Metabolism and chemical composition of phyllosoma larvae, with special reference to the tropical rock lobster *Panulirus ornatus* (Decapoda; Palinuridae)

Tsutomu Ikeda, G. Smith, A.D. McKinnon, M. Hall

Australian Institute of Marine Science, Townsville 4810, Australia

Present address: 6-3-1001 Toyokawa-cho, Hakodate, 041-8611, Japan

corresponding author: ikeda.tutomu@sepia.plala.or.jp

Running head: Metabolism and chemical composition of tropical phyllosoma
ABSTRACT

Rates of oxygen consumption and ammonia excretion and chemical composition (water, ash and CN composition) were determined throughout larval development, from Stages I-IX, of Panulirus ornatus phyllosoma larvae raised in the laboratory. Dry mass (DM) specific oxygen consumption rates varied from 1.4 to 3.3 μl O₂ (DM)⁻¹ h⁻¹, showing a pattern of developmental decline. In contrast, specific ammonia excretion rates fluctuated irregularly from 0.02 to 0.067 μg NH₄-N (DM)⁻¹ h⁻¹, yielding oxygen consumption to ammonia excretion ratios (O:N atomic ratio) as wide as 51-180. With progressive development, ash decreased from 34% to 17% of DM while C composition increased from 33% to 41% of DM. No consistent changing pattern with development was seen for water contents (74-83% of WM), N composition (6.9-9.5% of DM) and C:N ratios (4.0-5.1). Supplemental data of both specific oxygen consumption and ammonia excretion rates of laboratory-raised Stage III P. homarus and wild Parribacus antarcticus phyllosoma (stage unknown) of this study and literature data on phyllosomas of other lobster species by previous workers were shown to be comparable to those of P. ornatus phyllosomas when the differences in DM and temperature were taken into account. No appreciable differences due to the origin of the specimens, whether wild or laboratory-raised, were evident. Comparison of the present results with those of stomatopod larvae and holoplanktonic crustaceans in the same tropical marine habitats revealed that phyllosoma larvae are characterized by somewhat lower DM specific oxygen consumption rates and N composition. The study revealed markedly reduced ammonia excretion rates in phyllosomas, suggesting reduced swimming activity and preferential utilization of dietary protein to somatic growth rather than metabolism.
Keywords: phyllosoma, *Panulirus ornatus*, oxygen consumption, ammonia excretion, O:N ratio, CN composition
1. Introduction

The zoeal form of decapod larvae from the families of Palinuridae (rock or spiny lobsters) and the Scyllaridae (slipper lobsters) is characterized by a glassy transparency, flattened leaf-like shape with 3-5 pairs of extending biramous appendages and classified as “phyllosoma” (leaf-like) larvae. Phyllosomas are planktonic raptorial feeders and undergo sequential molts to metamorphose into pre-juvenile puerulus phase which finally settle on the bottom of coastal waters as juveniles to develop into adults (cf. Phillips and Sustry, 1980; Anger, 2001). Despite a wide tropical and semi-tropical global geographical distribution and a frequent member of zooplankton assemblages in temperate-tropical oceans, phyllosoma metabolism and nutrition have been little studied to date, largely because of difficulties in collecting undamaged specimens from plankton net tows due to the fragile bodies of the phyllosoma larval form.

Information about metabolism (oxygen consumption and ammonia excretion rates) and body chemical composition (water content, ash and carbon and nitrogen composition) have proved to be useful to provide a wide perspective for understanding zooplankton energy demand, metabolic balance and nutritional conditions within their environments (Ikeda et al., 2000; Anger, 2001). For decapod crustacean larvae other than phyllosomas, intensive studies have been reported on many species of wild and laboratory-raised specimens as well as ontogenetic changes in metabolism and body composition (cf. review of Anger, 2001). Knowledge on the biology, physiology and behavior of phyllosoma larvae of lobsters has advanced recently as part of a growing interest to establish appropriate aquaculture methods of this commercially valuable marine resource (Jeffs and Hooker, 2000). Nevertheless, presently available data on the metabolism and chemical composition of phyllosomas are limited to the California.
spiny lobster *Panulirus interruptus* (Belman and Childress, 1973) and the southern rock lobster *Jasus edwardsii* (Bermudes and Ritar, 2004, 2005; Bermudes et al., 2008; Ritar et al., 2003). However, both *P. interruptus* and *J. edwardsii* phyllosomas are from temperate waters and no data is currently available for species from tropical zones.

