
 

Instructions for use

Title Transmission and frequency spectra of acoustic phonons in Thue-Morse superlattices

Author(s) Tamura, S.; Nori, Franco

Citation Physical Review B, 40(14), 9790-9801
https://doi.org/10.1103/PhysRevB.40.9790

Issue Date 1989-11-15

Doc URL http://hdl.handle.net/2115/5945

Rights Copyright © 1989 American Physical Society

Type article

File Information PRB40-14.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


PHYSICAL REVIEW B VOLUME 40, NUMBER 14 15 NOVEMBER 1989-1 

Transmission and frequency spectra of acoustic phonons in Thue-Morse superlattices 
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Franco Nori* 
Institute/or Theoretical Physics, University o/California, Santa Barbara, Santa Barbara, California 93106 

(Received 8 May 1989) 

We study the transmission and frequency spectra of phonons in aperiodic Thue-Morse superlat
tices. Calculations based on the transfer-matrix method predict rich structures of the transmission 
dips and frequency gaps, and their basic properties are well described by the superlattice-structure 
factors that we derive. The angular dependence of the phonon transmission is also calculated and 
the existence of the intermode reflection of phonons is confirmed. Our results indicate that in the 
single-layer superlattice the spectral structures of phonons associated with the nonperiodicity of the 
Thue-Morse sequence dominate those arising from the underlying periodicity. This suggests that, 
for an experimental verification of the phonon spectra unique to the aperiodic nature of the se
quence, the single-layer superlattice is more appropriate than the double-layer one. The latter ex
hibits a significant correlation with a corresponding periodic superlattice in the spectral dips and 
gaps. 

I. INTRODUCTION 

The pioneering work of Merlin et af. 1 on Fibonacci 
GaAsl AlAs superlattices (SL's) has generated a large 
amount of research activity on both electronic and vibra
tional properties of systems with quasiperiodic order.2 

More recently, the studies on acoustic-phonon transmis
sion3 and especially on the angular dependence of phonon 
transmission4 through a Fibonacci SL have produced 
theoretical and experimental results which are quite simi
lar to the ones previously obtained for the phonon 
transmission _ spectra in conventional periodic SL's.5 
Several reasons contribute to this situation. One of them 
is related to the limited resolution of the currently avail
able phonon detectors. Fine structure in the spectra, 
present in the Fibonacci case but absent in the periodic 
case, is difficult to resolve experimentally. Furthermore, 
even at the theoretical level the results do agree remark
ably well (again, specially for the main overall features). 
The kind of ordering present in a Fibonacci sL is called 
"quasiperiodic" which, as the name suggests, is a slight 
variation of the periodic ordering. In order to explore 
the effects of the lack of translational invariance on pho
non propagation in SL's, we need to consider more than 
just weak aperiodicity. 

The study of the acoustic-phonon transmission 
through a realistic Thue-Morse SL is motivated by the 
fact that this deterministic structure is more "disor
dered" than the quasiperiodic one. 6, 7 In other words, 
this system has a degree of aperiodicity intermediate be
tween quasiperiodic and random. More precisely, the 
Fourier-amplitude spectrum of the Thue-Morse sequence 
does not have &-function peaks. In contrast, the 
Fourier-amplitude spectrum of any quasiperiodic struc
ture is composed only of &-function peaks. Of course, 
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this is also the case for any periodic systems. Using a 
more accurate terminology, neither singular nor absolute
ly continuous components are present in the Fourier 
spectra of the quasiperiodic and periodic chains, while 
the spectrum of the Thue-Morse sequence has only a 
singular continuous component.8 

The first experimental realization of a Thue-Morse 
GaAsl AlAs SL which stimulates the present work is due 
to Merlin et al. 9 Other recent works related to the 
Thue-Morse sequence include a quantum-mechanical Is
ing model in a transverse magnetic field,10 a linear-chain 
model for lattice vibration,11 and tight-binding models for 
electrons. 12, 13 One of the basic questions is how does the 
lack of translational invariance, in general, and the 
Thue-Morse ordering (with its Fourier spectra without & 
peaks), in particular, affect the phonon transmission in a 
realistic SL? The effect of aperiodicity has not been fully 
explored so far since previous works in this area were re
stricted to weakly aperiodic (quasiperiodic) structures.3,4 

In order to answer this issue, we shall study both the 
transmission rate and dispersion relation of phonons 
propagating normal to the interfaces of Thue-Morse SL's. 
They should provide complementary information on the 
spectral properties of phonons characteristic of these 
aperiodic systems, which is accessible by phonon spec
troscopy experiments. More detailed information on the 
spectral properties of phonons will be obtained through 
the angular dependence of the transmission for phonons 
propagating oblique to the SL interfaces. All these calcu
lations for the Thue-Morse SL will indeed reveal a num
ber of spectral structures quite different from those in the 
periodic SL's, yet identifiable based on the SL-structure 
factors we shall derive analytically. 

In the next section we summarize information on the 
Thue-Morse sequence in order to make this paper self-
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contained. The structure factors of the Thue-Morse SL's 
appropriate to the phonon problem are derived in Sec. III 
for both double- and single-layer systems. The corre
sponding expressions for the structure factors in the 
periodic SL's are also presented. The transmission and 
frequency spectra of phonons in AIAs/GaAs SL's based 
on the Thue-Morse sequence are given in Secs. IV and V, 
respectively, for the propagation normal to the interfaces 
of both the single- and double-layer SL's. The angular 
dependence of the phonon transmission is shown in Sec. 
VI. The characteristic structures of all these phonon 
spectra obtained numerically are explainable in terms of 
the structure factors of the Thue-Morse SL's given in Sec. 
III. We summarize our results in Sec. VII. 

