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Abstract

Let H0 and HI be a self-adjoint and a symmetric operator on a complex Hilbert
space, respectively, and suppose that H0 is bounded below and the infimum E0 of
the spectrum of H0 is a simple eigenvalue of H0 which is not necessarily isolated.
In this paper, we present a new asymptotic perturbation theory for an eigenvalue
E(λ) of the operator H(λ) := H0 + λHI (λ ∈ R \ {0}) satisfying limλ→0 E(λ) = E0.
The point of the theory is in that it covers also the case where E0 is a non-isolated
eigenvalue of H0. Under a suitable set of assumptions, we derive an asymptotic
expansion of E(λ) up to an arbitrary finite order of λ as λ → 0. We apply the
abstract results to a model of massless quantum fields, called the generalized spin-
boson model (A. Arai and M. Hirokawa, J. Funct. Anal. 151 (1997), 455–503) and
show that the ground state energy of the model has asymptotic expansions in the
coupling constant λ as λ → 0.
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1 Introduction

As is well known, in quantum mechanics, a perturbation theory is useful to calculate

approximately various quantities (e.g., energy levels of an atom) under the condition that

the relevant perturbation is “small”. In the standard analytic perturbation theory ([18,

Chapter 7], [21, §XII.2]) and the standard asymptotic perturbation theory ([18, Chapter

8], [21, §XII.3]), however, only perturbations of an isolated eigenvalue are considered. But
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the perturbation problem of a non-isolated eigenvalue (typically an embedded eigenvalue)

naturally appears in many-body quantum systems and models of massless quantum fields.

For the former, dilation analytic methods (e.g., [21, §XII.6]) have been shown to be use-

ful. For the latter, Bach, Fröhlich and Sigal [10, 11] have developed a method exploring

a renormalization group idea combined with the Feshbach map. Recently analyticity in

the coupling constant for the ground state energy1 for some concrete models of massless

quantum fields (in which the ground state energy of the unperturbed system under con-

sideration is an embedded eigenvalue) has been proved [1, 2, 14, 15]. These results are

very nice, but, they may be model-dependent. From a general mathematical point of

view, it would be valuable to investigate to what extent it is possible to develop a model-

independent general perturbation theory for non-isolated eigenvalues in such a way that,

at least, it can be applied to the perturbation of a non-isolated ground state energy in

models of massless quantum fields. To our best knowledge, such a general perturbation

theory is still missing. With this motivation, we present, in this paper, as a first step,

an asymptotic perturbation theory which may have applications to models of a quantum

system interacting with a massless quantum field. In the present paper, we do not discuss

possible analytic extensions of our asymptotic perturbation theory. This aspect is left for

future studies.

The outline of the present paper is as follows. In Section 2, we define an operator for

which we give a perturbation theoretical consideration and derive some facts which are

bases for the asymptotic perturbation theory developed in this paper. The operator is of

the following form:

H(λ) := H0 + λHI, (1.1)

where H0 (resp. HI) is a symmetric (resp. linear) operator acting on a complex Hilbert

space H and λ ∈ R \ {0} denotes the coupling constant (perturbation parameter). We

are mainly interested in the case where H0 has a simple eigenvalue E0 which is not

isolated. A basic new idea which allows one to treat such a case comes from the so-

called Brillouin–Wigner perturbation theory [12, 22, 23], which, on an informal (heuristic)

level, may be more elaborate than the Rayleigh–Schrödinger perturbation theory. We

use the Brillouin–Wigner perturbation theory in a “non-perturbative” way: We derive a

simultaneous (non-perturbative, closed) equation for an eigenvalue E and an eigenvector

Ψ of H(λ) (H(λ)Ψ = EΨ) under a condition for E (Proposition 2.1). This equation is

one of the basic starting points in our analysis. Another basic fact we derive in Section

2 is an upper bound for the infimum E0(λ) of the numerical range of H(λ) in the case

where H0 is self-adjoint, bounded below and HI is symmetric (Theorem 2.7). This aspect

may have an independent interest. As a corollary to this fact, a sufficient condition for

1For a mathematical definition, see Remark 2.4.
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E0(λ) to be in the resolvent set of H0 is given (Corollary 2.11).

In Section 3, under additional assumptions, we derive an asymptotic expansion for the

eigenvalue E = E(λ) of H(λ) up to the second order of λ as λ → 0 (Theorem 3.5).

In Section 4, for each natural number N ≥ 2, under stronger assumptions, we derive

an asymptotic expansion for E(λ) up to the N -th order of λ as λ → 0 (Theorem 4.1).

The last section is devoted to an application of Theorem 4.1 to the generalized spin-

boson (GSB) model [5], which describes an abstract quantum system interacting with a

Bose field. We first show that the infimum of the spectrum of the Hamiltonian of the GSB

model is an even function of the coupling constant λ (Theorem 5.1). Then we prove that,

under a set of suitable assumptions which, in the case where the Bose field is massless,

requires a stronger infrared regular condition for the momentum cutoff functions of the

Bose field in the interaction part, the ground state energy of the Hamiltonian of the GSB

model has an asymptotic expansion in the coupling constant λ up to an arbitrary finite

order of λ with all the coefficients of odd powers of λ vanishing (Theorem 5.17).

In concluding this introduction, we mention work related to the present paper and

remark in what sense the asymptotic perturbation theory presented in this paper may

be novel. Hainzl and Seiringer [16] considered the Pauli-Fierz model (with spin) in non-

relativistic quantum electrodynamics, a model of a non-relativistic charged particle in-

teracting with the quantum radiation field, and derived an asymptotic expansion for the

ground state energy of the fiber Hamiltonian of the model with no external potentials as

well as the one for the binding energy of the Hamiltonian with an external potential up

to the first order of the coupling constant α > 0 physically denoting the fine structure

constant. Their methods, which are based on the variational principle and operator in-

equalities special to the model, are different from those in the present paper and seem to

be difficult to extend to obtain higher order asymptotics. We note that, as for the Hamil-

tonians without the A2 term (A denotes the quantum radiation field), applying Theorem

3.5 in the present paper, we can obtain results similar to those in [16] (note that A2 term

does not contribute to the energy level shift in the leading order of α). On the other

hand, Bach, Fröhlich and Pizzo [8, 9] studied the Pauli-Fierz model (without spin) and

gave an iteration method to obtain an “asymptotic-like” expansion for the ground state

energy up to any finite order of α, where “asymptotic-like” means that the coefficients of

the expansion depend on α in a certain manner (hence it is not an asymptotic expansion

in the strict sense of the term). This is due to that the dependence of the Hamiltonian H

on α takes the unusual form α3/2A(αx) with space variable x ∈ R3. As is just suggested,

H does not have the form of H(λ) given by (1.1) with λ = λ(α) being a function of α such

that limα→0 λ(α) = 0 (even in the case without A2 term). In addition, the methods used

in [8, 9] are different from those in the present paper. As the outline of the present paper
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described above may show, the asymptotic perturbation theory developed in the present

paper is systematic and general, establishing an asymptotic expansion for the ground state

energy of H(λ) (in the case where H0 and H(λ) are self-adjoint) up to any finite order in

the coupling constant λ, even in the case where E0 is not an isolated eigenvalue of H0. In

the present paper, we demonstrate only one application to a massless quantum field. But

the theory may have a wide range of applications to (massless) quantum field models (the

author plans to study applications in subsequent papers). At least, in all these senses,

the asymptotic perturbation theory may be new.

2 Basic Facts

We denote the inner product and the norm of the Hilbert space H by 〈·, ·〉 (complex linear

in the second variable) and ‖ · ‖ respectively. For a linear operator A on a Hilbert space,

we use the following notation:

(i) D(A): The domain of A.

(ii) ker A: The kernel of A.

(iii) ρ(A): The resolvent set of A.

(iv) σ(A) := C \ ρ(A): The spectrum of A.

(v) σp(A): The point spectrum of A (the set of eigenvalues of A).

For linear operators A1, . . . , An (n ≥ 2), D(
∑n

j=1 Aj) := ∩n
j=1D(Aj) and

D(An · · ·A1) := {ψ ∈ D(A1)|Aj−1 · · ·A1ψ ∈ D(Aj), j = 2, . . . , n}

as usual.