The tropical rock lobster *Panulirus ornatus* is distributed through the Indo-West Pacific (Holthuis, 1991) and is a target species of fisheries of Australia, South East Asia and Indian Ocean countries. In the Coral Sea, the spawning season of *P. ornatus* is estimated to span from December-April, with a planktonic duration of phyllosomas lasting for 4-6 months (Dennis et al., 2009). *P. ornatus* phyllosoma have been reared through their entire larval phase in the laboratory with a full morphological description of a total of 11 larval stages (Smith et al., 2009b). The aim of this study is to extend the knowledge of metabolism and chemical composition of the phyllosomas of a tropical Palinurid lobster species by comparing sequential larval stages of *P. ornatus* raised in the laboratory, supplemented by those of other tropical lobster species raised in the laboratory and collected in the wild in the Coral Sea. The results are compared with those of wild and morphologically similar stomatopod larvae as well as epipelagic marine zooplankton in an attempt to identify any unique features of phyllosoma larvae as members of the tropical zooplankton community.

2. Materials and methods

2.1. Phyllosoma

P. ornatus and *P. homarus* phyllosomas were raised from eggs in the tropical aquaculture facilities of Australian Institute of Marine Science (AIMS) in Townsville, Queensland, Australia. Some *P. ornatus* and *Parribacus antarcticus* larvae of
unknown stage used in this study were collected from the Coral Sea.

General procedures for laboratory culturing of *P. ornatus* and *P. homarus* are described elsewhere (Smith et al. 2009b). Briefly, for *P. ornatus*, a batch of phyllosoma larvae were obtained from a gravid female collected from the field and raised at a constant temperature of 28°C. Newly hatched *Artemia* nauplii were provided as the sole diet for early larvae with juvenile *Artemia* supplemented by fresh blue mussel (*Mytilus edulis*) gonad given for post-Stage IV phyllosomas. Under these conditions, the intermolt period for each phyllosoma molt took about one week. The body size (total length) of the larvae at a given stage in captivity was similar to those of wild larvae at the same developmental stage (Smith et al., 2009b), suggesting adequacy of food provided for larval growth. Almost synchronous molting in early larvae became gradually asynchronous with development. During this study, development of the larvae in the batch cultures was monitored and post-molt larvae were sorted and combined as a new batch with similar molt stage. In this way, the larvae at one day post-molt of each stage were used consistently throughout the study.

Wild phyllosoma larvae of *P. ornatus* and *P. antarcticus* were collected during the cruise of R.V. Cape Ferguson to Osprey Reef, Coral Sea during 5-22 May 2010. Samplings were made at night with a modified Issac-Kidd midwater trawl net (mouth opening: 2.2 m × 2.4 m) with a solid cod-end to minimize physical damage of the larvae collected. The net was towed at approximately 2 knots through the surface water. In addition to phyllosomas, wild stomatopod alima larvae which have a transparent body similar to that of phyllosomas yet exhibiting much faster swimming behavior were collected and used in the present experiments for comparative purpose.

Seawater supplied from the Seawater Precinct of AMIS (land laboratory
experiments) or collected from 2 m depth at each sampling site with 10 liter Niskin bottles (shipboard experiments) was filtered through GF/F filters, well oxygenated and used for the following experiment.

2.2. Metabolic measurements

Experiments were started 0900 hours for laboratory raised specimens or within 1 to 2 hours after the collection for wild specimens. Oxygen consumption and ammonia excretion rates were measured simultaneously by a sealed-chamber method (cf. Ikeda et al., 2000). The specimens were briefly rinsed 3-4 times with filtered seawater and a single individual, or a batch of 50-100 specimens, were transferred to glass bottles (100, 300 or 500 ml capacity depending on the size of specimens) filled with filtered seawater. Experiments were designed to end before the oxygen saturation in experimental bottles declined >70% since oxygen consumption rates is reported to be dependent on oxygen saturation of ambient water in P. interruptus phyllosoma larvae (Belman and Childress, 1973). Control bottles without specimens were prepared concurrently. Experiments were run in the dark for 3-12 h in a constant temperature room of which temperature was adjusted to 28°C on land, or in situ temperature (28°C) by immersing glass bottles in an incubation tank on the deck through which surface seawater overflowing. During the experiments on land, both experimental and control bottles were placed on a grazing wheel which rotates at 0.5 rpm to prevent settling the specimens on the bottom of bottles. The gazing wheel was not used for the experiments at sea. At the ends of experiments, duplicate 15 and 10 ml water samples were siphoned out for the measurements of dissolved oxygen and ammonia, respectively. Dissolved oxygen and ammonia were determined by the Winkler titration method and the phenol-hypochlorite method, respectively (Strickland and Parsons, 1972).
Specimens left in experimental bottles were rinsed briefly with a small amount of distilled water, blotted on a filter paper to remove water adhering to the body and weighed (wet mass, WM). At sea, the specimens were stored at -20°C, and the frozen specimens were weighed (WM) in the land laboratory after the cruise.

