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Finite-wavelength effect on the ballistic propagation of surface acoustic waves 

Shin-ichiro Tamura and Masashi Yagi 
Department of Engineering Science, Hokkaido University, Sapporo 060, Japan 

(Received 29 December 1993) 

We study the phonon-focusing effects of the Rayleigh and pseudosurface waves propagating 
ballistically on the (100) surface of cubic crystals. Specifically, solving the wave equations for 
lattice displacements, we consider the finite-wavelength effect at the MHz-frequency range and for 
1-cm propagation distance. The amplitude and polarization of lattice displacements at the surface 
associated with surface waves are sensitive to the propagation direction. Owing to this characteristic 
of surface waves, the focusing factor defined in the ray picture does not necessarily describe correctly 
the intensity of surface waves excited from a point source. The angular dependences of the calculated 
displacement amplitudes explain an important feature of the recent focusing experiment of Rayleigh 
waves, which the simple theory based on the focusing factor fails to predict. 

I. INTRODUCTION 

Ballistic-phonon propagation in crystalline solids is 
profoundly influenced by the anisotropy of the lattices. 
The energy flux of phonons radiated from a small source 
exhibits huge anisotropy called phonon focusing. 1 ,2 This 
effect arises from the fact that the group velocity and 
wave vector of a phonon are noncollinear, in general, due 
to crystal anisotropy. Experimentally, the phonon imag
ing technique has contributed substantially to the un
derstanding of the phonon focusing effect in the bulk of 
solids. 2 

So far, phonon-focusing experiments have utilized 
high-frequency phonons of several hundred-GHz range 
and the observed focusing patterns coincide well with 
the ones calculated from the elasticity theory or lattice 
dynamical models based on the geometrical acoustics ap
proximation, or ray picture for phonons. The validity of 
this approximation stems from the fact that the wave
length of a 100-GHz phonon is about 300-500 A and 
the typical sizes of crystals used are several millimeters. 
Thus, the effect of the finite wavelength of phonons in
volved can be neglected in these experiments, validating 
the ray picture for phonons. 

The effect of finite phonon wavelength on the phonon 
focusing was first studied by Maris.3 He found that 
the correction to the geometrical acoustics theory is en
hanced near the caustic directions (where the geometrical 
acoustics approximation predicts infinitely large inten
sity) and proposed a suitably designed experiment to ob
serve the effect for phonons of 100-GHz frequency range. 

Recently, experiments on the bulk-wave propagation 
and the related focusing with ultrasound beams have 
been made by several groupS.4,5 Specifically, utilizing 
the ultrasonic imaging technique, Hauser, Weaver, and 
Wolfe5 have observed very clearly the finite-wavelength 
effect on the phonon focusing, that is, the fringe patterns 
of acoustic intensity have been seen in the expected fo
cusing regions. These patterns arise from the interfer-
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ence between waves with different wave vectors but with 
group velocities pointing in the same direction. It should 
be noted that in the strong focusing directions of phonons 
the group velocity surfaces (wave surfaces) are multival
ued. The frequencies of the ultrasound used in the exper
iments are 5-20 MHz and the corresponding wavelengths 
1-0.25 mm are macroscopic. Thus, at these frequencies 
(and also for a sample thickness of the order of 1 cm) the 
phonon-focusing caustics are found to evolve into a set of 
parallel fringes of the acoustic flux. This effect is called 
"internal diffraction" of acoustic waves in crystals. 5 

The focusing effect is also expected to occur for 
phonons propagating along crystal surfaces, i.e., sur
face phonons or surface acoustic waves. Theoretically, 
the focusing of Rayleigh surface waves (RSW) on the 
(100), (110), and (111) faces of GaAs and in several 
other crystals with lower symmetries has been studied 
by Tamura and Honjo.6 They used the ray approach 
and calculated the focusing factor A = I .!lB,. / .!lBv I, de
fined by the small angle .!lB,. subtended by phonon wave 
vector kll within the surface divided by the correspond
ing angle .!lBv spanned by the group velocity v. Based 
on the Green's tensor approach Camley and Maradudin 
also studied the focusing of both RSW and pseudosurface 
waves (PSW) propagating on the surfaces of several cubic 
crystals. 7 Their formulation is similar to that of Maris3 

for bulk phonons and the stationary phase analysis is de
veloped. In effect, they plotted the caustics directions 
where the focusing factor A diverges. Such directions 
exist, in general, for both RSW and PSW in a solid. 

