Adaptor protein CRK induces epithelial-mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop

Author(s)
Matsumoto, Ryuji; Tsuda, Masumi; Wang, Lei; Maishi, Nako; Abe, Takashige; Kimura, Taichi; Tanino, Mishie; Nishihara, Hiroshi; Hida, Kyoko; Ohba, Yusuke; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

Citation
Cancer science, 106(6): 709-717

Issue Date
2015-06

Doc URL
http://hdl.handle.net/2115/59617

Rights(URL)
http://creativecommons.org/licenses/by-nc-nd/4.0/

Type
article

File Information
cas12662.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Adaptor protein CRK induces epithelial–mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop

Ryuji Matsumoto, Masumi Tsuda, Lei Wang, Nako Maishi, Takashige Abe, Taichi Kimura, Mishie Tanino, Hiroshi Nishihara, Kyoko Hida, Yusuke Ohba, Nobuo Shinohara, Katsuya Nonomura and Shinya Tanaka

1Departments of Cancer Pathology; 2Urology; 3Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo; 4Division of Vascular Biology, Hokkaido University IGM Institute for Genetic Medicine Frontier Research Unit, Sapporo; 5Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

Key words
Bladder cancer, c-Met, CRK, EMT, metastasis

Correspondence
Shinya Tanaka, Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo 060-8638, Japan.
Tel: +81-11-706-5052; Fax: +81-11-706-5902;
E-mail: tanaka@med.hokudai.ac.jp

Funding Information
Ministry of Education, Culture, Sports, Science, and Technology of Japan; Japan Society for the Promotion of Science; Ministry of Health, Labor, and Welfare of Japan; Ministry of Education, Culture, Sports, Science, and Technology of Japan; Japan Society for the Promotion of Science

Received November 19, 2014; Revised March 18, 2015; Accepted March 22, 2015

doi: 10.1111/cas.12662

Bladder cancer (BC) is the fourth most common cancer, occupying the eighth position among the estimated cancer death causes in the world. BC is one of the most aggressive human genitourinary cancers. Overall, the 5-year survival rate for BC is approximately 80%, falling to only 6% for metastatic disease. After BC progresses to metastatic disease, the residual treatment option is cisplatin-based combination chemotherapy. Therefore, an elucidation of the molecular mechanisms underlying local invasion linked to metastasis is obligatory for an identification of novel therapeutic targets, ultimately improving the overall outcome.

Increasing evidence indicates that epithelial–mesenchymal transition (EMT) has a critical role in tumor invasion and metastasis. In the process of EMT, expression levels of epithelial markers such as E-cadherin are reduced, whereas those of mesenchymal markers such as Snail, Slug, Zeb1, N-cadherin, and vimentin are increased, leading to a morphological change from epithelial to mesenchymal-like appearance, such as spindle shape. EMT also plays important roles in therapeutic resistance, tumor recurrence, and metastatic progression in various cancers. In BC, the EMT expression profile is associated with disease progression.

The signaling adaptor protein CRK was originally isolated as an oncogene fusion product of an avian sarcoma CT10 retrovirus. Its mammalian homologs include CRK-I, CRK-II, and CRK-L (CRK-like). CRK-I consists of an SH2 domain, whereas CRK-II contains an additional SH3 domain. Elevated levels of CRK-I/II mRNAs and the protein are associated with malignant potential of various human tumors, including ovarian cancer, synovial sarcoma, glioblastoma, and breast cancer. CRK promotes EMT and is required for hepatocyte growth factor (HGF)-mediated cell spreading in kidney epithelial cells. We have previously shown that in synovial sarcoma cells, CRK is required for sustained phosphorylation of the SH2 domain binding protein Gab1 in response to HGF stimulation, and the consequent
downstream Rac1 activation. These reports suggest that CRK has the potential to modulate EMT through growth factors including HGF.

The involvement of CRK in the invasiveness and metastasis of human BC remains unclear. In the present study, we investigated whether CRK is highly expressed in BC and its contribution to malignant properties in vitro and in vivo. We uncovered novel mechanisms underlying CRK-induced EMT through the HGF/c-Met/CRK-mediated positive feedback loop. Moreover, we elucidated the contribution of CRK on metastasis of BC in an orthotopic mouse xenograft model that we originally established.