2.3. Chemical composition

In the land laboratory, fresh or frozen specimens were placed in an electric oven and dried at 60°C overnight to estimate dry mass (DM) and water content. The dried specimens were pooled by stage or species then finely ground with a ceramic mortar and pestle. Powdered samples were used for analysis of CN composition with an elemental analyzer (TruSpec CN Determinator, LECO Corp. USA) using ethylenediaminetetraacetic acid (EDTA) as a standard. For ash determination, weighed fractions of powdered samples were incinerated at 450°C overnight and reweighed. Measurements were replicated 2-4 times for CN composition and 2 times for ash. From replicate determinations of the same sample, the precision (coefficient of variation of these measurements were 3% for C and N and 6% for ash. Water content was expressed as percent of WM, whereas the contents of ash, carbon and nitrogen were expressed as percent of DM.

3. Results

3.1. Oxygen consumption, ammonia excretion and O:N ratio

Of the total of 11 larval stages of *P. ornatus* phyllosoma, sufficient number of individuals was available for Stages I, II, IV, V, VI, VIII and IX from four broods (A-D)(Table 1). The data obtained from these seven stages were pooled for the analysis of developmental pattern of *P. ornatus* phyllosoma. Body mass increased
exponentially from 0.041 to 6.27 mg DM through the Stages I-IX (Table 1, Fig. 1A). In parallel with the increase in body mass, oxygen consumption and ammonia excretion rates increased rapidly from 0.10 to 8.26 μl O₂ (individual)⁻¹ h⁻¹ and from 0.00076 to 0.216 μg NH₄–N (individual)⁻¹ h⁻¹, respectively. The rapid increase in both rates per individual modulated in terms of the rates per mg body DM (=specific rates). Specific oxygen consumption rates varied from 1.4 to 3.3 μl O₂ (DM)⁻¹ h⁻¹ across stages and between-stage differences were significant (F-test, p < 0.001), showing an overall pattern of decline toward late stages (Fig. 1B). Between-stage differences were highly significant for specific ammonia excretion rates which varied from 0.02 to 0.07 μg NH₄-N (DM)⁻¹ h⁻¹ (F-test, p < 0.001), but no consistent trend with development was detected (Fig. 1C). Between-stage differences in O:N ratios were also significant (F-test, p < 0.001).

Oxygen consumption and ammonia excretion rates of Stage III *P. homarus* larvae weighing 0.186 mgDM were 0.44 μl O₂ (individual)⁻¹ h⁻¹ and 0.017 μg NH₄–N (individual)⁻¹ h⁻¹, respectively, resulting a O:N ratio of 32 (Table 1). We could not identify the developmental stage of *P. antarticus* larvae, of which body mass varied from 5.4 to 52.3 mgDM (mean: 20.6). The ranges of oxygen consumption, ammonia excretion and resultant O:N ratios of *P. antarticus* larvae were 6.7-29.3 μl O₂ (individual)⁻¹ h⁻¹ (mean: 13.2), 0.08-1.02 μg NH₄–N (individual)⁻¹ h⁻¹ (0.46) and 16-125 (56), respectively (Table 1). Stomatopod alima larva with similar body mass to that of *P. antarcticus* consumed oxygen (16.6-42.0 μl O₂ (individual)⁻¹ h⁻¹, mean: 26.9) and excreted ammonia (0.83-3.12 μg NH₄–N (individual)⁻¹ h⁻¹, mean: 2.19) much faster than *P. antarcticus*, yielding lower O:N ratios (10-29, mean: 17).

In order to examine between-species differences in specific rates of oxygen...
consumption and ammonia excretion, the data of Stages I-IX *P. ornatus*, Stage III *P. homarus*, and the mixed stages of *P. antarcticus* phyllosomas and stomatopod alima larvae were plotted against DM (Figs. 2, 3). A regression line (referred to as the “ornatus” line hereafter) and its 95% confidence interval (CI) belt were calculated for Stages I-IX (for specific oxygen consumption rates) or Stages IV-IX *P. ornatus* phyllosomas (for specific ammonia excretion rates and O:N ratios). Since the regression of specific ammonia excretion rates and O:N ratios on DM was not significant (p > 0.05), the “ornatus” line was represented by the means and its 95%CI. Previous oxygen consumption data of Stage I *P. interruptus* phyllosoma determined at 17.3°C (Belman and Childress, 1973), and oxygen consumption/ammonia excretion data of unidentified species at 28°C (Ikeda, 1974) and Stages I-V *J. edwardsii* phyllosomas at 18°C (Bermudes et al., 2008), as showed in Table 1, were also plotted in Figs. 2 and 3. The oxygen consumption/ammonia excretion data on Stages I-III *J. edwardsii* phyllosomas of Bermudes and Ritar (2004, 2005) are not shown as these data are well represented by those of Stages I-V *J. edwardsii* of Bermudes et al. (2008). In order to make direct comparison with the present data possible, the previous data of Belman and Childress (1973) and Bermudes et al. (2009) were converted to the data at 28°C by using a $Q_{10} = 2$, which was derived from statistical analysis of comprehensive oxygen consumption and ammonia excretion data of epipelagic marine zooplankton from world oceans (Ikeda, 1985).