Recently, Kolomenskii and Maznev8 have generated 
surface acoustic waves by the irradiation of pulsed laser 
on the surfaces of several cubic crystals. Using an inter
esting technique called surface-wave induced dust parti
cle removal from a surface they have observed that the 
strong focusing of surface waves does occur as predicted. 
The surface waves detected in their experiment have a 
characteristic frequency of about 50 MHz, or the corre
sponding wavelength is about 0.1 mm, so the interference 
of the waves involved would be important in interpreting 
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the details of their experimental results. 
The purpose of the present work is to study theoreti

cally the effect of finite wavelength on the ballistic prop
agation of both RSW and PSW on anisotropic crystal 
surfaces. We will show that a feature of the experiment 
by Kolomenskii and Maznev,8 which has not been ex
plained by the simple argument based on the ray picture 
can be understood in the framework of our formulation. 

II. FORMULATION 

Asymptotic expressions for the amplitudes of surface 
waves have been derived by Shirasaki and Makimoto,9 

and also by Camley and Maradudin 7 based on the 
stationary-phase analysis ofthe Green's tensor for a semi
infinite anisotropic (piezoelectric) elastic medium. In the 
present study we try to obtain the displacement ampli
tude u(r, t) of surface waves by considering the Lamb's 
problem 10 for an anisotropic elastic continuum occupy
ing z (= X3) > 0 with surface at z=o. The equations we 
should solve are 

(1) 

_ £1 £( ) -iwt 
(F3j = C3jmnVntt.n = SjC} XII e for z = 0, (2) 

where p is the mass density of the crystal, Cijmn is 
the elastic-constant tensor, (Fij is the stress tensor, and 
r = (xlI'z) [XII = (X1,X2) is the vector on the surfaceJ. 
The summation convention over repeated indices is im
plied. We assume that the normal component of the 
stress oscillating with frequency w is acting at the origin 
XII = 0 on the surface, i.e., Sj = sod3j and So is a con
stant. This boundary condition should approximately be 
applicable, for instance, to the excitation of surface waves 
by a focused ultrasound beam emitted from an immersion 
transducer.5 

The solution of Eq. (1) takes the form 

u(r t) = _1_ fd2k ei(kll·xlI-wt) 
, (211")2 II 

3 

X L K(m)E(m)eik~m)z, (3) 
m=l 

where k = (kll,k3) = (kll,k~7n» and the compo
nents of the wave vector perpendicular to the surface 
kim) (Im[k}m)J > 0, m = 1,2,3) are the solutions of 

det(Li/) = 0, 

for a given kll with 

and E(m) are the polarization vectors satisfying 

Li/(k,w)€/ = 0, 

(4) 

(5) 

(6) 

with k3 = kim). In Eq. (3) K(m) are the weighting fac-

tors determined from the boundary condition Eq. (2). 
Explicitly, for the (001) surface of a cubic crystal 

m m 

(i = 1,2), (7) 

L{C12[k1Eim ) + k2€~m)J + cllk~m)€;m)}K(m) 
m 

= ~ W(m)K(m) - s - L.J 3 - o· 
m 

Solving Eqs. (7) and (8), we find 

K(m) = soh(m) /W, 

with W = det(W}m» and 

hem) - W(m+l)W(m+2) _ W(m+l)W(m+2) 
- 1 2 2 1 , 

(8) 

(9) 

