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Applicability and limitations of the phonon-focusing theory 
based on geometrical. acoustics 

Shin-ichiro Tamura and Yoshito Nakane 
D,epartment of Engineering Science, Hokkaido University, Sapporo 060, Japan 

(Received 24 April 1981) 

A detailed discussion is given on the applicability and limitations of the naive phonon
focusing theory by Taylor, Maris, and Elbaum. Comparing it with the characteristic 
behavior of ballistic-phonon propagations detected recently in heat-pulse experiments, we 
find that the theory predicts correctly the locations of various sharp peaks observed in 
flux enhancement of transverse phonons. When emissivity of phonons excited in a heat 
source into an anisotropic crystal is properly taken into consideration, the relevant theory 
accounts quantitatively for (a) the relative magnitudes of highly enhanced phonon flux of 
different polarizations measured along the principal crystallographic axes (i.e., the [001], 
[110], and [111] axes) of a cubic crystal, and (b) the angular dependence of the phonon in
tensity for the longitudinal mode. On the contrary, in the neighborhood of sharp peaks of 
the flux, the theory becomes invalid by yielding much larger intensity than that observed 
in the experiments, which suggests the breakdown of geometrical acoustics on surfaces 
called caustics. 

I. INTRODUCTION 

Elastic properties of crystalline solids are aniso
tropic in general. Propagation characteristics of 
acoustic phonons in crystals are substantially influ
enced by the elastic anisotropy. A remarkable 
feature for ballistic-phonon propagations in aniso
tropic solids in contrast to those of isotropic ones 
may be the fact that the energy flow of the pho
nons given by the group velocity is not necessarily 
collinear with the phase velocity parallel to the 
wave vect()r. Consequently, even if the phonons 
excited in a crystal are assumed to be distributed 
uniformly in the wave-vector space; their energy 
flux will be preferentially concentrated along cer
tain crystallographic directions and deconcentrated 
along others. This phenomenon was demonstrated 
many years ago by Taylor et al. in experiments 
employing heat pulses and termed "phonon focus
ing.,,1,2 

Recent experimental investigations of Kapitza 
thermal resistance3 and of motions of electron-hole 
droplets via phonon-wind mechanism4 seem to 

. renew interest in the focusing of high-frequency in
coherent phonons in various dielectric solids. 
Especially, Hensel and Dynes have studied through 
their high.,resolution heat-pulse experiment the an
gular dependence of ballistic-phonon amplitudes in 
Ge.5 They have found that transverse phonons are 
focused into sharply defined beams along the [001] 
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and [110] axes and, in particular, these beams 
display fine structures representing focusing singu
larities. The same kind of observations has also 
been made by Northrop and Wolfe with a heat
pulse imagining technique. 6, 7 

We believe that an interpretation of these rather 
complex behaviors of the phonon beams in the 
ballistic regime should be made by means of the 
basic theory qf the phonon focusing. Actually, the 
experimental results have partly been explained by 
following the original ideas of Taylor et al. 5, 7 

Here, we note that this traditional phonon-focusing 
theory is constructed on the focusing factor intro
duced by Maris8 as a ratio of solid angles occupied 
by the phonons in the wave-vector and real spaces. 
The focusing factor measures an enhancement of 
the phonon flux in a specified direction relative to 
the magnitude it would have in an isotropic medi
um. However, it is evident that the focusing factor 
defined in this way is based on a trajectory picture 
for the phonons or geometrical acoustics,9 and its 
analytical expression has been recognized to yield 
infinities (though integrable) along certain crystal 
axes. Taborek and Goodstein have remarked that 
vectors parallel to such crystallographic directions 
form conical surfaces called caustic surfaces or 
simply caustics in classical wave theories. to, II Ac
cording to their analysis, the correct phonon inten
sity obtained by solving the wave equation of the 
lattice is finite along these directions, though still 
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enhanced heavily. 10-12 This means that geometri
cal acoustic approximation breaks down on the 
caustics. 

Recently, considerable efforts have been made to 
understand the origins of sharp enhancements of 
the observed phonon flux in connection with the 
infinities of the focusing factor and the underlying 
geometry of constant-frequency surfaces of the pho
nons in the wave-vector space.7, 11 However, no 
quantitative analysis of phonon intensity beyond 
the rather early workby Taylor et al.2 has been 
developed up to the present. They found that the 
calculated intensities along high-symmetry axes of 
various crystals are qualitatively in agreement with 
measured ones. But it is still indefinite whether 
their naive theory may predict quantitatively 
correct intensities along any crystallographic direc
tions including the caustics, when the finite aper
ture effects of the detector are properly taken into 
account. 

The purpose of the present work is then to dis
cuss in detail the applicability of the above
mentioned phonon-focusing theory to analyzing the 
observed spectrum of long-wavelength phonons in 
crystals. Here, we note that besides the phonon
focusing effects resulting from crystallographic 
properties of a solid, the precise understanding of 
the phonon intensity of the heat-pulse experiments 
in ballistic regime requires knowledge of (i) distri
butions of the phonons inside the heater, (ii) 
transmissions and subsequent refractions of the 
phonons through heater-crystal and crystal-detector 
interfaces, and (iii) temporal and spatial resolutions 
of the detector as well as other possible very minor 
effects. As we shall see in the following, these ef
fects play very important roles in our investiga
tions. More specifically, the correct estimation for 
phonon density in the heater is indispensable, in 
particular, for discussing relative magnitudes of the 
phonon flux of different polarizations, and the an
gular dependence of the phonon intensity is 
governed by the anisotropy of the transmission rate 
of the phonons across those boundaries. 