3.2. Water, ash and elemental composition

Across Stages I-IX *P. ornatus* larvae, between-stage differences were significant for water content, ash, C and N composition (F-test, p < 0.03) but not for C:N ratio (F-test, p > 0.25). With regard to changing patterns with development, water
content changed irregularly (75-83%, Fig. 4A), but ash decreased consistently from 34
to 17-18% (Table 2, Fig. 4B). C and N composition ranged from 33 to 42%, and from
6.9 to 9.5%, respectively (Table 2), and significant developmental increase was detected
for C but not N (Figs. 4C, D). C and N composition and C:N ratios of wild Stages
VIII/XI larvae from the field fell well within the ranges of those raised in the laboratory
but ash (15%) of the former was slightly less than the latter (17-34%, Table 2).

Supplemental data of water contents, C and N composition and C:N ratios of
Stage III *P. homarus* and *P. antarcticus* phyllosomas overlap those of *P. ornatus*
phyllosomas (Table 2). Ash content (18%) of Stage III *P. homarus* phyllosoma fell
within the range of those (17-34%) of Stages I-IX *P. ornatus* phyllosomas but *P.
antarcticus* phyllosomas (15%) was not.

4. Discussion

4.1. Metabolic comparison

Larval development of decapods is accompanied by a rapid increase in body mass,
with the progressive decline in their specific metabolic rates with development being
termed the “ontogenetic decline” and has been reported in several species (cf. review of
Anger, 2001). As a divergent pattern from developmental decline, near constant
specific ammonia excretion rates have been noted during the development of zoea I
through megalopa of *Carcinus maenas* (Harms et al., 1994). For phyllosoma larvae,
Bermudes et al. (2008) observed this ontogenetic decline in specific rates of oxygen
consumption and ammonia excretion by Stages I-V *J. edwardsii* phyllosomas. The
present results on Stages I-IX *P. ornatus* phyllosomas showed the same ontogenetic
pattern in specific oxygen consumption rates but not specific ammonia excretion rates
(Figs. 1B, C). As a measure of metabolic rates, oxygen consumption rates represent total metabolism, while ammonia excretion rates represent protein-oriented metabolism (cf. Ikeda et al., 2000).

Several lines of evidence indicate that the very low specific ammonia excretion rates of Stage I *P. ornatus* larvae are due to preferential allocation of dietary protein to somatic growth of the larvae rather than to metabolism. Phyllosoma larvae begin feeding immediately after hatching, with little dependence on egg yolk reserves (Johnston and Ritar, 2001), their diet is high in protein (*Artemia* nauplii in this study, and possible zooplankton in the field, cf. Ritar et al., 2003), their body composition is highly proteinaceous (see “Chemical composition” section below) and their digestive enzymes have high protease activity (Johnston et al., 2003). The different developmental patterns seen in specific ammonia excretion rates of early phyllosoma larvae of temperate *J. edwardsii* and tropical *P. ornatus* may reflect species-specific differences in nutritional functions of early larval phase.

The phyllosoma data of *P. homarus* and *P. antarcticus* of the present study, and *P. interruptus*, *J. edwardsii* and the unidentified species by the previous workers fall within or close to the 95% CI belt of “ornatus” line (Figs. 2, 3), indicating no significant between-species differences within phyllosomas when differences in body mass and temperature are taken into account. No marked deviation of the data of wild phyllosomas of *P. antarcticus* and the unidentified species from those of other lobster larvae raised in the laboratory is evident (Figs. 2, 3). Specific oxygen consumption data of stomatopod alima larvae, which are more active swimmers than phyllosomas, lie reasonably above the “ornatus” line.

From global model of epipelagic marine zooplankton in which metabolic rates
were expressed as a function of body mass and habitat temperature (Ikeda, 1985),
regression lines (referred as “general zooplankton” line hereafter) of specific oxygen
consumption and ammonia excretion rates on DM at 28°C were computed and
compared with the “ornatus” line (Figs. 2, 3). Common to specific oxygen
consumption and ammonia excretion rates, the “general zooplankton” line lies close to
the upper 95% CI belt of the “ornatus” line in which all phyllosoma data are contained.
Within the DM ranges studied, specific oxygen consumption rates and specific
ammonia excretion rates of phyllosomas are calculated as half and one-tenth to half,
respectively, of the average of those of “general zooplankton”.

4.2. O:N ratios
The O:N ratios of Stages I-IX *P. ornatus* larvae, with ratios 51-180 (Fig. 1D) are
suggestive of lipid/carbohydrate-oriented metabolism (Mayzaud and Conover, 1988;
Ikeda et al., 2000). Ritar et al. (2003) compared protein, carbohydrate and lipid
composition of Stages I-VI *Jasus edwardsii* larvae before and after starvation for
15-74d and found that while protein and carbohydrate decreased slightly, lipid declined
>50% of the initial value. Thus, the present results derived from O:N ratios and Ritar
et al.’s (2003) results based on proximate composition of starved specimens are
consistent in that protein is not the dominant metabolic substrate for food-deprived
phyllosoma larvae.