Materials and Methods

Cell lines and antibodies. Four BC cell lines, T24, UM-UC-3, 5637, and RT4, were purchased from the ATCC (Manassas,}

Fig. 1. Adaptor proteins CRK-I and CRK-II are overexpressed in human BC tissues. (a,b) Clinical specimens of normal urothelium tissues (n = 5) and non-invasive (n = 5) and invasive BC (n = 5) were subjected to H&E staining and immunostaining for CRK-I/II and CRK-L. (a) Scale bar = 100 μm. (b) Higher magnification images of part in Fig. 1(a) are displayed. (c) Expression levels of CRK-I and CRK-II mRNAs in surgical specimens, including normal urothelium (n = 3) and low- (n = 4) and high-grade (n = 12) BC, were examined by semiquantitative RT-PCR. *P < 0.05 versus normal urothelium. CRK-L, CRK-like.
VA, USA). The cells were cultured in McCoy’s 5A (T24 and RT4), DMEM (UM-UC-3), and RPMI-1640 (5637) containing 10% FBS. Antibodies used are described in Data S1.

Establishment of Crk knockdown cells. BC cell lines were co-transfected with a plasmid producing siRNAs for CRK (pSUPER-i-Crk) and pBabe-puro using FuGENE HD transfection reagent (Promega, Madison, WI, USA) as described previously. Following selection with 3–10 μg/mL puromycin, colonies were isolated, and expression levels of CRK were analyzed by immunoblotting.

Establishment of UM-UC-3 cells stably expressing tdTomato-Luc2. UM-UC-3 cells were stably transfected with pCSII-CMV-tdTomato-Luc2, followed by selection using 0.5 mg/mL bleomycin. The resultant survival cells were sorted by FACS Aria II (Becton Dickinson, Tokyo, Japan), and the cells with excessive expression of tdTomato were isolated. Luciferase activity was examined by luciferase assay (Promega).

Immunoprecipitation and immunoblotting. Immunoprecipitations and immunoblot analyses were carried out as described previously.

RNA extraction and RT-PCR. RNA extraction and RT-PCR were carried out as described previously. Bladder tumor specimens from patients at Hokkaido University Hospital (Sapporo, Japan), obtained after informed consent, were used for semiquantitative RT-PCR. Sequences of the primers used are listed in Table S1. Details are described in Data S1.

Wound healing assay, invasion assay, and cell proliferation assay. The wound healing assay assessing cell motility, Matrigel invasion assay, and cell proliferation assay were carried out as described previously. Details are described in Data S1.

Xenograft model. Six- to 8-week-old female nude mice, Balb/cA Jcl nu/nu (Clea Japan, Tokyo, Japan) were used as the orthotopic xenograft model. After the mice were anesthetized with either 1.75% isoflurane or sodium pentobarbital (60 mg/kg) by i.p. injection, an incision of approximately 6 mm was made in the lower abdomen, followed by direct injection of 5 × 10⁶ tumor cells into the bladder wall using a 30G needle under magnification. All animal experiments were carried out in accordance with the protocol approved by the Institutional Animal Care and Use Committee at the Hokkaido University Graduate School of Medicine.

Bioluminescent imaging was carried out using the IVIS Spectrum imaging system (Caliper Life-Sciences, Hopkinton, MA, USA) post-i.p. injection of VivoGlo Luciferin in vivo Grade (Promega). Values are expressed as relative light units per second at 15 min after injection.

Histological analysis and immunohistochemistry. Formalin-fixed paraffin-embedded tissues, including human BC specimens (surgically resected in the Department Urology, Hokkaido University Graduate School of Medicine) and UM-UC-3-derived xenografts, were sectioned and stained with H&E. Immunohistochemistry was carried out using antibodies to CRK, CRK-L, Ki67 (MIB1; Dako, Glostrup, Denmark), and MMP-9 (Santa Cruz Biotechnology, Dallas, TX, USA) antibodies.

Statistical analysis. The data represent the average means of triplicate experiments and are presented as mean and SEM or

![Fig. 2](https://example.com/fig2.png)

Fig. 2. Expression levels of CRK and its related proteins in BC cell lines. (a) In BC cell lines (invasive, T24, UM-UC-3, 5637; non-invasive, RT4), expression levels of CRK adaptors and the indicated proteins were investigated by immunoblotting (IB). (b) In invasive BC cell lines, tyrosine phosphorylation levels of p130Cas and paxillin were examined by immunoprecipitation (IP), followed by IB with anti-tyrosine phosphorylation Ab (PY20). (c) Binding between CRK adaptors and downstream Dock180 and C3G. Lysates were immunoprecipitated with anti-CRK (for CRK-I/-II) or anti-CRK-L Abs, followed by IB using anti-Dock or anti-C3G Abs. TCL, total cell lysate; CRK-L, CRK-like.
mean and SD where indicated. Student’s t-test or the Mann–Whitney U-test was chosen to analyze the statistical difference. P < 0.05 was considered significant and P < 0.01 was considered highly significant.

