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Anomalously long lifetimes of high-energy surface acoustic phonons 

Shin-ichiro Tamura 
Department of Engineering Science, Hokkaido University, Sapporo 060, Japan 

(Received 3 January 1984) 

The lifetime of Rayleigh surface phonons as opposed to decay via anharmonic three-phonon pro
cesses is calculated in the regime OOR »kBT. The surface phonon decays predominantly by com
bining with a bulk transverse phonon to create another bulk transverse phonon. The energy
momentum conservation of the processes imposes the condition that those bulk phonons which may 
interact with the surface phonons should possess frequencies of the same order of (l)R' However, 
such high-frequency phonons are rarely excited thermally under the condition considered here, lead
ing to an anomalously long lifetime of the surface phonons in proportion to 
(l)'R4,sT-o,sexp( A OOR /kB T), where A is a constant of the order of 0.1. We also estimate numerical
ly the magnitUde of the lifetime. 

I. INTRODUCTION 

Lifetimes of surface acoustic phonons (Rayleigh waves) 
as opposed to decay via anharmonic three-phonon pro
cesses considered so far are restricted to those in the re
gime 1WJR ;SkBT, where WR is the angular frequency of 
the surface phonons (R means the Rayleigh mode) and T 
is the ambient temperature in a solid.'-4 It is well estab
lished both theoretically' and experimentally5 that the de
cay rate (i.e., the reciprocal of lifetime) of surface phonons 
is proportional to WR T4 under the conditions 1WJR «kB T 
and W R rth» 1, where rth is the relaxation time of 
thermally excited phonons which interact with surface 
phonons. It should be noted that this frequency and tem
perature dependence is identical to that of the attenuation 
rates of bulk phonons satisfying the same conditions.6 A 
slightly different result was deduced by Sakuma and 
Nakayama4 on the decay rate of surface phonons in the 
regime 1WJR =kBT. By numerical calculations they found 
that it is approximately described by w1 T 2. 

The purpose of the present work is to discuss the life
time of surface phonons of frequencies satisfying 
1WJR »kBT, which is motivated by the experiment con
ducted by Guo and Maris 7 several years ago. They at
tempted to generate and detect, at low temperatures, sur
face heat pulses on a Si wafer, which are composed of 
high-frequency surface phonons. If they are detected, 
sharp focusing patterns of the surface phonons due to the 
elastic anisotropy of the crystal surface should be ob
served. Unfortunately, however, no signal was seen. The 
experiment was tried at temperatures of about 0.4 K 
where the condition 1WJ »kB T is well satisfied for pho
nons of frequencies higher than 50 GHz. Hence, we be
lieve that the frequencies of most of the nonequilibrium 
surface phonons excited in their experiment may satisfy 
the above inequality. However, no theoretical analysis on 
the anharmonic decay of such high-energy surface pho
nons has been reported up to the present. 

The lifetimes of bulk acoustic phonons in the regime 
1WJ »kB T have been discussed extensively by Orbach and 
Vredevoe.8 According to their results transverse-acoustic 
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(T A) phonons possess an anomalously long lifetime, 
though longitudinal-acoustic (LA) phonons have a very 
short lifetime. This is because (unlike the case of LA 
phonons) the spontaneous two-phonon decays of the T A 
phonons are prohibited by energy and momentum conser
vation. We expect that a similar situation may hold for 
surface phonons, whose velocity (VR) is slower than that 
of the TA phonons (Vt ), e.g., typically vR=0.9Vt . By 
kinematical considerations we indeed find that surface 
phonons cannot decay into two phonons except through 
the collinear process R ---+ R + R and that their decay 
necessitates the presence of thermally excited phonons 
with energy of the order of 1WJR • However, such high
energy phonons are rarely excited in the temperature re
gime we consider leading to the anomalously long lifetime 
of high-frequency surface phonons satisfying 1WJR »kBT. 

