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KDEL receptor 1 regulates T-cell homeostasis
via PP1 that is a key phosphatase for ISR
Daisuke Kamimura1,2,*, Kokichi Katsunuma2,*, Yasunobu Arima1,2, Toru Atsumi1,2, Jing-jing Jiang1,2,

Hidenori Bando1,2, Jie Meng1,2, Lavannya Sabharwal1,2, Andrea Stofkova1, Naoki Nishikawa1, Hironao Suzuki1,2,

Hideki Ogura1,2, Naoko Ueda2, Mineko Tsuruoka2, Masaya Harada2, Junya Kobayashi3, Takanori Hasegawa4,

Hisahiro Yoshida5, Haruhiko Koseki4, Ikuo Miura6, Shigeharu Wakana6, Keigo Nishida7, Hidemitsu Kitamura7,

Toshiyuki Fukada7, Toshio Hirano8 & Masaaki Murakami1,2

KDEL receptors are responsible for retrotransporting endoplasmic reticulum (ER) chaperones

from the Golgi complex to the ER. Here we describe a role for KDEL receptor 1 (KDELR1) that

involves the regulation of integrated stress responses (ISR) in T cells. Designing and using an

N-ethyl-N-nitrosourea (ENU)-mutant mouse line, T-Red (naı̈ve T-cell reduced), we show that

a point mutation in KDELR1 is responsible for the reduction in the number of naı̈ve T cells in

this model owing to an increase in ISR. Mechanistic analysis shows that KDELR1 directly

regulates protein phosphatase 1 (PP1), a key phosphatase for ISR in naı̈ve T cells. T-Red

KDELR1 does not associate with PP1, resulting in reduced phosphatase activity against eIF2a

and subsequent expression of stress responsive genes including the proapoptotic factor Bim.

These results demonstrate that KDELR1 regulates naı̈ve T-cell homeostasis by controlling ISR.
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K
DEL receptor 1 (KDELR) was originally found to be
responsible for the return of soluble endoplasmic
reticulum (ER)-resident proteins to the ER from the

intermediate compartment of the cis-Golgi1,2. This retrograde
transport requires soluble ER-resident proteins to either have a
KDEL-like motif at their C terminus or to form a complex with
ER-resident proteins that do3,4. Consistently, it has been reported
that KDELR modulates ER stress responses, at least in HeLa
cells5. A more recent study has suggested that KDELR function
goes beyond motif recognition by demonstrating that the
chaperone-bound KDELR triggers the activation of Src family
kinases at the Golgi complex, a phenomenon that may be critical
for intracellular signalling cascades6,7.

Integrated stress responses (ISR) are general stress-response
programmes conserved from yeast and known to modulate
cellular homeostasis by integrating various types of stress signals,
including ER stress, amino-acid deprivation, infection with
double-stranded RNA viruses, haem deficiency and oxidative
stress8–10. These diverse signals increase the activation status of
four stress kinases—double-stranded RNA-dependent protein
kinase R (PKR), RNA-dependent protein kinase-like ER kinase
(PERK), eukaryotic initiation factor 2 (eIF2a) kinase general
control non-repressed 2 (GCN2) and haem-regulated eIF2a
kinase, each of which regulates phosphorylation at serine 51 of
the a subunit of eIF2. This eIF2a modification generally
attenuates translation, while the activation of ISR via eIF2a
alteration mobilizes the expression of stress-induced genes
involved in apoptosis induction, including Bim, CHOP and
Trib3 (ref. 11). Furthermore, prolonged phosphorylation of eIF2a
induces apoptosis12,13. In particular, protein phosphatase 1 (PP1)
interacts with the regulatory proteins GADD34 and CreP to
reduce eIF2a phosphorylation14. In addition, defects in ISR are
associated with the development of several important pathologies,
including diabetes, Alzheimer’s disease and viral infection15–17.
Although ISR can affect the differentiation and activation status
of T cells18,19, it remains unknown whether they also play a role
in the homeostasis of naı̈ve T cells in steady state in vivo.

The number of T cells is relatively constant in the body. When
peripheral T cells are reduced due to thymic involution due to
aging, infections or irradiation, the remaining T cells proliferate
to act as a compensatory mechanism for homeostatic prolifera-
tion, a response induced by TCR signalling and cytokines20. The
apoptosis of peripheral T cells is mainly regulated by Bim21–24,
and Bim expression is controlled by Bim transcriptional levels
and under stress conditions induced by the transcription factor
Chop rather than the forkhead box O family25.

We here establish a new ENU-induced mutant mouse line that
shows a decreased number of naı̈ve T-cell numbers, which we
name T-Red (naı̈ve T-cell reduced). T-Red mice have a point
mutation in KDELR1, and dysfunctional KDELR1 is responsible
for the reduction of naı̈ve T cells. T-cell-mediated responses are
attenuated in T-Red mice, and mechanistic analysis suggests that
KDELR1 regulates ISR in naı̈ve T cells via PP1 activity.
Phosphorylation of eIF2a is enhanced due to a reduction in
activity of PP1 in T-Red naı̈ve T cells, and T-Red KDELR1 does
not associate with PP1. Indeed, naı̈ve T cells in T-Red mice
increase the targets of the eIF2a pathway, such as proapoptotic
factors like Bim, CHOP and Trib3, to eventually cause apoptosis.
Thus, we suggest that KDELR1 regulates ISR by controlling PP1
activity in naı̈ve T cells in vivo.

Results
A mutant strain with excess memory/activated T cells. A mouse
library with random genome-wide point mutations was generated
by treating C57BL/6 male mice with the chemical mutagen

ethylnitrosourea (ENU)26. A first-generation male offspring was
bred with wild-type (WT) C57BL/6 female mice, and the second
generations were intercrossed. In total, 309 offspring from the
third-generation pedigrees were screened for T-cell phenotypes in
the peripheral blood by a flow cytometer to identify mutants with
aberrant T-cell homeostasis in vivo. In one pedigree, several mice
exhibited an unusually high percentage of CD44 expression on
the cell surface, which represents the memory/activated T-cell
phenotype (Fig. 1a). This phenotype was inherited as a simple
autosomal recessive trait (Table 1) and was more evident in
CD8þ T cells than in CD4þ T cells (Fig. 1a).