II. THE THUE-MORSE CHAIN 

The Thue-Morse sequence of order (or generation) N 
has 2N elements over the alphabet ! 0, 1 J, defined recur
sively as follows:6,7 

for integer n ~ 0 with t:o=O. The above recursion equa
tions generate, as n --+- 00, an infinite string of (binary) di
gits (0 or 1) which never repeats itself. In spite of this 
aperiodicity, the Thue-Morse sequence is self-similar. 
Furthermore, and unlike the quasiperiodic case, the 
Thue-Morse chain cannot be characterized by a finite set 
of irrational numbers. 

The sequence of some Thue-Morse SL parameters, for 
instance, the thickness of each type of layer (d A and dB) 
is obtained by associating with every 1 and 0 of the above 
sequence the values d A =d dB=cd respectively. There
fore, the deviation of c from unity conveniently gauges 
the lack of translational invariance in the system. In oth
er words, our results will obviously depend on the choice 
of c. Clearly, the c --+-1 limit corresponds to the usual 
periodic regime, while the limits c «1 and c »1 corre
spond to the strongly aperiodic regimes. Of course, nu
merical computations cannot handle the infinite aperiodic 
chain, however, the aperiodic Thue-Morse structure can 
be conveniently approximated by a sequence of chains 
with progressively larger unit cells of size 2N and periodic 
boundary conditions. 

Successive generations of the Fibonacci and Thue
Morse sequences are both obtained by iteration of the ex
tremely simple (concurrent) substitutions: (i) 0--+-01 and 
1--+-0 (under the Fibonacci construction) and (ii) 0--+-01 
and 1--+-10 (under the Thue-Morse construction). The 
former has been recently studied and discussed by many 
authors in the recent physics literature.2 However, the 
latter is relatively unknown to most physicists; therefore 
some background information on it might be appropriate. 

Sequences generated by reiteration of (concurrent) sub
stitutions have been studied in several areas of mathemat
ics, computer science, cryptography, and, more recently, 
physics. One of the first systematic studies of aperiodic 
sequences was made by Thue6 in 1906. His results have 
been rediscovered many times since then. In most cases, 
those "new" rediscoveries have been made in completely 

different disciplines. Morse7 studied substitution
ge~erated sequences in the context of topological dynam
ics. Others have analyzed them in such diverse topics as 
(i) ergodic theory,14 (m automata theory (tag machines, 
characterization of recognizable sets of numbers), IS (iii) 
formal language theory,16 (iv) solutions to algebraic equa
tions,17 and (v) combinatorial theory. IS This multiplicity 
of rediscoveries has yielded many different ways to define 
the Thue-Morse sequence. We will only mention here the 
simplest ways to generate it. The recurrence relation 
definition has been presented in Eq. (1). Alternatively, let 
r n be the number of 1 's in the binary representation of 
the integer n. Thus, 

(2) 

Yet another definition starts with the sequence of positive 
integers. After writing them in the binary representati~n, 
we sum the digits of every integer modulo 2 and obtain 
the Thue-Morse (TM) sequence. On the other hand, the 
so-called "word concatenation" approach starts with 
Wo=O, and defines WN+I=WNWN,forN~Owhere WN 
is obtained from W N by replacing every 0 with 1 and vice 
versa. Thus, WI =01, W2 =0110, W3 =01101001, 
W4 =0110100110010110, and so on. By omitting every 
other digit in a given sequence,-i.e., "decimation" -we 
obtain 01101001 (= W3 ), which is none other than the 
string of the preceding generation. In other words, the 
infinite TM sequence is not only aperiodic, but also self
similar. Thus, the usual symmetry, translational invari
ance, has been replaced by the invariance with respect to 
multiplicative changes of scale (i.e., scaling invariance). 
The scaling factor is, of course, equal to 2. Periodicity 
has always provided a useful tool to understand and sim
plify the formulation of physical problems (e.g., Bloch's 
theorem, crystal-momentum conservation). Of course, 
for aperiodic sequences, these tools become inapplicable. 
However, the concept of "periodicity" is still lurking 
behind (in a subtle way) the Thue-Morse construction be
cause "scale invariance" is nothing other than "periodici
ty on a logarithmic scale." 

III. STRUCTURE FACTORS OF THUE·MORSE 
SUPERLATTICES 

Similar to the cases of periodic and quasiperiodic SL's, 
the properties of the transmission and frequency spectra 
of phonons in Thue-Morse SL's are gained by studying 
the SL-structure factors which properly describe the in
terference effects of the phonons reflected at the inter
faces of constituent layers. 19 - 21 Here we shall consider 
the structure factors for the following two kinds of 
Thue-Morse SL's appropriate for phonon problems. 

A. Double-layer superlattice 

The double-layer SL consists of two building blocks ( A 
and B), each one of them composed, in general, of two 
kinds of layers with different elastiC properties and 
different thicknesses. This is the simplest case of multi
layer SL's in which the interfaces between consecutive 
A A (BB) blocks in the sequence are well defined. A 
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schematic double-layer Thue-Morse SL is shown in Fig. 
1(a). We assume that the first (second) layers of both A 
and B blocks are composed of the same materials. For 
instance, AlAs and GaAs will be chosen as the first and 
second layers of each block: Furthermore, it is assumed 
that the substrate of the SL and the thin-film phonon 
detector deposited on the other surface of the SL has the 
same elastic properties as the second layer of building 
blocks. This means that phonons are totally transmitted 
from the top layer of the SL into the detector, although 
their transmisison is only partial between the substrate 
and the SL. 