A pattern of developmental decline in the O:N ratio of Stages I-IX *P. ornatus*
larvae observed in this study contrasts that of results of *J. edwardsii* (Bermudes et al.,
2008) but are consistent with American lobster (*Homarus americanus*) larvae (Sasaki et
al., 1986) and the decapod *Carcinus maenas* larvae (zoea I through megalopa) (Harms et
al., 1994). O:N ratios have been demonstrated to vary in response to molt phase (pre-,
inter- or post-molt), but molt phases causing maximum or minimum O:N ratios are not
the same between species (Anger, 2001). The effect of molt phase of the larvae on the
pattern of developmental changes in O:N ratios is considered to be minimal for
Panulirus ornata in this study since specimens where 1-day post-molt and hence each
specimen would be in the equivalent physiological state of the molt cycle (see
“Materials and methods” section). However, the standardization of the larvae by age
or molt stage could not be made for wild Parribacus phyllosomas.

With exceptions of two anomalous data (too high value of Stage I P. ornatus of
this study and too low value of the unidentified species (Ikeda, 1974)), the O:N ratios of
Stages IV-IX P. ornatus, Stage III P. homarus and P. antarcticus (mixed stage) larvae of
this study, and Stages I-III J. edwardsii larvae (Bermudes et al., 2008) shown to fall
within or close to the 95% CI belt of the “ornatus” line (Fig. 5). Further comparison of
the “ornatus” line with the “general zooplankton” line indicate that while the two lines
are near parallel of each other but the former is 4 times greater than that of the latter. It
is noted that the O:N ratios of stomatopod alima larvae are lower than those predicted
from the “ornatus” line but fit to the “general zooplankton” line, implying equivalent
importance of protein catabolism to that in general zooplankton. Overall, the results
indicate protein catabolism in phyllosomas is less important than other members of
tropical marine zooplankton.

4.3. Chemical composition

Across all developmental stages of P. ornatus phyllosoma development, from
Stage I to IX, the highest value of water contents (83%) and ash (34%) and the lowest
ones of N (6.9%) and C (33%) were recorded on Stage I phyllosomas (Table 2). The
only comparable data available from Belman and Childress (1973) reported a much higher ash (49%) and lower N composition (5.4%) for Stage I *Panulirus interruptus* larvae hatched in the laboratory (Table 2). A higher water content and ash, and lower C and N composition of Stage I larvae are suggestive of exhaustion of internal organic matter, including protein, for metabolism during its embryonic development before hatching. The observation that phyllosomas begin feeding immediately post-hatching has been reported on *J. edwardsii* (Johnston et al., 2003) and *P. ornatus* (Smith et al., 2009a), and indicate that phyllosomas are not lecithotrophic larvae. Increases in water content and ash content (=decrease in energy content per DM), accompanied with decreases in C and N composition, has been observed in several decapods larvae which have been starved (Anger and Dawirs, 1982; Harms et al., 1994). Body C:N ratios have been shown to be an insensitive index of nutritional conditions of the decapods larvae (Anger and Dawirs, 1982; Harms et al., 1994), as is also the case for *P. ornatus* in this study (Fig. 2). Inconsistency in the water contents and ash in Stages I-IV of captive reared *P. ornatus* (Table 2) may partly be reflected variations in egg quality, and hence nutritional conditions, of the larvae from different females and spawns.

As phyllosomas are a common group of zooplankton occurring from tropical seas, it is interesting to compare the grand means of water content, C and N composition, C:N ratio and ash with those of other zooplankton groups in the same habitats to evaluate unique features, if any, of them (Table 2). The Stage I data was omitted from the calculation of the grand means because of its anomalous features mentioned above. Compared with stomatopod alima larvae, which exhibit the same body transparency, but are much more active swimmers, phyllosomas have lower C and N composition but higher ash contents though the significant test is not amenable due to limited sample
Further comparison of phyllosoma data with those of copepods (Ikeda, 1974; Morris and Hopkins, 1983) and euphausiids/decapods (Ikeda unpublished) from tropical waters revealed that the former contain consistently lower N (9% versus 11-12%) and higher C:N ratios (4.5 versus 3.6-3.9) and ash (19% versus 7-15%) than the former (Mann-Whitney U-test at p < 0.05 or 0.01). Water contents of phyllosomas were higher than that of euphausiids/decapods (78% versus 71%) but lower than that of copepods (78% versus 82%). Since the major source of N is protein (Gnaiger and Bitterlich, 1984), lower N composition of phyllosomas suggests lower protein (=muscle mass) in the body and, perhaps, reduced locomotive activity compared to other crustacean plankton. Higher ash contents in phyllosomas are indicative of lower proportion of metabolically active components (organic matter) in the body. These interpretations are in concert with somewhat lower DM specific oxygen consumption rates of phyllosomas as compared with epipelagic marine zooplankton (cf. Fig. 2).