The organization of this paper is as follows. In 
Sec. II we give three-dimensional representations of 
the focusing factor evaluatel;l for three phonon 
modes in Ge. In particular, the focusing factors 
versus crystallographic directions in the (l10) plane 
are illustrated in more detail and they reveal a cer
tain number of sharp peaks in the transverse 
modes, whose locations are closely coincident with 
those observed equally in the experiment.5 The 
geometrical interpretation of the focusing factor is 

made, and then origins of these peaks are traced on 
the constant-frequency surfaces in the wave-vector 
space of the transverse phonons. Subsequently, the 
identification of flat points which correspond to the 
singular enhancements of the phonon flux in the 
(110) plane is tried, taking solid-angle effects sub
tended by the detector carefully into account. The 
effects of phonon transmissions at a heater-crystal 
interface upon the focusing will be considered in 
Sec. III. This amounts to correcting the angular 
distribution of phonon wave vectors in the crystal 
which is implicitly assumed to be uniform in the 
evaluation of the focusing factor in Sec. II. We 
also incorporate in the calculation the relative 
abundance of the phonons of three possible polari
zations excited in the phonon source. Relative 
magnitudes of phonon intensity between the longi
tudinal and transverse phonons, and the angular 
dependence of the intensity for the longitudinal 
mode in the (l10) plane are then studied with the 
aid of extensive numerical calulations. Finally, in 
Sec. IV we summarize the results and give con
clusions. 

II. ENHANCEMENT AND SINGULAR 
BEHAVIOR OF PHONON FLUX 

In this section we shall discuss how the substan
tial aspects of the experiments5- 7 such as sharp 
peaks, broad bumps, and other features found in 
the data of phonon amplitudes versus crystallo
graphic directions can be accounted for by apply
ing the basic idea of the phonon focusing due to 
crystal anisotropy. The analysis is largely based on 
the focusing factor of the phonon flux defined by 
A =~Ok/~Ow in the limit ~Ok'~Ow~O, where 
Ok denotes a solid angle in wave-vector space (iZ 
indicates a wave vector) occupied by the phonons 
and Ow' a solid angle subtended by the corre
sponding group velocity w in real space. An ana
lytic expression for A in terms of amplitudes and 
phase velocities of acoustic fields was derived by 
Maris.8 Unfortunately, it is hard to apply the for
mula directly to transverse phonons because the 
phonon flux of a transverse mode in a given direc
tion consists generally of more than one phonon 
traveling with group velocities different in magni
tudes. Hence, in the calculation of the focusing 
factor we employed the coarse-grained statistical 
method devised by Taylor et al.2 The explicit pro
cedure is just the same as that of Ref. 5. In short, 
we subdivided the polar (8) and azimuthal (4)) coor-
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dinates both in the wave-vector and real spaces to 
make finite but fine angular meshes (6.0,6.~) of 
(0.05°,0.05°) and (OS,OS), respectively. Next, as
signing a factor sinOr to each mesh in the former 
space, we counted the number of meshes (weighted 
with sinOr in the wave-vector space which are 
mapped onto each mesh in the real space. The 
result when divided by sinOw yields the focusing 
factor along a w direction. In the course of the 
calculation we have used a closed-form expression 
for the phase and group velocities given by Every, 
which saves computation time considerably.13 

Three-dimensional representations of the focus
ing factor for three phonon polarizations in Ge are 
shown in Figs. Ha)-1(c), where the angular reso
lutions of ±0.25° in the polar direction and of ± 1° 
in the azimuthal direction are assumed.14 It should 
be noted that, in our calculation, two quasi
transverse modes of the phonons are classified by 
the speeds of their phase velocities but not of group 

-velocities, that is, T 1 denotes a transverse phonon 
with a slower phase velocity and T2 with a faster 
one (a longitudinal phonon is denoted by LA). We 
immediately recognize various narrow focusing 
peaks in both transverse phonons but rather broad 
humps in longitudinal phonons. In order to inter
pret the calculated results in comparison with mea
sured phonon intensity, we have illustrated in Fig. 
2 the focusing factor in the (lTD) plane integrated 
over ±3° (not -over ± 1°) normal to this plane. The 
assumed angular resolution is accommodated to 
the experimental situation.5 

Apart from the overall magnitudes, the results of 
Fig. 2 qualitatively describe the phonon amplitudes 
observed by Hensel and Dynes.5 More precisely, as 
in the experimental results, we find two abrupt am
plifications of phonon flux at -7 S and 2° measured 
from the [001] and [Ito] directions, respectively, 
and other three peaks at 5S rotated away from the 
[001] direction and at ±6° (±5S in the experi
ments) on either side of the [111] direction. The 
positions of the first three peaks are identical to the 
experimental data up to assumed uncertainties of 
the statistical calculation. Thus, with respect to 
the peak locations of the phonon flux the coin
cidence of the theory with the experiment is re
markable. Here, we mention that the noticeable 
behaviors of the phonon focusing of T I mode near 
the [001] direction have already been established by 
the same kind of calculations, 5,7 but the remaining 
structures for three phonon modes have not yet 
been analyzed in detail. 

For pedagogical purposes we shall discuss how 

o· 
II 

(b) 

(c) 

r! 