In this section, we derive some fundamental facts on the operator H(λ) defined by

(1.1). As already mentioned in Introduction, one of the basic hypotheses in our theory is

the following:

(H.1) The operator H0 has a simple eigenvalue E0.

Since H0 is symmetric, E0 is a real number. We fix a normalized eigenvector Ψ0 of H0

with eigenvalue E0:

H0Ψ0 = E0Ψ0, ‖Ψ0‖ = 1. (2.1)

Let P0 be the orthogonal projection onto the eigenspace

H0 := {αΨ0|α ∈ C} (2.2)
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of H0 with eigenvalue E0. Then

Q0 := I − P0 (2.3)

is the orthogonal projection onto the orthogonal complement H⊥
0 of H0. Since H0 is

symmetric, H0 is reduced by both H0 and H⊥
0 , i.e., P0H0 ⊂ H0P0. We denote by H ′

0 the

reduced part of H0 to H⊥
0 .

2.1 Simultaneous equation for an eigenvalue and an eigenvector
of H(λ)

We say that two vectors Ψ and Φ in H overlap (or Ψ overlaps with Φ) if 〈Ψ, Φ〉 6= 0. Also

we say that a vector Ψ ∈ H overlaps with a non-empty subset D ⊂ H if there exists a

vector Φ ∈ D which overlaps with Ψ.

The following proposition is a rigorous non-perturbative formulation of ideas behind

the Brillouin–Wigner perturbation method [12, 22] (cf. [23, §3.1]):

Proposition 2.1 Let E0, Ψ0 and Q0 be as above, and λ ∈ R \ {0} be fixed. Let E be a

complex number with E 6∈ σp(H
′
0) (hence the inverse (E −H ′

0)
−1 of E −H ′

0 exists on H⊥
0 ,

being not necessarily bounded) and Ψ ∈ D(H(λ)).

(i) If E is an eigenvalue of H(λ) (i.e., E ∈ σp(H(λ))) and Ψ0 overlaps with the

eigenspace ker(H(λ) − E) of H(λ) with eigenvalue E, then there exists a non-zero

vector Ψ ∈ ker(H(λ) − E) such that Q0HIΨ ∈ D((E − H ′
0)

−1) and

E = E0 + λ 〈Ψ0, HIΨ〉 , (2.4)

Ψ = Ψ0 + λ(E − H ′
0)

−1Q0HIΨ. (2.5)

(ii) Conversely, if E and Ψ satisfy (2.4) and (2.5), then E is an eigenvalue of H(λ)

and Ψ is an eigenvector of H(λ) with eigenvalue E (i.e., Ψ ∈ ker(H(λ)−E) \ {0}),
overlapping with Ψ0.

Proof. (i) By the present assumption, there exists a vector Ξ in ker(H(λ) − E) such

that 〈Ψ0, Ξ〉 6= 0. We have 〈Ψ0, H(λ)Ξ〉 = E 〈Ψ0, Ξ〉. The left hand side is equal to

E0 〈Ψ0, Ξ〉+ λ 〈Ψ0, HIΞ〉. Hence E 〈Ψ0, Ξ〉 = E0 〈Ψ0, Ξ〉+ λ 〈Ψ0, HIΞ〉. Since 〈Ψ0, Ξ〉 6= 0,

we obtain (2.4) with Ψ := Ξ/ 〈Ψ0, Ξ〉.
To prove (2.5), we note that 〈Ψ0, Ψ〉 = 1. Hence, by the projection theorem, there

exists a unique vector Φ ∈ H⊥
0 such that

Ψ = Ψ0 + Φ. (2.6)
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Since both Ψ and Ψ0 are in D(H0) (note that Ψ ∈ D(H(λ)) = D(H0) ∩ D(HI)), Φ is in

D(H0). Hence

λHIΨ = (E − H0)Ψ = (E − E0)Ψ0 + (E − H0)Φ.

By the fact that Q0Ψ0 = 0 and Q0(E − H0)Φ = (E − H ′
0)Φ, we have

λQ0HIΨ = (E − H ′
0)Φ.

This means that λQ0HIΨ is in Ran (E − H ′
0), the range of E − H ′

0, which is equal to

D((E − H ′
0)

−1), and Φ = λ(E − H ′
0)

−1Q0HIΨ. Thus (2.5) holds.

(ii) Eq.(2.5) implies that Ψ 6= 0 and

(E − H0)Ψ = (E − E0)Ψ0 + λQ0HIΨ.

Hence

(E − H(λ))Ψ = (E − E0)Ψ0 + λQ0HIΨ − λHIΨ = (E − E0)Ψ0 − λP0HIΨ

= (E − E0)Ψ0 − λ 〈Ψ0, HIΨ〉Ψ0.

But, by (2.4), the last vector is zero. Hence Ψ ∈ ker(H(λ) − E) \ {0}. Taking the inner

product of Ψ0 with (2.5), we have 〈Ψ0, Ψ〉 = 1. Hence Ψ overlaps with Ψ0.

Remark 2.2 Proposition 2.1-(ii) may be used to establish an existence theorem of an

eigenvalue of H(λ). But, in the present paper, we do not go into considerations of this

aspect.

Remark 2.3 Instead of H(λ) given by (1.1), one can also consider a more general oper-

ator of the following form:

H(λ) = H0 +
n∑

i=1

λiHi

with n ∈ N arbitrary and Hi (i = 1, . . . , n) being a linear operator on H. It is obvious

that, in this case, Proposition 2.1 holds with λHI replaced by
∑n

i=1 λiHi. Hence, for a

theory which is developed based on Proposition 2.1, as is done below, it may be enough

to consider the case n = 1. Results in the case n = 1 would easily be translated into the

case n ≥ 2 by the replacement of λHI with
∑n

i=1 λiHi.

2.2 Upper bound for the infimum of the numerical range of H(λ)

In this subsection, in addition to (H.1), we assume the following:

(H.2) The operator H0 is self-adjoint and E0 = inf σ(H0).
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Remark 2.4 In general, if a self-adjoint operator H on a Hilbert space is bounded below,

then

Emin(H) := inf σ(H)

is called the lowest or minimal energy of H. If Emin(H) is an eigenvalue of H, then H is

said to have a ground state and Emin(H) is called the ground state energy of H. In this

case, a non-zero vector of ker(H − Emin(H)) is called a ground state of H. Assumptions

(H.1) and (H.2) mean that H0 has a unique ground state Ψ0 (up to constant multiples)

with E0 being the ground state energy.

Under assumptions (H.1) and (H.2), H ′
0 − E0 is an injective and non-negative self-

adjoint operator on H⊥
0 . Hence the inverse operator (H ′

0 − E0)
−1 exists on H⊥

0 and is a

non-negative self-adjoint operator.

Remark 2.5 If E0 is an isolated eigenvalue of H0, then (H ′
0 − E0)

−1 is bounded. This

case is a situation where the standard analytic perturbation theory and the standard

asymptotic perturbation theory are formulated. But the case where E0 is not an isolated

eigenvalue of H0 is out of those perturbation theories. In addition, in this case, (H ′
0−E0)

−1

is unbounded and hence one has to be careful about domains of operators.

If HI is symmetric, then, for all Ψ ∈ D(H(λ)), 〈Ψ, H(λ)Ψ〉 is a real number. Hence

one can define

E0(λ) := inf
Ψ∈D(H(λ)),‖Ψ‖=1

〈Ψ, H(λ))Ψ〉 (λ ∈ R), (2.7)

the infimum of the numerical range of H(λ), which is a finite real number or −∞, where,

for λ = 0, we set H(0) := H0 so that, by the variational principle

E0(0) = E0. (2.8)

Remark 2.6 If H(λ) is self-adjoint and bounded below, then E0(λ) = Emin(H(λ)) by

the variational principle. But, in general, E0(λ) is not necessarily an eigenvalue of H(λ).