Results

CRK-I/CRK-II highly expressed in human BC tissues and cell lines. The signaling adaptor protein CRK has been reported to be overexpressed in various cancers, and was shown to be linked to various aspects of tumor development, including cell migration, invasion, adhesion, and growth. However, its role in malignant features of BC, particularly in aggressive invasion/metastasis causing poor prognosis, remains unknown. In the present study, we first investigated the expression levels of CRK family adaptors in human BC tissues. Immunohistochemistry indicated a striking enhancement of CRK-I and CRK-II in all of the BC tissues tested, including non-invasive (n = 5) and invasive cancers (n = 5), compared to that of normal urothelium (n = 5) (Fig. 1a,b). The nuclear staining of CRK-I/II was prominent in non-invasive BC, but not in invasive BC, suggesting a pro-apoptotic function of nuclear CRK mediated by interactions with cell cycle protein Wee1 and Crm1/Exportin as a cellular defense mechanism in early-stage cancer (Fig. 1b). The expression level of CRK-L was low. Reverse transcription PCR revealed that the expression levels of CRK-I and CRK-II mRNAs were increased in BCs with low (n = 4) and high (n = 12) grade, relative to normal urothelium (n = 3) (Fig. 1c).

In four BC cell lines (T24, UM-UC-3, and 5637 were originated from invasive type of cancer, and RT4 from non-invasive type), CRK-II expression was significantly higher than CRK-I, and CRK-L was also considerably detected (Fig. 2a). Among the three invasive cell lines, CRK-related focal adhesion molecules, p130Cas and paxillin, were tyrosine-phosphorylated, and were especially high in invasive T24 and 5637 cells (Fig. 2b). Of note, CRK-I and CRK-II possessed higher binding abilities to the downstream targets, guanine nucleotide exchange factors such as Dock180 and C3G, than that of CRK-L (Fig. 2c), suggesting distinct functional roles of CRK-I and CRK-II in regulating cell motility and adhesion of invasive BC.

CRK knockdown decreased motility and invasion in invasive BC cells. To clarify the significance of CRK-I and CRK-II in the
Fig. 4. Knockdown of CRK reduces c-Met activation through impaired hepatocyte growth factor (HGF) production and a decline in Gab1 phosphorylation. (a,b) In 5637 and UM-UC-3 BC cells with or without CRK depletion, levels of the expression and phosphorylation (p-) of indicated proteins were analyzed by immunoblotting. (c) Total RNA was isolated from indicated cell lines, and endogenous expression level of HGF mRNA was examined by real-time RT-PCR.

Fig. 5. Depletion of CRK suppresses expression of epithelial-mesenchymal transition markers in bladder cancer cells. (a,b) Expression levels of mRNAs and proteins of epithelial-mesenchymal transition markers were examined by real-time RT-PCR (a) and immunoblotting (b). (c) Expression levels of MMP-2 and MMP-9 mRNAs were examined by real-time RT-PCR in 5637 and UM-UC-3 cells, respectively. (d) UM-UC-3 cells were incubated in the presence of c-Met inhibitor SU11274 (1 μM), or DMSO as a control, for 4 h. Expression levels of E-cadherin, N-cadherin, vimentin, and Zeb1 were analyzed by real-time RT-PCR. *P < 0.05, **P < 0.01.
CRK induces EMT and metastasis in bladder cancer

Malignant features of invasive BC, we undertook the stable knockdown of CRK-/- in three invasive BC cell lines, and succeeded in establishing 5637 and UM-UC-3 cells with the marked depletion (CRKi: Fig. 3a). Elimination of CRK impaired cell spreading, leading to morphological changes, in contrast to their parental (WT) and control (empty) cells with an elongated mesenchymal-like shape (Fig. 3b). Wound healing and Matrigel invasion assays revealed that cell motility and invasion were significantly decreased by CRK depletion in parallel to the knockdown efficiencies (Fig. 3c,d). The phospho-p130Cas/CRK complex formation in focal adhesion has been shown to modulate the migration and invasion of cancer cells, and here we found that CRK elimination induced a decline in phosphorylation of p130Cas in 5637 and UM-UC-3 cells (Fig. 3e).