FIG. 1. Three-dimensional representations of the 
focusing factor of Ge integrated over ±0.25° in the 0 
direction and ± 1° in the cfJ direction. (Angles 0 and cfJ 
refer to the polar and azimuthal angles measured from 
the [001] and [100] directions, respectively). (a) T1 
(transverse mode with slower phase velocity) phonon, (b) 
T2 (transverse mode with faster phase velocity) phonon, 
and (c) LA (longitudinal-mode) phonon. Note that 
ridges in (a) around the [111] direction ((J = tan -1v'2 
~54. 7°, cfJ=45°) terminate making cuspidal edges at 
(O,r/J) =(47°,45.), (60.,53°), and (60",37"). Inside the bro
ken circle of (b) the focusing factor vanishes (Le., com
pletely defocusing region). Bold solid lines are the traces 
of the focusing factor in the (1 TO) plane. 

the origins and their locations of the peaks found 
in the transverse phonons are explained by refer
ring to the underlying topological properties of the 
focusing factor. To begin with we show that the 
focusing factor A defined by the ratio of the solid 
angles depends on the curvature of a constant
frequency surface (w surface) in the wave-vector 
space. When the w surface of a phonon with cer
tain polarization is expressed in the form 

k 3=f(kll ) , 

with kll =(k l ,k2 ) where the wave vector 
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FIG. 2. Angular dependence of the focusing factor in 
the (lTO) plane of Ge integrated over ±0.25° and ±3° 
within and perpendicular to the (lTD) plane, respectively. 
Note that the longitudinal mode is multiplied by four. 
Analytical expression of the focusing factor becomes 
singular at directions marked A' -E'. 

k =( kll,k3) is defined with reference to a local 
Cartesian coordinate system fixed on the surface, it 
can be readily deduced that 

(2) 

where 

K- 111/22-1[2 
- 0+1[+1;)2 ' 

(3) 

with Ii =al /ak/> and lij =a21/akiakj is the 
Gaussian curvature of the (J) surface and ®k (®w) 
is the polar angle of the wave vector (the group 
velocity) measured from the third axis in the 
wave-vector space. Since the Gaussian curvature is 
a geometric invariant of the surface it is convenient 
to choose the k3 axis being normal to the (J) sur
face. In this case ®w is identical to zero because 
the group velocity by its definition is directed per
pendicular to the (J) surface, or parallel to the k 3 

axis, and we have 

A-1= I kI 2Kcos®, 

where ® refers to the angle between the group 
velocity and the wave vector. 

(4) 

[001] 
T1 mode 

(0) 

[100] 

[100] 

FIG. 3. Constant-frequency surfaces (w surfaces) of 
(a) T i phonon and (b) T2 phonon of Ge. Bold solid 
curves separate the regions of negative curvature (saddle) 
from those of positive curvature (convex and concave) on 
the w surfaces. Broken curves are traces of points on 
the w surfaces at Which normal vectors are parallel to 
the (1TO) plane. Intersections A -E of these curves give 
rise to singularities of the focusing factor in the (1 TO) 
plane. The directions of normals at A - E are indicated 
by A' -E', respectively, in Fig. 2. 

Based on the above consideration the focusing 
factor of the phonon flux is seen to be singular 
along directions normal to the (J) surface at points 
of zero curvature (K =0). The group velocities at 

. such flat points on the (J)surface sweep out conical 
surfaces called caustic surfaces or simply caustics. 1O 

On the 'caustics the focusing factor A derived in the 
framework of the geometrical acoustics blows up. 
In our evaluation, however, the phonon flux has 
been integrated over a finite solid angle afiw' Ac
cordingly, it would be expected that large but finite 
peaks rather than singularities are obtained along 
directions on the caustics. The five peaks that ap
peared in the focusing of the transverse phonons in 
the (10) plane are then likely to be large amplifi
cations of the phonon flux predicted in caustic 
directions. In order to convince ourselves that this 
is indeed the case, we have depicted in Figs. 3(a) 
and 3(b) three-dimensional representations of the (J) 

surfaces for both transverse modes of Ge, which 
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are drawn according to a perspective projection 
viewed from a polar angle (}=60' and an azimuthal 
~gle 4>=29'. 

Bold solid curves in these figures are traces of 
the flat points on the co surfaces and separate sad
dle regions with negative curvature (K <0) from 
convex or concave regions with positive curvature 
(K > 0). On the other hand, broken curves show 
positions of points on the co surfaces at which the 
group-velocity vectors become parallel to the oTO) 
plane. Therefore, the outward normals at the 
points on the co surfaces where both the solid and 
broken curves intersect give the caustic directions 
in the (10) plane. As can be seen from Figs. 3(a) 
and 3(b), there are four (marked with A to D) and 
only one (marked with E) points of zero curvature 
on the co surfaces of the T 1 and T2 modes, respec
tively, which should contribute to the strong focus
ing of the phonons in the (lIO)pla.ne ofGe. The 
directions in the real space of the group velocities 
at the points A to E are indicated by A' to E' in 
Fig. 2 and their angles in the (110) plane m~sured 
from the [001] axis are given in Table I. The coin
cidence of these directions' with locations of the 
peaks of the focusing factor are prominent except 
for C' and D'. The,1atter modest deviations, how
ever, are due to finite solid-angle effects of the 
detector. This can be best understood by reevahiat
ing the focusing factor assuming a finer angular 
resolution of the detector. Results tell us that the 
peaks gained by the calculation at about ±6' on ei
ther side ofthe [111] direction of the T 1 mode are 
modified considerably both in their magnitudes and 
locations, whereas no appreciable change takes 
place elsewhere. In Fig. 4 the focusing factor of 
the T 1 phonons versus the polar angle near the 
[111] direction is plotted for two different values, 
namely, ± l' and ± 3° of the angular resolution nor
mal to the (1 10) plane. We find that the position 
of each peak is much closer to C' or D' when the 
resolution is in a higher level. Another interesting 
observation is that the relative peak height is inter
changed between these two curves. It should be 
noted that the relative magnitude of peak heights 
in the solid curve obtained for the resolution of ± 3° 