To distinguish whether it was the number of memory/activated
T cells that increased or the number of naı̈ve T cells that
decreased, we counted T-cell numbers in lymphoid organs. The
total cell number in the spleen was reduced in ENU-mutant mice
(Fig. 1b). More specifically, the number of CD44lowCD62Lhigh
naı̈ve T cells significantly decreased in the spleen (Fig. 1b,
Supplementary Fig. 1). Total cell numbers in the thymus, double-
positive (DP) and single-positive (SP) thymocytes were also less
in mutant mice (Fig. 1c,d). To investigate a specific blockade
point in the ENU-mutant thymus, we performed flow cytometry
analysis and found a reduction of positive selecting thymocytes
(CD4þCD8þCD5lowCD69low) and positive selected thymo-
cytes (CD4þCD8þCD5highCD69high), but an increase of
dying thymocytes (Bimhigh, Casp3high or Annexin Vhigh in
CD4þCD8þCD5lowCD69low thymocytes), suggesting that
thymocyte development was inhibited during the selection
process in mutant mice (Fig. 1e–h). On the other hand, other
cell populations, including CD44 high memory/activated pheno-
type T cells, double-negative (DN) and CD8þCD3low immature
SP (ISP) thymocytes in the thymus and natural killer cells, gdT
cells, neutrophils and dendritic cells of the spleen, were unaffected
(Fig. 1b,d,i). We also found that the number of naı̈ve B cells but
not memory B cells was reduced (Fig. 1i). Interestingly, the T-cell
phenotypes described above were more evident after the weaning
period (after 5-6 weeks; Fig. 1j). In addition, phenotype
differences between T cells from T-Red mice and those from
control mice became more apparent with the developmental stage
of T cells, as shown in Fig. 1b,d (DP thymocytesoSP
thymocytesonaı̈ve T cells). These results demonstrate that the
number of T-cell linage cells significantly decreased in T-Red
mice after the DP thymocyte stage, which is when thymocytes
obtain TCR complex molecules. We hypothesize that the
reduction of thymocytes is induced by their longer lifetime in
the thymus due to an accumulation of thymocyte social stress.
Thus, we concluded that the T-cell phenotype in the periphery
of mutant mice is due to fewer naı̈ve T cells, not more
memory/activated T cells. Because memory/activated T cells
originate from naı̈ve T cells, it is likely that the near normal
number of memory/activated T cells in the mutants was caused
by homeostatic proliferation27,28. We therefore named this
mutant strain ‘T-Red’ (naı̈ve T-cell reduced).

A point mutation in Kdelr1 is responsible for the phenotype.
By using F2 mice intercrossed between C57BL/6T-Red
homozygotes and a WT C3H/He strain, the chromosomal
location of the genes responsible for the T-cell phenotype in
T-Red mice was mapped within an B100-kb region of
chromosome 7, which contains 443 genes (Fig. 2a). Resequencing
the mRNA and genomic DNA exons of T-Red mutants within
this region revealed a single T-C nucleotide substitution in a
gene identified as the mouse homologue of Kdelr1 (Fig. 2b). This
mutation resulted in a Ser123-Pro amino-acid substitution
within the fifth transmembrane region of Kdelr1 (Fig. 2c).

To prove whether this point mutation is responsible for the
T-cell phenotype in T-Red mice, we performed two
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Figure 1 | Establishment of a mutant mouse strain having excess memory T cells. (a) T-cell phenotypes in a mutant strain induced by ENU treatment

(T-Red) and control (B6) mice. Flow cytometry analysis was performed using peripheral blood from the mutant strain (9 weeks old). Indicated numbers are

percentages of memory/activated phenotype T cells, as monitored by CD44 expression. (b) Number of T cells harvested from the spleen. Mice up to 12

weeks old were used. (c) CD4 and CD8 plots of the thymus at 6 weeks old. (d) Number of thymocytes harvested from the thymus. DP, CD4þCD8þ
population; DN (double-negative), CD4-CD8- population; CD4SP (CD4 SP), CD3highCD4þCD8- population; CD8SP (CD8 SP), CD3highCD4-CD8þ
population; and ISP (immature SP), CD3 lowCD4-CD8þ population. Mice up to 12 weeks old were used. (e) CD5 and CD69 levels in CD4þCD8þ
DP population (left) and the frequency of CD5HiCD69Hi DP populations (right). Mice at 6–8 weeks old were used. (f,g) The frequencies of active caspase 3

(casp3) (f) and annexin V (g) in DP thymocytes. (h) Bim levels of annexin V-negative (Neg) or positive (þ ) DP CD69Lo thymocytes. (i) Cell numbers of

other cell types in the spleen: B (CD19þ ) cells, naı̈ve B (CD19þ IgMþCD273-) cells, memory IgM (CD19þ IgMþCD273þ ) cells, memory IgG1

(CD19þ IgG1þCD273þ ) cells, natural killer cells (NK), gdT cells (gdT), neutrophils (Neu) and dendritic cells (DC). Mice up to 12 weeks old were used.

(j) Time course of changes in thymic cellularity. The ratio (T-Red/WT) of each thymic population (cell number) is shown. Data represent the meanþ s.e.m.

(b, n440; d, n430; e–g, n¼4–6 mice; i, n¼8–20; and j, n¼6–14 for each time point). Representative FACS plots from more than three independent

experiments are shown (c,e–h). P values are shown or indicated by asterisks (*Po0.05, **Po0.01 and ***Po0.001); NS, not significant.
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experiments—a retrovirus-mediated rescue experiment using the
WT Kdelr1 gene and the design and analysis of Kdelr1 knockout
mice. Forced expression of the WT Kdelr1 gene in T-Red-derived
haematopoietic stem cells followed by bone marrow transplantation
(BMT) increased the percentage of naı̈ve T cells while concomi-
tantly reducing the memory/activated T-cell fraction, as seen by the
decreased surface CD44 expression (Fig. 2d). Furthermore, systemic
(Kdelr1Dflox/Dflox mice) and T-cell-specific (CD4-Cre/ Kdelr1flox/flox

mice) deletions of the Kdelr1 gene resulted in almost the same
T-cell phenotype as that of T-Red mice (Fig. 2e).

We also examined whether the T-Red phenotype corresponds
to the physiological function of KDELR1 molecules. We
performed several detailed experiments on mice having deletions
of the Kdelr1 gene in T cells (Kdelr1flox/flox mice crossed with
CD4-Cre mice). Data from Kdelr1-deficient mice (Supplementary
Fig. 2) were very similar to the data from T-Red mice. In addition,
we transferred naı̈ve T cells from Kdelr1flox/flox-ERT2-Cre mice
into WT hosts and deleted Kdelr1 by treatment with tamoxyfen.
Both naı̈ve CD4þ T cells and CD8þ T cells were reduced after
the tamoxyfen administration (Fig. 2f,g). Therefore, we concluded
that the T-Red phenotype corresponds to the physiological
function of KDELR1 molecules, at least in T cells, and that the
T-Red mutation in the Kdelr1 gene is responsible for the T-Red
T-cell phenotype and the loss of function of KDELR1 molecules.

