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Abstract Validity ranges of Lie Canonical Perturbation Theory (LCPT) are
investigated in terms of non blow-up regions. We investigate how the validity
ranges depend on the perturbation order in two systems, one of which is a
simple Hamiltonian system with one degree of freedom and the other is a
HCN molecule. Our analysis of the former system indicates that non blow-up
regions become reduced in size as the perturbation order increases. In case of
LCPT by Dragt and Finn and that by Deprit, the non blow-up regions enclose
the region inside the separatrix of the Hamiltonian but it may not be the case
for LCPT by Hori. We also analyze how well the actions constructed by these
LCPTs approximate the true action of the Hamiltonian in the non blow-up
regions and find that the conventional truncated LCPT does not work over the
whole region inside the separatrix whereas LCPT by Dragt and Finn without
truncation does. Our analysis of the latter system indicates that non blow-up
regions do not necessarily cover the whole regions inside the HCN well.

We propose a new perturbation method to improve non blow-up regions
and validity ranges inside them. Our method is free from blowing up and
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retains the same normal form as the conventional LCPT. We demonstrate
our method in the two systems and show that the actions constructed by our
method have larger validity ranges than those by the conventional and our
previous methods proposed in [1,2].

Keywords Lie Canonical Perturbation Theory · Non Blow-Up Region ·
HCN Isomerization

1 Introduction

Canonical transformations are coordinate transformations in the phase space
of Hamiltonian systems that preserve symplectic two forms, i.e., preserving
the form of Hamiltonian equations of motions. Canonical perturbation theory
(CPT) is one of the fundamental theories of solving nonlinear dynamical prob-
lems that is carried by perturbation from integrable systems through some
canonical transformation. CPT has often been applied for seeking for inte-
grals of motions, adiabatic invariants and a better and simpler description of
the systems [3]. The traditional canonical transformation is by mixed-variable
generating function composed of old and new canonical variables. The most
traditional Poincaré-Von Zeipel CPT [3] based on the mixed-variable generat-
ing function approach, however, imposes a major impediment to implementing
higher order perturbations. Among CPTs, Lie canonical perturbation theory
(LCPT) originally developed by Hori[4,5] and Deprit[6], later by Dragt and
Finn[7], is very powerful in that canonical transformation is carried by a series
of operations of Poisson brackets avoiding cumbersome generating function of
mixed variables where complete inversion from the old to the new canonical
variables is rather straightforward. Their mutual relation and their compu-
tational efficiency have also been investigated [8–11]. These different formats
result in the same normal form Hamiltonian but these formats can result
in different normal form transformations. The convergence or divergence of
the normal form and normal form transformation of order infinity has been
investigated in the previous studies [12–24] under various conditions. Under
some of these conditions, the normal form and normal form transformation
converges globally, but, since generic Hamiltonians are non-integrable [25], in
most cases, there is no hope to seek for (nontrivial) global integral of motions
without any symmetries. Under such circumstance, what one can do best is
to look into a better and simpler local description of the system in question.
LCPT has been applied to seeking for such local descriptions in a perturbative
manner from integrable solutions, and shown to be versatile in various types
of Hamiltonian in the research fields such as celestial mechanics[26,27], atomic
physics[28,29], cluster physics[30–36]. For example, in the context of chemi-
cal reaction dynamics, LCPT has been applied to seeking (locally-)no-return
transition state and the associated reaction coordinate buried in the phase
space for many-degrees of freedom Hamiltonian systems such as intramolecu-
lar proton transfer in malonaldehyde [37,38], argon cluster isomerization [30–
36], O(1D) + N2O → NO+NO [39], a hydrogen atom in crossed electric and
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magnetic fields [29,40], HCN isomerization [41,42,1,2], and so forth. LCPT
was generalized to dissipative systems such as multidimensional (generalized)
Langevin formulation to describe reactions under thermal fluctuation, in which
no-return transition state can be obtained by incorporating nonlinearity of
the system and interactions with heat bath [43–50]. The pioneering studies on
semiclassical analog of LCPT was also carried out in late 1980s for multidi-
mensional resonant, nonresonant, and nearly resonant systems[51–53]: They
presented a method for deriving corrections in powers of Planck’s constant by
the reflection of the underlying (near) divergence properties of classical chaos,
which was found to be effective even at low order corrections in improving
the accuracy of the energy eigenvalues. Recently, their semiclassical studies
were extended to the analyses of reaction dynamics over a rank-one saddle un-
der a time-dependent external field (optimally controlled laser pulse), and it
was found that optimally controlled laser pulse corresponds to modulating the
boundary of the reaction in the phase space so as to catch the system excited
in the reactant well and then to release it into the product [54]. This method
provides a new protocol to design the laser field facilitated by the classical
phase space picture [55].