Tyrosine phosphorylation of c-Met was reduced by depletion of CRK in invasive BC cell lines. CRK is involved in diverse signaling transduction derived from various receptor tyrosine kinases such as epidermal growth factor receptor, fibroblast growth factor receptor, c-Met, nerve growth factor receptor, and platelet-derived growth factor receptor, cooperating with adaptor molecules such as IRS-1, Gab1, and Cbl. To identify CRK-associated signaling in invasive BC cells, the phosphorylation status of several receptor tyrosine kinases and downstream molecules were examined in the presence or absence of CRK (Fig. 4a). Src, FAK, and Gab1 have been shown to play a role in integrating signals from c-Met, coordinating with CRK. Indeed, the reduction of phosphorylation levels of Src and Gab1 was detected in CRK-depleted cells (Fig. 4b). It is noteworthy that Crk knockdown significantly decreased expression levels of HGF mRNA, a ligand of the c-Met receptor (Fig. 4c). Taken together, in invasive BC, CRK contributes to promote c-Met signaling by facilitating Gab1/p130Cas/Src complex assembly in focal adhesion and, ultimately, HGF expression.

Knockdown of CRK suppresses EMT in invasive BC cells. CRK promotes an epithelial-mesenchymal-like transition and is required for HGF-mediated cell proliferation in kidney epithelial cells. Given that CRK-depleted BC cells markedly decreased the motility and invasion of BC cells (Fig. 3c,d), we next examined the effect of CRK on EMT regulation. Four BC cell lines showed a variety of expression levels of EMT markers (Fig. S1). Quantitative RT-PCR indicated that Crk knockdown significantly suppressed N-cadherin mRNA expression, accompanied with elevated E-cadherin (Fig. 5a). Transcription factor Zeb1, which was highly expressed in UM-UC-3 cells (Fig. S1), was downregulated by Crk abrogation, as well as vimentin (Fig. 5a). These events were also verified by immunoblotting (Fig. 5b). MMP-2 and MMP-9 showed decreased expression in some Crk-depleted cells (Fig. 5c). In UM-UC-3 cells, Met inhibitor SU11274 significantly reduced expression of N-cadherin, Zeb1, and vimentin, but conversely induced E-cadherin (Fig. 5d), similar to the alterations produced by CRK depletion (Fig. 5a).

Knockdown of CRK reduced growth of invasive BC cells. Given that CRK has been shown to upregulate cell growth, we investigated the role of CRK in cell proliferation. Compared to control cells, the growth rates of CRK-knockdown cells were significantly lower in vitro (Fig. 6a). Consistent with this, the decline in phosphorylation level of ERK, but not Akt, was observed with CRK depletion (Fig. 6b). To further analyze the contribution of CRK to tumor development and progression of BC, we established UM-UC-3 cells labeled with tdTomatoLuc2 in the presence or absence of CRK, enabling us to monitor non-invasively the growth of primary tumor and metastasis using the IVIS imaging system. Cells (5 x 10⁵) were s.c. injected into nude mice (Data S1). Tumors formed by the CRK-knockdown cells developed slowly (Fig. S2a,b); after 28 days, the weight of tumors was significantly lower than the controls (Fig. S2c,d). Staining of MIB-1 and MMP-9 was lower in the CRK-depleted tumors (Fig. S2e).

Elimination of CRK decreases primary tumor growth, circulating tumor cells, and metastasis in orthotopic xenograft model. To mimic human BC, we used orthotopic xenograft model. UM-UC-3 cells (5 x 10⁵) with or without CRK were injected under the bladder muscle layer, and tumor growth and metastasis were monitored weekly using the IVIS imaging system. Tumor growth was significantly reduced in the CRK-knockdown group (Fig. 7a,b). Forty-eight days after implantation, the weight of CRK-depleted tumors was significantly decreased compared to those of controls (Fig. 7c). It is noteworthy that CRK-knockdown significantly declined the number of circulating tumor cells, and almost completely abolished metastases to the liver and lung (Fig. 7d). The primary bladder tumor and the metastatic region were subjected to immunohistochemical analysis (Data S1, Fig. 7e), which indicated an abrogation of invasive features with declines in MMP-9 expression (Fig. 7f) and c-Met phosphorylation (Fig. S3) in CRK-depleted tumors.