T-cell responses are attenuated in T-Red mice. To investigate
whether the reduced number of naı̈ve T cells in T-Red mice has
any impact on antigen-specific T-cell responses, we employed
four experimental systems in vivo. In collagen-induced arthritis,
clinical scores and serum concentrations of interleukin (IL)-17A
were significantly decreased in T-Red mice (Fig. 3a,b). Serum
concentrations of anti-ovalbumin (OVA) antibodies after
immunization with OVA/Alum were also significantly inhibited
in the mutant (Fig. 3c,d). In addition, male, but not female,
antigen-specific rejection in female mice was attenuated
(Fig. 3e,f), and the CD8þ T-cell response against Listeria
monocytogenes-OVA was less in T-Red mice (Fig. 3g). However,
when the same numbers of naı̈ve OT-I and T-Red/OT-I CD8þ
T cells, which have OVA-specific TCR due to a rearranged TCR
transgene, were transferred, the expansion of these cells in
response to L. monocytogenes-OVA infection was found
equivalent (Fig. 3h). Similarly, in vitro proliferation and Th17
differentiation were not significantly impaired in T-Red naı̈ve T
cells after stimulation with anti-CD3 antibody (Supplementary
Fig. 3). We also confirmed that male antigen-specific rejection in
female mice was attenuated in mice having T-cell-specific dele-
tions of the Kdelr1 gene (Supplementary Fig. 2e). Thus, antigen-
specific T-cell responses were attenuated in T-Red mice, most
likely because of reduced naı̈ve T-cell numbers via the functional
defect of KDELR1 molecules. While it is possible that a shorter
longevity of animals may occur in certain conventional condi-
tions due to a reduction of T cells, we observed that T-Red mice
had normal longevity and no clear abnormalities even with age in
the specific pathogen-free conditions.

Pre-rearranged TCR rescues naı̈ve T-cell reduction. We found
that CD44 levels of T-Red OT-I T cells were significantly reduced
compared with T-Red CD8þ T cells but comparable to WT
OT-I T cells (Fig. 4a). Therefore, additional lines of T-Red TCR
transgenic strains were generated. Again, the percentages and
numbers of naı̈ve T cells did not show any dramatic decrease in
P14, OT-I and OT-II TCR transgenic mice under the T-Red
background (Fig. 4a–c). We also found that there was a minimum
difference between thymic numbers in OT-I transgenic WT and
OT-I T-Red mice (Fig. 4d).

We performed BMT experiments using WT and T-Red mice or
regular OT-I and T-Red OT-I mice to further explore the link
between the pre-rearranged TCR and T-Red phenotype. The
BMT experiments showed results similar to those presented
above, as we found a smaller T-cell population in T-Red-derived
BM cells but not in WT-derived BM cells (regular or OT-I case;
Fig. 4e,f). All these results suggest that the reduction of naı̈ve
T cells in T-Red mice is dependent on an incomplete TCR
rearrangement process and/or TCR signal transduction process in
some T-cell repertoires in the thymus and in naı̈ve T cells in the
periphery.

TCR rearrangement in T-Red mice is essentially complete.
Because T-Red mice with TCR transgenic backgrounds showed
normal percentages of naı̈ve T cells (Fig. 4a–f), we considered
whether the functional defect of KDELR1 induces an incomplete
TCR rearrangement process to induce the stress that is stimulated
by DNA damage responses. Although TCR Ja utilization was
perturbed in T-Red T cells, with proximal TCR Ja fragments from
TCR Va being more rearranged than distal ones (Fig. 4g,h), the
total amount of rearranged TCR was equivalent according to a Ca
probe as well as qPCR of Cb (Fig. 4h). We also found normal
TCRb rearrangements, which were induced by DNA segments
in a narrower region compared with TCRa segments29,30, in DP
thymocytes of T-Red mice and showed normal usage of TCRb
molecules in naı̈ve CD4þ and naı̈ve CD8þ T cells in T-Red
mice (Supplementary Fig. 4). These results strongly suggest that
TCR rearrangement in T-Red mice was essentially complete.
Therefore, we concluded that the reduction of naı̈ve T cells
in T-Red mice is not dependent on an incomplete TCR
rearrangement process. Instead, the reduction of naı̈ve T cells
in T-Red mice may be dependent on a TCR signal transduction
process in some T-cell repertoires of the thymus and in naı̈ve
T cells of the periphery.

Bim and apoptosis increased in T-Red naı̈ve T cells. We next
investigated why the number of naı̈ve T cells in T-Red mice is
lower than in control mice. We first considered whether naı̈ve
T cells from T-Red mice undergo higher rates of apoptosis and
examined the expression levels of the proapoptotic factor Bim,
a major apoptosis inducer in T cells, particularly in the
periphery21–24. T-Red mice showed significantly higher
expressions of Bim in their naı̈ve T cells, but not in their
memory/activated T cells or B cells when compared with controls
(Fig. 5a–d). Consistent with these differences in Bim quantity
between memory/activated CD4þ T cells and CD8þ T cells
(Fig. 5b), it is known that memory CD8þ T cells have more and
memory CD4þ T cells fewer Bim molecules than naı̈ve T cells31

and that memory CD8þ T cells are resistant to increased
expression of Bim in a manner dependent on the expression
of Bcl-2 (ref. 32). Indeed, T-Red naı̈ve T cells, but not
memory/activated ones, showed lower survival rates in the
presence or absence of IL-7 (Fig. 5e). We also found that
Kdelr1 deficiency in naı̈ve T cells induced more apoptosis in both
CD4þ and CD8þ T cells in the presence or absence of IL-7

Table 1 | T-Red phenotype is autosomal recessive.

Parents Generation n Memory
phenotype

%

G3.mutant�G3.mutant G4 28 28 100
B6�G3.mutant F1 21 0 0

F2 106 21 19.8

T-cell phenotypes in a mutant mouse strain were inherited as a simple autosomal recessive trait
in the progeny. Peripheral blood of mice between 6 and 12 weeks old was examined for CD44
levels of CD8 T cells.
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8474 ARTICLE

NATURE COMMUNICATIONS | 6:7474 | DOI: 10.1038/ncomms8474 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


S
er

um
 IL

-1
7 

(p
g 

m
l–1

)

WT T-Red WT T-Red WT T-Red
0

20

40

60

80

100

120

Unimmunized d21 d21+6

P= 0.0001 P= 0.0107

0 7 14 21 28

0.0001

0.001

0.01

0.1

1

10

WT

T-Red

SJL
Detection
limit

%
 D

on
or

 in
 P

B
L

*** ***
**

*

Days post transfer

0 7 14 21 28

0.0001

0.001

0.01

0.1

1

10

%
 D

on
or

 in
 P

B
L

Days post transfer

WT OT-I

0

10

20

30

40

50

60

%
O

T
-I

 in
 C

D
8

0.00E+00

5.00E+05

1.00E+06

1.50E+06

WT T-Red

*

10 100 1,000 10,000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

*
*

*
* A

nt
i-O

V
A

 Ig
G

1 
(A

40
5)

10 100 1,000 10,000
0.0

0.1

0.2

0.3

0.4 WT OVA

T-Red OVA

WT none

T-Red none

*

**
***

**

Serum dilutions Serum dilutions

0 5 10 15
0

1

2

3

4

5

6
WT

T-Red

Days post 2nd immunization

* * * *
* * *

*
C

lin
ic

al
 s

co
re

IF
N

γ+
C

D
8+

 (
ce

lls
 p

er
 s

pl
ee

n)
A

nt
i-O

V
A

 Ig
M

 (
A

40
5)

