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Coupled-mode stop bands of acoustic phonons in semiconductor superJattices 

S. Tamura· and J. P. Wolfe 
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign. 

Urbana. Illinois 61801 
{Received 12 November 1986} 

Dispersion relations of acoustic phonons in the (001) GaAs/AIAs superlattice are calculated for 
arbitrary propagation directions using the continuum approximation with the elastic anisotropy in
cluded. We predict the existence of forbidden band gaps inside the folded Brillouin zone in addi
tion to those at the zone boundary and the zone center. They occur by the mixing of different 
phonon modes having propagation directions oblique to the interfaces. The phonon transmission 
rates are calculated for superlattices with a finite number of periods, and significant dips are pre
dicted for frequencies corresponding to zone-center, zone-boundary, and coupled-mode stop bands. 

Much work has been devoted to the understanding of 
the acoustic properties of superlattices. I- 9 The periodic 
structure in a superlattice along the growth direction is 
known to produce Brillouin-zone (BZ) folding and the ap
pearance of gaps in the phonon spectrum, i.e., phonon stop 
bands, for wave vectors satisfying the Bragg condition. 
Phonons with frequencies in these band gaps are attenuat
ed in the superlattice. The presence of the phonon stop 
bands has so far only been studied for phonon propagation 
perpendicular to the interfaces of the superlattice. The 
first experimental observations of Bragg scattering of 
high-frequency acoustic phonons were made by Nar
ayanamurti et al. 2 several years ago. They used 
GaAs/AlxGal-xAs superlattices with (001) and (111) 
surfaces and found dips in the phonon transmission at fre
quencies corresponding to the forbidden gaps at the zone 
boundaries. More recently, Koblinger et al. 7 have ob
served similar effects for amorphous SiOJSi superlattices, 
also for propagation perpendicular to the interfaces. An 
interesting prospect is to vary the propagation direction of 
the incident phonons with respect to the superlattice 
planes, analogous to scanning the angle of an optical 
diffraction grating. Anisotropies associated with phonon 
focusing and mode conversion at an interface make this a 
challenging problem. 

In this Rapid Communication we examine the phonon 
dispersion relation for oblique propagation and predict a 
new type of stop band which occurs inside the folded zone. 
These new forbidden gaps are due to "anticrossings" of 
phonon modes with mixed polarizations. The mixing of 
the bulk-mode polarizations occurs by the presence of the 
elastic anisotropy combined with reflection and transmis
sion at an interface. The predominant polarizations of the 
transmitted and reflected phonons in, say, GaAs and 
AlxGal-xAs layers are not necessarily the same. Energy 
gaps occur when a folded branch approaches another 
branch with some of the same polarization character. In 
addition to predicting the phonon dispersion relations at 
oblique angles, we have calculated the transmission rates 
in the superlattice with a finite number of periods. It 
displays prominent dips at frequencies corresponding to 
these interior-zone band gaps. 

Consider the superlattice configuration depicted in Fig. 
1 (a). Perfectly flat interfaces parallel to the x" plane are 

assumed. The plane-wave solution for the displacement 
field U of the phonons in each layer (/ = 1 or 2) has the 
following form: 

U(J) =-Aeexp[;(k,,· x"+k,,K3z - wt)] , (0 

where kIt -kll(Kt.K2) is the two-dimensional wave vector 
parallel to the interface (i.e., kIt -I kIt I ,Kt+ Kl-=l), e is 
the unit polarization vector, A is the amplitude, and w is 
the angular frequency. In Eq. (1), K3 determines the prop
agation characteristics of the phonons perpendicular to the 
interfaces and is related to the angle (J of the wave vector 
measured from the z axis by K3 =-cote. 

