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Robust Optimization 
Considering Probabilistic Magnetic Degradation 

 
Yuki Hidaka1, Shintaro Furui1 and Hajime Igarashi1, Member IEEE 

1 Graduate School of Information Science and Technology, Hokkaido University, 
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, JAPAN 

 
This paper presents robust topology optimization of electromagnetic machines taking account of magnetic degradation caused by 

mechanical and thermal stresses in punching, shrinking fitting and other manufacturing processes. The topology optimization is 
performed using two methods; one is the robust genetic algorithm in which random noises are added to the magnetic-characteristic 
parameters, and another takes the deviations in the objective and constraint functions due to the degradation into account. These 
methods are applied to optimization of the flux barrier shapes in an IPM motor to find that one can successfully realize robust design. 
 

Index Terms—Finite element method, robust optimization, topology optimization, magnetic degradation. 
 

I. INTRODUCTION 
t has been pointed out that there can exist significant 

magnetic degradation in the magnetic materials used in 
electric machines  [1-3]. They are attributed to thermal and 
kinetic stresses in punching, shrinking fitting and other 
manufacturing processes. The magnetic degradation leads to 
deterioration in machine performance and efficiency. For this 
reason, efforts have been paid to measure and analyze the 
magnetic degradation to keep the performance of finished 
machines within the specification [4-5]. We need design 
optimization methods taking possible magnetic degradation 
into account to make further improvement of machine 
performance. 

There have been several approaches to consider possible 
changes in material properties and machine shapes for design 
optimization. For example, sensitivity in the objective and 
constraint functions is evaluated by sampling their values at 
the neighborhood lattice of the current point in the parameter 
space [6]. This method is, however, computationally 
prohibitive for population based optimization methods 
including genetic algorithm (GA). The robust design method 
based on deterministic multi-objective optimization [7] and 
Taguchi method [8] do not have sufficient searching ability in 
high-dimensional design space. 

The robust GA using artificial noise [9], which will be call 
RGA hereafter, has no increase in computational burden in 
comparison with the conventional non-robust optimization 
method. Moreover, RGA has been shown to provide solutions 
to high-dimensional problems which are robust for parameter 
changes. Furthermore, we have yet another effective robust 
optimization method in which the sensitivity is evaluated from 
the adjoint variable method (AVM) without sampling [10]. It 
has been unclear if the last two methods are effective for 
optimization considering possible magnetic degradation. 
Moreover, validity of these methods for topology optimization, 
in which material shapes are flexibly changed without design 
parameters, also remains unclear. In this paper, we will 
discuss if they are useful for topology optimization of electric 

machines which have possible magnetic degradations. In 
particular, we focus on the on/off topology optimization 
performed by GA [11]. We compare the performance of usual 
GA with two robust methods, RGA and AVM-based GA 
(AVM-GA) in the optimization of the rotor shape of an 
interior permanent magnetic (IPM) motor.  

II. OPTIMIZATION METHOD 
Let us consider here a magnetostatic problem although the 

present method can be applied to quasi-static and wave 
problems. The two-dimensional magnetostatic field on the x-y 
plane is governed by 

,)(rot)( zJA M−−=∇⋅∇ ν  (1) 

where ν, A, J and M denote magnetic reluctivity, the z-
components of vector potential and current density, and 
magnetization vector of permanent magnets, respectively. To 
solve (1) using finite element method (FEM), the unknown 
vector potential A is discretized as follows: 
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where Ni is the scalar interpolation function, n is the number 
of nodal points. By applying the Galerkin method to (1), we 
obtain the FE equation 
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for i=1, 2,..., n. Eqn. (3) is expressed in the matrix form Ka=b, 
where K, a and b denote the FE matrix which is symmetric 
and sparse, unknown and source vectors, respectively. In the 
optimization process, Eqn. (3) is repeatedly solved to evaluate 
the objective and constraints functions. 

A. Parameterization of BH curves 
In the present method, considering possible magnetic 

degradation, the BH characteristic is modeled by 
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where H and B are magnetic field and induction. Moreover k1 
and k2 are constants which have uncertainties. Figure 1 shows 
the dependence of the BH curves on k1 and k2. Other 
parameterization of the BH curves can be employed for the 
following robust optimization method. 