T-Red OT-I

NS
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Figure 4 | Pre-rearranged TCR corrected the T-Red phenotype. (a,b) Histograms of CD44 levels (a) and percentages of the CD44 high

memory/activated T-cell phenotype (b) in peripheral blood of P14, OT-I and OT-II TCR transgenic mice of T-Red- or WT backgrounds. Mice up to 12 weeks

old were used. Representative FACS plots from more than three independent experiments are shown. One-way ANOVA with post hoc Dunnett’s test

was used in b. (c) Total number of splenocytes and CD8þVb8.1/8.2þ T cells in P14 TCR transgenic mice (Vb8.1þ ) of T-Red or WT backgrounds

(6–8 weeks old). (d) Absolute cell numbers of thymocyte subpopulations in OT-I and T-Red/OT-I mice (8–9 weeks old). (e,f) Bone marrow cells from

WT (CD45.2/CD90.1), T-Red (CD45.1/CD45.2/CD90.2), OT-I (CD45.2/CD90.1/CD90.2) and T-Red/OT-I (CD45.2/CD90.2) mice were mixed and

transplanted into lethally irradiated WT mice (CD45.1/CD90.2; 8–10 weeks old). Each population was tracked by a flow cytometer using congenic markers.

Absolute cell numbers of the chimera in the thymus (e) and spleen (f) are shown. (g) Schematic representation of the TCR Va–Ja–Ca boundary.

(h) DP thymocytes were sorted from T-Red and control mice (8–9 weeks old) and isolated from total RNA. RT-PCR was performed using Va8- and

Ca-specific primers followed by southern blotting with Ja- or Ca-specific probes (left). Representative images from three independent experiments are

shown. Cb1 mRNA levels were examined by quantitative PCR (right). Relative expression levels to Hprt are shown. Data represent the meanþ s.e.m.

(b, n¼ 7–39; c, n¼4; d, n¼4–6; e,f, n¼9; h, n¼ 3). Paired Student’s t-test was used in f. **Po0.01 and ***Po0.001. NS, not significant.
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(Supplementary Fig. 2d). Furthermore, forced expression of the
WT Kdelr1 gene decreased Bim expression in naı̈ve T-Red T cells,
but not in memory/activated ones (Fig. 5f). These results suggest
that a functional defect in KDELR1 induces the expression of Bim
to cause apoptosis in naı̈ve T cells.

ISR is enhanced in T-Red naı̈ve T cells. We next attempted to
identify how the apoptotic pathway is activated in T-Red naı̈ve
T cells. We performed DNA microarray analysis using freshly
isolated naı̈ve CD4þ and CD8þ T cells from WT and T-Red
mice. Because Bim is known to be a target of ISR11, we
investigated this pathway. Several genes known to be involved in

ISR were also upregulated in T-Red naı̈ve T cells. Quantitative
PCR analysis confirmed that ISR-related genes, including Asns,
Chop, Trib3 and Vegfa, were significantly upregulated (Fig. 6a).
Activated/memory T cells and B cells from T-Red mice also
showed the upregulation of some stress genes, but the induction
levels were much lower than in naı̈ve T cells (Fig. 6a and
Supplementary Fig. 5). In addition, activation of ISR is predicted
to globally reduce translation in T-Red cells. Indeed, we found
such a reduction in DP thymocytes and naı̈ve T cells in T-Red
mice (Fig. 6b).

A key pathway of ISR is mediated by eIF2a phosphorylation,
which induces cell death when prolonged12,13. Phosphorylation of
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eIF2a was monitored by fluorescence-activated cell sorting
(FACS) and western blotting and was found to be enhanced in
T-Red naı̈ve T cells (Fig. 6c and Supplementary Fig. 6a).
Importantly, T-Red mice with TCR transgenic backgrounds,
which have almost normal numbers of naı̈ve T cells (Fig. 4a–c,f),
significantly decreased the upregulation of ISR-related genes
(Fig. 6d). On the other hand, mitochondrial stress, which
potentially increases intracellular Bim expression and shortens
cell survival time, was not induced in naı̈ve T cells or thymocytes
in T-Red mice, since neither mitochondrial membrane
depolarization nor the expression of Clpp and mtHSP60, two
target genes of mitochondrial stress33,34, were significantly
induced (Supplementary Fig. 6b,c). Thus, these results suggest
that ISR, but not mitochondrial stress, increased in T-Red naı̈ve
T cells.

Dephosphorylation of eIF2a by PP1 is impaired. Since
phosphorylation of eIF2a increased in T-Red naı̈ve T cells, we
focused on the regulation of eIF2a phosphorylation to under-
stand how the ISR pathway is activated by KDELR1 dysfunction
in T-Red naı̈ve T cells. It is known that four kinases, PKR, PERK,
GCN2 and haem-regulated eIF2a kinase, phosphorylate eIF2a
and that PP1/GADD34 complexes dephosphorylate it8–10,14.
Upstream events of the kinase activations, such as cellular ATP
(indicative of glucose availability), reactive oxygen species (ROS)
and iron levels35–39, were not specifically enhanced in T cells
isolated from T-Red mice (Supplementary Fig. 7), suggesting the
dephosphorylation of eIF2a by PP1 may be different. Naı̈ve
T cells showed a certain level of eIF2a phosphorylation even in
WT mice (Fig. 6e). The phosphorylation of eIF2a was reduced
after in vitro culture and reversed by the addition of a
PP1/GADD34 specific inhibitor, salubrinal (Fig. 6e)40,
suggesting that the decline of eIF2a phosphorylation levels was
due to PP1 phosphatase activity. In T-Red naı̈ve T cells, however,
phosphorylation of eIF2a was prolonged, and almost no effect
of salubrinal was evident, suggesting a functional defect of
PP1/GADD34 phosphatase (Fig. 6e). Importantly, in vitro
dephosphorylation assays showed that the phosphatase activity
of phospho-eIF2a was impaired in T-Red naı̈ve CD4þ and
CD8þ T cells (Fig. 6f). In addition, only a negligible difference in
PP1 defects, which were monitored by the dephosphorylation
rates of eIF2a, was detected between WT CD4þ and WT CD8þ
T cells (Fig. 6f). These results suggest that prolonged activation of
eIF2a induced by dysfunctional PP1 phosphatase caused ISR in
T-Red naı̈ve T cells.