In the next section, we specify the phonon modes based 
on kinematical considerations in the elastic half-space 
which interact efficiently with the surface phonons. The 
formula for the lifetime of the surface phonons is derived 
and some numerical estimations of the lifetime are given 
in Sec. III. Throughout this work we employ the isotro
pic approximation. The continuum elasticity theory is 
also assumed and the acoustic dispersion due to the 
discreteness of the lattice is neglected. This is because we 
are interested in surface phonons of frequencies of about 
100 GHz, that correspond to a wavelength of 500 A for 
Si, a length much longer than interatomic distances. 

II. KINEMATICAL CONSIDERATIONS 

In this section we shall study energy and momentum 
conservation imposed kinematically on three-phonon pro
cesses and specify the phonon modes and spatial configu
ration of the interaction which contribute predominantly 
to the decay of the surface phonons. To begin, let us con
sider the process in which a surface phonon specified by 
(qR,WR) combines with a thermally excited bulk phonon 
(q ',w') to create a second phonon ( q ",w"). Then denot
ing by q II the component of the wave vector q parallel to 
the surface, the energy and momentum conservation can 
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be written 

(1) 

(2) 

Next we introduce the velocity v defined by 
W=V I qlll = vqll (similarly, WR =VR I qR I = VRqR)' If we 
denote by V a phase velocity of the bulk phonons (Le., 
V = VI or Vt), we have 

V=vsine, (3) 

where e is the angle of the wave vector q measured from 
the surface normal and v takes a value larger than Vt • 

Now, eliminating q Ii from Eqs. (1) and (2), we have 

coscl>=--+--- [v _(v,,)2]-VRV' 1 [2 qR 

(v,,)2 2(V,,)2 R qil 

+[(V')2_(v,,)2]ill] , (4) 
qR 

where cI> is the angle between qR and q il' The condition 
WR »kBT implies WR »W' for almost all phonons 
(q ',w') excited thermally at a temperature T of a medi
um. Hence 

q'll VR 
-«-<1, 
qR v' 

(5) 

and we may approximate Eq. (4) as 

A.. 1 [ , 1 [2 (" )2] qR ] COS-v=--2 VRV +-2 VR- v -. 
(v") qil 

(6) 

The right-hand side of Eq. (6) is now much less than -1 
and accordingly the scattering of surface phonons is prac
tically impossible. Energy and momentum conservation 
requires that the surface phonons are scattered only by 
phonons with qil ~qR' However, such phonons are excit
ed insignificantly under the present condition and there
fore the lifetime of the surface phonons will become 
anomalously long. 

From Eq. (4) or (6) we can specify the modes of pho
nons which may interact efficiently with the surface pho
nons in question. Here we note that the bulk phonons 
other than the surface phonons in the half-space are clas
sified into two groups by their velocity spectra, one with 
v ~ Vt and the other v ~ VI' where vR~0.9Vt~O.5VI' To 
minimize qR/qil=(v'/VR)(WR/W') in Eq. (6), smaller 
values of v' are favorable. Furthermore, to minimize the 
modulus of the prefactor [v~ _(V,,)2]/(V,,)2, v "~v, 
should be most desirable.9 Therefore, the predominant 
contribution to the interaction comes from the processes 
in which a surface phonon collides with a surface phonon 
or a bulk T A phonon propagating nearly parallel to the 
surface and as a result produces a T A phonon which trav
els also in the vicinity of the surface. 

In the isotropic elastic medium occupying the half
space, there exist two kinds of phonon modes which have 
the velocity spectrum v ~ Vt .10,11 The first mode (Til 
mode) consists of T A phonons polarized parallel to the 
surface, and its range of velocity v is Vt to infinity de-

pending on the angle of incidence of e to the surface of q. 
The second mode (T 1 mode) consists of T A phonons po
larized in the saggital plane followed by an evanescent 
pseudo-surface-wave. The velocity of this mode is con
fined in the finite range Vt ~v ~ VI' In the limit of 
V_Vt' both modes are reduced to bulk TA phonons trav
eling parallel to the surface, and the evanescent com
ponent of the Tl mode vanishes in this limit. However, 
there is an important difference between these two modes 
in regard to the depth dependence of the displacement 
vector u of the medium. In order to satisfy the boundary 
condition at the free flat surface, as v - Vt , 