Theorem 2.7 Assume (H.1) and (H.2). Suppose that HI is symmetric and

Ψ0 ∈ D(H0(H
′
0 − E0)

−1Q0HI) ∩ D(HI(H
′
0 − E0)

−1Q0HI)). (2.9)

Let

N0 := ‖(H ′
0 − E0)

−1Q0HIΨ0‖2, (2.10)

a :=
〈
Q0HIΨ0, (H

′
0 − E0)

−1Q0HIΨ0

〉
, (2.11)

b :=
〈
(H ′

0 − E0)
−1Q0HIΨ0, HI(H

′
0 − E0)

−1Q0HIΨ0

〉
. (2.12)
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Then, for all λ ∈ R,

E0(λ) ≤ E0 +
1

1 + N0λ2

(
〈Ψ0, HIΨ0〉λ − aλ2 + bλ3

)
. (2.13)

Proof. By (2.7), we have for all Ψ ∈ D(H(λ)) \ {0}

E0(λ) ≤ 〈Ψ, H(λ)Ψ〉
‖Ψ‖2

. (2.14)

As the vector Ψ, we take

Ψ1 := Ψ0 − λ(H ′
0 − E0)

−1Q0HIΨ0.

Then, by (2.9), Ψ1 ∈ D(H(λ)) and we have

‖Ψ1‖2 = 1 + N0λ
2, (2.15)

where N0 is defined by (2.10). Since Ψ0 is orthogonal to Ran (Q0) (the range of Q0) and

H0 maps D(H0) ∩ Ran (Q0) to Ran (Q0), it follows that

〈Ψ1, H0Ψ1〉 = E0 + λ2
〈
(H ′

0 − E0)
−1Q0HIΨ0, H0(H

′
0 − E0)

−1Q0HIΨ0

〉
.

Using the identity

H0(H
′
0 − E0)

−1Q0 = Q0 + E0(H
′
0 − E0)

−1Q0,

we obtain

〈Ψ1, H0Ψ1〉 = E0‖Ψ1‖2 + aλ2

with a defined by (2.11). Similarly we have

〈Ψ1, HIΨ1〉 = 〈Ψ0, HIΨ0〉 − 2aλ + bλ2

with b given by (2.12). Hence we obtain

〈Ψ1, H(λ)Ψ1〉 = E0‖Ψ1‖2 + 〈Ψ0, HIΨ0〉λ − aλ2 + bλ3.

Hence, by (2.14) and (2.15), we obtain (2.13).

Remark 2.8 Theorem 2.7 is applied in Lemma 5.10 in Section 5.

Remark 2.9 Since (H ′
0−E0)

−1 is non-negative as mentioned above, it follows that a ≥ 0.

It is easy to see that a > 0 if and only if Q0HIΨ0 6= 0.
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Remark 2.10 The choice of the trial vector Ψ1 in the proof just made is motivated by

(2.4) and (2.5). Heuristically Ψ1 may be an “approximate” solution of (2.5) in the first

order of λ. Indeed, by iterating (2.5), we obtain

Ψ = Ψ0 +
N∑

n=1

λn
(
(E − H ′

0)
−1Q0HI

)n
Ψ0 + λN+1

(
(E − H ′

0)
−1Q0HI

)N+1
Ψ, (2.16)

provided that Ψ0 ∈ ∩N
n=1D

(
((E0 − H ′

0)
−1Q0HI)

n)
(N ∈ N) (then, by induction in N , one

can show that Ψ ∈ D
(
((E − H ′

0)
−1Q0HI)

N+1
)
). Hence

ΨN := Ψ0 +
N∑

n=1

λn
(
(E0 − H ′

0)
−1Q0HI

)n
Ψ0

may be an “approximate” solution of (2.5) up to the N -th order of λ. Using the vector

ΨN (N ≥ 2) as a trial vector, one may derive an inequality better than (2.13). But, in

this paper, we do not go into the details.

Corollary 2.11 Under the same assumption as in Theorem 2.7, consider the case where

| 〈Ψ0, HIΨ0〉 | < |λ|(a − bλ). (2.17)

Then

E0(λ) < E0. (2.18)

In particular, E0(λ) ∈ ρ(H0).

Proof. By condition (2.17), we have

〈Ψ0, HIΨ0〉λ − aλ2 + bλ3 = λ{〈Ψ0, HIΨ0〉 − λ(a − bλ)} < 0.

Hence (2.13) implies (2.18). By (H.2), (−∞, E0) ⊂ ρ(H0). Hence E0(λ) ∈ ρ(H0) for all λ

obeying (2.17).

Remark 2.12 If

〈Ψ0, HIΨ0〉 = 0 (2.19)

and

λ 6= 0, bλ < a, (2.20)

then (2.17) holds and hence (2.18) too.
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3 Asymptotic Expansion up to the Second Order in

λ

Let E0, Ψ0 and Q0 be as in Section 2. In this section, in addition to (H.1), we assume the

following:

(H.3) (i) Ψ0 ∈ D(H0) ∩ D(HI).

(ii) There exists a constant r > 0 such that, for all λ in the set

I×r := (−r, 0) ∪ (0, r),

H(λ) has an eigenvalue E(λ) such that E(λ) 6∈ σp(H
′
0) and Ψ0 overlaps with

ker(H(λ) − E(λ)).

Under assumptions (H.1) and (H.3), it follows from Proposition 2.1 that, for each

λ ∈ I×r , there exists a non-zero vector Ψ(λ) ∈ ker(H(λ) − E(λ)) satisfying

E(λ) = E0 + λ 〈Ψ0, HIΨ(λ)〉 , (3.1)

Ψ(λ) = Ψ0 + Φ(λ), (3.2)

where

Φ(λ) := λ(E(λ) − H ′
0)

−1Q0HIΨ(λ) ∈ H⊥
0 . (3.3)

Also we assume the following:

(H.4) limλ→0 ‖Ψ(λ)‖ = 1.

By (3.2), we have

‖Ψ(λ)‖2 = 1 + ‖Φ(λ)‖2. (3.4)

Hence (H.4) implies that

lim
λ→0

Φ(λ) = 0. (3.5)

Therefore

lim
λ→0

Ψ(λ) = Ψ0. (3.6)

Under the framework described above, an elementary fact on the asymptotics for E(λ)

in λ is:

Theorem 3.1 Assume (H.1) , (H.3) and (H.4). Then,

E(λ) = E0 + λ 〈Ψ0, HIΨ0〉 + o(λ) (λ → 0). (3.7)

In particular,

lim
λ→0

E(λ) = E0. (3.8)
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Proof. We have by (3.1) and (3.2)

E(λ) = E0 + λ 〈Ψ0, HIΨ0〉 + λ 〈HIΨ0, Φ(λ)〉 (3.9)

Hence, by (3.5), we have

E(λ) − E0 − λ 〈Ψ0, HIΨ0〉
λ

= 〈HIΨ0, Φ(λ)〉 → 0 (λ → 0).

Thus (3.7) holds.

Remark 3.2 Eq.(3.8) shows the continuity of E(λ) at λ = 0. In the case where (H.1)

and (H.2) hold and H(λ) is a bounded below self-adjoint operator for all λ ∈ I×r , one can

prove the continuity of E0(λ) in λ ∈ I×r under a condition which does not assume that

E0(λ) is an eigenvalue of H(λ) [6, Lemma 2.1].

To develop an asymptotic perturbation theory for E(λ) further, we still need an ad-

ditional assumption:

(H.5) For all λ ∈ I×r , E(λ) is real, satisfying E(λ) < E0.

Remark 3.3 If HI is symmetric, then E(λ) is real. In this case, if E(λ) = E0(λ), Corol-

lary 2.11 gives a sufficient condition for (H.5) to hold (see also Remark 2.12).

Under assumptions (H.2) and (H.5), E(λ) is in ρ(H0). Hence H0 − E(λ) is bijective

with bounded inverse (H0 − E(λ))−1.

Lemma 3.4 Assume (H.1)–(H.5). Then, for all Ξ ∈ D((H ′
0 − E0)

−1/2),

lim
λ→0

〈
Ξ, (H0 − E(λ))−1Ξ

〉
= ‖(H ′

0 − E0)
−1/2Ξ‖2. (3.10)

Proof. We denote by EH0 the spectral measure of H0. Since Ξ is in H⊥
0 , it follows that〈

Ξ, (H0 − E(λ))−1Ξ
〉

=
〈
Ξ, (H ′

0 − E(λ))−1Ξ
〉

=

∫
(E0,∞)

1

µ − E(λ)
d‖EH0(µ)Ξ‖2.