Changes in KDELR1 association with PP1. PP1 is known
to form complexes with various molecules to determine the
PP1 enzyme activity, substrate specificity and subcellular
localization41. We hypothesized that KDELR1 could be one such
partner molecule and therefore investigated the association
between KDELR1 and PP1 molecules. As shown in Fig. 6g,
PP1a was co-immunoprecipiated with WT KDELR1.
Importantly, the association of PP1a with the T-Red KDELR1
was substantially weaker than that with WT KDELR1 (Fig. 6g).
KDELR1 contains a specific amino-acid sequence, RVEF, which
matches a typical PP1-binding motif, RVXF42. However, we
found that a loss-of-function mutation in the motif42 did not
affect KDELR1-PP1a binding (Fig. 6h). Instead, cytoplasmic loop
1 was involved in the association, but the tail domain, which is
known to contribute to the binding of ARF, GAP and Src family
kinases6,7,43, was not (Fig. 6h). We also determined the region of
PP1a responsible for the association. The C-subdomain of PP1a,
which contains the binding sites for PP1 partners, including
Inhibitor-1 and DARPP-32 (ref. 44), was not required for

association with KDELR1 (Fig. 6i). Further truncation of PP1a
abolished the association, suggesting that the amino-acid region
182–209 in the C-subdomain is responsible (Fig. 6i). These results
support the idea that KDELR1 regulates PP1 activity via direct
association.

Moreover, we found that KDELR and PP1 are associated in
naı̈ve T cells and that the degree of association was lower in
T-Red naı̈ve CD4þ and naı̈ve CD8þ T cells compared with WT
naı̈ve T cells (Fig. 6j). Together with the reduction of T-Red naı̈ve
CD4þ and naı̈ve CD8þ T cells, these results suggest that
KDELR–PP1 association regulates naı̈ve T-cell survival. Overall,
our findings suggest that KDELR–PP1-mediated ISR regulation is
involved in peripheral T-cell homeostasis.

Discussion
It has been long thought that the primary function of KDELR is
the retrograde transport of ER chaperones from the Golgi
complex to the ER1,2. More recently, it has been found that
KDELR also functions by activating Src family kinases on the
Golgi complex6,7. Here we identify a new role for KDELR that
affects naı̈ve T-cell homeostasis in vivo—decreasing ISR-mediated
cell death via the direct control of PP1 activity.

We established an ENU-induced mutant mouse strain that has
a low number of naı̈ve T cells (T-Red mice), finding this
phenotype resulted from a point mutation in the Kdelr1 gene.
This point mutation caused an amino-acid substitution of
KDELR1 at Ser123 to proline (Fig. 2b,c). A previous biochemical
study revealed that a mutation at KDELR1 Ser123 abrogates
ligand binding, possibly due to conformational alterations45. In
addition, breeding analysis indicated that the T-Red phenotype is
a recessive trait and that mutant mice with Kdelr1 deficiency have
a phenotype comparable to T-Red mice (Fig. 2e and
Supplementary Fig. 2). Thus, we concluded the S123P point
mutation causes dysfunctional KDELR1 in the T cells of T-Red
mice and that the T-Red phenotype corresponds to the
physiological function of KDELR1 molecules, at least in T cells.

Mechanistic analysis demonstrated that KDELR1 directly
regulates PP1 activity, which is critical for preventing ISR in
naı̈ve T cells. T-Red KDELR1 association with PP1 was negligible,
and its dephosphorylation activity against eIF2a was diminished
in T-Red naı̈ve T cells. In other words, dysfunctional KDELR1
may be unable to regulate eIF2a activation after the induction of
various stresses related to ISR in T cells. It was reported that
prolonged activation of eIF2a leads to apoptosis in cell lines
in vitro12 and in neurons in vivo13. Consistent with these
observations, T-Red naı̈ve T cells showed an upregulation of
genes encoding Bim, Chop and Trib3, all target genes and
sometimes effector genes of the ISR pathway. Taken together,
dysregulation of PP1 by the KDELR1 T-Red mutation induces
ISR-mediated upregulation of proapoptotic factors including Bim,
which may cause apoptosis in naı̈ve T cells.

What is the relationship between the TCR-mediated signal
and ISR? TCR transgenic data suggest that these transgenic
TCR-mediated signals might mainly transduce a positive survival
signal in naı̈ve T cells in a manner dependent on TCR affinity for
endogenous peptides (on MHC molecules) at steady state.
Therefore, it is possible that a strong TCR signal rescues T-Red
naı̈ve T cells from ISR-mediated apoptosis by enhancing the
activation of PP1 followed by the dephosphorylation of eIF2a. On
the other hand, we also suggest that the reduction of naı̈ve T cells
is induced by their longer lifetime in the periphery most likely
due to an accumulation of T-cell social stress.

Because we found that the numbers of DP and SP cells in
T-Red OT-I mice are not reduced (Fig. 4d,e), we also hypothesize
that TCR transgenic thymocytes transduced a relatively strong
TCR signal from endogenous antigens compared with non-
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transgenic thymocytes just like naı̈ve T cells are rescued from an
excess ISR. Therefore, the transgenic thymocytes were negligibly
affected even by the enhanced ISR in T-Red mice due to the
excessive survival signal from the transgenic TCR. On the other
hand, non-transgenic thymocytes that transduced a low TCR
signal might be sensitive to the enhanced ISR in T-Red
background, while those cells that have a high TCR signal were
not. We, however, believe that the signalling events during the

thymic selections are more complex compared with those in
peripheral T cells. Therefore, further investigation is needed to
answer this hypothesis particularly by using other high and low
affinity TCR transgenic mice.

It remains unclear why proximal TCRa rearrangements were
favoured in T-Red cells. One possibility is that proximal TCRa
rearrangements make the time length of the DP stage in T-Red
mice short to prevent ISR-mediated apoptosis induction, as it was
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reported that a longer presence of DP thymocytes corresponds
with more use of distal TCRa rearrangements46. In other words,
DP thymocytes, which rapidly differentiate to the SP stage, elude
apoptosis, which is enhanced in T-Red thymocytes. We
hypothesize that the longer DP stage could be more stressful to
induce ISR, just like in peripheral naı̈ve T cells. Consistent with
this notion, the number of DP thymocytes that have TCR-
rearrangements was reduced in T-Red mice compared with the
number in WT mice (Fig. 1d). Moreover, an inducer of double
strand breaks, etoposide, caused more death of T-Red DP
thymocytes than that of WT thymocytes (Supplementary Fig. 8).
Thus, it is possible that the shorter length of the DP thymocyte
stage in T-Red mice may explain why proximal TCRa
rearrangements are favoured in T-Red cells.

How the KDELR1-PP1 association regulates PP1 activity is a
matter of future study. PP1 is known to have many regulatory
proteins that determine phosphatase activity, substrate specificity
and subcellular localization41, including the molecular chaperone
Bip47,48, which has the KDEL motif and binds to KDELR1
(ref. 49). It was also reported that PP1/GADD34 complexes are
localized to the ER50, where KDELR1 transports chaperones from
Golgi compartments. We suggest then that KDELR1 may supply
certain molecules, such as KDELR-binding chaperones that
associate with PP1 and change the PP1 structure to
dephosphorylate eIF2a efficiently. Moreover, it is also possible
that a strong TCR signalling might directly increase KDELR1
activity or reduce ISR response.