In the nonlinear FEM, differentiation of the magnetic 
reluctivity is computed by 

.
d
d 1

A
B

H
B

HA ∂
∂









∂
∂

=
∂
∂ −νν

(5)  

B. Adjoint variable method aided GA (AVM-GA) 
In this method, the sensitivities in objective and constraint 

functions are evaluated to consider their deviation during the 
optimization process. The sensitivity of objective function F is 
computed from 
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In Eqn. (6), it may be difficult to compute ∂a/∂ki analytically. 
The adjoint variable method is thus employed in which the 
augmented objective function defined by  

( ),Kˆ t baz −+= FF  (7) 

is considered where z is an adjoint variable. Note that 𝐹� ≈ 𝐹 
assuming that a satisfies the FE equation in good accuracy. 
Differentiation of Eqn. (7) with respect to ki leads to 
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We assume that z satisfies 
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Consequently, the sensitivity of F can be evaluated from 
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The standard deviation σF of F is computed from 
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where ki is assumed to be linearly independent and σi denotes 
the standard deviation of ki. 

To take robustness into account, the optimization problem, 
𝐹 → min., is modified to 

.,min→+ FF ασ  (12) 

where α is an arbitrary constant. The robustness of the final 
solution would be improved while its fitness would be 
deteriorated if we increase α, and vice versa. For maximizing 
problems, we consider 𝐹 − 𝛼𝜎𝐹 → max. instead of (12). On 
the other hand, the constraint 𝐺 < 0 is modified to 

.0<+ GG βσ  (13) 

Similarly, G > 0 is modified to 𝐺 − 𝛽𝜎𝐺 > 0. 

C. Robust Genetic Algorithm (RGA) 
In RGA, to consider the probabilistic effect of magnetic 

degradation, artificial noise 𝜹  is introduced to the material 
parameter 𝒌 as follows: 

.δkk +→  (14) 
Although most part of the RGA process is the same as the 

conventional GA, there is small differences in evaluation and 
selection process. In GA, elite selection is often used to 
improve the convergence. The usual elite selection is not used 
in RGA because the fitness of the individual is fluctuated by 
the effect of noises. Procedure of the RGA is summarized 
below where 𝐹(𝒙,𝜹) denotes the fitness of an individual x to 
whose material parameters noise 𝜹 is introduced. 

1) Initial population at t=1 is generated randomly.  
2) The elite x which has the highest fitness 𝐹(𝒙,𝟎)  at 

generation t is selected. 
3) The elite candidate 𝒚  which has the highest fitness 

𝐹(𝒚,𝟎) at generation t+1 is selected. 
4) Fitness 𝐹(𝒙,𝜹) is compared with 𝐹(𝒚,𝟎). If 𝐹(𝒚,𝟎) is 

better than 𝐹(𝒙,𝜹), x is replaced by y as the new elite. 
5) Steps 3-5 are repeated until the iteration number 

reaches the maximum.  
In the above procedure, the fitness of each individual is 
evaluated using FEM. 

III. OPTIMIZATION RESULTS 

A. Simple Test Model 
Before we consider the optimization of motors, we test 

basic performances of GA, AVM-GA and RGA applied to the 
following toy optimization problem: 

𝐹(𝑥) = 𝐶1𝑒
−(𝑥−𝑥1)2

2𝜎1
2 + 𝐶2𝑒

−(𝑥−𝑥2)2

2𝜎2
2 → max.

sub. to 𝐺(𝑥) = 𝑥 − 𝑥2 < 0,
,                          (15) 

where the parameters are set as follows: 𝐶1 = 2.0,𝐶2 =
1.0, 𝑥1 = 0.5, 𝑥2 = 4.0,𝜎1 = 0.1,𝜎2 = 1.5.  To consider the 
constraint, we modify the original problem to 𝐹′ = 𝐹 −
𝑢(𝐺) → max., where 𝑢 is the step function. Note that there is a 
sharp drop in 𝐹′ for 𝑥 ≥ 𝑥2 . It is assumed that coordinate x 
corresponds to the material parameter; uniform noise −0.3 ≤
δ ≤ 0.3  is added to x in RGA. We set 𝜎 = 0.6 √12⁄ ,𝛼 =
2,𝛽 = 1 in (12) and (13) for AVM-GA. We carry out 20 runs 
for each method. The results are shown in Fig.2. We find that 

 
Fig. 1. Modeled BH characteristics with uncertainties 
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AVM-GA and RGA can provide robust solutions at which 𝐹′ 
is insensitive for possible changes in x.  