(10) 

where the superscripts are defined modulo 3, e.g., W i(4) = 

WP). Thus, Eq. (3) becomes 

x Lh(m)E(m)eik~m)z, 
m 

(11) 

where XII = IXIlI. In deriving Eq. (11), we have rotated 
the coordinate system so that kll direction is parallel to 
the vector XII and k.L direction normal to XII within the 
surface. Here we note that W =0 defines the dispersion 
relation of surface waves. It is known that for a fixed w, 
W =0 has a simple zero at a real kll. This corresponds to 
RSW. For PSW, however, a complex kll satisfies w=o 
for a real w (also one of k}m) has a negative imaginary 
part). So, for the moment, we consider the case of RSW. 

Now, replacing w by w + iTJ (TJ is an infinitesimal posi
tive number), we perform the integral with respect to kll 
so that Eq. (11) may represent outgoing waves. Thus, 
putting z=O, we find the displacement vector at the sur
face 

( ) iso iwt i dk eikllzil ~ hem) (m) 
u xlI,t = -e- .L 8W/8k L.J E, 

211" w=o II m 

(12) 

where kll is a function of k.L and w, i.e., kll = kll(k.L,w), 
and the integral should be done over the slowness curve 
in the kll plane defined by W(kll'w) = o. The prime 
means that the integral is restricted to the portion of the 
slowness curve for which the component of the group
velocity vector projected to the XII direction is positive. 

For PSW, W=O is satisfied for a complex kll as re
marked above. However, the attenuation rate is small, 
i.e., Im[kIiJ/Re[kIlJ = 10-3 - 10-5 (see Fig. 6, below), 
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so we expect that Eq. (12) would also be used for PSW 
as far as the propagation distance of 1-cm and 10-MHz 
frequency range are concerned (Re[klilxll '" 100 and 
Im[kll]xlI < 10-1 ). 

For xII much larger than the wavelength of surface 
waves on the given slowness curve we can further carry 
out the integral of Eq. (12) by applying the method of 
stationary phase. Following the procedures similar to 
those developed by Shirasaki and Makimoto,9 and also 
by Camley and Maradudin,7 we obtain 

isoe-iwt ei(kll,xlI +1r /4-¢/2) 

u(xlI' t) = (27rXIlP/2 ~ (IVWllaj)1/2 

x 2: h(m)e(m) I ' (13) 
m kll=k[t) 

where V is the gradient with respect to kll' a 
= titj Vi VjW, t = (- '11 W, v2W)/IVWI is the unit 
vector tangent to the slowness curve, ¢ is the phase of a, 
and the summation over a is taken over the wave vectors 
kll = k~t) on the slowness curve for which the outward 
normals of the slowness curve are parallel to XII' Equa
tion (13) corresponds to the geometrical acoustics ap
proximation for the displacement vector, which has been 
derived by assuming a i= O. Apparently a is propor
tional to the curvature K of the slowness curve defined 
by K = titj Vi Vi WIIVWI and vanishes at the inflection 
points, giving rise to the caustic directions in the real 
space where the geometrical acoustics approximation is 
no longer valid. The corrections to Eq. (13) at the points 
satisfying a=O are discussed in Refs. 7 and 9. 

III. NUMERICAL RESULTS 

Figure 1 plots the phase velocities e of RSW and PSW 
on the (001) plane of silicon together with the sound ve
locity of bulk slow transverse (ST) waves. We see the 
the degeneracies of RSW and PSW with ST branch near 
the [110] direction and at an angle about 22° from the 
[100] direction, respectively. The slowness curves defined 
by Iklll = wle(k ll } (w is a given frequency) in the wave 
vector space and the corresponding group velocity curves 
in the real space are also given in Figs. 2(a) and 2(b) for 
both RSW and PSW. The group-velocity curves are plot
ted by dots which represent the distributions of group
velocity vectors calculated by assuming a uniform angu
lar distribution of wave vectors. This means that the 
concentrations of dots on the group-velocity curves mea
sure the focusing and defocusing of the surface waves at 
a specified propagation direction. 