TABLE I. Directions measured from the [001] axis 
along which the focusing factor becomes singular in the 
(1TO) plane of Ge. 

A' B' c' D' E' 

7.40 5.7' 45.5' 61.3' 88.00 
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FIG. 4. Focusing factors of Tl phonon near the 
[111] axis integrated over ± 3' (solid curve) and ± l' (bro
ken curve) perpendicular to the (1 TO) plane of Ge. 

is qualitatively in agreement with the experimental 
observations.5 

Following the analysis being made hitherto, it 
may be confirmed that observed sharp focusings .of 
the phonon flux correspond to the infinities of the 
focusing factor arising in the approximation of 
geometrical acoustics and are deeply connected 
with topological properties of the co surfaces. The 
existence of various ridges found in the maps of 
Figs. 1(a) and 1(b) will be equally explained by 
referring to the shapes of the complete co surfaces. 
A similar conclusion has been reached by Northrop 
,and Wolfe.7 To sum up, the naive idea of the 
focusing based on the ray picture of the phonons 
predicts the appearance of the sharp peaks of the 
phonon flux and their proper loci measured in the 
heat-pulse experiments. In addition, the solid
angle effects of the detector play significant roles in 
predicting quantitatively correct locations of 
relevant flux peaks. 15 

III. EFFECTS OF PHONON TRANSMISSION 
AND COMPARISON OF INTENSITY 

In the discussion of the phonon-focqsing effects 
developed in the preceding section, the following 
have been assumed tacitly. Firstly, immediately 
after the excitation in a crystal the angular distri
bution of phonons in the wave-vector space is uni-
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form, and secondly, the relative aburidance of the 
phonons in the crystal is equal, irrespective of their 
polarizations. However, none of the above
mentioned simplifications are applicable to quanti
tative studies of measured phonon intensity in the 
heat-pulse experiments. This is because the density 
of the phonons generated in a heater depends large
lyon their polarizations and a certain amount of 
the phonons incident on the heater-crystal boun
dary are reflected back to the heater due to the 
presence of acoustic mismatch. 

Hence, in order to discuss the phonon intensity 
we must explicitly take into account the density of 
the phonons excited in the heater and their incom-' 
plete (and also anisotropic) transmissions into the. 

crystal. In the work of Taylor et al. these effects 
were only estimated by approximating both the 
heater and the crystal to be isotropic in their elas
tic properties.2 

Now, we note that an incoming phonon beam of 
a definite polarization falling upon a heater-crystal 
interface can generate, in general, three transmitted 
phonon beams of different polarizations. On the 
other hand, an outgoing phonon beam of a speci
fied polarization may be produced by three incom
ing phonon beams in the heater. Accordingly, in
troducing the phonon flux FH in the heater (H) 
and F C emitted into the crystal (C), which are de
fined per unit solid angle in the wave-vector space, 
we have16 

C -+c -+c -+c -+H H -+H -+H 
F (w,k ,A)d!l(k ,A)= ~ tM(k ,k )F (w,k ,u)d!l(k ,u), (5) 

u=(T1,T2,LAi 

where w is the angular frequency of the phonons 
and 

stands for an infinitesimal solid angle about a wave 
vector fC of the phonons with polarization 'A in 
the crystal, which is related to the solid angle 
d!l( fH,u) of incident phonons with polarization u 
in the heater (the polar angle 0 is measured from 
the normal of the interface). The quantity denoted 
by tM is a transmission coefficient of the phonons 
defined by tM=pflp:i, wherepf (P:i) is the com
ponent normal to the interface of the Poynting vec
tor associated with the phonons of the polarization 
& (u) in the crystal (heater). Thr~gossible sets of 
kH and u connected with a given k and A are 
determined uniquely by boundary conditions at the 
interface. It.should be remarked that F C and FH 
are not directly observable in contrast to the pho
non flux in the real space. For the sake of the fol
lowing discussions, here we shall give the relation
ship between the phonon flux F in the wave-vector 
space and f in the real space 

i -+/ -+i i -+/ -; F (w, k ,A)d!l( k ,A)= f (w, e ,'A)d!l( e ,A), (6) 

with i =C and H, where ~= W(fi)! I w(fi) I is 

the unit vector parallel to the group velocity 
w(fi), and d!lCi,A) is the corresponding infini
tesimal solid angle subtended in the real space. 