Provided that the interfaces of a SL are the mirror
symmetry planes of the constituent crystalline materials, 
all three modes of phonons propagating normal to the SL 
are decoupled from each other. Thus for the normal in
cidence of phonons only intramode reflection and 
transmission occur at interfaces and the amplitude
reflection coefficient r21 for a phonon impinging on an in:
terface from the second-layer takes the form20 

Z2-Z 1 

r21=Z +Z 
2 1 

(3) 

where the acoustic impedances Zn (n = 1,2) are defined 

with 

(5b) 

where the factors 1 ± and 1 = (I + + 1 _ ) 12 represent 
modulation effects on acoustic fields due to the internal 
structures. of the building blocks and explicitly they are 
given by 

1 + (UJ) =h (UJ )(2+e ia+eib) , 

1 _(UJ)=h(UJ)(eia-e ib ) . 
(6) 

For comparison's sake, here we give a similar expres
sion for the structure factor S: of an associated peri
odic, double-layer SL consisting of the sequence 
ABABAB'" , 

IS:(UJ)12=4N-ldll/(UJ):q::cos[2n -2(a +b)] 12 , 

N~2, (7a) 

with 

Comparing Eq. (5) with the structure factor given by 
Cheng et al. [Eq. (9) of Ref. 13], we recognize that the 
basic properties of the structure factor for the linear 
Thue-Morse chain are also valid for the structure factor 
of the double-layer Thue-Morse SL. The most obvious 

by Zn =Pnvn with Pn the mass density and vn the sound 
velocity. Next, we define an=2kndnA=2UJdnAlvn and 
bn =2kn d:=2UJd: Ivn , where k n are the wave numbers, 
UJ is the angular frequency, and dnA and d: are the 
thicknesses of the layers of A and B blocks, respectively. 
Taking the SL structure shown in Fig. 1(a) into account, 
we find the following recursion relations satisfied by the 
structure factor sltM of the double-layer Thue-Morse SL 

Slt~1 (UJ)=sltM(UJ)+S~M(UJ)exp[2N-li(a +b)] , (4a) 

S~~I (UJ)=S~M(UJ)+SltM(UJ)exp[2N-li(a +b)] , 

for N~ 1; (4b) 

STM(UJ)=r21[hA(UJ)+hB(UJ)eia] , (4c) 

where N is the generation number, h A = 1 - exp(ia 1 ), 

hB = l-exp(ib,), a =al +a2' b =b 1 +b2, and S~M is the 
"complement" of sltM obtained by interchanging in sltM 
the variables characterizing A and B blocks. In the fol
lowing we assume that the first layers of both A and B 
blocks have the same thickness, i.e., d t =df, but 
d{=I=df. This means that al =b 1 and we define 
h =h A =hB. 

Now, solving Eq. (4), we have 

N~2 , (5a) 

feature deduced from Eq. (5) is the Bragg reflection of 
phonons in the Thue-Morse SL, which occurs at the same 
frequencies as in the periodic system. (Its existence is, 
however, not recognized in the expression of the struc
ture factor derived by Cheng et al. 13) This basically 
arises from the fact that the Thue-Morse SL is construct
ed by arranging two kinds of double blocks AB and B A 
so that the resulting array of the blocks may form a 
Thue-Morse sequence. The same amount of the phase of 
(a + b ) 12 is added to acoustic fields after the perfect 
transmission of phonons through these double blocks. 
This implies that the phonons with frequencies satisfying 

'a +b =2m1T, m = 1,2,3, ... (8) 

are strongly reflected in this nonperiodic SL. Equation 
(8) is the same condition as the Bragg condition for pho
nons in the periodic SL defined above. Thus we can re
gard that the Thue-Morse SL effectively has a periodicity 
not explicitly seen in its sequence. 

Now in the double-layer SL the Bragg condition (8) is 
satisfied at frequency UJ=UJm , where 

UJ m = (d A dB) (d A dB 1 + , IVI + 2 + 2 ) IV 2 
(9) 

and the index m indicates the order of the reflection. At 
these frequencies Eqs. (5) and (7) are reduced to 



40 TRANSMISSION AND FREQUENCY SPECTRA OF ACOUSTIC ... 9793 

(a) 

(b) 

~2~ _____ B 
1 

2 
--:l~-----A 

2 
-::------A 

-=2=----r-:-...-L=-*--- B 
1 

-~,..---.--:--,-L-=--- A T 
N=3 

....;2c--_____ B N = 2 

1 j ....:2~(G:_;a::;.A.:.:;s'!_) ___ B T 
_l~(A;;:.:I~A::;;s)'__ ___ - - - N=1 

2 (GaAs) * 
)7>~~)777777? -~- -L_L--L_ 

substrate 

A A 
-~----------- B' 

A A 
B B 

-~-----------~ 
A 

-~ - - - - - - - - - - -- B' 
B 

-~-----------~ 
A 

B Ida B 
A IdA A 
B , 

-8 -(GoA$) - - - - - - B 

A (AlAs) A 
777777777/77 

substrate 

A 

FIG. 1. Schematic Thue-Morse superlattice (SL) systems 
consisting of building blocks A and B. (a) Double-layer SL in 
which each building block has two layers of different materials. 
(The first three generations are shown.) The constituent materi
als of the first (also the second) layers in both A and B blocks 
are assumed to be the same but with different thicknesses 
(denoted by d t and d f for the first layers and d t and d f for the 
second layers) in general. AlAs and GaAs are assumed for the 
constituents of the first and second layers in the numerical ex
amples. (b) Single-layer SL in which both A and B blocks are 
composed of one layer of different materials with thicknesses d A 

and dB' In this SL, adjoining AA and BB blocks should be 
treated as new building blocks and are denoted by A' and B', 
respectively. A large A consisting of 16 original A and B blocks 
is regarded as an effective unit block of the sequence (see the 
text). AlAs and GaAs are assumed for the constituents of A 
and B blocks in the numerical calculation. 

ISZM(wm )1 2=4N - 1d 1 If +(wm )/21 2 , 

IS~(wm )!2=4N - 1dll!(Wm)!2 . 
(10) 

Hence, the spectral intensities at Bragg frequencies wm 
grow as 4N with increasing the generation number N. At 
these frequencies the magnitude of the spectral peaks in 
the Thue-Morse SL relative to the periodic SL becomes 

If +(Wm ) 12-- 1 +cosam 
2f(wm ) 2' 

(11) 

where am =a(w=wm ). Equation (11) means that 
IS~(wm )!2 ~ ISZM(wm )!2 for double-layer SL's. Thus we 
can expect that at W m ' the magnitude of transmission 
dips as well as the width of frequency gaps in the periodic 
SL are larger than or equal to those in the Thue-Morse 
SL. This will be confirmed numerically in Sec. VI. 