In the geometrical acoustics approximation the quan
titative understanding of the focusing of surface waves 
will be gained by calculating the focusing factor A. The 
focusing factor describes the enhancement in phonon flux 
in a given direction to that in an isotropic solid and is 
a quantity measurable in the heat pulse experiment for 
bulk phonons.1 Here we note that the focusing factor is 
also related to the curvature of the slowness curve as 

6.5 

Si (001) 

6.0 

,-.. 

'" e 
(.) 

~ 
'-' 

(.) 

4.5 

Angle from [100] (deg) 

FIG. 1. Angular (Ok) dependences of the phase velocities 
of RSW, PSW (bold lines), and bulk ST phonons (thin line) 
in the (001) plane of silicon. For points A and B, see the 
caption of Fig. 2. 

A-I = IKWV/c21, where v = Ivl. Thus, the cusps on the 
group velocity curve of the Rayleigh branch [A' and B' 
in Fig. 2(b)] which originate from the inflection points 
on the slowness curve [A and B in Fig. 2(a)] define the 
caustic directions at which the focusing factor becomes 
infinite. In the pseudosurface branch no such cusps ap-

(a) 
°0~~~~1~~~~2~~ 

c·1 (10-6 cm·1 s) 

> 2 RSW 

2 4 6 
v (105 cms· l ) 

FIG. 2. (a) Slowness curves and (b) group-velocity curves 
of RSW and PSW on the (001) plane of silicon. The points A 
and B are the inflection points on the slowness curve of the 
Rayleigh branch and A' and B' are the corresponding points 
on the group-velocity curve defining the caustic directions. 
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pear on the (001) plane of silicon but they do appear on 
the same crystal plane of other crystals.7 Figure 3 plots 
the angular dependences of the focusing factors of both 
RSW and PSW on the (001) plane of silicon. The focus
ing factors of this figure have been calculated numerically 
according to the definition 1.:l9k/ .:l9v l with .:l9k = 0.01° 
and .:l9v = 0.5° , so the divergence of A in a caustic direc
tion is suppressed by the finite resolution for the angle 9v • 

We see that RSW focus strongly in the region between 
the caustics located at 9v = 12.9°(B1) and 25.7°(A1) from 
the [1001 axis but PSW focus rather gently in the [1101 
direction. 

In a typical experiment on the propagation of ultra
sonic bulk waves, the distance r = Irl (~ 1 cm) between 
the source and the detector is considerably larger than 
their wavelength A (~ 0.3 mm at 20 MHz). This sug
gests that the method of stationary phase should be a 
good approximation to evaluate the displacement vector 
u associated with the acoustic field excited with a broad 
distribution of wave vector k. The asymptotic form of 
the displacement field for large r was obtained by Maris 
for bulk phonons.3 In the work of Maris, the prefactors 
of eik.r in the expression of the displacement vector [sim
ilar to Eq. (12)1 are approximated to be constant and he 
discussed the phonon intensity at r in terms of 

(14) 

where the integral should be taken over the region of the 
slowness surface around ko satisfying v(ko) II r. Apply
ing the similar idea to the surface wave propagation, we 
tentatively consider the corresponding quantity 

4 

RSW 

• .. III " , ,,' 

. 

PSW 

. . . 

.. ~' . . . 

Ill'll .r 

B' t ···········i~A.:-------t 
°0~~~1~0~~W~~~30~~40~~ 

Angle from [100] (deg) 

(15) 

FIG. 3. Angular (6v ) dependences of the focusing factors 
ofRSW (solid line) and PSW (dashed line) on the (001) plane 
of silicon. A' and B' are the caustic directions shown in Fig. 
2(b). 