Next, with a commonly used approximation we 
assume that soon after the thermalization the pho
nons in the heater are in an equilibrium state 
characterized by an appropriate temperature T. 
Then the flux. FH in the heater which impinges on 
the interface of area S may be expressed as 

-+H 
F H( -+kH ) _ _ S_ 2 ( T) cosO( k ,u) 

w, ,u - 3 wnw, H 2 ' 
(21T) (v u ) 

(7) 

where n is the Planck distribution function and v:i 
is the phase velocity of the phonons with polariza
tion (J' in the heater. In deriving Eq. (7) it is also 
assumed that the heater (an evaporated Constantan 
film on the crystal5) is elastically isotropic and, 
therefore, no kH dependence is present in v:i. 
Equation (7) tells us that the ratio of the longitudi~ 
nal and degenerate transverse (TI =T2=TA) pho
nons incident along the same direction on the 
heater-crystal interface is given by (V¥A Iv fA )2 and 
it leads to suppression of the observed flux for the 
longitudinal mode. 

For further calculations we note that 

(8) 
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where v f is a phase velocity of the phonons in the 
crystal, 

H . ->H C ->c ->c 
vll=vO'/smtJ(k ,iT)=vA(k )/sintJ(k ,)..) 

is a phase velocity projected on the interface, and K 

defined by K=cottJ(kc,)..) is related to a component 
perpendicular to the interface of the direction 
cosine of kC. Accordingly, expression (5) together 
with Eqs. (7) and (8) leads to 

pC(w kC )..)= B(w,T) dV11 ~t (kc kH) 
" ( C )3 d ~ AU , , 

vA K 0' 

(9) 

where B(w,T)=Sw2n/(21d is a factor depending 
on the temperature and the frequency of the pho
nons in the heater, and its explicit expression is ir
relevant in the following discussions. Equation (9) 
gives the magnitude and the angular dependence of 
the phonon flux in the wave-vector space of the 
crystal. The derivative dVII/dK entering in this 
equation should be identified physically with the 
component of the group velocity normal to the in
terface. We shall show in the Appendix that this 
is indeed the case. 

Now, with the aid of Eq. (6) the phonon intensi
ty I C per unit solid angle along a direction eC in 
the crystal may be written in terms of the phonon 
flux pC given by Eq. (9), and the focusing factor A 
computed previously as 

IC(w,ec,)..)= l:1Uojc(w,kc,)..) 

= l:1Uopc(w,kc,)")A [w(kc )] , 

(10) 

where the summation should be taken over the 
wave vector kC in the crystal for which the group 
velocity w is collinear with the unit vector eC• 

Finally, we are left to obtain the transmission 
coefficients t's in Eq. (9). In principle, they can be 
evaluated in the framework of continuum elastic 
theory by solving the equations of mption for lat
tice displacements both in the heater and the crys
tal as well as the boundary conditions at the inter
face. It may be worthwhile to note that the acous
tic mismatch model is appropriate to describe 
transmissions of the phonons through a solid-solid 
interface at low heater power or low-frequency ex
citation. 17 For explicit calculations of those 
transmission coefficients, we should initially under
stand the experimental arrangements of the heater 
and the detector relative to the crystal. As is 
shown in Fig. 5, the heater-crystal boundary of the 

[001] 

[1 fa] 

[110] 

FIG. 5. Schematic drawing of the geometrical ar
rangement for the detection of ballistic-phonon focusing 
by Hensel and Dynes. (Ref. 5). Heat pulses are generat
ed optically by a laser beam focused on the cylindrical 
surface which is coated with an evaporated Constantan 
film. The detector placed parallel to the [lTD] axis is an 
Al superconducting bolometer with the dimensions 
0.1 X 1.0 mm2• The radius of the sample (Ge) is 1 cm. 

experiment5 is not flat but in the shape of cylindri
cal surface so that the normal of the interface may 
rotate smoothly from the [001] to [110] directions 
via the [111] one in the (ITO) plane of Ge. Furth
ermore, we note that the detector (a thin-film 
granular Al superconducting bolometer5) is in the 
form of a narrow strip and is put at the center of 
the cylinder (Ge sample) aligned with the [1TO] 
axis (the axis of rotation). 

If we take these circumstances into account, it 
seems to be a difficult task to determine in a 
straightforward fashion the sum in Eq. (9) of ap
propriate transmission coefficients from the heater 
to the crystal, because it is not kH but kC which is 
directly connected with the phonons to be ob
served. Fortunately, however, the reciprocity rela
tion tAO'(kc,kH ) =to'A(kH,kc ) holds for the 
transmission coefficient. This means that when the 
modes).. and iT and the wave vectors kC and kH of 
the phonons being linked together at the boundary 
are specified, the transmission rate from the heater 
to the crystal is identical to that from the crystal 
to the heater. The application of this equation 
considerably facilitates practical calculations of the 
flux pC's excited in the crystal, that is, when we 

->c 
find a pertinent k among a number of wave vec-
tors on an w surface we-may just evaluate the 
transmission coefficients of the corresponding pho
non into three kinds of phonons in the heater, in-
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stead of computing those from the heater to the 
crystal. 

In the above scheme, sums of the transmission 
coefficients and in turn the flux Fe,s are calculated 
by considering carefully the arrangements of the 
heater and the detector. Plotted in .Fig. 6 are rela
tive magnitudes of Fe·s in the (1TO) plane (in the 
real space) of Ge which are radiated from the Con
stantan film. 18 For transverse modes the phonon 
flux reveals a folded structure and consists of mul
tiple branches. A branch of the T 1 mode drawn 
with the solid curve shows the flux accompanied 
by the phonons with their wave vectors within the 
(1TO) plane, and that with the dot-dash curve ori
ginated from the phonons with their wave vectors 
out of this .plane. In this figure we also marked 
with A' to E' the flux in the directions along 
which the (1TO) plane and the caustics of the 
transverse phonons in Ge intersect. It is interest
ing to note that these curves are folded at A', B', 
D', and E', whereas two branches coalesce at C'. 
As can be seen in Fig. 1(a), a pair of ridges of the 
focusing factor terminate and make a cuspidal 
structure in the direction corresponding to C', but 
they only traverse the (1TO) plane in the other 
directions. 