For any given values of KI and K2 the polarization vector 
e and K3 in each layer are obtained by solving the 
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FIG. 1. (a) Schematic of a superlattice configuration consist
ing of alternating layers with thickness d 1 and d2. (b) Saggital 
planes and angles of incidence (or transmission) of ST -phonon 
wave vectors in GaAs layer assumed for the calculations of 
dispersion relations. See text. 
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Christoffel equation 

[C/jm,,(t) "j"" - p(J)v2olm]em -0, i -1,2,3 , 

where Cijm" is the elastic-constant tensor, p is the mass 
density of the medium, and v is the velocity given by 
v -w/kll' (A sum over repeated indices is assumed.) 
Since the secular equation derived from Eq. (2) is of de
gree 6 in "3, there are six solutions for "3, three of which 
correspond to the transmitted (+ z propagating) waves 
and another three correspond to the reflected (- z propa
gating) waves of different polarizations. Hence, the actual 
displacement field U in each layer is the linear combina
tion of six terms of the form of Eq. (1) with different value 
of "3. Here, we note that kll and v are the same for all 
twelve reflected and transmitted waves at a single interface 
and v is related to the phase velocity c by Snell's law, 
v -c/sinfJ. The displacement field U and stress field, 
defined by 

S3m(J) -C3mj" ([)iJjU,,([), m -1,2,3 , (3) 

must satisfy the appropriate continuity and periodicity 
conditions at an interface z -z().10 They are given by 

Wm([-I;zo)-Wm([-2;zo), m-l,2,3, (4) 

Wm([;zo+D) -e1qDWm([;zo), m -1,2,3 , (5) 

where Wm represents both Um and S3m, D -d l +d2 is the 
superlattice period, and q is the superlattice wave number 
describing the propagation perpendicular to the inter
faces. 

Now, Eqs. (4) and (5) give twelve linear equations to be 
solved for twelve amplitudes- six amplitudes A in each 
layer, 1-1 and 1-2. In order that all of these amplitudes 
are not identically zero, the determinant of the 12 x 12 ma
trix consisting of the coefficients of A's must vanish. This 
gives the eigenvalue equation for x -e1qD. More explicitly, 
x is given by the eigenvalue of the 6 x 6 matrix M defined 
by 

M-[H([ -2;z - -d2)] -IH([ -1;z -d l ) 

x[H([-I;z-0)]-IH([-2;z-0). (6) 

The elements of the 6 x 6 H matrices are components of 
the displacement and stress fields. Explicitly, we have 

[(uJ{»,(uff») 
H(f) - (sJ{»,(:s;;» , m,J -1,2,3 , (7) 

where uJ{> and sJ{> <u;;> and s;;» are the + z propaga
ting (- z propagating) components of the displacement 
and stress fields with unit amplitudes, and J is the mode in
dex. For each mode, "3 is different. Note that these fields 
are functions of the wave number k ll , thus Hand Mare 
functions of the phonon frequency v. 

As a typical example, we show in Fig. 2 the dispersion 
curves v(q) for phonons with a given propagation direc
tion in the (l00) plane (saggital plane) of a (000 
GaAs/ AlAs superlattice. The widths of the layers are as
sumed to be 40 A (i.e., d l -d2 -40 A). In case I, a 20° 
angle of incidence (or transmission) is chosen for the 
slow-transverse (ST) -phonon wave vector in a GaAs layer 
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FIG. 2. Dispersion curves of acoustic phonons propagating in 
the (001) GaAs/AIAs superlattice with layer thickness of 
d l -d2 -40 A. [Case I of Fig. l(bU The wave number qmax of 
the zone boundary phonons is 3.927 x 10 6 cm - I. 

[see Fig. I (b)]. Using Snell's law, fast transverse (FT) 
and longitudinal acoustic (LA) phonons with the same kif 
and w have angles of incidence 22.8° and 37.2°, respec
tively.l1 For these propagation directions, FT phonons are 
polarized perpendicular to the saggital plane and, hence, 
they are decoupled from the LA and ST phonons. The ST 
and LA phonons, however, are coupled to each other. At 
low frequencies the dispersion curves of the three phonon 
modes are well separated. This means that the transmitted 
and reflected waves in each layer are almost identical to 
the transverse or longitudinal waves in the bulk, and the 
mixing of the different modes is very small. As the fre
quency increases the dispersion curve of the ST phonons 
reaches the zone boundary and is folded back into the 
zone, producing a forbidden gap at the boundary. This 
folded ST dispersion curve encounters the dispersion curve 
of the LA branch. Because of the oblique propagation, 
both of these modes contain some longitudinal and trans
verse character (i.e., they are not pure shear or compres
sion waves) and the mixing of the polarizations increases 
with increasing frequency. Consequently, the dispersion 
curves of the ST and LA modes repel each other and form 
a new band gap. More specifically, in this region of the 
q -v plane the longitudinal (transverse) lattice vibrations 
incident to the interface produce mainly transverse (longi
tudinal) reflections. Because of this mixing of the modes 
the polarizations of the lattice vibrations in each layer can
not be identified as predominantly longitudinal or trans
verse. For frequencies in the band gap the transmitted and 
reflected waves in each layer carry exactly the same mag
nitude of energy flux perpendicular to the interfaces, and 
therefore there is no net energy transmission to adjacent 
layers. 