B. Optimization model of IPM motor 
The present method is applied to the IPM-motor model 

shown in Fig. 3. Due to the symmetry, 1/4 region of the model 
is analyzed. The purpose of this optimization is to minimize 
torque ripple under the constraint that the torque average is 
larger than the reference value. The optimization problem is 
defined by  

,0  tosub.

.,minminmax

<−=

→
−

=

avgref

avg

TTG

T
TT

F
 (16) 

where Tmax, Tmin denote the maximum and minimum torques 
and Tavg represents the torque average, and we assume that 
Tref=4.0 Nm. In Table I, the analysis conditions and motor 
specification are summarized. The problem is modified to 
𝐹′ = 𝐹 + 1000𝑢(𝐺) → min.  in the optimization. The 
parameters 𝒌 = (𝑘1, 𝑘2)  are assumed to have uncertainty 
which obeys the exponential probability density functions 
exp (𝜆𝑖𝑘𝑖)  where 𝑘1 ≤ 2.15, 𝑘2 ≤ 1 4300⁄  and 𝜆1 = 35, 𝜆2 =
9.2 × 104 . The reason why we assume the asymmetric 
distribution is that we consider degradation in the magnetic 
properties. The corresponding noise is generated in RGA, and 
we assume 𝛼 = 𝛽 = 0.4 in AVM-GA. After the optimization, 
robustness of the solutions is evaluated using the Monte Carlo 
method in which the deviation of the objective function σF and 

the constraint violation probability PG are computed. 
 

  
C. Optimization Results 
The resultant shapes obtained by conventional GA, AVM-

GA and RGA are shown in Fig. 4. They are the best solutions 
in 20 runs for each method. We can see that the feature of the 
rotor shapes obtained by GA and AVM-GA are similar; there 
are two side and one central flux barriers. On the other hand, 
the result of RGA has no central flux barrier. 

Optimization results are summarized in Table II. The 
solution obtained by RGA has clearly smaller value of σF in 
comparison with those obtained by GA and AVM-GA. 
Moreover, the constraint violation probabilities PG of the 
solutions obtained by RGA and AVM-GA are clearly smaller 
than that of GA. It is remarkable that the solution of GA 
always violates the constraint even for small perturbation in 𝒌. 
On the other hand, the solutions obtained by AVM-GA and 
RGA have sufficient margins for G. For this reason, these 
solutions are robust against the fluctuation of magnetic 
characteristic. The torque waves of all solutions are shown in 
Fig. 5. 

Fig. 6 shows the frequency distributions of F and G which 
are computed by the Monte Carlo method. It is found that the 
distribution of F for RGA is clearly narrower than two other 
distributions. On the other hand, the central values of F for 
RGA and AVM-GA are not expected to be smaller than that of 
GA from their principles. Thus, the difference in the central 
values of F in Fig. 6(a), which receives stochastic effect, has 
no significant meaning. In Fig 6(b), one can see that the values 
of G for RGA and AVM-GA distribute almost in the safe side 
whereas they violate the constraint for GA. 

IV. CONCLUSION 
In this paper, we have presented the robust optimization 

 
Fig. 3. IPM motor for optimization 

 
TABLE I 

ANALYSIS CONDITIONS AND SPECIFICATIONS 
Rotation speed (rpm) 3000 

Armature current (A∙turn) 420 
Phase of current (degree) 20 

Residual flux density of PM (T) 1.0 
Width of teeth (mm) 3.3 
Length of Coil (mm) 25.9 

Thickness of PM (mm) 2.5 
Width of PM (mm) 21 
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Fig. 2 Optimization results for toy problem 
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methods considering magnetic degradation. The BH curves 
are expressed by the explicit function which has uncertainties 
in parameters.   
The present methods, RGA and AVM-GA, have been shown 
to provide the optimized rotor shapes of the IPM motor which 
has robustness in the constraint. Moreover, it has been shown 
that the solution of RGA also has robustness in the objective 
function. 
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TABLE II 
OPTIMIZATION RESULTS OF IPM MOTOR 

 GA AVM-GA RGA 
mean F, G 0.235, -0.0718 0.280, -0.313 0.179, -0.432 
σF (x10-3) 4.1 3.7 1.9 

PG 1.0 0.039 0.010 
 

 
Fig. 5. Comparison of Torques 
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Fig.6 . Frequency distributions computed by Monte Carlo method. 
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