We have

0 <
1

µ − E(λ)
<

1

µ − E0

, ∀µ > E0

and
∫

(E0,∞)
1/(µ − E0)d‖EH0(µ)Ξ‖2 < ∞, because Ξ is in D((H ′

0 − E0)
−1/2). By (3.8),

limλ→0 1/(µ − E(λ)) = 1/(µ − E0) for all µ > E0. Hence, by the Lebesgue dominated

convergence theorem, we obtain

lim
λ→0

〈
Ξ, (H0 − E(λ))−1Ξ

〉
=

∫
(E0,∞)

1

µ − E0

d‖EH0(µ)Ξ‖2 = ‖(H ′
0 − E0)

−1/2Ξ‖2.
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For λ ∈ I×r , we define operators K(λ) and G(λ) by

K(λ) := (E(λ) − H0)
−1Q0HI, (3.11)

G(λ) := HI(E(λ) − H0)
−1Q0. (3.12)

It follows that

K(λ)∗ ⊃ G(λ),

where, for a densely defined linear operator A on a Hilbert space, A∗ denotes the adjoint

of A.

The next theorem gives the second order asymptotics of E(λ) in λ near 0:

Theorem 3.5 Assume (H.1)–(H.5). Suppose that

Ψ0 ∈ D(G(λ)HI) ∩ D((H ′
0 − E0)

−1/2Q0HI) (3.13)

for all λ ∈ I×r with

sup
λ∈I×r

‖G(λ)HIΨ0‖ < ∞. (3.14)

Then

E(λ) = E0 + λ 〈Ψ0, HIΨ0〉 − λ2‖(H ′
0 − E0)

−1/2Q0HIΨ0‖2 + o(λ2) (λ → 0). (3.15)

Proof. We have by (3.9), (3.3) and (3.2)

E(λ) = E0 + λ 〈Ψ0, HIΨ0〉 − λ2‖(H ′
0 − E0)

−1/2Q0HIΨ0‖2

+λ2Rλ + λ2 〈G(λ)HIΨ0, Φ(λ)〉 ,

where

Rλ := 〈HIΨ0, K(λ)Ψ0〉 + ‖(H ′
0 − E0)

−1/2Q0HIΨ0‖2.

Hence

E(λ) − E0 − λ 〈Ψ0, HIΨ0〉 + λ2‖(H ′
0 − E0)

−1/2Q0HIΨ0‖2

λ2

= Rλ + 〈G(λ)HIΨ0, Φ(λ)〉 .

By Lemma 3.4, limλ→0 Rλ = 0. We have by the Schwarz inequality, (3.14) and (3.5)

| 〈G(λ)HIΨ0, Φ(λ)〉 | ≤

(
sup
λ′∈I×r

‖G(λ′)HIΨ0‖

)
‖Φ(λ)‖ → 0 (λ → 0).

Thus (3.15) holds.
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4 Asymptotic Expansions up to Arbitrary Finite Or-

ders in λ

In this section, under assumptions (H.1)–(H.5), we derive an asymptotic expansion of

E(λ) up to an arbitrary finite order in λ. Let

K0 := (E0 − H ′
0)

−1Q0HI. (4.1)

For each ` ∈ N, we define an operator-valued function K` on R` by

K`(x1, . . . , x`) :=
∑̀
r=1

(−1)r
∑

j1+···+jr=`
j1,...,jr≥1

xj1 · · · xjr(E0 − H ′
0)

−(r+1)Q0HI,

(x1, . . . , x`) ∈ R`. (4.2)

For a natural number N ≥ 2, we define a sequence {an}N
n=1 as follows:

a1 := 〈Ψ0, HIΨ0〉 , (4.3)

an =
∑

q+`=n
q,`≥1

∑
`1+···+`q=`−1

`1,...,`q≥0

〈
HIΨ0, Kl1(a1, . . . , a`1) · · ·Klq(a1, . . . , a`q)Ψ0

〉
,

n = 2, . . . , N, (4.4)

provided that

Ψ0 ∈ ∩N
n=2 ∩q+`=n

q,`≥1
∩`1+···+`q=`−1

`1,...,`q≥0

∩`1
r1=0 · · · ∩

`q

rq=0 D

(
q∏

j=1

(E0 − H ′
0)

−(rj+1)Q0HI

)
, (4.5)

where, for (not necessarily commuting) linear operators A1, . . . , Aq on a Hilbert space,∏q
j=1 Aj := A1A2 · · ·Aq.

Note that, on the right hand side of (4.4), only aj (j = 1, . . . , n − 2) appears. Hence

an’s with n ≥ 3 are uniquely determined.

We have

a2 = −
〈
HIΨ0, (H

′
0 − E0)

−1Q0HIΨ0

〉
≤ 0, (4.6)

a3 =
〈
(H ′

0 − E0)
−1HIΨ0, HI(H

′
0 − E0)

−1Q0HIΨ0

〉
−〈Ψ0, HIΨ0〉 ‖(H ′

0 − E0)
−1Q0HIΨ0‖2. (4.7)

Theorem 4.1 Let N ≥ 2 be a natural number. Assume (H.1)–(H.5). Suppose that (4.5)

holds and Ψ0 ∈ ∩N−1
n=1 D(G(λ)nHI) with

sup
r∈I×r

‖G(λ)nHIΨ0‖ < ∞, n = 1, . . . , N − 1. (4.8)
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Then

E(λ) = E0 +
N∑

n=1

anλ
n + o(λN) (λ → 0). (4.9)

Proof. We prove (4.9) by induction in N ≥ 2. Eq. (4.9) with N = 2 follows from

Theorem 3.5.

Suppose that (4.9) holds with some N ≥ 2. Let

Kr(λ) := (E0 − E(λ))r(E0 − H ′
0)

−(r+1)Q0HI, r = 0, 1, . . . , N − 1,

and K(λ) be as in (3.11). Then, using the easily proven formula

(E(λ) − H0)
−1Q0 = (E0 − H ′

0)
−1Q0 + (E0 − E(λ))(E(λ) − H0)

−1(E0 − H ′
0)

−1Q0,

we obtain

K(λ) =
N−1∑
r=0

Kr(λ) + (E0 − E(λ))N(E(λ) − H0)
−1(E0 − H ′

0)
−NQ0HI, (4.10)

on ∩N
r=1D((E0 − H ′

0)
−rQ0HI). By (H.5), for all Ψ ∈ D((E0 − H ′

0)
−(N+1)Q0HI), we have

‖(E(λ) − H0)
−1(E0 − H ′

0)
−NQ0HIΨ‖ ≤ ‖(E0 − H ′

0)
−(N+1)Q0HIΨ‖.

Hence, by (3.7), we obtain

lim
λ→0

(E0 − E(λ))N(E(λ) − H0)
−1(E0 − H ′

0)
−NQ0HIΨ

λN−1
= 0,

i.e.

(E0 − E(λ))N(E(λ) − H0)
−1(E0 − H ′

0)
−NQ0HIΨ = o(λN−1) (λ → 0).

By the induction hypothesis (4.9), we have

E0 − E(λ) = −
N∑

n=1

anλn + o(λN) (λ → 0).

Hence

Kr(λ) = (−1)r

N∑
j1,...,jr=1

aj1 · · · ajrλ
j1+···+jr(E0 − H ′

0)
−(r+1)Q0HI + o(λN+1) (λ → 0)

on D((E0 −H ′
0)

−(r+1)Q0HI). Putting this into Kr(λ) on the right hand side of (4.10), we

obtain

K(λ) = K0 +
N−1∑
`=1

K`(a1, . . . , a`)λ
` + o(λN−1) (λ → 0) (4.11)
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on ∩N+1
r=1 D((E0 − H ′

0)
−rQ0HI), where K` is defined by (4.2).

On the other hand, we have by (3.9) and (3.3)

E(λ) = E0 + 〈Ψ0, HIΨ0〉λ +
N∑

k=1

〈
HIΨ0, K(λ)kΨ0

〉
λk+1 +

〈
HIΨ0, K(λ)NΦ(λ)

〉
λN+1.