For the longitudinal mode the phonon flux is 
single valued in every crystallographic direction of 

I , , , 
.!~ ,/ 

O'~--~~-7--~~~~~~--~6~-

3 Fe (R~LATIVE 5UNITS) 

FIG. 6. Flux or emissivity of phonons in the first 
quadrant of the (1 TO) plane of Ge which emanates from 
the adjacent Constantan heater in the configUration of 
Fig. 5. The solid (dot-dash~ curve represents the flux of 
T 1 phonons with their wave vectors within (out 00 the 
o TO) plane. For transverse phonons transitions from 
T 1 to T2 and vice versa happen. The flux of the pho
nons at points A - E on the £i) surfaces in Figs. 3(a) and 
3(b) are marked again with A' - E'. 

Ge, and the emissivity defined by the ratio of Fe·s 
is given by 1:0.81:0.85 along the [001], [111], and 
[110] directions, respectively. The flux of the long
itudinal phonons emitted from the heater as com
pared to those of the transverse phonons is largely 
suppressed mainly due to the factor 
(Vf)-3(dvll/dK) ~(vf)-31 W I ofEq. (9) and will 
lead to overall reduction of the LA-phonon intensi
ty in the heat-pulse experiments. 

The phonon intensity in the crystal is obtained 
by combining the focusing factor with the emissivi
ty of the phonons across the heater-crystal boun
dary according to Eq. (10). The result in the (1TO) 

plane is shown in Fig. 7. Compared with the 
focusing factors in Fig. 2, the effects of the phonon 
transmission on the relative intensities among the 
longitudinal and transverse phonons are now evi
dent and hardly require comment. 

For quantitative comparison of the theory with 
the experimentS we tablulated in Table II the cal
culated phonon intensities along principal crystal
lographic directions together with the experimental 
results. It can be seen that the theory is in good 
agreement with the experiinent provided a relevant 
direction coincides with a focusing (A > 1) direction 
of the flux. On the contrary, the agreement is 
rather poor along defocusing (A < 1) directions. 
The latter disagreement may be expected because 

[Ill] 

(1 fo) 

· LA (.4) I --- · ---t 
· ./ 
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ANGLE (DEGREES) 

FIG. 7. Calculated phonon intensity in the OTO) 
plane of Ge. The intensity of the longitudinal phonon 
(broken curve) is multiplied by 4 and is suppressed con
siderably in comparison with those of the T 1 phonon 
(solid curve) and T2 phonon (dot-dash curve). 
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TABLE II. Relative phonon intensities along princi
pal crystallographic directions of Ge. Calculated values 
are given in the first row and experimental data (Ref. 5) 

in the second row in parentheses. Note that in the [001] 
direction two transverse modes are degenerate and the 
numerical value (i.e., unity) represents the sum of these 
modes. 

[001] 

Tl 

1 
(1) 

T2 

LA 0.013 
(0.021) 

[111] 

0.31 
(0.30) 

o 
(0) 

0.12 
(0.13) 

[110] 

0.04 
(0.20) 

0.89 
(0.90) 

0.079 
(0.080) 

the effects being overlooked hitherto, such as back
ground phonon signals, become much more effi
cient in the low-intensity, defocusing regions. 

The effects on the phonon focusing in the crystal 
of the anisotropic phonon transmission through the 
heater-crystal boundary can be best illustrated by 
studying the angular dependence of the phonon in
tensity of the longitudinal mode. In Fig. 8 we 
show normalized intensity versus crystallographic 
directions of the longitudinal phonons in the (1 TO) 
plane of Ge. Dots indicate the data measured· by 
Hensel and Dynes,s and the broken curve shows 
the intensity obtained by assuming the isotropic 
distribution for the phonon wave vectors in the 
crystal, or by making the flux F C in Eq. (10) a con
stant independent of fC. On the other hand, the 
solid curve represents the theoretical values 
corrected by the anisotropic phonon transmission 
from Constantan to Ge and fits the data more 
closely than the broken curve. Note that both 
curves are adjusted to the data in the [110] direc
tion. If we take into account the fact that the an
isotropy of the phonon transmission across the 
crystal-detector interface has not been considered 
in the calculations, it may be concluded that the 
theory successfully describes the experiments for 
the longitudinal phonons though the fitting near 
the [001], or the defocusing direction is again 
slightly inadequate in the quantitative sense. 