In summary, we generated an ENU mutant strain with a
reduced number of naive T cells, which we named T-Red.
Positional cloning and subsequent experiments identified the
gene responsible for this effect as KDELR1. Mechanistic analysis
suggested that KDELR1 regulates ISR in naı̈ve T cells.
Phosphorylation of eIF2a, a central checkpoint of ISR, is
enhanced because activity of a key phosphatase of this pathway,
PP1, is reduced in T-Red naı̈ve T cells. T-Red KDELR1 did not
associate with PP1, a property that correlated with reduced
phosphatase activity. Indeed, naı̈ve T cells in T-Red mice
increased the expression of several target genes in the eIF2a
pathway, including Bim, Chop and Trib3, and caused apoptosis.
We also hypothesize that physiological high-affinity TCR signal
regulates T-Red KDELR1-mediated excess ISR in naı̈ve T cells.
We suggest that KDELR1 regulates ISR by controlling PP1
activity to maintain naı̈ve T-cell homeostasis in vivo.

Methods
Mouse strains. C57BL/6 mice and C3H/He mice were purchased from Charles
River Japan. All mice were maintained under specific pathogen-free conditions

according to the protocols of Osaka University Medical School and RIKEN
Research Center for Allergy and Immunology (RCAI). Mice of both sexes were
used. The age of mice is indicated in figure legends. There are no sample exclusion
criteria. No randomization or blinding was used. Sample size of more than three
mice was chosen to ensure power for Student’s t-test unless the availability of mice
was limited. All animal experiments were performed following the guidelines of the
Institutional Animal Care and Use Committees of the Graduate School of Frontier
Bioscience and Graduate School of Medicine, Osaka University; the Institute for
Genetic Medicine and Graduate School of Medicine, Hokkaido University; and
RIKEN RCAI.

Antibodies and reagents. The following antibodies were used for FACS staining
at 200-fold dilution except for anti-CD90 antibodies, which were diluted to
2,000-fold: eFlour450-conjugated anti-CD4 (RM4-5), anti-CD8 (53-6.7) and
anti-B220 (RA3-6B2) (eBioscience, San Diego, California); BV421-conjugated
anti-CD19 (6D5) (BioLegend, San Diego); FITC-conjugated anti-CD44 (IM7)
(eBioscience) and anti-IgD (11-26c.2a) (BD Biosciences, San Jose, California);
PE-conjugated anti-CD25 (PC61), anti-CD45.2 (104), anti-CD62L (MEL14),
anti-IL-17A (eBio17B7) (eBioscience), anti-IgM (R6-60.2) and anti-IgG1 (A85-1)
(BD Biosciences); PE-Cy7-conjugated anti-CD3 (145-2C11) (BioLegend),
anti-CD8 and anti-CD44 (eBioscience); APC-conjugated anti-CD4, anti-CD45.1
(A20), anti-CD90.1 (HIS51), anti-CD90.2 (53-2.1), anti-interferon (IFN)-g
(XMG1.2) (eBioscience), and anti-CD19 (BioLegend); biotin-conjugated
CD273 (TY25) (BioLegend); anti-Bim (Cell Signaling, Tokyo, Japan); and
Alexa488-conjugated anti-rabbit IgG (Invitrogen, Tokyo). Antibodies for western
blotting were as follows: anti-Bim and anti-phospho S51 eIF2a (Cell Signaling);
anti-FLAG M2 affinity gel and 3xFLAG peptide (Sigma, Tokyo); and anti-eIF2a,
anti-Actin, anti-PP1 and HRP-conjugated anti-cMyc (Santa Cruz, Dallas, Texas).
They were used at 100-fold dilution.

Flow cytometry and cell sorting. For cell surface labelling, B106 cells were
incubated with fluorescence-conjugated antibodies for 30 min on ice in the
presence of non-labelled anti-CD16/32 (2.4G2) antibody for blocking. Intracellular
staining was performed using the Cytofix/Cytoperm kit (BD Biosciences), or the
Foxp3 Fixation/Permeabilization kit (eBioscience) for phosphorylated eIF2a
staining. Cells were then analysed with the CyAn flow cytometer (Beckman
Coulter, Tokyo). Collected data were analysed using Flowjo software (Tree Star,
Ashland, Oregon). To purify naı̈ve and memory T cells, splenocytes and lymph
node cells were sorted based on their CD44 expression levels using the Moflo cell
sorter (Beckman Coulter). CD4þCD8þCD25� thymocytes were sorted as DP
thymocytes. IgMþCD273� B cells were sorted as naı̈ve IgMþ B cells51,52. Cell
purity was routinely 498%. Antibody dilutions were 100-fold and 200-fold for
intracellular staining and cell sorting, respectively.

Establishment of ENU mutant mice and SNP analysis. ENU (Sigma) was
injected intraperitoneally (i.p.) into B6 male mice twice at 1-week interval53. After a
sterile period (10 to 11 weeks), these G0 male mice were mated with female B6
mice to generate G1 populations. G2 populations were made by artificial
insemination using G1 sperm and normal B6 eggs. G3 offspring were generated by
G2 intercrosses. About 30 G3 mice per G1 pedigree were checked for T-cell
populations in peripheral blood. A mutant mouse was crossed with WT B6 to
establish a mutant mouse line. For linkage analysis, T-Red mice (B6 background)
were crossed with C3H/HeJ mice, and F1 mice were intercrossed. F2 populations
were checked for CD44 levels on CD8 T cells in peripheral blood. The region
responsible for the T-Red phenotype was determined by SNP analysis using tail
DNA from F2 mice with high CD44 levels in T cells.

Figure 6 | ISR are enhanced in T-Red naı̈ve T cells due to a functional defect of PP1. (a) ISR target genes in T-cell subsets and B cells were examined by

qPCR. N, M and B indicate naı̈ve, memory and B cells, respectively. Expression levels of WT populations were normalized as 1. Data represent the

meanþ s.d. (n¼ 2). (b) Global translation in DP thymocytes (DP), naı̈ve T cells from WT (W) or T-Red (T) mice was examined by in vivo puromycin

labelling (right). Ponceau-S staining is shown on the left. Numbers below the blots represent the intensity ratio of puromycin/Ponceau-S.

(c) Phosphorylated-eIF2a in T-cell subsets were examined by flow cytometry. Representative FACS histograms from three independent experiments (top)

and mean fluorescence intensity (MFI; bottom) are shown. Data represent the meanþ s.e.m. (n¼ 3). (d) ISR target genes in naı̈ve CD8 T cells from WT,

T-Red or OT-I/T-Red mice were examined. Relative expressions to Hprt levels are shown. Data represent the meanþ s.d. (n¼ 2). One-way ANOVA with

post hoc Dunnett’s test was used. (e) Naı̈ve T cells were cultured and examined for phosphorylated-eIF2a levels. In some cultures, PP1/GADD34 inhibitor

salubrinal was added. (f) Radiolabelled, phosphorylated-eIF2a was incubated for the indicated times with cell lysates from WT or T-Red naı̈ve T cells,

followed by SDS–PAGE and phosphor imaging. The intensity at 10 min in each group was normalized as 1.0. (g) Flag-KDELR1 WT or T-Red mutants and

Myc-WT PP1a were overexpressed in HEK293T cells and immunoprecipitated with anti-Flag beads, followed by blotting with anti-Flag or anti-Myc.