U3(Z)=0, 

for the Til mode and 

ulI(z)=O 

U3(Z) ex: sin(aqllz) , 

for the T 1 mode, where 

a= [ [ ;t r -1 r/2 

(8) 

(9) 

and we have fixed the Cartesian coordinate system so that 
the medium occupies the half-space X3 =Z ~ 0 with the 
free flat surface parallel to the xll=(Xl>X2)=(X,y) plane. 
From Eqs. (7) and (8) we see that the Til mode has a fin
ite amplitude at the surface, but the displacement vector 
of the T 1 mode vanishes there. Because the surface pho
nons are associated with lattice vibrations localized in a 
wavelength from the surface and furthermore qll~qR for 
phonons which interact with the surface phonons, it is the 
Til mode that should contribute effectively to the decay 
of the surface phonons. This is valid even when the in
teraction is described through the strain fields ;/j =ajUi, 

because a also vanishes in the limit of v_ Vt. 

III. CALCULATION OF LIFETIME 

When the atoms of a solid are displaced from their 
equilibrium positions, the local potential energy in the 
solid may be expanded in the long-wavelength approxima
tion as follows: 

(10) 

where 17 is the deformation tensor defined by 

1]ij = +(~ij +~jl +~kl~kj) , (11) 

and the summation convention over repeated indices is as
sumed. In the isotropic approximation, the second-order 
and third-order elastic constants Cijkl and Cijklmn which 
form the components of the fourth-rank and sixth-rank 
tensors, respectively, are written in terms of Lame con
stants 'A,/-L, and three other constants a, p, and 'Y as 
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Cijkl =ABijBkl +p,( BikBjl + Bi/Bjk ) , (12) 

Cijklm =aBijBklBmn +.B[ Bij(Bkm Bin + Bkn Blm ) + Bkl(Bim Bjn + Bin Bjm ) +Bmn (BikBjl + Bi/Bjk )] 

(13) 

Substituting Eqs. (12) and (13) into (10) and retaining the cubic terms in the particle displacement, we have 

1 a.B Lr 
W ~ W3 = T(.B+A);ii;jk;jk + (r +P,);ij;ki;kj + 6;ii;jj;kk + 2;ii;jk;kj + 3 ':>ij;jk;kl . (14) 

The total potential energy due to cubic anharmonic terms 
in the half-space is then obtained by integrating W3 over 
z~O, 

W tot = f W3(r)dr, 
z~o 

where r=Cxll,X3)=(X,y,z). 

(15) 

In the elastic half-space with a free flat surface, the dis
placement vector can be expanded as 11 

u(r)= ~ _li_ {aJ1FCf1+a}[iFCf1]*] , [ ]
112 

J 2pwJ 
(16) 

where p is the mass density of the medium and 
J=Cqll,v,M) is a set of quantum numbers in which M 
specifies the propagation modes of elastic waves both sur
face and bulk in character. The sum over J is to be un
derstood to be 

~f(J)= ~ [f(QIl=qR'VR,R) 
J qll 

+ ~ fD dv f(QII'V,M)] , (17) 
M¥<R M v 

where 

where DM denotes the spectral range of the velocity v for 
the bulk mode M. In Eq. (16), aJ and its Hermitian con
jugate a} are the annihilation and creation operators of 
the phonons in the half-space, which commute with each 
other except for the case 

If v and Vi belong to continuous spectra, we understand 
Bv,v' as Bv,v'= vB(v -v '). Because the medium is assumed 
to be homogeneous in the directions parallel to the sur
face, the XII dependence of UJ(?) should be described by 
a plane wave, i.e., 

(19) 

where S is the surface area. 
Now, the substitution of Eqs. (16) and (19) into (15) 

yields the anharmonic interaction Hamiltonian which 
causes three-phonon processes in the half-space. Then, 
rewriting the left-hand side of Eq. (15) as H 3, we have 

(20) 

FJJ':r .. = 10'" dz [ +(.B+A)s{;(Z)sJ~(z)[sJ~·(z)] * + (r +p,)s&(z)~;(z)[~;'(z)] * 
+ ~ s{;(z)S1'(z)[~~(z)] * + ~ s{;(z)sJ~(z)[~;'(z)] * + fs&(z)sJ~(z)[~'(z)] * ] , 

etc., and here we have introduced s& defined by 

aj[u!(z)/qll'xll]=s&(z)eiqll,xlI . 