Acknowledgements

T.I was supported by Visiting Scientist Program of AIMS. The authors acknowledge the assistance of the technical staff of the tropical aquaculture group at AIMS; Matt Kenway, Matt Salmon, Justin Hochen, Katie Hoyord and Grant Milton for assistance in the rearing of phyllosoma and larval staging. In addition, the authors thank the crew of R.V. Cape Ferguson for their help in IKMT operations in the field.
References

Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments. Mar Ecol Prog Ser. 108, 107-118.

Figure captions

Fig. 1. (A) Body mass, (b) specific oxygen consumption rates, (C) specific ammonia excretion rates and (D) metabolic O:N ratios of Stage I-IX *Panulirus ornatus* phyllosoma larvae. The best fit regression of the variables on the stage number was sought by applying linear, exponential or power models, and only significant regression lines were superimposed. ND = no data.

Fig. 2. Relationship between specific oxygen consumption rates at 28°C of and body dry mass of phyllosoma larvae of *Panulirus ornatus* (this study), *Panulinus homarus* (this study), *Parribacus antarcticus* (this study), *Panulirus interruptus* (Belman and Childress, 1976), *Jasus edwardsii* (Bermudes et al., 2008) and an unidentified species (Ikeda, 1974). Note that all data fall within or close to the 95%CI belt of “ornatus” line (hatched lines) of this study. The figure includes the data of stomatopod alima larvae (this study) and “general zooplankton” line (solid line) predicted from global model of epipelagic marine zooplankton at 28°C (Ikeda, 1985) for comparison. See text, for details.

Fig. 3. Relationship between specific ammonia excretion rates at 28°C and body dry mass of *Panulirus ornatus* (this study), *Panulinus homarus* (this study), *Parribacus antarcticus* (this study), *Jasus edwardsii* (Bermudes et al., 2008) and an unidentified species (Ikeda, 1974). Note that all data fall within or close to the 95%CI belt of “ornatus” line (hatched lines) of this study. The figure includes the data of stomatopod alima larvae (this study) and “general zooplankton” line predicted from global model of epipelagic marine zooplankton at 28°C (Ikeda, 1985) for comparison. For symbols of lobsters, see Fig. 2.
Fig. 4. (A) Water content, (B) ash, (C) C composition, (D) N composition and (E) C:N ratios of Stage I-IX *Panulirus ornatus* phyllosoma larvae. The best fit regression of the variables on the stage number was sought by applying linear, exponential or power models, and only significant regression lines were superimposed.