The spectral properties truly characteristic of the 
Thue-Morse SL appear at wm/3=wm /3 (m~3n). The 
existence of peaks of the structure factor at these frequen
cies was found by Cheng et aI. 13 by studying the scaling 
properties of the spectral intensity in the linear Thue
Morse chain. At wm l3' 

Icos[2n(a +b)]1 =t < Isin[2n(a +b)]1 =V3/2 

holds, and hence for a large generation number N we find 

ISZM(wm/3W=3N-Ir~llf _(Wm/3)/21 2 • (12) 

Accordingly, the spectral intensities at wm/3 increase in 
proportion to 3N with increasing the generation number 

. N, which is much slower than the 4N behavior at wm • 

Next we define the scaling exponent TJ(w) in the limit of 
largeNby 

(13) 

where L = 2N is the effective size of the system. Then it is 
deduced that TJ(wm )=2 and TJ(wm I3)=ln3/ln2 
= 1.585 ... , and the latter exponent has been proven to 
be the largest nontrivial exponent other than the former 
associated with the Bragg reflection. \3 

Several basic properties of the scaling exponents for 
the Thue-Morse chain which are equally applicable to the 
SL systems have been derived. \3 One of the relevant 
properties to our problem is that TJ(wx)=TJ(wy ) if 
a=x -y (modl) has a finite-length binary representation, 
where Wx and Wy are define4 by Eq. (9) with m replaced 
by x and y, respectively. For instance, a=±t have the 
shortest length and a = ±t (also ±t) have the second 
shortest length binary representations, and so on. Ac
cordingly, besides the spectral peaks at· wm only those 
peaks at wm/3 as well as those related to the frequencies 
wm l3+A should persist for the Thue-Morse SL with a 
large generation. All these predictions will be confirmed 
by the numerical results for the transmission and fre
quency spectra of phonons developed in the next section. 

B. Single-layer superlattice 

The Thue-Morse SL realized by Merlin et aI.9 consists 
of the sequence of two-single-layer building blocks A and 
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B with thicknesses d A and dB' respectively. Because 
phonons cannot recognize the existence of the interfaces 
between consecutive A A and BB blocks in this system, 
we should regard these double blocks as new units and 
denote the former and latter blocks by A' and B', respec
tively. A close examination reveals that the sequence of 
eleven blocks AB' AB A' B' A ' B AB' A shown in Fig. l(b) 
(which consists of sixteen original A and B blocks) is to 
be chosen as the l.mit of the single-layer Thue-Morse SL. 
We denote this large unit block by X (the zeroth genera
tion). Then we find that the first generation (N= 1) con
sists of the block X concatenated with its complement ii. 
Similarly, the higher generations comprise arrangements 
of X and ii blocks following the Thue-Morse sequence, 
i.e., Xiiii Xii X Xii .... 

Now, it is assumed that both the substrate and phonon 
detector attached to each other on the opposite sides of 
this SL system have the same elastic properties as the 
constituent of B block. Under this assumption we can 
also derive the recursion relations satisfied by the struc
ture factor sJrM and its complement s~M of the single
layer SL 

(14a) 

This equation is similiar to Eq. (5) for the double-layer 
SL. 

Here we shall give again the corresponding expression 
for the structure factor s~ of the periodic single-layer SL 
consisting of the sequence of alternating A and B blocks, 
i.e., AB AB AB .. '. For the coordination with the 
Thue-Morse SL we regard the periodic sequence involv
ing 32 blocks (sixteen A blocks and sixteen B blocks) as 
the first generation, i.e., N = 1, and we find 

Is~(w)j2=4NrjA Ig(W)n~ICos[2n+2(a+{3)] 1
2

, N~ I , 

where g = (g + + g _ ) 12 and explicitly 
7 

g(w)=( l-e ia ) l: einCa+P> . 
n=O 

(17) 

(18) 

In the single-layer Thue-Morse SL the Bragg reflection 
of phonons due to the implicit periodicity of the sequence 
occurs at the frequencies satisfying a+{3=2m1T or 
w=w;,., where 

, m1T 
wm= , m=I,2,3, •..• 

d A IVA +dBlvB 

At these frequencies Eqs. (16) and (17) become 

IsJrM(w;" Ji2=4NrjA Ig + (w;" )/21 2 , 

Is~(w;" Ji2=4NrjA Ig(w;" Ji2 . 

(19) 

(20a) 

(20b) 

S~~1 (w)=s~(w)+sJrM(w)exp[2N+2i(a+lm , 

N ~O ; (14b) 

with 

sJM(w)=rBA[g+(W)+g_(w)]l2, (14c) 

where 

a=2kAd A =2wdA /VA' (3=2kBdB =2wdB /VB' 

rBA is the amplitude-reflection coefficient at the interface 
between B and A blocks defined similarly as Eq. (3), and 

7 
g+(w)=(eiP-e ia ) l: einCa+P> , 

n=O 
(15) 

g _ (w)=(2_eia_eiP)[I_e2iCa+P)+e6iCa+P>] 

+(eia+eiP)[eiCa+P)_e3iCa+P) 

+e4iCa+P)_e5iCa+P)] . 

Solving Eq. (14), we have 

(16) 

Accordingly, the magnitude of the spectral intensities in 
the single-layer Thus-Morse SL relative to those in the 
periodic SL is given by 

1 g +(w;") 12= 1 +cosam , (21) 
2g(w;") 2 

where am =a(w;"). Equation (21) predicts that also in 
the single-layer systems the spectral peaks at Bragg fre
quencies are always larger in the periodic SL than those 
in the Thue-Morse SL. 

From Eq. (16) we find at W;"/3= W;"/3 and for a large N 

IsJrM(w;"/3)j2=3NlrjAg_(w;"/3)/21 2 , , (22) 

which should be compared to Eq. (12) for the double
layer SL. Thus we see that both the single- and double
layer SL's should exhibit the same fundamental spectral 
properties as those in the linear Thue-Morse chain. 