(21) 

(22) 

In deriving Eq. (20), the terms containing aaa and a ta ta t which do not contribute to the energy-conserving processes are 
omitted. 
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The lowest-order perturbation theory tells us that the lifetime 7) of the phonon J via three-phonon processes takes the 
form 

-I 
TJ 

where 

GJJ,I"= 1 FJJ'y,,+FJ'Jy,,+FJY"J' +FJ'J"J + FY"JJ,+FY"J'J 12 , 

HJJ,I"= 1 FJy'y,,+FY'JJ,,+FJy"y-+FY'Y"J+FY"Jy,+FI"J'J 12 , 

and nJ stands for the Planckian distribution function in the thermal equilibrium, i.e., 

nJ=[exp(wJ /kBT )_1]-1 . 

(23) 

(24) 

(25) 

(26) 

We apply these formulas to the decay of the surface phonons J =C<fR,vR,R). In this case, as we have remarked in the 
preceding sections, the second term in square brackets of Eq. (23) which expresses the spontaneous decay into two
phonon states is neglected. Taking account of the fact that WR »kB T, the lifetime T(mR) of the surface phonons be
comes 

-\ 1rli ~ ~ f dv' J dV" n[m(qil'v')] - -, ,,, 
T (mR)= 3 ~ ~ D -, DM ,,-,,- G(qR,q II;VR,V ,v ) 

4p mRS M ',M"ctil M'V v m(qil,v')m(lqR+ciill,v") 

XB(mR +m(qil'v ')-m( 1 qR +qill ,v"», (27) 

where G (qR, q il;VR,V',V ") represents GJJ,I" with q ii being replaced by qR + q il When the phonon mode M, (M' or 
M") represents the surface mode, dv/v should be understood to be dvB(v -VR)' The summation over q il in Eq. (27) is 
transformed into two-dimensional integrals over polar variables (qil,q,C<H», where the angle q, is measured from the 
direction of qR' The integration with respect to q,( q i I) is readily carried out with the aid of the formula 

rk 2 
Jj f(cosq,)B(a +b cosq,)dq,= 2 2 112 S(b 2-a 2)f( -a/b) , 

o (b -a ) 
(28) 

where S(x) is the unit step function, i.e., S is unity if x > 0 and vanishes otherwise. The result of this integration yields 

-\ WR f dv' f dv" f qmax dqil n[m(qi!>v')] - , -, , II 

T (mR)= 8 3 2 l: DM , -( ')2 D" -( ")3 q. -,- sincI> G(qR,qll,q,(q 11)=cI>;VR,V ,v ), 
1l'P mR M',M" v M V mm qll 

(29) 

where 

qmax= (30) 

V"-V 
R (' ") qmin=-, -,-, qR =€o VR,V ,v qR, 

V +v 
(31) 

and cI> is defined by Eq. (4). The explicit expression of sincI> is given by 

I (V,)2_(V,,)21 I [ €2] 1112 
sin<l>= 2( ,,)2 • (qil-€\qR )(qil-€2qR) qil- -qmin (qi!-qmin) 

v qRql1 €\ 

(32) 

Now, qmin=qR and then also w(qil,v'»>kBT holds. Therefore, in Eq. (29) the distribution function n may be ap
proximated as 

n [m(qil,v')]=.exp( -w'qil /kBT) . (33) 

Because n decreases abruptly with increasing qi!, we may write Eq. (29) as follows: 
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(34) 

where 

J. qrnax exp( -fzv'qlkBT) 
K(qmax,qmin;V',T)= [( ]112 dq =1Texp[ -fzv'(qmax+qmin)/2kBT]Io[fzv'(qmax-qmin)/2kBT] . 

qrnin qmax -q)(q -qmin) (35) 

In Eq. (35), 10 is the modified Bessel function of zeroth order. Incidentally, note that <P=1T when qll=qmin' The argu
ment of 10 is much larger than unity and we may use the formula for the asymptotic expansion of 10, i.e., 

eX 
Io(X)- 112' x»l. 