However, in most cases, the convergence radii of these LCPTs are limited
even for finite order of perturbations [56], and the convergence radii shrink to
zero as the perturbation order increases. In a context of chemical reaction dy-
namics, molecules exhibit larger amplitude motions as their energies increase.
For these molecules to surmount the reaction barriers, they must have large
enough energies. Therefore, to describe and understand the chemical reaction
dynamics, it is vital to develop a perturbation method that is valid not only
in the very vicinity of their equilibrium structures but also in regions far from
them. In a broader context, if we succeed in obtaining a better estimation for
approximate invariants of motion, we would be able to analyze dynamics not
only for near-integrable systems but also for systems with mixed phase space,
i.e., those systems which exhibit both chaotic and regular behavior.

In the study of systems with mixed phase space, one of the crucial problems
is to find boundaries between chaotic and regular behavior. For systems of more
than two degrees of freedom, it is well known that the KAM tori do not divide
the equi-energy surface into two separate regions. In fact, Arnold showed, for a
specific model Hamiltonian, that trajectories detour around KAM tori, thereby
leading to the motion along the resonances [57]. Such motions are now called
the Arnold diffusion [58–60]. Moreover, it is known that the resonances con-
stitute a network called the Arnold web [3,61,62,28,63–65], where the motion
across the resonances gives rise to faster diffusion especially around resonance
junctions [66,67]. Thus, in the analysis of the dynamics on the Arnold web, it
is crucial to find those regions which trap trajectories for a finite but longer
duration [68], since distribution of resonances plays a key role for statistical
features of the reaction dynamics [69,70]. Then, better approximate invariants
would offer a clue to find how chaotic and regular regions are distributed in
the phase space.
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Another important issue in systems of mixed phase space is the transport
in the phase space [71–73], i.e., to understand how different regions of the
phase space are dynamically connected. In chemistry, reaction processes are
nothing but the transport from a potential well to another one via a saddle
region. Thus, we face the problem of what kind of phase space structures
connect dynamics in a well to that in another one [74]. In such studies, we need
to construct better action variables, if any, in different regions of the phase
space so that validity ranges of different sets of variables overlap with each
other. Then, we could investigate the connection based on the transformation
between different sets of the approximate invariants corresponding to different
regions of the phase space.

Teramoto et al. [1,2] proposed a method that makes LCPT valid in wider
regions than those in the previous method and demonstrated it in a highly-
excited HCN molecule. The crux is to calculate canonical transformation in
each order of LCPT without any truncation errors. However, validity ranges
of their method are also limited by non blow-up regions. Validity range of a
LCPT is a subset of phase space where the resultant normal form is valid.
For example, if the normal form is to construct slowly varying actions, center
manifolds or stable and unstable manifolds, the validity range of the LCPT is a
region where the resultant normal form describes these objects within a given
accuracy needed to describe systems. Non blow-up region of LCPT is a subset
of initial conditions in the phase space where the results of the perturbation
are finite. Non blow-up region limits the validity ranges of LCPT because the
results should be at least finite to validate them. To improve their method
further, it is important to understand these concepts. Sec. 2 is devoted to an
illustration of these concepts in a simple one-degree-of-freedom Hamiltonian
system and elucidations of these concepts along with their numerical demon-
strations. In Sec. 3, we propose a new perturbation method to avoid blowing
up while retaining the normal forms and demonstrate it in Sec. 4. Sec. 5 is
devoted to conclusions and discussions.