IV. FREQUENCY DEPENDENCE OF TA-PHONON 
TRANSMISSION RATE 

In order to verify the spectral properties of phonons in 
the Thue-Morse SL's predicted in Sec. III, we shall calcu
late the transmission rate of T A phonons propagating 
parallel to the growth direction. Here we note that with 
the use of phonon-spectroscopic methods the frequency 
dependence of the transmission was measured for both 
crystalline22 and amorphous23 SL's with regular periodi
city. The significant dips in transmission which evidence 
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the Bragg reflection due to these artificially modulated 
periodicities were observed. 

The calculation of transmission rates in the periodic 
and quasiperiodic SL's have been performed by using the 
transfer-matrix method.3•s The same kind of calculation 
will be applied to the Thue-Morse SL's, only the input se
quence of building blocks needs to be changed. Figure 
2(a) shows the result for a double-layer Thue-Morse SL, 
where we have assumed the (OOl)-oriented AlAs and 
GaAs as the first and second layers of both A and B 
blocks, respectively, and their thicknesses are d ~ 
=df=17 A (AlAs layers), d1=42 A, and df=20 A 
(GaAs layers). The fifth generation is assumed for the 
calculation. For higher generations the transmission dips 
present in this figure become more significant and addi
tional small dips with narrower frequency widths appear 
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FIG. 2, Frequency dependence of TA-phonon transmission 
rate in double-layer (OOll-oriented AlAs/GaAs SL's. Propaga
tion is normal to the SL interfaces. (a) Thue-Morse SL. (b) 
Periodic SL. Layer thicknesses are d r =df = 17 A (AlAs lay
ers), dt =42 A, and df =20 A (GaAs layers) and the fifth gen
eration with 32 blocks (64 layers) is assumed. Dips are labeled 
by the indices of the frequencies predicted by the structure fac
tors (see the text). 

densely. The apparently complicated distribution and 
magnitude of these transmission dips are, however, well 
understood in terms of the structure factor sir given by 
Eq. (5). The dips labeled by integers (m = 1-8) are attri
buted to Bragg reflections due to the underlying periodi
city. This can be confirmed by comparing Fig. 2(a) with 
Fig. 2(b) which exhibits the transmission rate in the cor
responding periodic system consisting of alternating A 
and B blocks. Those Bragg dips in the Thue-Morse and 
periodic SL's occur at the same frequencies rom at which 
the spectral intensities have peaks, and a remarkable 
correlation in their magnitude is clearly observed. 

The dips other than those resulting from Bragg 
reflection are ascribed to the nonperiodicity of the se
quence and unique to the Thue-Morse SL. Several major 
dips are found at the frequencies rom/3 (m*3n) predicted 
by the property of the structure factor, and in Fig. 2(a) 
they are labeled by the associated fractional numbers 
m /3. The remaining dips can also be identified based on 
the discussion developed in Sec. III and are labeled by the 
sets of integers (m, k) or (m, f), which define the frequen
cies roz at which they occur, where z = m /3 + (t )k for the 
former set and z = m /3 - (t)k for the latter set. 

We are left to account for the relative magnitUdes of 
the calculated transmission dips. They are related to the 
spectral intensity of the Thue-Morse SL and hence basi
cally described by Eq. (5) as well. In Table I we have 
tabulated the magnitude of the spectral intensities of the 
Thue-Morse and periodic SL's at Bragg frequencies. 
These results are well in accord with the relative magni
tudes of transmission dips not only within each SL but 
also between the Thue-Morse and periodic SL's. We 
have also given in Table II the spectral intensities at 
rom/3 (m :::: 11) in the Thue-Morse SL. Again they corre
late well with the magnitUde of transmission dips shown 
in Fig. 2(a). ' 

The result for the single-layer Thue-Morse SL is shown 
in Fig. 3(a), where we have assumed d A =dB =20 A and 
the (OOl)-oriented ALAs and GaAs as the constituents of 
the A and B blocks, respectively. This choice of blocks is 
exactly the same as that for the SL sample fabricated and 
used in the experiment by Merlin et al. 9 Almost all dips 
in transmission found in Fig. 3(a) are labeled in the same 
way as in Fig. 2(a). The only modification needed is to re
place ro by ro'. Here we note that the dips labeled by a 
and £ occur at ro=ro~, where z=t+f and z=f-f, re-

TABLE I. Spectral intensities at frequencies Vm =wm 12rr in 
the double-layer AlAs/GaAs SL's. The phonon mode is TA. 

m 

2 
3 
4 
5 
6 
7 
8 

Vm (GHz) 

184 
368 
551 
735 
919 

1102 
1286 
1470 

II + 1214 ( ex: IsTMI2) 1/12 ( ex: ISPI2) 

0.018 0.13 
0.77 1.47 
2.72 3.29 

2X 10-5 0.007 
1.21 1.35 
0.02 0.05 
0,02 0.09 
2.12 2.14 
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TABLE II. Spectral intensities at frequencies 
vz =Wz /21T (z=m/3) in the double-layer Thue-Morse SL. The 
phonon mode is TA. 

z Vz (GHz) If _12/4 ( ex: IsTMI2) 

1 61 0.007 '3 
2 122 0.10 '3 
4 245 1.09 '3 
s 306 1.97 '3 
7 429 3.21 '3 
8 490 3.01 '3 
\0 612 1.25 T 
11 674 0.43 T 

spectively. Actually, in the binary representation 
i=O.Oll and z=m/3+q.Jk is not sufficient to label all 
small dips characteristic of the Thue-Morse SL's. A re
markable aspect observed in the transmission spectra of 
phonons in the single-layer SL is that most of the dips at 
co;" 13 are larger than the dips at co;". It should be noted 
that in the double-layer SL the dips at COm dominate those 
at COm 13' 