(21TX) 

Then, we have 

K(qmax,qmin;V',T)= [~ '( 1TkB~ .) ]1/2eXP(_fzV'qminlkBT). 
7lV q max q min 

Substituting Eq. (37) into (34), it is deduced that 

(36) 

(37) 

1'-I(CUR)= fzV3R 2 [_1T_kB_T_ )112 ~ JD _d_V_'2 JD _d_V_'2 [ ___ 1 ___ jI/2G (QR,qmin><p«i'II)=1T;VR'V"V") 
81Tp CUR 2fzqR M',M" M' (v') M" (v") v'v"(v' +VR )1:0 

(38) 

In order to perform the integrations over v' and v" we need the explicit expressions for G. As we have remarked in 
Sec. II, the thermal phonons which may scatter the nonequilibrium surface phonons effectively are the surface and Til 
phonons. The depth dependence of the displacement vector for the surface phonons J = (qR ,vR,R) is given bylO.11 

U!(Z)=i(qR)j [~]1I2 [e-SqRZ_~e-'YJqRZ], j=1,2 
J ~ Y l+~ 

(39) 

(40) 

()[22 ]112 
ui(z)=~ ~ cos(O'qIIZ) , 

qll 1TVt 0' 

(41) 

u{(z)=O, 
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where u is defined by Eq. (9). Here we remark that the displacement vector of the Til phonons is orthogonal to those of 
other mode phonons in the elastic half-space polarized in the saggital plane and satisfies 

f [ijJCf,)]*·{jJ'("f)dr=SJ J' , (42) 
%>0 ' 

(43) 

After straightforward but tedious calculations we find that for the process R +R--+TII' G is proportional to sin2t,b. 
However, t,b=1T yields the dominant contributions through energy and momentum conservation [cf., Eq. (38)] and this 
process is suppressed in comparison with the contribution from the process R + T II --+ Til' For the latter process we ob
tain 

(44) 

where 

(45) 

and we set Eo=E' and l-Eo=E" for the sake of convenience. In deriving Eq. (44), we have retained terms of the form of 

Iooo dze -SqR%cos(u'qflz)COS(u"qiiz) (46) 

in Eq. (22) and neglected the contributions of integrals which involve sinusoidal functions which vanish at the surface. 
In the curly brackets of Eq. (44), the term proportional to the third-order elastic constant a does not appear because 
sfJ=O for TA phonons and the term proportional to r is suppressed because it depends on sin2t,b (t,b~1T). Accordingly, 
the contribution of this process to the decay rate is 

-1() R B flS2(J)5 [1Tk T ]1/2 
T (J)R = 2~p3v~ viY 2f1qR 

X I oo dv' I oo dv" ( I ,,)5/2 [ 1 ) 1/2 
V, -;;;- V, u" E E v'v"(v' +v") 

X { [(P+')..) [VR ]2 +2(')..+JL) 1 S2+(E'U,)2+(E"U,,)2 
VI [S2 + (E' U' + E" U,,)2][ S2 + (E' U' -E"U" )2] 

~ 112+(E'U,)2+(E"U,,)2 }2 
-4(')..+JL) -

1 +112 [112 + (E'u' +E"U,,)2][ 112 + (E'U' _E"U,,)2] 

(47) 

where 

(48) 

From this equation, we find that the lifetime of the surface phonons is very long as indicated by the presence of the ex
ponential factor of the form of exp(- AIimR/kBT). 