2 Non blow-up regions of Lie canonical perturbation theory, LCPT

2.1 An illustration of a validity range of LCPT for a one-dimensional
Hamiltonian system

To illustrate non blow-up regions of LCPT, let us investigate a simple Hamil-
tonian system. Let (q, p) be a coordinate and its conjugate momentum with a
Hamiltonian represented by

H (q, p) =
1

2

(
p2 + q2

)
+
(
2p2q − q3

)
. (1)

LCPT seeks for a canonical transformation (q, p) 7→ (Q,P ) so that the Hamil-
tonian (Eq. (1)) in terms of the new coordinate (Q,P ) becomes simple in a
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certain sense. There exist several conventions for the simplicities [11] and nor-
mal forms that attain them1. In this specific example, the leading order of
normal form would be like

H̄ (Q,P ) =
1

2

(
P 2 +Q2

)
+O (4) , (2)

(O (4) means a collection of terms of order quartic and those of higher than
quartic with respect to P and Q.) such that it has the same quadratic terms
but does not have terms of order cubic. To obtain the normal form, LCPT seeks
for a canonical transformation generated by a generating function F (q, p), i.e.,

Q (q, p) = e−{F (q,p),·}q, (3)

P (q, p) = e−{F (q,p),·}p, (4)

where {·, ·} is Poisson bracket defined as

{A (q, p) , B (q, p)} =
∂A (q, p)

∂q

∂B (q, p)

∂p
− ∂A (q, p)

∂p

∂B (q, p)

∂q
. (5)

A benefit for Lie canonical transformation is that the inverse transformation
(Q,P ) → (q, p) can be easily written as

q (Q,P ) = e{F (Q,P ),·}Q, (6)

p (Q,P ) = e{F (Q,P ),·}P. (7)

This can be evaluated by using the following relation,

{A′ (Q,P ) , B′ (Q,P )} =
∂A′ (Q (q, p) , P (q, p))

∂q

∂B′ (Q (q, p) , P (q, p))

∂p

− ∂A′ (Q (q, p) , P (q, p))

∂p

∂B′ (Q (q, p) , P (q, p))

∂q
, (8)

=
∂A′ (Q,P )

∂Q

∂B′ (Q,P )

∂P
− ∂A′ (Q,P )

∂P

∂B′ (Q,P )

∂Q
,(9)

(10)

which holds for arbitrary differentiable functions A′ (Q,P ) and B′ (Q,P ) if the
transformation (q, p) 7→ (Q,P ) is a canonical transformation [75]. By using
Eq. (10), the leading order expression of Eqs. (6) and (7) can be written as

q (Q,P ) = Q− ∂F (Q,P )

∂P
+ · · · , (11)

p (Q,P ) = P +
∂F (Q,P )

∂Q
+ · · · . (12)

1 In a context of chemistry, people are often interested in extracting slowly varying action
variables, i.e., adiabatic invariants. It is because these variables determine the slowest time
scale of intra-molecular vibrational relaxation and chemical reaction triggered by that. For
this purpose, the desired normal form would be the one that maximally decouples these
action variables from those of the other degrees of freedom.
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By plugging the leading order expression in Eq. (1), we get

H̄ (Q,P ) = H (p, q) (13)

=
1

2

(
Q2 + P 2

)
+
(
2P 2Q−Q3

)
−Q

∂F (Q,P )

∂P
+ P

∂F (Q,P )

∂Q
+ · · · .

(14)

To eliminate the cubic term of Eq. (14), the generating function F (Q,P )
should satisfy (

2P 2Q−Q3
)
−Q

∂F (Q,P )

∂P
+ P

∂F (Q,P )

∂Q
= 0. (15)

Eq. (15) can have multiple solutions but, in this specific case, the conventional
semi-simple normal form requires

1. F (Q,P ) is of order cubic.

2. F (Q,P ) ∈ Im
(
−Q ∂

∂P + P ∂
∂Q

)
= Im {H2 (Q,P ) , ·}, where H2 (Q,P ) =

1
2

(
P 2 +Q2

)
is the quadratic term of Eq. (2) and Im A is the image of the

operator A, i.e., Im A = {f |∃g, f = Ag }.