(h) Association of KDELR1 mutants with WT PP1a. A schema of KDELR1 is shown to the right. Closed and open arrows indicate the location of RVEA and

T-Red mutations, respectively. (i) Association of PP1a mutants with WT KDELR1. A schema of PP1a is shown to the right. Numbers below the blots in g–i

represent the ratio of PP1a/KDELR1. (j) Association of KDELR1 and PP1a in naı̈ve T cells examined by proximity ligation assay (PLA). Numbers of

association signals per cell are shown. Data represent the meanþ s.d. Representative images from more than three independent experiments are shown in

b,d,f–h and i. Mice between 7 and 13 weeks old were used. *Po0.05; **Po0.01; ***Po0.001.
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Retroviral transduction of Kdelr1. B6 or T-Red mice were injected i.p. with
150 mg kg� 1 of 5-fluorouracil (Sigma, Tokyo) 3 to 5 days before harvesting bone
marrow cells. Bone marrow cells were cultured for 2 days in the presence of
100 ng ml� 1 IL-6, 100 ng ml� 1 stem cell factor and 1% IL-3-conditioned medium.
Phoenix cells were transfected with pMSCV-IRES-GFP KDELR1 or mock vectors,
and virus-containing medium was collected after 2 days. Spin infection was
performed twice in the presence of 4 mg ml� 1 polybrene (Sigma). The resulting
transduced bone marrow cells were transplanted into 9.5 Gy-irradiated B6 or
T-Red mice. Recipient mice were analysed 8–12 weeks later.

Establishment of Kdelr1-deficient mice. KDELR1 conditional knockout mice
were generated by a conventional homologous recombination technique in ES cells.
The targeting vector was constructed in a pEZ-FRT-Lox-DT vector so that the
second and third exons of the Kdelr1 gene were flanked with loxp sites
(Supplementary Fig. 9). The FRT-site flanked neomycin-resistant gene was
removed by crossing with flippase transgenic (Tg) mice. Kdelr1flox/flox mice were
then crossed with CAG-cre Tg or CD4-cre Tg mice to generate conditional Kdelr1
knockout mice.

In vivo experiments. Collagen-induced arthritis was induced using a
Mycobacterium bovis Bacillus Calmette-Guérin cell wall skeleton (BCG-CWS)
emulsified in CFA54. Chicken type II collagen (Sigma Aldrich) was injected with
CFA/BCG-CWS at 200mg per mouse at tail base on days 0 and 21. Serum IL-17
was measured using an IL-17 ELISA (enzyme-linked immunosorbent assay) kit
(eBioscience). The anti-OVA response was elicited by i.p. injection of alum-
precipitated OVA on days 0 and 5. Serum anti-OVA IgG1 and IgM levels were
measured by ELISA in which an OVA-coated microtiter plate and alkaline
phosphatase-conjugated anti-mouse IgG1 or IgM antibodies (Jackson
Immunoresearch, Philadelphia, Pennsylvania) were used. T-cell responses to
male-specific antigens were induced by injection of live splenocytes from male
B6 mice (2� 107 cells) into congenic female B6 mice (CD45.1þ )55. The donor
CD45.2þ population in peripheral blood was examined over time. The detection
limit was determined using anti-CD45.2 staining of blood leukocytes from B6.SJL
mice. Bacterial infection using Listeria monocytogenes expressing OVA (LM-OVA)
was performed as described56. In brief, mice were infected intravenously with 3,000
colony-forming units LM-OVA on day 0. In some experiments, congenically
marked recipients received 10,000 to 20,000 WT or T-Red OT-I cells 1 day before
infection. On day 7, the OT-I population was checked by flow cytometry. The
antigen-specific IFN-g-secreting CD8þ T-cell population was determined by
in vitro stimulation of splenocytes with OVA peptide (N4, SIINFEKL) for 4 h
followed by intracellular IFN-g staining. Mixed bone marrow chimera mice
were prepared by transplanting a mixture of T-cell-depleted bone marrow
cells from WT (CD45.2/CD90.1), T-Red (CD45.1/CD45.2/CD90.2), OT-I
(CD45.2/CD90.1/CD90.2) and T-Red/OT-I (CD45.2/CD90.2) mice into lethally
irradiated (10 Gy) WT congenic mice (CD45.1/CD90.2). The ratio of the mixture
was 4:4:1:1 to conform with a polyclonal situation. For in vivo survival assay of
naı̈ve T cells, equal numbers of sorted naı̈ve CD4 or naı̈ve CD8 T cells from WT
and Kdelr1 flox;ERT2-cre mice were mixed and transferred into congenic mice on
day 0. Tamoxyfen (1.5 mg per mouse, p.o.) was administered on days 1, 3 and 8.
The frequency of donor cells in blood was examined on days 1, 14 and 21 after
donor cell transfer, and the absolute numbers of donor cells in the spleen were
examined on day 21.

Metabolic labelling using puromycin. A non-radioactive method was employed
to monitor protein synthesis57,58. In brief, mice were injected i.p. with puromycin
(Sigma) at 20 mg kg� 1. After 1 h, splenocytes and thymocytes were harvested and
sorted for naı̈ve T cells and DP thymocytes. Total cell lysate was subjected to
western blotting using anti-puromycin antibody at 8,000-fold dilution (clone 4G11,
Millipore, Billerica, MA), followed by Ponceau-S staining of the membrane.
Densitometry analysis was performed using ImageJ software (National Institutes of
Health, Bethesda, Maryland).

In vitro T-cell culture. Sorted naı̈ve or memory T cells (1� 105 cells) were
cultured in a 96-well plate in the presence or absence of 2.5 ng ml� 1 recombinant
mouse IL-7 (Peprotech, Rocky Hill, New Jersey). Cells were stained with 7-AAD
(eBioscience) and analysed by a CyAn flow cytometer (Beckman Coulter). The
living cell population was determined as 7-AAD negative. In some experiments,
naı̈ve T cells or DP thymocytes were irradiated at 0.5 Gy or cultured with etoposide
(Sigma) at 1 mg ml� 1. For detection of eIF2a, sorted T cells that were freshly
isolated or preincubated at 37 �C for 1–2 h to reduce the endogenous level of eIF2a
phosphorylation were lysed in RIPA buffer, and total cell lysate was subjected to
Western blotting. In some experiments, salubrinal (Santa Cruz), a PP1/GADD34
specific inhibitor, was added at 10 mM after the preincubation. For Th1 or Th17 cell
differentiation, sorted naı̈ve CD4 T cells were cultured for 4-5 days with bone
marrow-derived dendritic cells and soluble anti-CD3e mAb (145-2C11) in the
presence of IL-12 (for Th1) or IL-6 and TGF-b (for Th17). Intracellular cytokine
staining was performed using fluorescence-labelled anti-IFN-g and anti-IL-17A at
200-fold dilutions (eBioscience).