If the saggital plane of the phonons is not oriented along 
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a symmetry direction, all three modes of the phonons cou
ple due to the elastic anisotropy and much more compli
cated mixing of the branches is obtained. Figure 3 shows 
typical dispersion curves in such a case. Here we are still 
considering a GaAs/AIAs superlattice with (001) crystal 
surface. The saggital plane of the wave vector is rotated 
20° away from the (100) plane, as indicated by case II in 
Fig. I (b). The angle of incidence for the ST wave vector is 
chosen to be 25° in GaAs, which by Snell's law gives 29.2° 
and 52.0°, respectively, for FT and LA incident angles in 
the same layer. In this case, mixing of the FT branch with 
the ST and LA branches occurs in addition to the mixing 
of the latter two branches. A number of coupled-mode 
forbidden bands are generated (e.g., regions I, 3, and 5 for 
the FT mode). It should be noted that in the long
wavelength approximation these dispersion curves apply to 
any thickness D -dl +d2 with d l -d2; only the scale of v 
is changed. 

The dispersion curves of Figs. 2 and 3 were obtained for 
an ideal superlattice with an infinite number of periods. 
We now address the question of whether the coupled-mode 
stop bands can lead to observable effects in super lattices 
with a finite number of periods. Typically, a superlattice is 
grown on a thick substrate (usually GaAs). One can im
agine an experiment where phonons transmitted through 
the substrate are incident on the superlattice and are 
detected on the opposite side of the superlattice. We 
define the transmission rate as the ratio of the acoustic 
Poynting vector perpendicular to the interface to that of 
the incident phonons from the substrate. For a multilay
ered system such as a superlattice, the transmission rate 
can be calculated by applying the transfer-matrix tech
nique to elastic waves in anisotropic media. In the present 
calculations, the number of periods is assumed to be twen-
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FIG. 3. Dispersion curves of acoustic phonons propagating in 
the (001) GaAs/AIAs superlattice with dl-d2-40 A. [Case II 
of Fig. I(b)J qmax-3.927xI06 em-I. The numbers labeled I 
to 6 indicate the stop bands of FT phonons. 

ty and the thickness of individual GaAs and AlAs layers is 
40 A each. The directions of the wave vectors are the 
same as those for which the dispersion curves of Fig. 3 are 
obtained. 

The calculated frequency dependence of the transmis
sion rate is given in Fig. 4 for the case of FT phonons. 
Effects of the phonon stop bands are clearly evident even 
in a twenty-period superlattice. The frequencies at which 
the stop bands in Fig. 3 occur agree very well with the dips 
in transmission. The dips in the transmission rate indicat
ed by 2, 4, and 6 correspond to zone-boundary and zone
center reflections, and those labeled 1, 3, and 5 are due to 
coupled-mode stop bands. 

As the angles of the transmission of the waves in the 
softer layer (GaAs) increase past a certain critical angle, 
the transmitted waves in the harder layer (AlAs) become 
evanescent waves which are localized near the interfaces 
(i.e., the corresponding JC3'S are complex). These "pseu
dosurface waves" do not carry energy perpendicular to the 
interfaces. The study of such waves has been made for sin
gle interfaces. 12,13 Remarkably, in the case of superlat
tices, we still find dispersion curves similar to those in Figs. 
2 and 3. This is one of the interesting results of our calcu
lations, namely, that continuous phonon bands are formed 
even when the phonons in one layer become evanescent. 
This can be best illustrated for the simple case in which 
the FT phonons propagate in the (100) saggital plane with 
polarization vector parallel to the [010] direction. For 
these propagation directions the dispersion relation takes 
the following analytic form. By defining JC3 ([ -1;J 
- FT) - JC and JC3 ([ - 2;J - FT) - JC' we have 

cos(qD) -cos(k"JCd l ) cos(k"JC'd2) 