Using (4.11), we have

E(λ) = E0 + 〈Ψ0, HIΨ0〉λ

+
N∑

k=1

N−1∑
`1,...,`k=0

〈HIΨ0, K`1(a1, . . . , a`1) · · ·K`k
(a1, . . . , a`k

)Ψ0〉

×λ`1+···+`k+k+1 + o(λN+1) +
〈
HIΨ0, K(λ)NΦ(λ)

〉
λN+1 (λ → 0).

By rearranging the sums on k and `1, . . . , `k, we obtain

E(λ) = E0 + 〈Ψ0, HIΨ0〉λ

+
N+1∑
n=2

anλ
n + o(λN+1) +

〈
HIΨ0, K(λ)NΦ(λ)

〉
λN+1 (λ → 0).

By condition (4.8) with N − 1 replaced by N , we have

|
〈
HIΨ0, K(λ)NΦ(λ)

〉
| ≤

(
sup
λ′∈I×r

‖G(λ′)NHIΨ0‖

)
‖Φ(λ)‖ → 0 (λ → 0).

Hence 〈
HIΨ0, K(λ)NΦ(λ)

〉
λN+1 = o(λN+1) (λ → 0).

Thus (4.9) holds with N replaced by N + 1.

5 Application to the GSB Model

In this section, we apply Theorem 4.1 to the GSB model mentioned in Introduction.

Following [5], we first review the GSB model briefly .

The quantum filed in the GSB model is a scalar Bose field acting in the boson (sym-

metric) Fock space

Fb(L
2(Rν)) := ⊕∞

n=0

[
⊗n

s L
2(Rν)

]
over the Hilbert space L2(Rν) (ν ∈ N), where ⊗n

s L
2(Rν) denotes the n-fold symmetric

tensor product of L2(Rν) with convention ⊗0
sL

2(Rν) := C.

We denote by a(f) (f ∈ L2(Rν)) the annihilation operator with test function f , i.e.,

it is a densely defined closed linear operator on Fb(L
2(Rν)) such that its adjoint a(f)∗
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obeys the following properties: For all ψ ∈ D(a(f)∗), (a(f)∗ψ)(0) = 0 and (a(f)∗ψ)(n) =
√

nSn(f ⊗ ψ(n−1)), n ≥ 1, where Sn is the symmetrization operator on the n-fold tensor

product ⊗nL2(Rν) of L2(Rν) . The time-zero field for the GSB model is defined by

φ(f) :=
1

2
(a(f)∗ + a(f)),

which is called the Segal field operator with test function f .

The one-particle Hamiltonian of a free boson, which acts in L2(Rν), is described by

the multiplication operator of an energy function ω : Rν → [0,∞); Rν 3 k 7→ ω(k) ≥ 0

which is Borel measurable and 0 < ω(k) < ∞ for almost everywhere (a.e.) k ∈ Rν . We

denote the one-particle Hamiltonian by the same symbol ω. Then the Hamiltonian of the

free quantum field with one-particle Hamiltonian ω is defined by

Hb := ⊕∞
n=0ω

(n)

the second quantization of ω, where ω(0) := 0 as an operator on C, ω(1) := ω and, for

n ≥ 2, ω(n) :=
∑n

j=1 I ⊗ · · ·⊗ jth

ω ⊗ · · · ⊗ I acting in ⊗n
s L

2(Rν) (I denotes the identity on

L2(Rν)).

For more detailed descriptions on the boson Fock space theory, we refer the reader to

[20, §X.7].

Let

ω0 := ess.infk∈Rνω(k) ≥ 0. (5.1)

If ω0 > 0 (resp. ω0 = 0), then we say that the Bose field or the boson is massive (resp.

massless)2.

We take the Hilbert space of quantum particles interacting with the quantum scalar

filed to be an abstract complex Hilbert space K. Then a Hilbert space of state vectors

for the GSB model is given by

HGSB := K ⊗ Fb(L
2(Rν)).

Let L2
sym((Rν)n; K) be the Hilbert space of K-valued symmetric L2-functions on (Rν)n with

convention L2
sym((Rν)0; K) := K. Then the Hilbert space HGSB has a natural identification

as

HGSB = ⊕∞
n=0L

2
sym((Rν)n; K)

=

{
Ψ = {Ψ(n)}∞n=0|Ψ(n) ∈ L2

sym((Rν)n; K), n ≥ 0,
∞∑

n=0

‖Ψ(n)‖2 < ∞

}
.

2An example of ω for a relativistic Bose field is given by ω(k) =
√

k2 + m2 with m ≥ 0 being the mass
of the boson. In this case, we have ω0 = m, showing that ω0 is certainly the mass of the boson. But, in
general (mathematically), ω0 is not necessarily a mass in the physical sense. For example, if the boson is
non-relativistic, then one may take ω(k) = k2/2m. In this case, ω0(= 0) is not a mass.
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For each n ≥ 0, we call the subspace

H(n) := {Ψ = {0, . . . , 0, Ψ(n), 0, . . .} ∈ HGSB|Ψ(n) ∈ L2
sym((Rν)n; K)} (5.2)

the n-boson space of the GSB model. We have

HGSB = ⊕∞
n=0H

(n). (5.3)

We assume that the Hamiltonian of the system of quantum particles is given by a

self-adjoint operator A on K which is bounded below. Then

E0 := inf σ(A) (5.4)

is finite and

Ã := A − E0 (5.5)

is a non-negative self-adjoint operator on K.

Let J ∈ N and Bj (j = 1, . . . , J) be a symmetric operator on K. Let gj ∈ L2(Rν)

(j = 1, . . . , J) and λ ∈ R. In this section, we take H0 and HI as follows:

H0 := A ⊗ I + I ⊗ Hb, (5.6)

HI :=
J∑

j=1

Bj ⊗ φ(gj). (5.7)

The function gj in φ(gj) physically means a momentum cutoff function of the boson. The

Hamiltonian of the GSB model is defined by

HGSB(λ) := H0 + λHI. (5.8)

Before going into detailed analysis on the GSB model, we take this opportunity to

report an important fact on the lowest (minimal) energy of HGSB(λ) in the case where

HGSB(λ) is self-adjoint and bounded below. Hence, let

Λ := {λ ∈ R|HGSB(λ) is self-adjoint and bounded below} (5.9)

and, for each λ ∈ Λ,

E0(λ) := inf σ(HGSB(λ)). (5.10)

Theorem 5.1 The set Λ is reflection symmetric with respect to the origin of R (i.e.,

λ ∈ Λ ⇐⇒ −λ ∈ Λ) and E0(·) is an even function on Λ:

E0(λ) = E0(−λ), λ ∈ Λ. (5.11)
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Proof. Let λ ∈ Λ. We denote by Nb the number operator on Fb(L
2(Rν)): (NbΨ)(n) =

nΨ(n), n ≥ 0, Ψ ∈ D(N). The operator Nb is self-adjoint and non-negative. Hence

U := eiπNb is unitary. We have the operator equality

Ua(f)#U−1 = −a(f)#, f ∈ L2(Rν),

where a(f)# denotes either a(f) or a(f)∗. Hence

Uφ(f)U−1 = −φ(f), f ∈ L2(Rν).

Also we have

UHbU
−1 = Hb.

Hence we obtain

(I ⊗ U)HGSB(λ)(I ⊗ U)−1 = HGSB(−λ),

which implies that Λ is reflection symmetric with respect to the origin of R and

σ(HGSB(λ)) = σ(HGSB(−λ)).

Hence (5.11) holds.

Remark 5.2 The proof given above can be applied also to a general particle-field Hamil-

tonian [4], which includes Pauli-Fierz type models (e.g., [10, 11, 17]) and Nelson type

models (e.g., [2, 19]), and the Dereziński–Gérard model [13] to conclude that their mini-

mal energy is an even function of the coupling constant.

In what follows, we assume the following conditions:

(A.1) The operator A has compact resolvent.

(A.2) Each Bj (j = 1, . . . , J) is Ã1/2-bounded. Namely, D(Ã1/2) ⊂ ∩J
j=1D(Bj) and there

exist constants aj ≥ 0, bj ≥ 0 such that, for all ψ ∈ D(Ã1/2),

‖Bjψ‖ ≤ aj‖Ã1/2ψ‖ + bj‖ψ‖, j = 1, . . . , J.