Real-time PCRs. The 7,300 real-time PCR system (ABI, Tokyo) and SYBR FAST
PCR Mix or PROBE FAST PCR Mix (KAPA Biosystems, Woburn) were used to
quantify the expression levels of each gene and HPRT mRNA. Total RNA was
prepared from cell-sorted, purified T cells using the GenElute Mammalian total
RNA kit (Sigma). The conditions for real-time PCR were 40 cycles at 94 �C for 15 s
followed by 60 �C for 60 s (SYBR green), or 40 cycles at 94 �C for 3 s, followed by
60 �C for 30 s (FAM and TAMRA dual-labelled probes (Sigma)). Relative mRNA
expression levels were normalized to the levels of Hprt mRNA. qPCR primer
sequences are: Bim, 50FAM-TGAACTCGTCTCCGATCCGCCGCA-TAMRA30 ,
50-ACGACAGTCTCAGGAGGAACC-30 and 50-CGGTAATCATTTGCAAACA
CCCTC-30 ; Chop, 50FAM-TCTTGACCCTGCGTCCCTAGCTTGGC-TAMRA30 ,
50-CCCAGGAAACGAAGAGGAAGAA-30 and 50-GGGATGTGCGTGTGAC
CTC-30 ; Hprt, 50FAM-ATCCAACAAAGTCTGGCCTGTATCCAACAC-TAMRA30 ,
50-AGCCCCAAAATGGTTAAGGTTG-30 and 50-CAAGGGCATATCCAACAA
CAAAC-30; Asns, 50-GGCCCTGGATGAAGTCATATT-30 and 50-CACCACGC
TGTCTGTGTTCT-30 ; Vegfa, 50-TCACCAAAGCCAGCACATAG-30 and 50-AAT
GCTTTCTCCGCTCTGAA-30 ; and Trib3, 50-GCCTTATATCCTTTTGGAA
CGA-30 and 50-AGATGTAAAGGAGCCGAGAGC-30 .

Immunoprecipitation and western blotting. HEK293T cells were transfected
with a calcium phosphate transfection method. The pBOS-EF expression vector
with Myc or FLAG tag was used for forced expression. Total cell lysate was
immunoprecipitated with anti-FLAG M2 affinity gel (Sigma, Tokyo). The
3� FLAG peptide (Sigma) was used to elute the immunoprecipitated fraction.
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and western blotting was
performed by standard methods27. Densitometry analysis was performed using
ImageJ software. The original gel images are shown in Supplementary Fig. 10.

TCR Ja and TCRb usage/recombination. Total RNA was extracted from DP
thymocytes, and cDNA was synthesized using oligo dT. TCR Va8-Ca fragments
were amplified by PCR and blotted with 32P-labelled Ja specific oligonucleotide
probes59. Hybridization was performed overnight at 50 �C, and washing was
carried out for 20 min at 60 �C twice in 6� SSC/0.1% SDS. Primer and probe
sequences are shown in Supplementary Table 1. TCR Vb usage was examined by
flow cytometry using the Vb TCR screening panel (BD Biosciences). Cb1 mRNA
levels were measured by qPCR using SYBR green. TCR Db2-Jb2 recombination
was examined by genomic DNA PCR using primers listed in Supplementary
Table 1. The insulin gene was used as a positive control for genomic DNA
amplification60.

Dephosphorylation assay of eIF2a. A dephosphorylation assay for eIF2a61,62

was performed using naı̈ve T-cell lysates. Sorted naı̈ve T cells were lysed in a cell
lysis buffer containing 20 mM Tris-HCl, pH 7.4, 0.5% Triton-X-100, 50 mM NaCl,
10% glycerol and 0.1 mM EDTA. Recombinant GST-PERK and His-eIF2a (Sigma)
were incubated for 30 min at 30 �C in the presence of 5 mCi [g-32P]ATP.
After removal of unincorporated isotopes, a portion of the radiolabeled proteins
was incubated at 30 �C with 5 ml of total T-cell lysate in a 10-ml reaction
(dephosphorylation buffer; 20 mM Tris-HCl, pH 7.4, 50 mM KCl, 2 mM MgCl2,
0.1 mM EDTA, 0.8 mM ATP). The reaction was stopped by adding 5� SDS–PAGE
sample buffer followed by boiling and SDS–PAGE. Images were obtained using
Typhoon Phosphorimager (GE Healthcare, Tokyo). Densitometry analysis was
performed using ImageJ software.

Measurement of mitochondria stress responses. Mitochondrial membrane
depolarization was examined using the MitoPT JC-1 kit (ImmunoChemistry
Technologies, Bloomington, Minnesota). Total thymocytes were stained with JC-1
dye followed by cell surface staining. A shift of fluorescence was detected by flow
cytometry. As a positive control of the JC-1 staining, thymocytes were incubated
with carbonylcyanide m-chlorophenylhydrazone at 50 mM for 30 min. The
expressions of Clpp and mtHSP60, two target genes for mitochondrial stress33,34,
were examined by real-time PCR.

Measurement of ATP/ROS/iron levels. Intracellular ATP levels were measured
using a commercially available luciferase-based kit (Toyo B-Net, Tokyo). For ROS
detection, splenocytes were stained with 2 mM H2D-CFDA for 15 min at 37 �C
followed by cell surface staining for flow cytometry. Iron levels were examined
using calcein-AM (Sigma)63. Splenocytes were stained with 0.025 mM calcein-AM
for 30 min at 37 �C followed by cell surface staining for flow cytometry. Binding of
intracellular iron to calcein quenched the calcein fluorescence.

Proximity ligation assay. PLA was performed to examine KDELR1 and PP1
association at endogenous expression levels. Sorted naı̈ve T cells from WT and
T-Red mice were seeded in a microscopy chamber (Ibidi), then fixed and
permeabilized using the Cytofix/Cytoperm kit (BD Biosciences). After incubation
with anti-KDELR1 and anti-PP1 (Santa Cruz) at 100-fold dilutions, a PLA reaction
was performed using a commercially available kit (Duolink, Sigma). Blob-like
fluorescent PLA signals were obtained by Z-stack imaging using confocal
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microscopy. The number of blobs was automatically counted in more than
200 cells by computer software.

Statistical analysis. Student’s t-test (two-tailed) was used for the statistical
analysis of differences between two groups unless stated otherwise. For multiple
comparisons, one-way ANOVA (analysis of variance) and post hoc Dunnett’s test
were used. A paired Student’s t-test was used for some experiments. Wilcoxon
test was used for the evaluation of arthritis clinical scores. P values o0.05 were
considered statistically significant.
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