By these requirements, the solution of Eq. (15) becomes unique and F (Q,P ) =
−PQ2. With this choice, the · · · terms in Eq. (14) becomes of order quartic and
the canonical transformation generated by the generating function F (Q,P ) is
actually what we sought for. In this case, we can exactly calculate the canonical
transformation (Eqs. (3) and (4)) and we get

Q (q, p) =
q

1 + q
, (16)

P (q, p) = p (q + 1)
2
, (17)

by using the fact that the canonical transformations can be calculated by
integrating the following differential equations up to ϵ = 1,

dq (ϵ)

dϵ
=

∂F (q (ϵ) , p (ϵ))

∂p
, (18)

dp (ϵ)

dϵ
= −∂F (q (ϵ) , p (ϵ))

∂q
, (19)

starting from the initial condition (q (0) , p (0)) = (q, p) at ϵ = 0. Then, Q (q, p)
and P (q, p) can be obtained as (Q (q, p) , P (q, p)) = (q (1) , p (1)).

Note that the canonical transformation has a set of singular points at q =
−1. Therefore, the maximally connected component containing the origin and
where the canonical transformation is well-defined is DomF = {(q, p) | − 1 < q}.
We call DomF the non blow-up region of the canonical transformation gen-
erated by F . As long as one uses the formal power series of the canonical
transformation, its domain of convergence cannot go beyond this region and
thus this region limits the validity range of Lie canonical perturbation theory.
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To illustrate this, let us consider the power series expansion of the canonical
transformation (Eqs. (16) and (17)),

Q (q, p) =

∞∑
l=0

(−1)
l
ql+1, (20)

P (q, p) = pq2 + 2pq + p. (21)

The region where this expansion converges is {(q, p) | − 1 < q < 1}, which is
strictly smaller than DomF . Roughly speaking, the convergence radius of a
canonical transformation is determined by the shortest distance between the
expansion origin and the singularity of the canonical transformation and the
expansion converges only within an isotropic circle with the radius2. However,
if its non blow-up region extends anisotropically in the phase space, like the
current example, the non blow-up region can be much larger than the region
where the expansion converges.

2.2 Non-blow up regions of LCPT for n-dimensional Hamiltonian systems

Let q = (q1, · · · , qn) be coordinates in an n-dimensional Hamiltonian system
and p = (p1, · · · , pn) be their conjugate momenta with a Hamiltonian of the
systemH (q,p), which is analytic in a neighborhood of the origin (q,p) = 0. In
addition, let the Hamiltonian have a stationary point at the origin (q,p) = 0,

i.e.,
(

∂H(q,p)
∂p ,−∂H(q,p)

∂q

)∣∣∣
(q,p)=0

= 0. Without loss of generality, the value of

the Hamiltonian at the origin can be set to zero, i.e., H (0,0) = 0. Under these
settings, in a neighborhood of the origin, the Hamiltonian can be written as

H (q,p) =
∞∑
k=2

Hk (q,p) (22)

where Hk (q,p) is a homogeneous polynomial of order k with respect to (q,p).
Depending on the form of H2 (q,p), several types of normal forms have been
proposed, such as, semi-simple normal form, inner product normal form [11].
There also exist several types of the normalization procedures to realize the
normal forms [11]. Here, we use the normalization procedure due to Dragt and
Finn [77], which is classified as format 2a in [11]3. However, our method works
for other procedures classified into format 2 in [11]. The procedure of Dragt
and Finn aims at normalizing the Hamiltonian (Eq. (22)) by the following