Fig. 5. Relationship between O:N ratios and body dry mass of *Panulirus ornatus* (this study), *Panulinus homarus* (this study), *Parribacus antarcticus* (this study), *Jasus edwardsii* larvae (Bermudes et al., 2008) and an unidentified species (Ikeda, 1974). Note that with two exceptions of Stage I *P. ornatus* (circled) and the unidentified species these data fall within or close to the 95%CI belt of “ornatus” line (hatched lines) of this study. The figure includes the data of stomatopod alima larvae (this study) and “general zooplankton” line (solid line) predicted from global model of epipelagic marine zooplankton at 28°C (Ikeda, 1985) for comparison. For symbols of lobsters, see Fig. 2.
<table>
<thead>
<tr>
<th>Species</th>
<th>Source</th>
<th>Phyllosoma Stage</th>
<th>Expt T (°C)</th>
<th>Body mass (mgDM individual⁻¹)</th>
<th>Oxygen consumption rate (μlO₂ individual⁻¹h⁻¹)</th>
<th>Ammonia excretion rate (μgN individual⁻¹h⁻¹)</th>
<th>ON ratio, (by atoms)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panulirus ornatus</td>
<td>Lab-raised (A)</td>
<td>I 28</td>
<td>0.041 ± 0.002 (6)</td>
<td>0.10 ± 0.01 (6)</td>
<td>0.0076 ± 0.00023 (6)</td>
<td>180 ± 49 (6)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised (A)</td>
<td>II 28</td>
<td>0.079 ± 0.003 (6)</td>
<td>0.24 ± 0.01 (6)</td>
<td>ND</td>
<td>ND</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised (B)</td>
<td>IV 28</td>
<td>0.297 ± 0.012 (6)</td>
<td>0.98 ± 0.04 (6)</td>
<td>0.020 ± 0.003 (6)</td>
<td>62.6 ± 10.3 (6)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised (A)</td>
<td>V 28</td>
<td>1.19 ± 0.07 (6)</td>
<td>2.08 ± 0.43 (6)</td>
<td>0.032 ± 0.016 (6)</td>
<td>93.6 ± 34.6 (6)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised (A)</td>
<td>VI 28</td>
<td>1.52 ± 0.04 (6)</td>
<td>2.20 ± 0.70 (6)</td>
<td>0.079 ± 0.077 (6)</td>
<td>60.0 ± 33.5 (6)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised (C)</td>
<td>VIII 28</td>
<td>3.98 ± 0.74 (8)</td>
<td>6.30 ± 1.15 (8)</td>
<td>0.167 ± 0.063 (8)</td>
<td>50.8 ± 12.1 (8)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised (D)</td>
<td>IX 28</td>
<td>6.27 ± 0.78 (10)</td>
<td>8.26 ± 1.51 (10)</td>
<td>0.216 ± 0.065 (10)</td>
<td>53.5 ± 22.9 (10)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Panulirus homarus</td>
<td>Lab-raised</td>
<td>III 28</td>
<td>0.186 ± 0.0129 (6)</td>
<td>0.44 ± 0.07 (6)</td>
<td>0.017 ± 0.003 (6)</td>
<td>31.6 ± 5.0 (6)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Parribacus antarcticus</td>
<td>Wild mixed</td>
<td></td>
<td>20.6 ± 18.4 (5)</td>
<td>13.2 ± 9.3 (5)</td>
<td>0.458 ± 0.342 (5)</td>
<td>56.4 ± 48.6 (5)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(range: 5.4-52.3)</td>
<td>(6.7-29.3)</td>
<td>(0.075-1.02)</td>
<td>(16.0-125)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panulirus interruptus</td>
<td>Lab-raised</td>
<td>I 17.3</td>
<td>0.065</td>
<td>0.073 (=0.154 at 28°C)</td>
<td>ND</td>
<td>ND</td>
<td>Belman & Childress (1973)</td>
<td></td>
</tr>
<tr>
<td>Jasus edwardsii</td>
<td>Lab-raised</td>
<td>I 18</td>
<td>0.069 ± 0.005</td>
<td>0.077* (=0.154 at 28°C)</td>
<td>0.0031* (=0.0062 at 28°C)</td>
<td>31.3</td>
<td>Bermudes et al. (2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised</td>
<td>II 18</td>
<td>0.129 ± 0.005</td>
<td>0.104* (=0.207 at 28°C)</td>
<td>0.0022* (=0.0054 at 28°C)</td>
<td>48.0</td>
<td>Bermudes et al. (2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised</td>
<td>III 18</td>
<td>0.275 ± 0.080</td>
<td>0.234* (=0.468 at 28°C)</td>
<td>0.0050* (=0.0100 at 28°C)</td>
<td>58.5</td>
<td>Bermudes et al. (2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab-raised</td>
<td>V 18</td>
<td>0.502 ± 0.024</td>
<td>0.348* (=0.700 at 28°C)</td>
<td>0.0042* (=0.0084 at 28°C)</td>
<td>103</td>
<td>Bermudes et al. (2008)</td>
<td></td>
</tr>
<tr>
<td>unidentified</td>
<td>Wild</td>
<td>? 28</td>
<td>91.5 (1)</td>
<td>39.2</td>
<td>5.02 (1)</td>
<td>9.7 (1)</td>
<td>Ikeda (1974)</td>
<td></td>
</tr>
<tr>
<td>Stomatopod alima larvae</td>
<td>Wild</td>
<td>28 20.0 ± 7.26 (6)</td>
<td>26.9 ± 10.3 (6)</td>
<td>2.19 ± 0.87 (6)</td>
<td>16.7 ± 6.7 (6)</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*read from their Figs. 2 and 3 (data of the specimens placed in the "dark")
Table 2. Water content, ash, C and N composition, C:N ratio and ash of phyllosoma larvae of the tropical rock lobster and slipper lobster of this study and other lobsters by previous workers. Values are mean ± SD with the number of replicates in parenthesis for water contents, and means of 2-4 replicates for C and N, and 2 replicates for ash. The data of stomatopod alima larvae, copepods and euphausiids/decapods from tropical waters are included for comparison with grand means of phyllosomas (Mann-Whitey U-test). The italic value in parenthesis of copepods and euphausiids/decapods’ data represents the number of species studied. ND = no data. *; p < 0.05, **; p < 0.01.