(A.3) gj, gj/ω ∈ L2(Rν), j = 1, . . . , J .

(A.4) The function ω is continuous on Rν with lim|k|→∞ ω(k) = ∞ and

there exist constants γ > 0 and C > 0 such that

|ω(k) − ω(k′)| ≤ C|k − k′|γ(1 + ω(k) + ω(k′)), k, k′ ∈ Rν .
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Remark 5.3 Under (A.1), A has purely discrete spectrum {En}N
n=0 with E0 < E1 <

· · · < En < En+1 < · · · , where N < ∞ or N = ∞. In particular, E0 is an eigenvalue of

A with a finite multiplicity. Under assumption (A.4), we have σ(ω) = [ω0,∞), where ω0

is given by (5.1). Hence it follows that

σ(H0) = {E0, . . . , En0} ∪ [E0 + ω0,∞), (5.12)

where n0 := max{n ≥ 0|En < E0 + ω0}. In particular, if the boson is massless, then

σ(H0) = [E0,∞), which shows that all the eigenvalues of H0 are embedded eigenvalues

of H0. Hence, in this case, for each En, one can neither apply the standard analytic

perturbation theory nor the standard asymptotic perturbation theory. Thus we need a

new approach in the massless case. Note that, in the massive case ω0 > 0, En (n =

0, 1, . . . , n0) is an isolated eigenvalue of H0. We can show that HI is H0-bounded [5].

Hence, in the massive case, we can apply the standard analytic perturbation theory to

conclude that, for all sufficiently small |λ| (its smallness may depend on ω0), HGSB(λ) has

a ground state and the ground state energy is analytic in λ.

Remark 5.4 As for the spectrum of HGSB(λ), the following result is known [3, Theorem

3.3]: If (A.2) holds and gj, gj/
√

ω ∈ L2(Rν) (j = 1, . . . , J) with σ(ω) = [0,∞), then, for

all λ ∈ Λ,

σ(HGSB(λ)) = [E0(λ),∞).

Note that, for this fact, HGSB(λ) does not necessarily have a ground state.

Let

Ω0 := {1, 0, 0, . . .} ∈ Fb(L
2(Rν)) (5.13)

be the Fock vacuum and PΩ0 be the orthogonal projections onto the one-dimensional

subspace {αΩ0|α ∈ C}. We denote by p0 the orthogonal projection onto ker Ã.

As for the existence of a ground state of HGSB(λ), we have the following theorem [5]:

Theorem 5.5 Assume (A.1)–(A.4). Then there exists a constant r > 0 independent of

λ such that the following hold:

(i) (−r, r) ⊂ Λ.

(ii) For all λ ∈ (−r, r), HGSB(λ) has a ground state Ψ0(λ) and there exists a constant

M > 0 independent of λ ∈ (−r, r) such that, for all |λ| < r, ‖Ψ0(λ)‖ ≤ 1 and

〈Ψ0(λ), p0 ⊗ PΩ0Ψ0(λ)〉 ≥ 1 − λ2M2 > 0 (5.14)
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Under the assumption of Theorem 5.5, E0(λ) with λ ∈ (−r, r) is the ground state

energy of HGSB(λ). To derive asymptotic expansions for E0(λ) in λ near 0, we need to

check that the assumptions taken in Sections 3 and 4 hold in the case where H(λ) =

HGSB(λ). For this purpose, however, we need additional assumptions:

(A.5) The eigenvalue of E0 of A is simple and there exists a j0 ∈ {1, . . . , J} such that

Bj0ψ 6= 0 for all ψ ∈ ker Ã \ {0}.

(A.6) The set {g1, . . . , gJ} ⊂ L2(Rν) is linearly independent.

We denote by ψ0 a normalized eigenvector of A with eigenvalue E0:

Aψ0 = E0ψ0, ‖ψ0‖ = 1. (5.15)

Hence ker Ã = {αψ0|α ∈ C}. By (A.5), we have

Bj0ψ0 6= 0. (5.16)

It follows from the theory of tensor products of self-adjoint operators that E0 is a simple

eigenvalue of H0 being the ground state energy of H0 with a normalized eigenvector

Ψ0 := ψ0 ⊗ Ω0. (5.17)

By the well kown fact that

a(f)Ω0 = 0, f ∈ L2(Rν), (5.18)

we have

〈Ψ0, HIΨ0〉 = 0. (5.19)

Hence (2.19) holds.

In the present model, the orthogonal projection P0 onto ker(H0 − E0) takes the form

P0 = p0 ⊗ PΩ0 .

Hence

Q0 = I − P0 = I − p0 ⊗ PΩ0 .

Lemma 5.6 Assume (A.1)–(A.6). Then Q0HIΨ0 6= 0.

Proof. By (5.18), we have

HIΨ0 =
J∑

j=1

1√
2
Bjψ0 ⊗ a(gj)

∗Ω0. (5.20)
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Since PΩ0a(f)∗Ω0 = 0 for all f ∈ L2(Rν), we have

Q0HIΨ0 =
J∑

j=1

1√
2
Bjψ0 ⊗ a(gj)

∗Ω0. (5.21)

Suppose that Q0HIΨ0 were a zero vector. Then it follows that, for all ψ ∈ K,

J∑
j=1

〈ψ,Bjψ0〉 gj = 0.

By (A.6), this implies that, for all ψ ∈ K, 〈ψ,Bjψ0〉 = 0, j = 1, . . . , J . Hence Bjψ0 = 0

for all j = 1, . . . , J . But this contradicts (5.16).

As in the case of the general theory in Section 2, we denote by H ′
0 the reduced part

of H0 to {αΨ0|α ∈ C}⊥.

Let H ′
b be the reduced part of Hb to {αΩ0|α ∈ C}⊥. Then, in the GSB model, we

have, under the identification (5.3),

H ′
0 − E0 = Ã + H ′

b. (5.22)

Lemma 5.7 Assume (A.1)–(A.5). Let ψ ∈ K and f ∈ L2(Rν). Then ψ ⊗ a(f)∗Ω0 is in

D((H ′
0 − E0)

−1) if and only if∫
ω(k)>0

‖(Ã + ω(k))−1ψ‖2|f(k)|2dk < ∞. (5.23)

In particular, if f/ω ∈ L2(Rν), then ψ ⊗ a(f)∗Ω0 ∈ D((H ′
0 − E0)

−1).

Proof. For a self-adjoint operator S, we denote by ES(·) its spectral measure. We have

EH′
0
(X1 × X2) = EA(X1) ⊗ EH′

b
(X2) for all Borel sets X1, X2 ⊂ R and EH′

b
({0}) = 0.

Hence it follows that the vector ψ ⊗ a(f)∗Ω0 is in D((H ′
0 − E0)

−1) if and only if

If :=

∫
x+y>E0

1

|x − E0 + y|2
d‖EA(x)ψ‖2d‖EH′

b
(y)a(f)∗Ω0‖2 < ∞

We have

(H ′
ba(f)∗Ω0)

(1)(k) = ω(k)f(k), (H ′
ba(f)∗Ω0)

(n)(k) = 0, n 6= 1.

Hence

If =

∫
ω(k)>0

‖(Ã + ω(k))−1ψ‖2|f(k)|2dk.

Thus the first statement of the present lemma holds.

Since Ã ≥ 0, we have If ≤ ‖ψ‖2
∫

Rν |f(k)|2/ω(k)2 dk. Hecne, if f/ω ∈ L2(Rν), then

If < ∞ and thus ψ ⊗ a(f)∗Ω0 ∈ D((H ′
0 − E0)

−1).
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Using the Schwarz inequality for the inner product and the elementary inequality

αβ ≤ ε2α2 +
β2

4ε2
(α ≥ 0, β ≥ 0, ε > 0),

we have for all ψ ∈ D(Ã) and all ε > 0

‖Ã1/2ψ‖2 ≤ ε2‖Ãψ‖2 +
1

4ε2
‖ψ‖2.

