ± 12.3</td>
<td>296.6 ± 19.2</td>
<td>296.4 ± 16.8</td>
<td>306.8 ± 6.8</td>
<td>305.5 ± 7.8</td>
</tr>
<tr>
<td>網膜内層厚</td>
<td>112.1 ± 7.8</td>
<td>105.4 ± 7.6*</td>
<td>104.0 ± 8.0*</td>
<td>106.7 ± 4.1</td>
<td>107.4 ± 4.6</td>
</tr>
<tr>
<td>ILM-NFL厚</td>
<td>37.1 ± 3.9</td>
<td>33.3 ± 2.2*</td>
<td>32.1 ± 2.7*</td>
<td>32.8 ± 3.8</td>
<td>33.0 ± 3.4</td>
</tr>
<tr>
<td>GCL-IPL厚</td>
<td>74.7 ± 2.8</td>
<td>71.8 ± 5.1</td>
<td>72.0 ± 5.5</td>
<td>73.8 ± 1.6</td>
<td>74.4 ± 2.1</td>
</tr>
<tr>
<td>網膜外層厚</td>
<td>120.3 ± 13.8</td>
<td>126.6 ± 12.2</td>
<td>129.4 ± 8.1*</td>
<td>134.8 ± 8.7</td>
<td>134.2 ± 7.9</td>
</tr>
<tr>
<td>PROS長</td>
<td>4.0 ± 2.0</td>
<td>22.6 ± 4.4*</td>
<td>36.1 ± 3.5*</td>
<td>42.0 ± 3.8</td>
<td>41.5 ± 5.8</td>
</tr>
</tbody>
</table>

* P<0.05
A 平均網膜内層厚の推移

B 平均ILM-NFL厚の推移

C 平均網膜外層厚の推移

Wilcoxon signed-rank test

* P < 0.05

Affected eyes

Fellow eyes

経過期間

Baseline 1M 3M
図 7 MEWDS 眼と僚眼（正常眼）における黄斑部平均網膜層厚の推移。MEWDS 眼の網膜内層厚（内境界膜～内網状層）（A）および内境界膜～網膜神経線維層（B）は、初診時と比べ初診 1か月後からそれぞれ有意に減少した。また、MEWDS 眼の網膜内層厚と ILM-NFL 厚は、僚眼と比べて初診時で有意に増加していたが、初診 3か月後では有意差はなかった。C MEWDS 眼の網膜内層厚は、初診時と比べ初診 3か月後から有意に増加した。また、初診時、MEWDS 眼では僚眼と比べ外層厚は有意に減少していたが、初診 3か月後では有意差はなかった。

中心窩 PROS 長の変化

MEWDS 眼では、PROS 長は初診時と比べ 1、3か月後で有意に伸長した（図 8A、各々 P=0.01）。僚眼における初診、初診 3か月後の中心窩 PROS 長はそれぞれ 42.0±3.8µm、41.5±5.8µm であり、有意な変化はなかった（図 8A、P=0.68）。MEWDS 眼および患眼の PROS 長を初診時または 3か月後の値を比較すると、初診時では MEWDS 眼が僚眼に比べて有意に短かかったが（図 8A、P=0.02）、3か月後では両者に有意な変化はなかった（図 8A、P=0.59）。さらに、MEWDS 眼では、初診 3か月後の視力と PROS 長は有意な正の相関を示した（図 8B、R = 0.75、P = 0.03）。

図 8 中心窩平均視細胞外節 (photoreceptor outer segment: PROS) 長の推移（A）と視機能との相関（B）。A MEWDS 眼では、PROS 長は初診と比べ初診 1か月後から有意に伸長した。また初診時、僚眼と比べて有意に減少していたが、初診 3か月後では有意差はなかった。B 初診 3か月後における PROS 長と対数視力（logMAR 値）に有意な正の相関があった。
4. MEWDS の脈絡膜循環動態の変化