Discussion

New molecular target drugs have been emerging in cancer therapy; however, in progressive BC, the sole treatment option is
cisplatin-based combination chemotherapy, ultimately linked to poor prognosis. Therefore, an identification of novel therapeutic targets to control the proliferation, invasion, and metastasis of tumor cells is urgently needed. Previous studies reported that CRK overexpression in various aggressive cancers is associated with tumor progression.\(^{(7,10,13,23)}\) Based on the evidence from the present study, we propose that CRK is a potential therapeutic molecular target in invasive BC. Indeed, CRK-I and CRK-II

Fig. 7. Knockdown of CRK inhibits tumor growth and circulating tumor cells, and completely abolishes BC metastasis in vivo. UM-UC-3 cells labeled with tdTomato-luc2 (control, empty; CRK depletion, CRKi-3) were orthotopically injected under the bladder muscle layer in athymic mice \(n = 5\) each group). (a,b) Tumor growth was measured weekly by a bioluminescence imaging system, and graphed as mean ± SE from five mice in each group (b). (c) After 48 days, the mice were killed and the weight of the excised primary bladder tumors was measured. (d) After 48 days, bioluminescent imaging of photons from blood \((100\ \mu\text{L})\), and liver and lung metastatic tumor burden was taken ex vivo (left) and plotted (right). (e) Excised tumors were fixed and stained with H&E. In mice injected with CRKi cells, the metastasis to the liver and lung was absent. (f) Primary bladder tumors were subjected to immunostaining for CRK, MIB-1, and MMP9. \(*P < 0.05, **P < 0.01.\)
were excessively expressed in BC tissue specimens compared to normal urothelium. In two independent invasive BC cell lines, simultaneous knockdown of CRK-I and CRK-II reduced cell proliferation, motility, and invasiveness through an impaired HGF/c-Met feedback loop (Fig. S4). These findings were also verified in an orthotopic xenograft model, which revealed a decline in primary tumor growth, circulating tumor cells, and metastatic potential by CRK depletion. To the best of our knowledge, the present study provides the first functional and mechanistic role of CRK in human BC cells.

Adaptor protein CRK has been shown to play a role in HGF/c-Met-mediated biological responses involved in morphogenesis, EMT, cell spreading, and breakdown of epithelial adherence junctions. Overexpression of CRK and enhanced phosphorilation have been reported in human BC, associated with metastatic progression and poor prognosis; however, the underlying molecular mechanisms triggering c-Met activation were obscure. In the present study, using specific shRNA targeting both CRK-I and CRK-II, we clarified a crucial role of CRK in c-Met-mediated EMT induction, through the sustained phosphorylation of Gab1 and enhancement of HGF production. We have previously shown that the elimination of CRK in synovial sarcoma cells induced the disorganization of actin cytoskeleton and complete abolition of HGF-mediated Rac1 activation and cell motility. In addition, CRK facilitates tyrosine phosphorylation of Gab1-Y307 through Src, contributing to the organization of focal adhesions and enhanced cell migration. These findings suggest that CRK plays an essential role in the long-term activation of c-Met signaling, by promoting the assembly of Gab1/p130Cas/Src/CRK. In addition, we uncovered the novel mechanism underlying the constitutive activation of c-Met signaling through the HGF/c-Met/CRK positive feedback loop, which effectively induces EMT, ultimately leading to a facilitation of BC progression (Fig. S4).

EMT is a process in which tumor cells change their epithelial properties to mesenchymal features and acquires metastatic potential in various tumor cells, including BC. Indeed, several studies have shown an association between HGF/c-Met signaling and EMT. In the present study, a depletion of CRK protein suppressed the expression levels of EMT markers such as N-cadherin and vimentin, and conversely increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b). In UM-UC-3 cells, the expression levels of Zeb1 and MMP-9 were suppressed by increased E-cadherin (Fig. 5a,b).

References

Cancer Sci | June 2015 | vol. 106 | no. 6 | 717

Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Four BC cell lines showed a variety of expression levels of epithelial–mesenchymal transition markers.

Fig. S2. UM-UC-3 cells were s.c. injected into nude mice, and CRK knockdown attenuated the tumor growth.

Fig. S3. UM-UC-3 cells were orthotopically injected into nude mice, and the phosphorylation levels of c-Met in the formed tumors declined with CRK elimination.

Fig. S4. An essential role for CRK was evident in promoting proliferation, invasion, and metastasis in BC through the c-Met-mediated positive feedback loop for inducing epithelial–mesenchymal transition.

Table S1. Sequences of primers for quantitative real-time RT-PCR.

Data S1. Supplementary materials and methods.