This intensity is obtained by leaving out from Eq. (12) 
the residue function at the pole of the surface wave, i.e., 
we assume that the residue function is insensitive to kll as 
remarked by Weaver and co-workers5 for the bulk waves. 
In Figs. 4 and 5 we have plotted the numerical calcula
tions of Eq. (15) for both RSW and PSW. The propaga
tion distance (XII) is assumed to be 1 cm. At 100-MHz 
frequency the averaged behavior of [(XII) exhibits the 
similar angular dependence as the focusing factor. At 
20-MHz frequency, however, the oscillations of [(XII) due 
to the interference is very significant, though [(XII) has 
still large amplitudes in the focusing regions. Here, we 
note that the dotted lines of Fig. 5 are [(xlI)'s for PSW 
obtained by neglecting Im[klll, but the bold solid lines 
include finite values ofIm[klll in the calculation of [(XII)' 
As shown in Fig. 6 Im[kill/Re[kill takes rather large val
ues (> 10-3 ) at angles 910 smaller than 30°. This causes 
the attenuation of [(XII) at angles (}v also smaller than 
30°. 

At a finite phonon frequency [(XII) defined by Eq. (15) 
exhibits a good correspondence to the focusing factor as 

20 5 
(a) 

RSW 

20 MHz 4 
15 ...... 

:l ·s -::I 

~ 10 

~ - ... I 
5 IAAf\ 

V v ~ 
'" V ...., o 

10 20 30 40 
Angle from [100] (deg) 

5 5 
(b) 

100 MHz 
4 4 

...... 
~ II 

'S 3 3 ::I i. 
~ ::I 

(JQ 

'"' i ~ 2 2 
'-' 

m----:~Lll..!.'":!'::--L-.t.:....,:3'=-0---:40'::----' 0 

Angle from [100] (deg) 

FIG. 4. Angular dependences of the intensity I(xlI) [Eq. 
(15)] for RSW (thin lines) together with the focusing factor 
(bold lines) in the (001) plane of silicon. The propagation 
distance XII is 1 em and the frequencies are (a) 20 MHz, (b) 
100 MHz. 
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,.--.. 
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'2 
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co 
'-' 

,.--.. 

>< 
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20 r-----r-,---,--,...., 3 

100 MHz 
15 

10 

5 

PSW 

20 MHz 

2 

°0~~~10~~~~--3LO----~~~0 
Angle from [100] (deg) 

FIG. 5. Angular dependences of the intensity [(xU) [Eq. 
(15)1 for PSW with Im[kU1 (bold line) and without Im[kll1 
(dotted line) together with the focusing factor (thin solid line) 
in the (001) plane of silicon. The propagation distance XII is 
1 cm and the frequency is 20 MHz. Inset is the same plot for 
100 MHz. 

shown above. So, J(xlI) may be regarded as a quantity 
which measures the focusing of surface phonons or sur
face waves at finite frequencies. However, in an experi
ment utilizing the coherent ultrasonic beams the detected 
intensity of acoustic fields would be quite sensitive to the 
polarization vectors involved. This must especially be the 
case for the surface wave experiments conducted with a 
sample immersed in the water. Here it should be noted 

10.2 Si (001) 

10.3 

~ 10-4 

~ 

~ 
10-5 

.5 10-6 

10-7 

25 30 35 40 45 
Angle from [100] (deg) 

FIG. 6. Angular (Ok) dependence of Im[kll1 for PSW in the 
(001) plane of silicon. In the hatched region PSW degenerate 
into bulk ST branch. 

the bulk phonons in solids consist of three independent 
modes propagating with different velocities. The surface 
acoustic waves are also comprised of three vibrations po
larized nearly perpendicular to each other but they travel 
with the same velocity and their relative amplitudes are 
settled by the boundary condition at the surface. Thus, 
the exact calculation of Eq. (12) for the angular depen
dence of IUil2 should be very important to quantify the 
intensity of surface waves . 