対象と診断
対象は、2010年10月から2013年10月の間に北海道大学病院を受診したMEWDS患者12例（男性3例、女性9例）であり、患者の眼所見は、診療録を元に後ろ向きに調査された。患者の平均年齢は30.5±14.5歳（14〜59歳）、平均観察期間は29.0±12.9か月（9〜45か月）、患眼の平均屈折異常は-6.9±2.5D（-2.75〜-10.25D）であった。MEWDSの診断基準は先述した通りである19。11例は無治療で経過観察されたが、1例では脈絡膜新生血管を合併していたから、ベマシズマブ硝子体内注射およびトリアムシノロンアセトニド後部テノン囊下注射後、プレドニゾロン30mg/日からの内服投与が約2か月間続けられた。

眼科学的検査
初診時に視力検査・FA・ICGA（F10 Digital Ophthalmoscope；株式会社ニデック、蒲郡、日本）・OCT（RS-3000またはRS-3000 Advance；株式会社ニデック、蒲郡、日本）、ハンフリー視野検査（30-2 Swedish interactive threshold algorism standard test）が施行された。視力検査は初診、初診1、3か月後に、ハンフリー視野検査は初診と初診3か月後に測定した。また、MEWDSにおける局所的な視野欠損を評価する指標として、ハンフリー視野検査において、後述するLSFGで測定する黄斑部（図9Dの赤枠）に対応する直近の中心4点（図9Cの赤枠）の閾値の平均を「平均閾値」として求め、各時期で比較された。

LSFG検査
LSFG-NAVI（ソフトケア有限会社、福岡、日本）の測定が、MEWDS眼とその僚眼において初診、初診1、3か月後にそれぞれ連続7回行われた。散瞳は検査20分前に0.5%トロピカミドと0.5%フェニレフリンを用いて行われた。MEWDS眼と僚眼において黄斑部を測定範囲とし、LSFGカラーマップ上に直径約7×7°のsquareが設定された（図9A-Dの赤枠）。またMEWDS眼では、上記測定部位外の黄斑部内で白点やICGAで低蛍光を示した7症例において、白点または低蛍光部位でも測定が行われた（図9A-Dの白枠）。各測定部位における平均MBRは、LSFG解析ソフトウェア（v 3.0.47）を用いて計算された。MBRは相対値なので、初診時MBRを100%とし、初診時からの変化率を求めることで、初診時と各時期のMBR値の変化が統計学的に比較された。
図9 左眼のMEWDS患者における初診時の眼所見（14歳、女児）。（A）眼底には、黄斑部から中間周辺部にかけ、白点が多発している。（B）ICGAでは白点部および白点がない部位に低蛍光斑が多発してみられる。（C）ハンフリー視野検査では中心暗点とマリオット盲点拡大を示す。また、LSFGの測定部位（赤枠）における4点の平均閾値も計算された。（D）LSFGのカラーマップを示す。黄斑部（赤枠）と白点部（白枠）に各々squareが設置され、同部位のMBRが計算された。カラーマップは全体的に寒色系であり、脈絡膜血流速度の低下を示す。
眼灌流圧
正常被験者において脈絡膜血流と眼灌流圧 (ocular perfusion pressure: OPP) の間には双線形関係があることが知られている 20。それゆえ、本研究の対象患者において全身血流動態の変化の影響を調べるために、初診時および初診 3 か月後で血圧および眼圧が測定された。平均血圧及び OPP は収縮期・拡張期血圧から以下の式に基づき計算され 21、OPP の変化が統計学的に検討された。
・平均血圧 = 拡張期血圧 + 1/3(収縮期血圧 - 拡張期血圧)
・OPP = 2/3 平均血圧 - 眼圧

統計解析
対数視力 (logMAR 値)・平均閾値・MBR 変化率・OPP の変化を調べる目的でウィルコクソンの符号付検定が用いられた。また、MBR と視力および閾値の関連を調べる目的で、スピアマン順位相関係数が用いられた。全ての検討において P 値が 0.05 未満を有意と判定した。

患者背景
患者背景を表 3 にまとめる。

<table>
<thead>
<tr>
<th>症例</th>
<th>年齢</th>
<th>性別</th>
<th>患眼</th>
<th>経過期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>F</td>
<td>R</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>F</td>
<td>R</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>F</td>
<td>L</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>F</td>
<td>L</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>M</td>
<td>L</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>F</td>
<td>L</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>F</td>
<td>L</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>F</td>
<td>R</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>M</td>
<td>L</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>F</td>
<td>R</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>F</td>
<td>L</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>59</td>
<td>M</td>
<td>R</td>
<td>10</td>
</tr>
</tbody>
</table>