By this fact and (A.2), we obtain

‖Bjψ‖ ≤ aε‖Ãψ‖ + bε‖ψ‖, ψ ∈ D(Ã) (j = 1, . . . , J), (5.24)

where a := max{a1, . . . , aJ}, ε > 0 is arbitrary and

bε := b +
a

2ε
(5.25)

with b := max{b1, . . . , bJ}.

Lemma 5.8 Assume (A.2). Then, for each j = 1, . . . , J and k ∈ Rν with ω(k) > 0,

Bj(Ã + ω(k))−1 is bounded with

‖Bj(Ã + ω(k))−1‖ ≤ aε +
bε

ω(k)
, (5.26)

where ε > 0 is arbitrary.

Proof. By (5.24), we have for all ψ ∈ K

‖Bj(Ã + ω(k))−1ψ‖ ≤ aε‖Ã(Ã + ω(k))−1ψ‖ + bε‖(Ã + ω(k))−1ψ‖.

We have ‖(Ã + ω(k))−1ψ‖ ≤ ω(k)−1‖ψ‖ and ‖Ã(Ã + ω(k))−1ψ‖ ≤ ‖ψ‖. Thus the desired

result follows.

Lemma 5.9 Assume (A.1)–(A.6). Then (3.13) holds in the present model.

Proof. By (5.21) and the condition gj/ω (j = 1, . . . , J), we can apply Lemma 5.7 to

conclude that

Q0HIΨ0 ∈ D((H ′
0 − E0)

−1).

Using idetification (5.3), we have

((H ′
0 − E0)

−1Q0HIΨ0)
(1)(k) =

J∑
j=1

1√
2
gj(k)(Ã + ω(k))−1Bjψ0,

ω(k) > 0, (5.27)

((H ′
0 − E0)

−1Q0HIΨ0)
(n) = 0, n 6= 1. (5.28)
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Hence (H ′
0 − E0)

−1Q0HIΨ0 is in D(HI) with

(HI(H
′
0 − E0)

−1Q0HIΨ0)
(0) =

1

2

J∑
`,j=1

∫
ω(k)>0

dkg`(k)∗gj(k)B`(Ã + ω(k))−1Bjψ0,

(HI(H
′
0 − E0)

−1Q0HIΨ0)
(2)(k1, k2) =

1

2
√

2

J∑
`,j=1

{
g`(k2)gj(k1)B`(Ã + ω(k1))

−1Bjψ0

+g`(k1)gj(k2)B`(Ã + ω(k2))
−1Bjψ0

}
k1, k2 ∈ Rν , ω(k1) > 0, ω(k2) > 0,

(HI(H
′
0 − E0)

−1Q0HIΨ0)
(n) = 0, n 6= 0, 2.

Similarly we see that (H ′
0 − E0)

−1Q0HIΨ0 is in D(H0) with

(H0(H
′
0 − E0)

−1Q0HIΨ0)
(1)(k) =

1√
2

J∑
j=1

(
gj(k) + E0gj(k)(Ã + ω(k))−1

)
Bjψ0,

ω(k) > 0,

(H0(H
′
0 − E0)

−1Q0HIΨ0)
(n) = 0, n 6= 1.

Thus the desired result follows.

Lemma 5.10 Assume (A.1)–(A.6). Let

NGSB :=
1

2

J∑
j,`=1

∫
ω(k)>0

〈
(Ã + ω(k))−1Bjψ0, (Ã + ω(k))−1B`ψ0

〉
gj(k)∗g`(k)dk, (5.29)

a
GSB

:=
1

2

J∑
j,`=1

∫
ω(k)>0

〈
Bjψ0, (Ã + ω(k))−1B`ψ0

〉
gj(k)∗g`(k)dk. (5.30)

Then a
GSB

> 0 and

E0(λ) ≤ E0 −
a

GSB
λ2

1 + NGSBλ2
. (5.31)

In particular, for all λ ∈ I×r , E0(λ) < E0 and E0(λ) ∈ ρ(H0).

Proof. As already seen, in the GSB model, (2.19) holds. Hence, by Lemmas 5.6 and

5.9, we can apply Theorem 2.7. In the present case, we have N0 = NGSB, a = a
GSB

and

b = 0. Thus the desired result follows.

Lemma 5.11 Assume (A.1)–(A.5) and let Ψ0(λ) be as in Theorem 5.5. Then, for all

λ ∈ I×r , Ψ0(λ) overlaps with Ψ0 and

lim
λ→0

| 〈Ψ0, Ψ0(λ)〉 | = 1. (5.32)
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Proof. By (A.5), we have p0 ⊗ PΩ0Ψ0(λ) = 〈Ψ0, Ψ0(λ)〉Ψ0. Hence, by Theorem 5.5,

1 ≥ | 〈Ψ0, Ψ0(λ)〉 |2 ≥ 1 − λ2M2 > 0.

Hence the desired results follow.

Let (A.1)–(A.6) be satisfied. Then, by Lemma 5.11, we can define for all λ ∈ I×r

ΨGSB(λ) :=
1

〈Ψ0, Ψ0(λ)〉
Ψ0(λ). (5.33)

Then, as in (3.1) and (3.2), we have for all λ ∈ I×r

E0(λ) = E0 + λ 〈Ψ0, HIΨGSB(λ)〉 , (5.34)

ΨGSB(λ) = Ψ0 + λ(E0(λ) − H0)
−1Q0HIΨGSB(λ). (5.35)

Lemma 5.12 Condition (H.4) with Ψ(λ) = ΨGSB(λ) holds:

lim
λ→0

‖ΨGSB(λ)‖ = 1. (5.36)

Proof. By Theorem 5.5-(ii) and ‖p0 ⊗ P0‖ = 1, we have

1 ≥ ‖Ψ0(λ)‖ ≥
√

1 − λ2M2.

Hence limλ→0 ‖Ψ0(λ)‖ = 1. By this fact and (5.32), we obtain (5.36).

Thus we have shown that, under assumptions (A.1)–(A.6), conditions (H.1)–(H.5) in

Section 3 hold. Therefore, to establish asymptotic expansions of E0(λ), we need only to

check assumptions in Theorem 4.1 other than (H.1)–(H.5).

For an independent interest, we first derive the asymptotic expansion of E0(λ) up to

the second order in λ.

Theorem 5.13 Assume (A.1)–(A.6). Then

E0(λ) = E0 − a
GSB

λ2 + o(λ2) (λ → 0), (5.37)

where a
GSB

is given by (5.30).

Proof. We need only to check (3.14).

It follows from (5.20) that HIΨ0 ∈ D(G(λ)) and

(G(λ)HIΨ0)
(0) =

1

2

J∑
`=1

J∑
j=1

∫
Rν

dkg`(k)∗gj(k)B`(E(λ) − E0 − Ã − ω(k))−1Bjψ0,

(G(λ)HIΨ0)
(2)(k1, k2) =

1

2
√

2

J∑
`=1

J∑
j=1

{
g`(k2)gj(k1)B`(E(λ) − E0 − Ã − ω(k1))

−1Bjψ0

+g`(k1)gj(k2)B`(E(λ) − E0 − Ã − ω(k2))
−1Bjψ0

}
,

(G(λ)HIΨ0)
(n) = 0, n 6= 0, 2.
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By (5.26) and E(λ) < E0, we have

‖(G(λ)HIΨ0)
(0)‖ ≤ 1

2

J∑
`=1

J∑
j=1

∫
Rν

dk|g`(k)||gj(k)|
(
aε + bεω(k)−1

)
‖Bjψ0‖,

‖(G(λ)HIΨ0)
(2)(k1, k2)‖ ≤ 1

2
√

2

J∑
`=1

J∑
j=1

{
|g`(k2)||gj(k1)|

(
aε + bεω(k1)

−1
)
‖Bjψ0‖

+|g`(k1)||gj(k2)|
(
aε + bεω(k2)

−1
)
‖Bjψ0‖

}
.

These estimates imply (3.14).

We next consider the asymptotic expansion of E0(λ) in λ up to the N -th order with

N ≥ 3.

Lemma 5.14 Let N ≥ 2 be a natural number and suppose that

gj,
gj

ωN−1
∈ L2(Rν), j = 1, . . . , J. (5.38)

Then (4.5) holds in the present model.

Remark 5.15 If (5.38) holds, then gj/ω
s ∈ L2(Rν) for all s ∈ [0, N − 1].