Taking explicit account of the prefactor of the exponen
tial function eikll"'l1 of Eq. (12), we plot in Figs. 7(a) and 
7(b) the angular dependences of IUz I2 , IU1I12, and IU.L12 for 
RSW on the (001) surface of silicon (ull and U.L are the 
components of the displacement vector parallel and per
pendicular to XII within the surface). The similar plots for 
PSW are given in Fig. 8. (The parameters assumed are 
the same as Fig. 4.) In Fig. 7, the corresponding quan
tities calculated from the asymptotic formula Eq. (13) 
valid at high-frequency limit are also plotted by dashed 
lines for comparison. The angular dependences of IUz l2 

and IUII1 2 for RSW are quantitatively quite different from 
Figs. 3 and 4. The large enhancement observed in the fo-

1.2r-----r-----..--------, 
(a) B' A' 

0.2 
RSW 

I ul.1 2 20 MHz 

0.00 
~ 

5 10 15 20 35 40 45 

Angle from [100] (deg) 

1.2 
(b) B' A' 

1.0 

--~ 0.8 '§ 
IUtl1 2 

~ 0.6 
'-' 

... -
:I" 0.4 

0.2 RSW 

100 MHz 

0.00 5 30 35 40 45 

Angle from [100] (deg) 

FIG. 7. Squared amplitudes of the lattice displacements of 
RSW in the (001) surface of silicon. Dashed lines are the 
asymptotic expressions obtained from Eq. (13). The propa
gation distance XII is 1 cm and the frequencies chosen are (a) 
20 MHz and (b) 100 MHz. 
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0.2 PSW 

20 MHz 

10 20 

Angle from [100] (deg) 

FIG. 8. Squared amplitudes of the lattice displacements of 
PSW in the (001) surface of silicon. The propagation distance 
XII is 1 cm and the frequency is 20 MHz. The inset shows the 
same plot for 100 MHz. 

cusing factor at Ov ~ 13°(B') is not seen in \Ui\2 of Fig. 7 
though the enhancements at Ov ~ 26° (A') are present for 
\ulI\2 and \uz \2. Also, the amplitudes at the surface are 
practically zero at angles larger than 30°. These results 
imply that the residue function in Eq. (12) is crucial in 
the evaluation of the displacement amplitudes. The ab
sence of the enhancement at Ov ~ 13° is understood by 
the fact that the cusp B' seen in Fig. 2(b) comes from the 
inflection point on the slowness curve at Ok ~ 30.5° [B in 
Fig. 2(a)]. The displacement vector of RSW at Ok ;:::: 30° 
is polarized almost within the surface and perpendicular 
to the wave vector, i.e., RSW are the shear waves with 
horizontal polarization in character, and hence U z and ull 
are little excited around this direction. 

Here, it is interesting to note that the asymptotic forms 
of the squared amplitudes calculated from Eq. (13) for 
RSW (averaged over frequency) well describe the aver
aged angular dependences of those obtained from Eq. 
(12). Equation (13) vanishes at angles satisfying a=O, 
i.e., at the caustic directions A' and B' on the (001) sil
icon. Both \uz \2 and \ulI\2 calculated numerically from 
Eq. (13) indeed exhibit the sharp elevations at the di
rection A' (and practically zero at larger angles), but 
no clear enhancements can be seen at the direction B' 
within the resolution of the present calculations. The 
latter is again due to the nature of the polarization of 
RSW at angle Ok near the [110] direction. In addition, 
for Ok > 30° the magnitude of the surface displacement 
excited by the stress at XII = 0 is very small. (More ex
plicitly, the residue of K(Tn) [Eq. (9)] at the pole of RSW 

becomes small.) This result is superimposed to the above 
effect, leading to the suppression of RSW amplitudes at 
the direction B' (and also at Ov > 26°). 