2 Note that, if the generating function F is real analytic, Q (q, p) and P (q, p) are also real
analytic in DomF [76].

3 In this book, the existing types of perturbations are classified to the five formats, format
1a, 1b, 2a, 2b, and 2c, depending on whether they use generating function or not, iterative
or recursive. LCPTs by Dragt and Finn, Hori, and Deprit are classified into format 2a, 2b,
and 2c, respectively. For details of the classification, see [11] in Sec. 3.2.
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consecutive Lie canonical transformations

Q(m) (q,p) = e−{Fm,·}e−{Fm−1,·} · · · e−{F3,·}q, (23)

P(m) (q,p) = e−{Fm,·}e−{Fm−1,·} · · · e−{F3,·}p, (24)

generated by the generating functions Fm, Fm−1, · · · , F3 where Fk (3 ≤ k ≤ m)
is a homogeneous polynomial of order k with respect to (q,p). The non blow-
up region Um of the LCPT is

Um = DomF3 ∩
m∩

k=4

e{F3,·} · · · e{Fk−1,·}DomFk
, (25)

= DomF3 ∩ e{F3,·}DomF4 ∩ · · · ∩ e{F3,·} · · · e{Fm−1,·}DomFm , (26)

that is, an intersection among DomF3 and e{F3,·} · · · e{Fk−1,·}DomFk
(k = 4, · · · ,m),

which is the non blow-up region DomFk
pulled back to the space spanned by

the original phase space variables, p and q.

In general, we have Um1 ⊆ Um2 for m1 ≥ m2 and thus the non blow-up
region shrinks as the perturbation order m (m ≥ 3) increases. The question of
how the non blow-up region shrinks depends on specific forms of the generating
functions but, in general, if k (k ≥ 3) is odd and if 0 is an isolated critical
point of Fk (q,p)

4, the differential equation induced by Fk (q,p),

dq

dϵ
=

∂Fk (q,p)

∂p
, (27)

dp

dϵ
= −∂Fk (q,p)

∂q
, (28)

is unbounded, i.e., there is at least one unbounded solution [78]5. If the un-
bounded solution blows up in a finite time, it can be shown that non blow-up
region of the canonical transformation generated by Fk is not equal to the
whole phase space. The reason is the following. Let k be an odd integer that
is larger than 2 and (q (ϵ) ,p (ϵ)) be one of the solutions of the differential
equation that blows up at ϵ∗. Then,

(q′ (ϵ) ,p′ (ϵ)) = (ϵ∗)
1

k−2 (q (ϵ∗ϵ) ,p (ϵ∗ϵ)) (29)

is also the solution of the differential equation that blows up at ϵ = 1.

4 0 is an isolated critical point of Fk (q,p) if Fk (q,p) has a critical (stationary) point at
0 and there exists an open neighborhood of 0 within which there is no critical point other
than 0.

5 See COROLLARY in [78] in p. 1921. Note that k in this manuscript corresponds to
k + 1 in their notation.
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2.3 A Demonstration of how the non blow-up region Um depends on the
perturbation order m

In this section, we provide two examples of how the non blow-up region Um

shrinks as the perturbation order m increases. First, we evaluate non blow-up
regions of LCPT by Dragt and Finn in a Hamiltonian (Eq. (1)) in Sec. 2.3.1
and compare them with those of LCPTs by Hori and by Deprit, and, then,
evaluate non blow-up regions in a HCN molecule in Sec. 2.3.2. In both the
examples, we use a blow-up technique to integrate the differential equation in
Eqs. (27) and (28) shown in Sec. 7.1 in Appendix.