Proof. Let q = 1, . . . , N − 1 and rα = 0, 1, . . . , N − 2 (α = 1, . . . , q). By assump-

tion (5.38) and Remark 5.15, one sees that Ψ0 is in D((H ′
0 − E0)

−(rq−1+1)Q0HI(H
′
0 −

E0)
−(rq+1)Q0HI) and the vector

Ψ2 := (H ′
0 − E0)

−(rq−1+1)Q0HI(H
′
0 − E0)

−(rq+1)Q0HIΨ0

takes the following form:

Ψ2 =
1

2

J∑
j,`=1

(H ′
0 − E0)

−(rq−1+1)B` ⊗ a(g`)
∗(H ′

0 − E0)
−(rq+1)Bj ⊗ a(gj)

∗Ψ0

Hence, under the natural identification (5.3), Ψ2 is in the 2-boson space H(2) with

Ψ2(k1, k2)

=
1

2

J∑
j,`=1

{
(Ã + ω(k1) + ω(k2))

−(rq−1+1)gj(k1)g`(k2)B`(Ã + ω(k1))
−(rq+1)

×Bjψ0 + (Ã + ω(k1) + ω(k2))
−(rq−1+1)gj(k2)g`(k1)B`(Ã + ω(k2))

−(rq+1)Bjψ0

}
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for a.e. (k1, k2) ∈ (Rν)2. For q ≥ 3 and α = 1, . . . , q, we have(
q∏

α=1

(H ′
0 − E0)

−(rα+1)Q0HI

)
P0

=
1√
2

q

J∑
j1,...,jq=1

(Ã + H ′
b)

−(r1+1)Q0Bj1 ⊗ a(gj1)
#(Ã + H ′

b)
−(r2+1)Q0Bj2 ⊗ a(gj2)

#

· · ·Q0Bjq−2 ⊗ a(gjq−2)
#(H ′

0 − E0)
−(rq−1+1)Bjq−1 ⊗ a(gjq−1)

∗

×(H ′
0 − E0)

−(rq+1)Bjq ⊗ a(gjq)
∗P0. (5.39)

Note that, because of the action of Q0, the last two a(·)#’s on the right hand side are

a(·)∗.
As in Lemma 5.8, we can show that, for all Φ ∈ D(H ′

b
−1) and n ≥ 1

‖(Bj(Ã + H ′
b)

−1Φ)(n)(k1, . . . , kn)‖

≤ aε‖Φ(n)(k1, . . . , kn)‖ + bε
1∑n

i=1 ω(ki)
‖Φ(n)(k1, . . . , kn)‖ (5.40)

for a.e. (k1, . . . , kn) ∈ (Rν)n, where ‖ · ‖ denotes the norm of K and ε > 0 is arbitrary.

For all f ∈ L2(Rν), the operator a(f) (resp. a(f)∗) maps the n-boson space H(n) to

H(n−1) (resp. H(n+1)) and, for all p ≥ 1, (Ã + H ′
b)

−p maps D((Ã + H ′
b)

−p) ∩ H(n) into

H(n) with

((Ã + H ′
b)

−pΨ)(n)(k1, . . . , kn) =

(
Ã +

n∑
j=1

ω(kj)

)−p

Ψ(n)(k1, . . . , kn) ∈ K,

a.e.(k1, . . . , kn) ∈ (Rν)n

for all Ψ ∈ D((Ã + H ′
b)

−p) ∩ H(n). Moreover, for all Ψ ∈ D((Ã + H ′
b)

−p)a(f)Bj(Ã +

H ′
b)

−1) ∩ D((Ã + H ′
b)

−p)a(f)∗Bj(Ã + H ′
b)

−1) ∩ H(n), the following hold:

((Ã + H ′
b)

−pa(f)∗Bj(Ã + H ′
b)

−1Ψ)(n+1)(k1, . . . , kn+1)

=
1√

n + 1

(
Ã +

n+1∑
j=1

ω(kj)

)−p n∑
i=1

f(ki)(Bj(Ã + H ′
b)

−1Ψ)(n)(k1, . . . , k̂i, . . . , kn+1),

((Ã + H ′
b)

−pa(f)Bj(Ã + H ′
b)

−1Ψ)(n−1)(k1, . . . , kn−1)

=
√

n

(
Ã +

n−1∑
i=1

ω(ki)

)−p ∫
Rν

dknf(kn)∗(Bj(Ã + H ′
b)

−1Ψ)(n)(k1, . . . , kn−1, kn),
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where k̂i indicates the omission of k̂i. Hence, by (5.40), we have

‖((Ã + H ′
b)

−pa(f)∗Bj(Ã + H ′
b)

−1Ψ)(n+1)(k1, . . . , kn+1)‖

≤ 1√
n + 1

(
n+1∑
j=1

ω(kj)

)−p n+1∑
i=1

|f(ki)|

{
aε + bε

1∑n+1
h=1,h 6=i ω(kh)

}
×‖Ψ(n)(k1, . . . , k̂i, . . . , kn+1)‖,

‖((Ã + H ′
b)

−pa(f)Bj(Ã + H ′
b)

−1Ψ)(n−1)(k1, . . . , kn−1)‖

≤
√

n

(
n−1∑
i=1

ω(ki)

)−p ∫
Rν

dkn|f(kn)|
{

aε + bε
1∑n

h=1 ω(kh)

}
‖Ψ(n)(k1, . . . , . . . , kn)‖.

By these estimates and (5.39), one can see that Ψ0 is in D
(∏q

α=1(H
′
0 − E0)

−(rα+1)Q0HI

)
.

Thus the desired result follows.

Remark 5.16 The condition gj/ω ∈ L2(Rν) (j = 1, . . . , J) is called the infrared regular

condition in the GSB model (if this condition is not satisfied for some j, then HGSB may

have no ground states [7]). Condition (5.38) with N ≥ 3 means that gj is more infrared

regular than the case N = 2. On the other hand, (4.5) expresses a regularity of Ψ0 in

terms of H0 and HI in the sense to which operator domains it belongs. Hence Lemma

5.14 shows that the regularity of Ψ0 in the sense just mentioned is closely related to the

infrared behavior of cutoff functions gj (j = 1, . . . , J).

Theorem 5.17 Assume (A.1)–(A.6) and (5.38) with N ≥ 4 even. Let bn (n ≥ 1) be the

number an defined by (4.4) with Q0, H0, HI and Ψ0 replaced by those in the GSB model.

Then

b2n−1 = 0, n = 1, . . . ,
N

2
(5.41)

and

E0(λ) = E0 +

N/2∑
n=1

b2nλ
2n + o(λN) (λ → 0). (5.42)

Proof. By the discussions made so far and Lemma 5.14, to prove that E0(λ) has an

asymptotic expansion up to N -th order in λ, we need only to show that, in the present

case, (4.8) holds. We first do it. We have

H ′
0 − E(λ) = Ã + H ′

b + E0 − E(λ)

and E0 −E(λ) > 0. Hence, in the same way as in the proof of Lemma 5.14, we can show
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that, for all Ψ ∈ D(G(λ)) ∩ H(n),

‖(a(f)∗Bj(E(λ) − H ′
0)

−1Ψ)(n+1)(k1, . . . , kn+1)‖

≤ 1√
n + 1

n+1∑
i=1

|f(ki)|

{
aε + bε

1∑n+1
h=1,h 6=i ω(kh)

}
×‖Ψ(n)(k1, . . . , k̂i, . . . , kn+1)‖,

‖(a(f)Bj(E(λ) − H ′
0)

−1Ψ)(n−1)(k1, . . . , kn−1)‖

≤
√

n

∫
Rν

dkn|f(kn)|
{

aε + bε
1∑n

h=1 ω(kh)

}
‖Ψ(n)(k1, . . . , . . . , kn)‖.

By repeating this type of estimates, we see that (4.8) holds. Therefore, by Theorem 4.1,

we obtain (4.9) with an replaced by bn. By Theorem 5.1, E0(λ) is even in λ. This implies

(5.41).

Remark 5.18 We can prove (5.41) by induction in n, too.

Remark 5.19 The methods described above would be applied also to other models [4]

of a quantum system interacting with a massless quantum field .
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