For comparison's sake we have also shown in Fig. 3(b) 
the corresponding result for the periodic SL consisting of 
the sequence AB AB AB . .. of the same building blocks. 
Because a unit period d A +dB =40 A much shorter than 

. 96 A (=d t +d t +df +df) of the double-layer SL is as
sumed, only three Bragg dips are found in Fig. 3(b) in the 
frequency range 0 THz to 1.5 THz, whereas eight dips 
are found in Fig. 2(b). Now, we observe that the correla
tion in the magnitude of transmission dips due to Bragg 
reflection is not evident between these single-layer Thue
Morse and periodic SL's, although they still occur at the 
same frequencies. This is because the single-layer Thue
Morse SL has a complicated unit-cell structure as de
scribed in the previous subsection, i.e., the effective unit 
blocks are not A and B but rather A and its complement 
B involving 16 original A and B blocks. 

w 
!;;:: 
a:: 
z 
o 
Ci5 
(J) 

1.0 

:E 0.5 
(J) 
z 
< a:: 
I-

o 

1.0 

w 
!;;:: 
a:: 
z 
o 
Ci5 
(J) 
:E 0.5 
(J) 
z 
< a:: 
I-

o 

o 

o 

""1 f{ I ~ "., ,.. I 'I 

5/3 7/31 
Il y (8.2) 

(2,2) 
(4.2) 

1/3 m=l 

(7.2) 

(2.3) 6 (5.2) 

(1.2) Cl e (7.1) 
(8.1) 

(1,1) (2,1) Il (2.2) 2 

(a) 2/3 y (4.2) 8/3 3 
4/3 6 (4,3) 

0.5 1.0 1.5 
FREQUENCY (THz) 

.. , ,..' .... '1 r 

2 
(b) m=l 3 

0.5 1.0 1.5 
FREQUENCY (THz) 

FIG. 3. Frequency dependence of TA-phonon transmission 
rate in single-layer (OOl)-oriented AIAs/GaAs SL's. Propaga
tion is normal to the SL interfaces. (a) Thue-Morse SL. (b) 
Periodic SL. Thicknesses of blocks are d A = dB = 20 A, and the 
second generation with 64 original A and B blocks is assumed. 
Dips are labeled by the indices of the frequencies predicted by 
the structure factors (see the text). 

TABLE III. Spectral intensities at frequencies vz =Wz /21T (z=m and m/3) in the single-layer SL's. 
The phonon mode is T A. 

z Vz (GHz) Ig+ /161 2 (ex: IsTMI2) Ig/sj2 ( ex: Is PI2 ) Ig _ /161 2 ( ex: Is TMI2) 

1 151 0.11 '3 
2 301 0.93 '3 

452 0.Q7 3.93 
4 603 0.S75 '3 
s 753 0.Q7 '3 
2 904 0.27 0.29 
7 1055 0.04 '3 
8 1205 0.66 '3 
3 1356 0.53 3.37 
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Table III shows the spectral intensities calculated from 
the structure factors at w=w;" and w;"/3. The relative 
magnitudes of transmission dips in the single-layer SL's 
are again well described in terms of the spectral intensi
ties given in this table. Thus, the structure factors we 
have derived successfully predict the properties of the 
transmission spectra (Le., both the frequency and magni
tude of transmission dips) of phonons in the Thue-Morse 
SL's. 

v. FREQUENCY SPECTRA 

As in the case of quasiperiodic systems,3,24 an impor
tant insight into the spectral properties of phonons in a 
Thue-Morse SL would also be gained by studying the 
dispersion relations in this aperiodic layered system. 
They can be calculated by imposing a Bloch-like bound
ary condition on the acoustic fields in the SL. A similar 
boundary condition has been used to obtain the disper
sion relations in a Fibonacci SL. 3 In the present calcula
tion we have assumed an infinite repetition of a large 
"unit cell" which involves 124 blocks (corresponding to 
the seventh original generation) making up a Thue-Morse 
sequence. 

Figures 4(a) and 4(b) show the dispersion relations of 
both LA and T A phonons propagating normal to the 
double- and single-layer Thue-Morse SL's assumed in 
Sec. VI, respectively. In order to get these plots we have 
calculated the wave number for 5000 frequencies evenly 
distributed between 0 and 1 THz. If the wave number 
calculated is real, the chosen frequency is in an allowed 
band and a traveling wave is associated. However, if it is 
complex the corresponding frequency is in a forbidden 
gap and no traveling wave is excited. Note that in each 
figure the dispersion curve of the LA branch acts as the 
magnification of the low-frequency part of the T A 
branch. 

A number of distinct frequency gaps can be seen as ex
pected in the discussion developed in Sec. III. All these 
frequency gaps are confirmed to occur at frequencies 
Om' 0mI3, and 0mI3+.:l.' where O=w or w', and they 
have one-to-one correspondences to the dips in transmis
sion shown in Figs. 2(a) and 3(a). Moreover, the gap 
width correlates well with the magnitude of the corre
sponding transmission dip. Accordingly we can also la
bel the frequency gaps in the dispersion curves by the 
same indices as we have used to label the transmission 
dips. Thus, the dispersion relations provide complemen
tary information on the spectral properties of phonons in 
the Thue-Morse SL's based on a nonperiodic, determinis
tic sequence. 

One of the interesting problems on the spectral proper
ties in the Thue-Morse SL is the fate of the frequency 
gaps at 0m13 (and also at 0ml3+.:l.) in the N -+ 00 limit. 
As the generation number increases the spectral intensi
ties or peaks at these frequencies grow in proportion 3N, 

while they grow as 4N at Om. Hence the former peaks 
vanish relative to the Bragg peaks. However, the situa
tion is not so simple. Based on a perturbative argument, 
Cheng et al. 13 suggested that those gaps will persist even 
in an infinite system probably related to the appearance 

of additional small spectral peaks arbitrary close to 0mI3. 