(表 3)
視力と視野の変化
平均対数視力（logMAR値）は、初診時0.63 ± 0.50、1か月後0.07 ± 0.18、3か月後0.07 ± 0.33で、初診時と比べて1か月後から有意に改善した（各々P = 0.002）。また、病変部のハンフリー視野の平均閾値（図9Cの赤枠）は、初診時の平均25.9 ± 8.1、3か月後32.6 ± 2.0となり、初診3か月で有意に上昇した（P = 0.005）。

LSFGデータ
各症例における黄斑部および白点部のMBRの推移（生データ）を表4に示す。

<table>
<thead>
<tr>
<th>Case</th>
<th>Baseline</th>
<th>Post 1M</th>
<th>Post 3M</th>
<th>Baseline</th>
<th>Post 1M</th>
<th>Post 3M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.6±0.9</td>
<td>9.6±0.5</td>
<td>9.3±0.6</td>
<td>10.6±0.4</td>
<td>9.5±1.1</td>
<td>10.7±0.4</td>
</tr>
<tr>
<td>2</td>
<td>13.8±1.8</td>
<td>19.3±0.9</td>
<td>18.1±0.9</td>
<td>13.6±0.9</td>
<td>16.1±1.1</td>
<td>14.5±0.7</td>
</tr>
<tr>
<td>3</td>
<td>11.8±0.5</td>
<td>11.2±0.3</td>
<td>13.9±0.8</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>14.5±0.5</td>
<td>17.5±1.7</td>
<td>14.2±0.4</td>
<td>4.5±0.7</td>
<td>6.0±0.5</td>
<td>5.7±0.2</td>
</tr>
<tr>
<td>5</td>
<td>8.8±0.7</td>
<td>10.9±0.5</td>
<td>10.3±0.5</td>
<td>3.7±0.4</td>
<td>4.0±0.2</td>
<td>3.9±0.3</td>
</tr>
<tr>
<td>6</td>
<td>5.8±0.5</td>
<td>6.1±0.5</td>
<td>6.7±0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>7</td>
<td>10.2±0.3</td>
<td>9.7±0.5</td>
<td>9.9±0.3</td>
<td>9.4±0.2</td>
<td>11.9±0.6</td>
<td>10.8±0.7</td>
</tr>
<tr>
<td>8</td>
<td>5.0±0.3</td>
<td>7.9±0.3</td>
<td>7.2±0.7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>9</td>
<td>7.2±0.4</td>
<td>6.8±0.5</td>
<td>7.6±0.2</td>
<td>11.3±0.6</td>
<td>12.7±0.6</td>
<td>12.6±0.4</td>
</tr>
<tr>
<td>10</td>
<td>11.6±0.7</td>
<td>12.6±0.7</td>
<td>12.5±0.6</td>
<td>19.4±1.1</td>
<td>26.6±2.1</td>
<td>23.0±0.8</td>
</tr>
<tr>
<td>11</td>
<td>14.5±0.7</td>
<td>23.2±1.2</td>
<td>14.5±0.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>12</td>
<td>5.3±0.2</td>
<td>5.7±0.2</td>
<td>6.0±0.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

MEWDS眼の黄斑部平均MBR（図9Dの赤枠）は、初診時に100%とすると、1,3か月後でそれぞれ20.2±21.5%, 13.0±13.1%となり、有意に上昇した（図10A、各々P=0.009、P=0.007）。一方、眼底の平均MBRは初診時と比べて初診1,3か月後で有意な変化はなかった（図10A、各々P=0.10、P=0.18）。病変部の平均MBR（図9Dの白枠）は、初診1,3か月後にそれぞれ+17.8±15.0%、+12.0±8.1%となり、MEWDS眼の黄斑部と同様に1か月後から有意に上昇した（図10B、各々P=0.04、P=0.01）。

（表4）
図 10 MEWDS 眼と僚眼（正常眼）における MBR の推移。MEWDS 眼では黄斑部 (A) および病変部 (B) ともに初診時と比べ 1 か月後から有意に MBR は上昇した。一方、僚眼の MBR は経過中著変しなかった (A)。