The analysis being developed so far seems to 
support, for the most part, the applicability of the 
employed theory to the quantitative studies of the 
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FIG. 8. Angular dependence in the (lTO) plane of the 
phonon intensity of longitudinal mode. The broken 
curve is the plot of the intensity obtained for isotropic 
distribution of the wave vectors in the crystal. The solid 
curve is the plot of the intensity corrected by the aniso
tropic phonon transmission across the heater (Con
stantan)-Ge interface. The dots are the experimental 
data of Ref. 5. These intensities are adjusted to the 
same value (i.e., 1.5) in the [110] direction. 

ballistic phonons in the crystal. However, a crucial 
feature which limits the predictability of the theory 
can be seen from Fig. 9 on the relative magnitudes 
of the ballistic-phonon intensity over the finite 
range of the propagation directions near the [111] 
axis. Dots in Fig. 9 represent the measured inten
sities of the transverse phonons normalized by the 
calculated LA-phonon intensity. We note that in 
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Fig. 9. Magnification of Fig. 7 in the neighborhood 
of the [111] axis. The dots are the experimental data of 
transverse phonons (Ref. 5) normalized by the calculated 
intensity of longitudinal phonon. 
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the angular range from 40° to 70° rotated away 
from the [001] direction, the latter intensity 
describes the experimental results quantitatively 
(see Fig. 8). Comparing those data with the solid 
curve which plots the calculated T I-phonon inten
sity, we find large discrepancies between the theory 
and the experiment in the neighborhood of the 
directions where the T I mode makes peaks. These 
disagreements are attributed to an inherent limita
tion of the approximation for the focusing factor 
based on the geometrical acoustics, as noted in the 
foregoing sections, and are therefore present even 
when the finite solid-angle effects of the detector 
are properly taken into consideration. 

It will be interesting to investigate whether the 
theory may provide quantitatively reliable intensity 
for the transverse phonons apart from the caustic 
directions. The validity of the theory at high
intensity, focusing directions for these phonons has 
already been confirmed (see Table II). Actually, 
we recognize in Fig. 9 that for the T 1 mode the 
dots and the solid curve are well matched in the 
vicinity of the [111] axis (the focusing direction) 
and at angles smaller than 40". On the contrary, 
the disagreement of the theory with the experiment 
is rather remarkable in the defocusing directions of 
the phonons, namely, at angles larger than 63° for 
the T 1 mode. In the context of the assumed focus
ing model, the focusing factor which measures the 
enhancement of the phonon flux with respect to 
that of an isotropic medium should yield41T when 
integrated over the whole solid angles in the real 
space. TheiJ. it would be easily envisaged that due 
to unphysical infinities (though integrable) on the 
caustics of the employed focusing factor, the theory 
may predict the phonon flux enhanced excessively 
in their neighborhoods but suppressed too much 
elsewhere compared to the flux to be observed. It 
might be rather surprising that such a theoretical 
overestimation of the flux near the caustics does 
not seem to influence the matching of the phonon 
intensity along the symmetry aXes of the crystal 
provided they coincide with the focusing directions 
of the phonons. 

IV. SUMMARY AND DISCUSSIONS 

Through our investigation, first we established 
that there really exist one-to-one correspondences 
between the sharp enhancements of the observed 
phonon flux and the singularities of the focusing 
factor which are attributed to the flat points on the 
constant-frequency surfaces of the phonons. In ad-

dition, we also ascertained that locations in the real 
space of those intensity peaks are predicted quanti
tatively by the theory provided the solid~angle ef
fects of the detector are properly taken into ac
count. It should be noted that the peak positions 
are crucially dependent upon the spatial resolution 
of the detector and do not necessarily coincide with 
the directions nornial to the constant-frequency 
surface at the flat points. ' 

Second, in order to see the validity of the theory 
for magnitude and angular dependence of the pho
non intensity in the crystal, the relative densities in 
the heater of the phonons with different polariza
tions as well as their incomplete and anisotropic 
transmissions into the crystal were combined with 
the focusing factor. The latter effects are impor
tant especially in understanding the angular depen
dence of the phonon intensity and are studied in 
detail for the longitudinal mode in which the 
transmission coefficient is single valued along every 
possible crystallographic direction. The result sup
ports the theory owing to its close agreement with 
the experiment. furthermore, the relative intensi
ties of the phonons calculated.in three principal 
crystallographic axes (the [001], [110], and [111] 
axes) of Ge uphold again the applicability of the 
assumed theory. However, in the vicinity of a 
caustic direction where the intensity makes a peak, 
the theory gives too large a magnitude of the inten
sity which is not quantitatively accomodated with 
the experimental data. Subsequently, it also fails 
to predict proper intensity, in particular, in the de
focusing region apart from the caustics. 

On the caustics the analytic expression of the 
focusing factor yields infinities which are not com
patible with the underlying linear theory of elastici
ty, and a careful analysis, beyond the geometrical 
acoustics, on the basis of asymptotic phonon fields 
obtained by solving the wave equation of the lattice 
is required. According to such an analysis, it has 
been shown that acoustic fields emanating from a 
point source decrease more slowly than r -t along 
the caustic directions, namely, in proportion to 
r- 5/6 (corresponding to fold catastrophe) or r- 3/4 

(corresponding to cusp catastrophe) for a large dis
tance r between the source and a point at which 
the fields are observed. to For the longitudinal pho
nons in Ge, however, no caustic exists and the cal
culated intensity coincides closely with the experi
mental results. 

The reason why the peak positions of the sharp 
enhancements of the phonon flux are predicted 
correctly by finding infinities of the focusing factor 
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would be now evident. In short, the rigorous treat
ment of the problem gives rise to the phonon inten
sity enhanced still heavily along the caustic direc
tions due to much weaker spatial dependence than 
r - I of the phonon fields. 