In order to gain an insight into this basic issue we have 
investigated numerically the TA-phonon dispersion rela
tion in more detail. Here, the double-layer AIAs/GaAs 
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FIG. 4. Dispersion relation of phonons propagating normal 
to the interface of the same (OOl)-oriented AIAs/GaAs SL's as 
in Figs. 2 and 3. (a) Double-layer Thue-Morse SL. (b) Single
layer Thue-Morse SL. The frequency gaps are labeled in the 
same way as in Figs. 2 and 3. 



9798 S. TAMURA AND FRANCO NORI 40 

SL [cf. Fig. 4(a)] is assumed. The magnifications of a por
tion of the dispersion curve involving both CtJ7/3 and 
CtJ.,. =CtJS/3-1/4 are displayed in Fig. 5 for three different 
generations. Note that the ninth and eleventh genera
tions of the Thue-Morse SL consist of 512 blocks (1024 
layers) and 2048 blocks (4096 layers), respectively. Now, 
comparing the plots for the ninth and tenth generations 
the subdivision of allowed frequency bands is clearly seen 
in the dispersion curve of the higher generation. More 
specifically, each larger band is split into three smaller 
bands as the generation number increases. At the same 
time the diminishing or disappearance of certain bands·is 
also recognized. These changes should be arising from 
the occurrence of additional small frequency gaps and as
sociated reorganization of the former bands. 

The same hierarchical behavior of the band structure 
proceeds as the generation number further increases (cf. 
the dispersion curve in the eleventh generation). Re
markably, however, the width of the large frequency gap 
in which CtJ7/3 is found does not exhibit any tendency to 
diminish with increasing the generation number. A simi
lar result is also seen for the smaller gap in which CtJ.,. is in
volved. For comparison's sake, the dispersion curve at 
frequencies close to CtJ2 is plotted in the inset for the tenth 
generation. The structure of the band edges on either 
side of this large Bragg gap is quite stable and almost un
changed even when the generation number is varied. We 
have also confirmed numerically that the same conse
quence for the persistence of the band gaps is valid at 
CtJ=CtJ;"/3 in the single-layer SL. Combining the above re-

0.45 

N 
:r: ..... 

0.44 

> 
0.43 

0.42 

v"'[-

,,-
'" 

/ / ./ 

.-

0.39 
N-l0 

N 
:I: 
t: 

0.37 

> "2-

0.35 

0.41-1'---L----''-------------.-J 
q 

FIG. 5. Generation-number (N) dependence of the TA
phonon dispersion relation in a frequency region covering the 
frequency gaps in the vicinity of "7/3 and "r="8/3-1/4 

("=(L)/21T). The double-layer SL and normal incidence [the 
same as Fig. 4(a)] are assumed. These plots are obtained by cal
culating the wave numbers q for 104 to 2.5 X 104 frequencies 
equally spaced from 0.410 to 0.455 THz. Inset shows the 
dispersion curves in the vicinity of"2 for the tenth generation. 

suIts with the fact that (f)N=0.042 for N= 11, it is quite 
probable that the frequency gaps at CtJm /3 (also CtJ;"/3) with 
m =#:3n still persist in the N --+ 00 limit of the Thue-Morse 
SL. 

VI. ANGULAR DEPENDENCE OF THE TRANSMISSION 
RATE 

So far, we have shown the results for phonons propaga
ting parallel to the growth direction of SL's. For oblique 
phonon propagation, the situation becomes much more 
complicated. Mode conversions occur among three 
different polarizations of phonons by the reflection and 
transmission at SL interfaces. An important result of the 
mode conversion at the oblique propagation is the oc
currence of intermode phonon-Bragg reflection in addi
tion to ordinary intramode Bragg reflection. This has 
been established for phonons in the periodic5 and quasi
periodic3.4 SL's both theoretically and experimentally. 

We expect the similar intermode reflections to occur in 
the Thue-Morse SL's. Figure 6(a) exhibits the angular 
dependence of the LA-phonon transmission rate in the 
double-layer Thue-Morse SL assumed in Sec. IV. The 
frequency is fixed to 850 GHz, Le., the threshold frequen
cy of PbBi tunnel junction used as a phonon detector, 5 

and the propagation plane is 22. 5° rotated away from 
both the (100) and (110) crystal plane of GaAs layer. 
(Note that GaAs is usually used also for a substrate of 
AIAs/GaAs SL). Several distinct dips in transmission 
can be seen in the angular dependence as well. Compar
ing Fig. 6(a) with Fig. 6(b) which shows the same 
transmission rate in the corresponding periodic double
layer SL, we recognize a remarkable correlation in major 
transmission dips in these systems. More specifically, all 
transmission dips in the periodic SL have their counter
parts in the Thue-Morse SL, i.e., the dips appearing at 
the same propagation angles with very similar magnitude 
and width. A close correlation in the spectral properties 
of phonons found previously3,4 in the periodic and quasi
periodic SL's with double-layer structure has recently 
been established theoretically.21 Because all transmission 
dips in the periodic SL are due to Bragg reflection, those 
correlated dips in the Thue-Morse SL are also due to 
Bragg reflection originating from the periodicity dis
cussed in Sec. III. In Fig. 6(b) we have indicated the 
reflection processes and the order of the reflection. Simi
larly, the origins of the transmission dips truly charac
teristic of the nonperiodicity of the Thue-Morse sequence 
are equally identified and labeled in Fig. 6(a). 

These identifications of the transmission dips can be 
made by slightly extending the discussion given in Sec. 
III. ·Here we may only note that the wave number k n 
defined there is the normal component of the wave vector 
in the nth layer. Hence, in the double-layer SL the 
transmission dips or frequency gaps at oblique propaga
tion of phonons of frequency CtJ are predicted to appear at 
angles satisfying 

(23) 
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where z = m, m /3, and m /3 + a, and 8 1 and 82 denote 
the polar angles of the wave vectors in the first and 
second layers (in the wave-vector space). In Eq. (23) VI 

and v2 are the sound velocities in these directions. It 
should be remarked that both 8 1 and 82 are different from 
8 representing the polar angle of the group-velocity vec
tor owing to the presence of the elastic anisotropy of the 
constituent layers. The quantities 8 and V in the layers 
are further related to each other by Snell's law 

. VI v2 

sine l = sin02 ' 
(24) 

which is the manifestation of the translational symmetry 
of the system in the direction parallel to the interfaces. 