MBR と視機能
初診時の視力と初診から 1 か月後の黄斑部 MBR の変化率には有意な負の相関があった（図 11A、R=-0.76、P=0.003）。また、初診時の平均閾値と初診から 1 か月後の MBR の変化にも有意な負の相関があった（図 11B、R=-0.60、P=0.03）。
図11 MBRと視機能との関連。初診時の視力（A）およびハンフリー視野の病変部の平均閾値（B）は、初診時から1か月後の黄斑部MBRの変化とそれぞれ負の相関があった。

眼灌流圧
経過中、MEWDS眼の眼灌流圧に有意な変化はなかった（P=0.06）。

Ⅲ. 総括および考案
本研究の結果から、以下の結論が得られた。
1. MEWDSでは急性期に黄斑部網膜内層厚が増加し、網膜外層厚は減少している。
 また、視機能の改善とともにPROS長は伸長し、PROS長と視力には相関がある。
2. MEWDSでは急性期に脈絡膜血流速度が低下している。
 また、MBRと視機能には相関がある。

本研究では、MEWDS眼の急性期では帯眼と比べて網膜内層厚が有意に増加していた。MEWDSは過去のOCTおよび検眼鏡所見から、網膜外層が障害されていることが知られていたが15、検眼鏡的に網膜内層に異常所見はなく、網膜内層障害の合併はあまり注目されていなかった。しかし、MEWDSではFAで網膜静脈周閉炎を合併したという報告がある14,16。また、網膜機能を調べることができる網膜電図において、MEWDSでは視細胞の機能を反映するa波の振幅が低下することが知られているが22、MEWDSに黄斑局所網膜電図を用いた報告では、a波のみならず網膜内層機能を反映するb波や律動様小波の振幅も減弱し23、多局所網膜電図を用いた検討でも、MEWDS眼において検眼鏡的に正常な網膜部位も
僚眼に比べて律動様小波の振幅が低下した。これらの知見は MEWDS では機能的に網膜内層障害が合併することを示唆する。本研究の結果は、過去に報告された MEWDS の網膜内層障害を形態学的にも支持し、MEWDS では網膜外層の障害と並行して網膜内層の異常が潜在的に生じていることを示唆する。

本研究の結果から、MEWDS の急性期で網膜内層厚が増加する理由として、主に網膜神経線維層が責任病巣と考えられた。この理由として、網膜神経線維層には、網膜細静脈が生理的に存在すること、本研究でも FA で網膜静脈周囲炎を合併した患者がいたことから、MEWDS では、急性期に潜在性に網膜血管炎が生じることで滲出が起こり、その結果として網膜神経線維層が軽度肥厚すると推察された。

次に網膜外層厚に焦点を移すと、本研究では、経過中に患眼の視機能の上昇とともに、黄斑部網膜外層厚が増加し、その増加が主に PROS 長の伸長に依存することを示した。また、初診 3か月後の視力と PROS 長に相関があった。過去に網膜疾患における PROS 長と視機能の関連についてはいくつかの報告がある。Forooghan らは、糖尿病黄斑浮腫では視力と網膜厚とに相関はなく、PROS 長のみと相関があった。また、黄斑上膜眼でも術後 6か月の視力と PROS 長変化とに相関があった。これらの知見は、PROS 長が網膜疾患において網膜厚よりも銳敏であることを示唆する。本研究の結果から、MEWDS の視機能は、視細胞外節障害の程度に依存することが示唆される。今後、症例を増やして MEWDS の視機能を規定する因子を探索する更なる研究が必要である。

MEWDS で生じる視機能障害の原因は、視細胞障害の結果であることは先述したが、視細胞障害が生じる原因は不明であった。本研究では、MEWDS の急性期に黄斑部および病変部の脈絡膜血流速度が有意に低下し、黄斑部の血流速度の変化は視機能と相関を示した。経過中、眼灌流圧に有意な変化がなかったことから、本研究における脈絡膜血流速度の変化は、全身の循環動態の変化には依存せず、脈絡膜血流動態の変化によると考えられる。よって、本研究の結果から、MEWDS では脈絡膜血流低下が視機能障害の病態に関与することが示唆される。視細胞は網膜血管からではなく、脈絡膜毛細血管板から酸素や栄養が供給される。それゆえ、本研究の結果と MEWDS の急性期で生じる ICGA 所見から、MEWDS における視細胞障害の原因として、脈絡膜循環障害の関与が示唆された。また最近、MEWDS の急性期で脈絡膜厚が増加したという報告が複数みられ、我々の仮説を補強するデータと考えられる。