In order to estimate the order of magnitude of the lifetime, we convert the integrals over v' and v" of Eq. (47) into in
tegrals over u' and u" by the relation 

u dv=Vt - 2 -du. 
u +1 

(49) 
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With increasing u' and u" the factor A varies only slowly, whereas the integrand other than the exponential factor de
creases rather rapidly. Therefore, we may approximate A to be its value at u' =u" =0 (or v' =v" = Vt ), i.e., 

Vt-VR 
A_Ao= , 

2VR 
(50) 

and remove the exponential factor from the integrand. Note that Ao is the minimum value of A of the order of 0.1. 
With this approximation, we finally obtain the expression for the decay rate, 

-I liS (j)R 1T BT -2 5 [k ]112 
T «(j)R)= 3 3 11/2 7/2 2Z.-- exp(-AOWR/kBT)!, (51) 

21T P VR Vt Y 7U1JR 

Using the numerical values {3= 5. 7 X lOll dyn/cm2, 
A=5.35X 1011 dyn/cm2, /t=6.86X 1011 dyn/cm2, 
Vt =5.42X 105 cm/sec, VI=9.04X 105 cm/sec, 
VR =4.96X 105 cm/sec, and p=2.33 gcm-3 for Si,12 we 
have 

T-I«(j)k)=jj(j)'1(2TII2exp(-A(j)R IT), 

where 

- -13 A =3.5X 10 secK, 

JJ=2.7X 10-54 sec3.5K-o.5 • 

(53) 

(54) 

For instance, at T = 0.4 K the lifetime of 100-GHz sur
face phonons is 

(55) 

in units of sec, and the corresponding mean free path be
comes a macroscopic distance. 

IV. CONCLUDING REMARKS 

Stimulated by the experiments of Guo and Maris,7 we 
have calculated the lifetime of high-energy surface pho
nons satisfying WR »kBT and found that they are sub
stantially stable against anharmonic decay. The formula 
obtained for the lifetime is similar to that of the bulk T A 
phonons satisfying the same condition but they are dif
ferent from each other in details. Other than the power 
dependences on the frequency and temperature, the value 
of the coefficient Ao (~0.05) in Eq. (50) is 1 order of 
magnitude smaller than that of the bulk T A phonons for 
which Ao~0.3.8 This is due to the fact that the velocity 
of the bulk T A phonons which interact predominantly 
with the surface phonons is very close to VR (vR~0.9Vt), 
whereas the velocity VI of the LA phonons into which the 
T A phonons decay satisfies V, ~ VI /V3. 

Through this work, it is concluded that. the otherwise 

(52) 

I 

unavoidable intrinsic damping of the surface phonons due 
to anharmonic interaction essentially does not work in the 
regime WR »kBT. Our calculations are based on the 
isotropic approximations. Real crystalline solids are an
isotropic in general. However, similar to the case for the 
decay of bulk T A phonons, the conclusion we have ob
tained here would be likely to be applied to the decay of 
the surface phonons in anisotropic solids. This is because 
the spontaneous decay of a phonon by anharmonic pro
cesses into a set of phonons of higher-phase velocity is 
prohibited by the energy~momentum conservation even in 
anisotropic crystals. 13 

Besides the anharmonic interaction, the propagation of 
surface phonons is influenced severely by the presence of 
various elastic inhomogeneities localized in the vicinity of 
the surface. The scattering of surface phonons by these 
inhomogeneities is highly frequency dependent. 14- 17 For 
instance, the frequency dependence of the attenuation rate· 
due to scattering by surface roughness is proportional to 
(j)1/«(j)R)' where 1_1 as (j)R-O but I~(j)il for 
(j)R »VR /a (a is the correlation length of the rough
ness)Y According to the formula of Maradudin and 
Millsl7 the mean free path of about 10-6 cm is estimated 
for loo-GHz surface phonons propagating on a surface 
with the amplitude of roughness of 100 A (also for 
a= 100 A). Hence, a very flat surface, e.g., one flat on the 
atomic scale, is required to observe the ballistic propaga
tion of high-frequency surface phonons of about 100 
GHz. 
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