Several transmission dips due to intermode-phonon
reflection processes are indicated in both Figs. 6(a) and 
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FIG. 6. Angular dependence of LA-phonon transmission rate 
in the double-layer (OOl)-oriented AIAs/GaAs SL's assumed in 
Fig. 2. (a) Thue-Morse SL. (b) Periodic SL. Frequency is 850 
GHz. 8 indicates the polar angle (in the real space) measured 
from the normal to the SL, i.e., the [001] axis, and in the plane 
22.5° rotated away from both (100) and (110) planes. (a) The 
prominent dips other than those due to Bragg reflection are la
beled by the reflection processes together with the indices relat
ed to the reflection. 

6(b). For the intermode reflections between the longitudi
nal and transverse modes Eq. (23) should be modified as 

2 [eL eT
] A B cosn cos n _ (U.l: (dn +dn ) --L-+--T- -21TZ, 

n=1 Vn Vn 

(25) 

which is supplemented by 

vL vT n _ n 

sinO~ - sinO! ' 
(26) 

together with Eq. (24). Here, Land T stand for the longi
tudinal and transverse modes, respectively. The inter
mode reflections between two different T A modes are also 
possible in SL's. 

The angular dependence of the LA-phonon transmis
sion rate in the single-layer Thue-Morse SL is shown in 
Fig. 7(a). Significant dips in transmission are equally ob
served. Comparing Fig. 7(a) with Fig. 7(b) exhibiting the 
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FIG. 7. Angular dependence of LA-phonon transmission rate 
in the single-layer (OOl)-oriented AIAs/GaAs SL's assumed in 
Fig. 3. (a) Thue-Morse SL. (b) Periodic SL. Frequency is 850 
GHz. 8 indicates the polar angle (in the real space) measured 
from the normal of the SL, i.e., the [001] axis, in the plane 22.5° 
rotated away from both (100) and (110) planes. The reflection 
processes and the indices related to the reflection responsible for 
prominent dips are also indicated. 
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result for the periodic SL, the correlation in the magni
tude of Bragg-reflection dips is· not evident in these SL 
systems though the dips are still found at the same angles 
satisfying the Bragg condition. The reason for this is 
again attributed to the fact that the blocks A and jj re
garded as well-defined units for the Thue-Morse sequence 
in this SL are quite different from the original A and B 
blocks comprising the unit cell AB of the periodic SL. 

All those dips in Figs. 7(a) and 7(b) are identified as in 
the case of double-layer SL by the equations similar to 
Eqs. (23)-(26), where VI and V2 are replaced by v A and vB 

(the similar replacements are applied for 0), and d t +df 
and d -1 + d f by d A and dB' respectively. In this SL sys
tem the main transmission dips found in the angular 
dependence are those associated with the characteristic 
frequencies W;"/3 and w;"/3+~ rather than w;". The same 
result has been seen in the frequency dependence of the 
transmission. Note that the transmission dips due to in
termode reflections are also recognized in both Figs. 7(a) 
and 7(b). 

Phonon imaging has proved to provide an ideal tool to 
exploit experimentally the angular dependence of quasi
monochromatic phonon transmission in SL'S.4.5 The 
transmission dips characteristic of the aperiodic Thue
Morse sequence would rather easily be observed experi
mentally by using the single-layer SL as a sample. this is. 
because major transmission dips in the double-layer 
Thue-Morse SL are related to the Bragg reflection due to 
periodicity. (The fine dips are difficult to resolve experi
mentally by the limited frequency and angular resolution 
of the current phonon detectors.) However, almost all 
major transmission dips in the single-layer Thue-Morse 
SL found here are truly characteristic of the nonperiodi
city of the basic sequence, and so they would readily be 
detected by phonon imaging. 

VII. CONCLUSIONS 

The experimental realization of AIAsIGaAs Thue
Morse SL's by Merlin et al. 9 aroused our interest in the 
vibrational properties of the systems which are neither 
periodic, quasiperiodic, nor random. In this paper we 
have derived the SL structure factors and studied spectral 
properties of acoustic phonons in the Thue-Morse SL's. 
The phonon transmission dips and frequency gaps in 
these systems are found at frequencies Om (=w m or w;") 
associated with mth-order Bragg reflection and at 
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0m/3 =Om 13 as predicted by the structure factors. 
Much finer spectral structures also appear at Om/3+~' 
where II:.I is less than unity and has a finite-length binary 
representation. As the size of the system (or equally the 
generation number) increases, the distribution of fine 
spectral dips or gaps becomes increasingly dense. 

An interesting problem is whether transmission dips 
and frequency gaps at 0m/3 persist in the N _ 00 limit. 
As the generation number increases the spectral intensi
ties or peaks at Om and Om/3 grow in proportion to 4N 
and 3N, respectively, and thus it is naively expected that 
the latter vanish relative to the former. However, Cheng 
et al. suggested that they will persist even in an infinite 
system. 13 Our numerical calculation seems to support 
their expectation. 

Through this work we have considered both double
and single-layer SL's as prototypes. It is found that the 
main structures of the transmission and frequency spec
tra in the double-layer Thue-Morse SL rather resemble 
those in the corresponding periodic SL, and the spectral 
peaks at wm originated from the Bragg reflection dom
inate. In the single-layer SL, however, the spectral inten
sities at W;"/3 unique to the aperiodicity of the sequence 
have larger magnitudes than those· at w;". This result 
suggests that the single-layer SL is more appropriate than 
the double-layer one for the experimental verification of 
the spectral structures characteristic of the Thue-Morse 
sequence. 

Some areas for future studies on the Thue-Morse se
quence might include further mathematical analysis of 
the spectra25 and experimentally relevant studies on net
works. 26 
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