MEWDS で脈絡膜循環障害が生じる原因は不明であった。原田病は、全身のメラノサイトを標的とする自己免疫性疾患であり、眼では脈絡膜炎を生じるぶどう膜炎の代表的疾患である。我々は、原田病患者に対して LSFG を行うこと
により、急性期に黄斑部脈絡膜血流速度が低下し、ステロイド全身投与により有意にそれが上昇することを示した。また、脈絡膜厚は、原田病では急性期に増加し、ステロイド全身投与により著明に減少することがわかっている。つまり、原田病では急性期に脈絡膜血流速度が低下し、脈絡膜厚が増加するということになり、このような脈絡膜循環および形態のパターンは、他の脈絡膜炎である、地図状脈絡膜炎や点状脈絡膜内層症でも同様であることを我々は過去に報告した。以上から、原田病を含めた脈絡膜炎の急性期でみられる、先述した脈絡膜血流と形態のパターンを、我々は「炎症性パターン」と呼んでいる。脈絡膜炎でそのようなパターンが生じる理由として、原田病では脈絡膜血管周囲の間質にリンパ球が浸潤するので、脈絡膜血管が圧迫されること、また、脈絡膜血管に炎症性白血球塞栓が生じる結果、脈絡膜血流速度が低下すると推測される。また、このような脈絡膜循環障害および血管周囲における炎症性液性因子の活性化は、血管透過性の亢進を引き起こすことで脈絡膜間質への滲出を増加させ、結果として脈絡膜厚が増加すると考えられる。一方、交感神経亢進が病態に関与し、非炎症性の疾患である中心性漿液性脈絡網膜症では、急性期に脈絡膜厚が増加することや脈絡膜血流速度が上昇していることが知られており、これらのパターンを「非炎症性パターン」と呼んでいる。さらに我々は、病態が不明であったacute macular neuroretinopathyでも原田病と同様、急性期に炎症性パターンを示し、病態に炎症性脈絡膜循環障害が関与することを示した。このように、脈絡膜疾患において、経過中の脈絡膜血流と形態の変化のパターンを観察することは、疾患の活動性を評価できるだけでなく、病態の解明にも有用であることが示唆される。以上をまとめると、MEWDSではその急性期に脈絡膜血流速度は低下し、脈絡膜厚が増加するという、原田病と同様に炎症性パターンを示した。それゆえ、MEWDSの病態に炎症性脈絡膜循環障害の関与が示唆される。実際、MEWDSはself-limitedな疾患であり、無治療で病状は回復するが、ステロイド全身投与やシクロスポリン投与が有効であったという報告も散見される。つまり、MEWDSでは脈絡膜炎によって生じた脈絡膜循環障害の結果として二次的に視細胞が障害されることで視機能が障害されることが示唆された。結論として、本研究では、MEWDSにOCTのC-scanとLSFGを行うことにより、急性期に黄斑部の網膜内層厚が潜在的に増加すること、一方、網膜外層厚はPROS長に依存しながら減少すること、脈絡膜血流速度は低下することを見出した。また、PROS長と脈絡膜血流速度が視機能と相関したことから、MEWDSの病態に脈絡膜循環障害が関与し、その結果二次的に網膜外層が障害されることが示唆された。我々は今後、MEWDS眼における脈絡膜厚の経時的変化および脈絡膜血流速度と脈絡膜厚の関連について検討していく予定である。
謝辞
本研究を行うにあたり、御指導を賜りました北海道大学大学院医学研究科眼科学分野 石田晋教授、同眼循環代謝学講座齋藤航特任准教授に深く感謝致します。また、多くの知識や示唆を頂き支えて頂いた北海道大学大学院医学研究科眼科学分野 野田航介准教授をはじめ網膜硝子体グループの皆様に厚く心からお礼申し上げます。
引用文献

13. Hirooka, K. et al. Increased macular choroidal blood flow velocity and decreased
29. Inomata, H. & Rao, N. A. Depigmented atrophic lesions in sunset glow fundi of