_ 1 ;;2 sin(k"JCd l )sin(k"JC'd2) , (8) 

where k" -w/v and 

a-p(2)JC'{I + JC2)/[p{I )JC{I + JC'2)] 
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FIG. 4. The transmission rate of the FT phonons in the (001) 
GaAs/ AlAs superlattice with the number of periods equal to 20 
and d l -d2-40 A. The propagation direction is the same as 
that for Fig. 3 (case II). The dips labeled 1 to 6 correspond to 
the band gaps in Fig. 3. 
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In the (001) GaAS/ AlAs superlattice the FT phonons in 
the AlAs layer become evanescent waves for the angle of 
the transmission larger than 58° in the GaAs layer. In this 
case /C is real but /c' is purely imaginary. However, Eq. (8) 
still holds if we note that the sinusoidal functions of the 
imaginary arguments are hyperbolic functions of the real 
arguments. Thus the right-hand side of Eq. (8) is real 
valued even in this case, and its modulus takes a value 
smaller than unity for a certain finite interval of the 
transmission angles in the GaAs layer. 

To conclude, we have shown that for oblique propaga
tion band gaps in the phonon spectrum are generated in
side the folded BZ in addition to those at zone boundary 
and zone center. The interior-zone stop bands are due to 
the mixing of the different phonon modes. It was also 
shown that the phonon transmission rate through a super-

·Permanent address: Department of Engineering Science, Hok
kaido University, Sapporo 060, Japan. 

lAo S. Baker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B 
17,3181 (978). 

2y. Narayanamurti, H. L. Stormer, M. A. Chin, A. C. Gossard, 
and W. Wiegmann, Phys. Rev. Lett. 43, 2012 (979). 

3c. Colvard, R. Merlin, M. Y. Klein, and A. C. Gossard, Phys. 
Rev. Lett. 45, 298 (980). 

4S. K. Yip and Y. C. Chang, Phys. Rev. B 30,7037 (984). 
5c. Colvard, T. A. Gant, M. Y. Klein, R. Merlin, R. Fischer, 

H. Morkoc, and A. C. Gossard, Phys. Rev. B 31, 2080 (985). 
6M. J. Kelly, J. Phys. C 18, 5963 (985). 
70. Koblinger, J. Mebert, E. Dittrich, S. Diittinger, and 

W. Eisenmenger, in Proceedings of the Fifth International 
Conference of Phonon Scattering in Condensed Matter, edited 
by A. C. Anderson and J. P. Wolfe (Springer, New York, 

lattice with a finite number of periods has prominent dips 
at frequencies corresponding to these band gaps. In the 
present work we have employed the long-wavelength ap
proximation to predict those results. At frequencies for 
which the discreteness of the lattice becomes important we 
should further include the effects of the dispersion in the 
bulk materials. Actually dispersive propagation is much 
more complicated but undoubtedly coupled-mode band 
gaps are still present in this high frequency regime. 

One of us (S. T.) acknowledges a travel grant by the 
Department of Education, Science and Culture of Japan. 
This work was supported by the U.S. National Science 
Foundation under the Materials Research Laboratory 
Grant No. NSF-DMR-83-16981. 

1986), p. 156. 
8R. E. Carnley, B. Djafari-Rouhani, L. Dobrzynski, and A. A. 

Maradudin, Phys. Rev. B 27,7318 (983). 
9M. Babiker, D. R. Tilly, E. L. Albuquerque, and C. E. T. Gon

calves daSilva, J. Phys. C 18,1269 (1985). 
lOS. M. Rytov, Zh. Eksp. Teor. Fiz. 29, 605 (955) [Sov. Phys. 

JETP 2, 466 (956)]. 
IlWe have used p-5.36 g/cm 3, ClI-l1.88x lOll dyn/cm 2, 

Cl2 -5.38 x 1011 dyn/cm 2, C44 -5.94x 1011 dyn/cm 2 for GaAs 
and p-3.76 g/cm 3, ClI-12.02xlO lI dyn/cm 2, CI2-5.70 
x lOll dyn/cm 2, C44-5.89x lO" dyn/cm 2 for AlAs. See 
S. Adachi, J. Appl. Phys. 58, R3 (I985). 

12A. G. Every, G. L. Koos, and J. P. Wolfe, Phys. Rev. B 29, 
2190 (I984). 

13A. G. Every, Phys. Rev. B 33,2719 (1986). 