<table>
<thead>
<tr>
<th>Species</th>
<th>Source</th>
<th>Phyllosoma stage</th>
<th>Water (% of WM)</th>
<th>C (% of DM)</th>
<th>N (% of DM)</th>
<th>C:N (by mass)</th>
<th>Ash (% of DM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decapod phyllosoma larvae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panulirus ornatus</td>
<td>Lab-raised I</td>
<td></td>
<td>82.8 ± 1.3 (4)</td>
<td>32.5</td>
<td>6.9</td>
<td>4.8</td>
<td>34.2</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Lab-raised II</td>
<td></td>
<td>73.9 ± 1.2 (6)</td>
<td>39.8</td>
<td>9.5</td>
<td>4.2</td>
<td>20.8</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Lab-raised IV</td>
<td></td>
<td>81.9 ± 1.1 (6)</td>
<td>35.5</td>
<td>9.0</td>
<td>4.0</td>
<td>29.3</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Lab-raised V</td>
<td></td>
<td>75.4 ± 1.4 (6)</td>
<td>42.0</td>
<td>8.5</td>
<td>5.1</td>
<td>17.0</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Lab-raised VI</td>
<td></td>
<td>77.9 ± 1.6 (6)</td>
<td>40.5</td>
<td>9.3</td>
<td>4.3</td>
<td>17.6</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Lab-raised VIII</td>
<td></td>
<td>79.2 ± 4.2 (6)</td>
<td>40.9</td>
<td>9.4</td>
<td>4.4</td>
<td>18.5</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Lab-raised IX</td>
<td></td>
<td>77.4 ± 1.8 (10)</td>
<td>40.9</td>
<td>9.0</td>
<td>4.5</td>
<td>18.4</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Wild VIII,XI</td>
<td></td>
<td>ND</td>
<td>41.3</td>
<td>8.4</td>
<td>5.0</td>
<td>15.0</td>
<td>This study</td>
</tr>
<tr>
<td>Panulirus homarus</td>
<td>Lab-raised III</td>
<td></td>
<td>80.2 ± 4.4 (6)</td>
<td>40.1</td>
<td>8.9</td>
<td>4.6</td>
<td>18.1</td>
<td>This study</td>
</tr>
<tr>
<td>Parribacus antarcticus</td>
<td>Wild mixed</td>
<td></td>
<td>74.6 ± 1.2 (4)</td>
<td>39.8</td>
<td>8.8</td>
<td>4.6</td>
<td>14.8</td>
<td>This study</td>
</tr>
<tr>
<td>Panulirus interruptus</td>
<td>Lab-raised I</td>
<td></td>
<td>ND</td>
<td>5.4</td>
<td>ND</td>
<td>ND</td>
<td>49.0</td>
<td>Belman & Childress (1973)</td>
</tr>
<tr>
<td>Grand mean (excluding Stage I data)</td>
<td></td>
<td></td>
<td>77.6 ± 2.8 (8)</td>
<td>40.1 ± 1.9 (9)</td>
<td>9.0 ± 0.4 (9)</td>
<td>4.5 ± 0.4 (9)</td>
<td>18.8 ± 4.3 (9)</td>
<td></td>
</tr>
<tr>
<td>Stomatopod alima larvae</td>
<td>Wild</td>
<td></td>
<td>ND</td>
<td>45.1</td>
<td>9.6</td>
<td>4.7</td>
<td>14.7</td>
<td>This study</td>
</tr>
<tr>
<td>Copepods</td>
<td>Wild</td>
<td></td>
<td>ND</td>
<td>42.5** ± 1.5 (8)</td>
<td>11.0** ± 1.0 (8)</td>
<td>3.9** ± 0.3 (8)</td>
<td>ND</td>
<td>Ikeda (1974)</td>
</tr>
<tr>
<td></td>
<td>Wild</td>
<td></td>
<td>81.6** ± 1.9 (7)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>6.8** ± 1.4 (7)</td>
<td>Morris & Hopkins (1983)</td>
</tr>
<tr>
<td>Euphausiids/decapods</td>
<td>Wild</td>
<td></td>
<td>71.3* ± 5.2 (5)</td>
<td>41.6** ± 1.1 (5)</td>
<td>11.7** ± 0.7 (5)</td>
<td>3.6** ± 0.1 (5)</td>
<td>14.5* ± 1.5 (5)</td>
<td>Ikeda (unpub.)</td>
</tr>
</tbody>
</table>
Ikeda et al. Fig. 1
Specific oxygen consumption rate ($\mu l O_2 (DM) \cdot h^{-1}$) vs. Body mass (mgDM)

- **Panulirus ornatus**
- **Panulirus homarus**
- **Parribacus antarcticus**
- **Jasus edwardsii**
- **Panulirus interruptus**
- Unidentified
- Stomatopod alima larvae

General zooplankton line:

$y = 3.06x^{0.211}$

Ikeda et al. Fig. 2
Specific ammonia excretion rate ($\mu g \text{NH}_4^+\text{N (DM)}^{-1}\text{h}^{-1}$)

Body mass (mgDM)

“General zooplankton” line $y=0.232x^{0.238}$

“Ornatus” line $y=0.042$

Ikeda et al. Fig. 3
Stage Water (% of WM) Ash (% of DM) C (% of DM) N (% of DM) C:N (by mass)
I II IV V VI VIII IX
Ikeda et al. Fig. 4
Ikeda et al. Fig. 5

Metabolic O:N ratio (by atoms)

Body mass (mgDM)

“General zooplankton” line $y = 16.5x^{0.027}$

“Ornatus” line $y = 62.8$