For PSW the squared amplitudes are very small at 
Ov ::::; 30° (Ok ::::; 27°). One of the reasons has already 
been described in the explanation of Fig. 5. The second 
reason is that PSW also degenerate into the bulk ST 
waves at Ok ~ 22°, so the surface displacement is small 
at these angles. Note that the asymptotic expression Eq. 
(13) vanishes for PSW except at two angles where PSW 
become genuine surface waves (Im[kll] = 0), i.e., [110] 
direction and Ov = 39° (Ok ~ 37°) for the (001) silicon 
(see Fig. 6). 

The acoustic Poynting vector defined by Pi 
-Re[O'ijuj]/2 should be another important quantity to 
measure the focusing of surface waves. For both RSW 
and PSW the component P3 normal to the surface van
ishes identically at the surface for XII '" O. This is because 
0'3j = 0 due to the boundary condition Eq. (2). The only 
sizable component is PII , i.e., the component parallel to 
XII and the component Pl. perpendicular to XII is small. 
We find the angular dependence of PII for RSW is quite 
similar to those of \uz \2 and \ulI\2 shown in Fig. 7. 

IV. CONCLUDING REMARKS 

After the observation of ballistic phonon focusing in 
the bulk of crystals, many groups tried to detect the sim
ilar effect at crystal surfaces. Unfortunately, however, no 
positive result on the effect has been reported until re
cently. One of the reasons is that they used the heat pulse 
method to excite phonons emanating from a point source 
at low temperatures. The dominant phonon frequencies 
excited in their experiments are typically 100 GHz or 
higher, and the mean free path against surface-roughness 
scattering (ex w-5 ) is very short,l1 making the ballistic 
propagation of such surface heat pulses over macroscopic 
distances impossible. 

In the traditional acoustics, ultrasonic surface waves of 
frequencies lower than 1 GHz are rather easily generated 
electromechanically, but point sources were not readily 
available. This drawback has been overcome by the tech
niques using focused ultrasonic beams5 or laser pulses.4 ,8 

The recent experiment by Kolomenskii and Maznev8 with 
laser excited surface waves has observed very clearly the 
existence of the directions along which the strong focus
ing occurs at crystal surfaces. Those directions are, for 
the most part, consistent with the theoretical predictions 
for the caustics of surface phonons obtained by geomet
rical acoustics. For the (001) surface of silicon, they did 
see the focusing of RSW at Ov ~ 26° (the direction A') 
but no evidence of the strong focusing was obtained at 
Ov ~ 13° (the direction B'). Their experiment is sensitive 
to the lattice displacement normal to the surface and Fig. 
7 which we have calculated for the RSW amplitudes also 
exhibits the absence of the effect at the latter angle. More 
detailed measurements of the angular dependence of the 
surface wave focusing at ultrasonic frequencies would re
veal the finite wavelength effect as predicted in this work. 

In the present study, we have assumed that the solid 
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surface is in contact with vacuum, so it is free from the 
stress except at the origin. However, as mentioned re
peatedly, the technique for the generation of focused co
herent ultrasound beams on the sample immersed in liq
uid will be applied to the excitation of surface acoustic 
waves and also to the study of the interference effect on 
the phonon focusing at surfaces. In this respect the for
mulation taking account of the loading of the free surface 
with liquid should be necessary. In particular, it has been 

1 B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 
23,416 (1969); Phys. Rev. B 3, 1462 (1971). 

2 See, for a review, G. A. Northrop and J. P. Wolfe, in 
Nonequilibrium Phonon Dynamics, edited by W. E. Bron 
(Plenum, New York, 1985). 

3 H. J. Maris, Phys. Rev. B 28, 7033 (1983). 
4 A. G. Every, W. Sachse, K. Y. Kim, and M. O. Thompson, 

Phys. Rev. Lett. 65, 1446 (1990); A. G. Every and W. 
Sachse, Phys. Rev. B 44, 6689 (1991). 

5 M. R. Hauser, R. L. Weaver, and J. P. Wolfe, Phys. Rev. 
Lett. 68, 2604 (1992); R. L. Weaver, M. R. Hauser, and J. 
P. Wolfe, Z. Phys. B 90, 27 (1993). 
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