In the present work, we did not consider emis~ 
sivity of the phonons from the crystal to the detec
tor (granular Al film in Ref. 5), and the complete 
acoustic matching at the crysW-detector boundary 
was assumed. Taking the imperfect phonon 
transmission through Ge-AI interface into account, 
we can obtain in practice a much better fitting of 
the theory to the experiment, for instance, in the 
angular dependence of the phonon intensity of the 
longitudinal mode. But we have not displayed the 
results further. This is partly because we do not 
have any information about the orientation of the 
detector normal to a cubic axis and, in addition, 
about the magnitude of background signals due to 
diffuse propagations of the phonons, which may be 
crucial in advancing the quantitative discussions 
more. 

In conclusion, the conventional theory of the 
phonon focusing based on the geometrical acoustic 
approximation and the acoustic mismatch model at 
the phonon source-crystal interface can well ac
count for a number of characteristic behaviors of 
ballistic phonons observed in the heat-pulse experi
ments except for their intensities in the neighbor
hood of the caustics. 
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APPENDIX 

Here, we show that the derivative dVIl /dK in 
Eqs. (8) and (9) is equal to a component normal to 
the heater-crystal interface of group velocity in a 
crystal. To start with, let us set a local Cartesian 
coordinate system such that the x I-X2 plane and 
x 3 axis are tangential and normal to the interface, 
respectively. Next, we shall write the space and 
time dependences an acoustic field u in the crystal 
as 

U ex: exp[i (k'x -wO] 

=exp[ikll(KlI'xlI+KJX3-vllt)] , (Al) 

where X=(X~X3)' k=k ll (KII,K3) with kll 
=(kf+ki)' is the wave vector, and w is the an
gular frequency of the phonons. We can easily see 
that v II in this equation is identical to that defined 
in the text. The two-dimensional vector KII is the 
unit vector which defines the direction cosine of 
the wave vector mapped onto the interface, and the 
magnitude of k is given by I k I =k ll ( 1 +K~)1I2. 
Hence K3=cot9 holds (or K3=K in the text) where 
9 is the polar angle of k measured from the third 
axis. 

Now, from the relation K/ =k; /k ll for i = 1, 2, 
and 3, we have 

3Kj 1 
3kf = k;(6ij -KfKj) for i = 1 and 2 , (A2) 

3Kj I. 
3k3 =k;6j3 • 

(A3) 

Then, it follows that 

(A4) 

With the aid of Eqs. (A2) and (A3), Eq. (A4) is reduced to 

3 3VII 
KfVII + ~ (6;j -K;Kj) 3K' for i = I and 2 

)=1 ) 

3vII ' 
-- fori=3. 
3K3 (A5) 

Because 3w/3kl is identical to the ith component of the group velocity we have established the statement 
given at the beginning of this appendix. 



4328 SHIN-ICHIRO TAMURA AND YOSHITO NAKANE 24 

lB. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. 
Lett. n, 416 (1969). 

2B. Taylor, H. J; Maris, and C. Elbaum, Phys. Rev. B J, 
1462 (1971). 

3See, for example, H. Kinder, J. Weber, and 
W. Dietsche, in Proceedings of the Third International 
Conference on Phonon Scattering in Condensed 
Matter, edited by H. J. Maris (Plenum, New York, 
1980), p. 173; A.P.G. Wyatt, ibid., p. 181. 

4See, for example, G. A. Northrop and J. P. Wolfe, in 
Proceedings of the Third International Conference on 
Phonon Scattering in Condensed Matter, edited by H. 
J. Maris (Plenum, New York, 1980), p. 377; J. C. 
Hensel and R. C. Dynes, ibid., p. 395. 

5J. C. Hensel and R. C. Dynes, Phys. Rev. Lett. 43, 
1033 (1979). 

6G. A. Northrop and J. P. Wolfe, Phys. Rev. Lett. 43, 
1424 (1979). 

7G. A. Northrop and J. P. Wolfe, Phys. Rev. B 22, 6196 
(1980). 

8H. J. Maris, J. Acoust. Soc. Am. 50,812 (1971). 
9L. D. Landau and E. M. Lifshitz, Fluid Mechanics 

(Pergamon, New York, 1959) Chap. 8. 

lOp. Taborek and D. Goodstein, Solid State Commun. 
n, 1191 (1980). 

lip. Taborek and D. GOQdstein, Phys. Rev. B ~, 1550 
(1980). ' 

l2y. T. Buchwald, Proc. R. Soc. London Ser. A m, 563 
(1959). 

13A. G. Every, Phys. Rev. Lett. ~,1065 (1979). 
14The values of elastic constants and density of Ge em

ployed in the calculation are c 11 = 1. 318 X 1012 

dynlcm2, CI2=0.496Xl012 dyn/cm2, c44=0.685XI012 
dynlem l2, and p=5.34 glcm3• See H. J. McSkimin, 
J. Appl. Phys. 24, 988 (1953). 

15Por dependence of phonon flux on detector shape and 
size, see M. Lax and Y. Narayanamurti, Phys. Rev. B 
22, 4876 (1980). 

16p. ROsch and o. Weis, Z. Phys. B 27, 33 (1977). 
17W. E. Bron and W. Grill, Phys. Rev. B M, 5303 

(1977). 
18The phase velocities 5.24 X 10' em/sec (longitudinal 

phonons), 3.lOX 10' cm/sec (transverse phonons), and 
mass density 8.80 glem3 are employedfor Constantan 
(isotropic). See Ref. 16. 