2.3.1 Non blow-up regions in a Hamiltonian (Eq. (1))

In this section, we investigate how the non blow-up region Um depends on the
perturbation order m. To investigate their relation to the phase space topology
of the Hamiltonian (Eq. (1)), we plot contour lines of the Hamiltonian in Fig. 1
(a) in the energy range [−0.1, 0.4]. This Hamiltonian has four fixed points, one
of which is elliptic and the other three are hyperbolic. The elliptic fixed point
is located at the origin (q, p) = 0 and the other three are located at

(
1
3 , 0
)
,(

−1
4 ,
√

7
32

)
and

(
−1

4 ,−
√

7
32

)
, respectively. The one located at

(
1
3 , 0
)
has an

energy 1
54 that is smaller than that of the other two hyperbolic fixed points

and thus the closest separatrix from the origin is made up of the stable and
unstable manifolds of the hyperbolic fixed point

(
1
3 , 0
)
. In Fig. 1 (b), we plot

non blow-up regions Um (m = 5, 10, 15, 20) of LCPT by Dragt and Finn in
the Hamiltonian (Eq. (1)) along with the separatrix of the Hamiltonian. From
this figure, Um shrinks as m increases and Um converges into the region inside
the separatrix. To see if the similar behavior can be seen in other types of
perturbation theory, we compare non blow-up regions of LCPT by Hori, and
that by Deprit which are classified as format 2b and 2c in [11], respectively.
The former one seeks for the canonical perturbation of the form

Q̃(m) (q, p) = e−
∑m

k=3{F̃k,·}q, (30)

P̃ (m) (q, p) = e−
∑m

k=3{F̃k,·}p, (31)

where F̃k (q, p) (k = 3, · · · ,m) is a homogeneous polynomial of order k with
respect to q and p. The generating function F̃k (q, p) (k = 3, · · · ,m) is deter-
mined by the conventional manner (see [11].). Q̃(m) (q, p) and P̃ (m) (q, p) can
be obtained by integrating the differential equations

dq (ϵ)

dϵ
=

∂
∑m

k=3 F̃k (q (ϵ) , p (ϵ))

∂p
, (32)

dp (ϵ)

dϵ
= −

∂
∑m

k=3 F̃k (q (ϵ) , p (ϵ))

∂q
. (33)

up to ϵ = 1 starting from (q (0) , p (0)) = (q, p) at ϵ = 0 and by putting(
Q̃(m) (q, p) , P̃ (m) (q, p)

)
= (q (1) , p (1)) . (34)
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Fig. 1 (a) Contour lines of the Hamiltonian (Eq. (1)), (b,c,d) Non blow-up regions of
LCPT by (b) Dragt and Finn Um (m = 5, 10, 15, 20), (c) Hori Ũm (m = 5, 10, 15, 20), and,

(d) Deprit Ûm (m = 5, 10, 15, 20), along with the separatrix of the Hamiltonian (Eq. (1)).

The latter one seeks for a canonical transformation generated by the generat-

ing function W (m) (ϵ, q, p) =
∑m

k=3
ϵk−3

(k−3)! F̂k (q, p), where F̂k (q, p) is a homoge-

neous polynomial of order k. In this case, the new variables
(
Q̂(m) (q, p) , P̂ (m) (q, p)

)
can be obtained by integrating the differential equation,

dq (ϵ)

dϵ
=

∂W (m) (ϵ, q (ϵ) , p (ϵ))

∂p
, (35)

dp (ϵ)

dϵ
= −∂W (m) (ϵ, q (ϵ) , p (ϵ))

∂q
, (36)

until ϵ = 1, starting from the initial condition (q (0) , p (0)) = (q, p) at ϵ = 0.

Then,
(
Q̂(m) (q, p) , P̂ (m) (q, p)

)
can be obtained as

(
Q̂(m) (q, p) , P̂ (m) (q, p)

)
=

(q (1) , p (1)). In these cases, we also define non blow-up regions of the LCPT
of order m, Ũm (Hori) and Ûm (Deprit) as the set of the initial conditions
where the solutions of the canonical transformations generated by these gen-
erating functions are bounded. In Fig. 1 (c) and (d), we plot Ũm and Ûm for
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m = 5, 10, 15 and 20. For Hori’s LCPT, the non blow-up regions Ũ15 and Ũ20

do not cover the whole region inside the separatrix whereas those of Deprit’s
LCPT cover relatively wide regions in the phase space. In this specific exam-
ple, LCPT by Dragt and Finn and that by Deprit have wider non blow-up
regions up to the perturbation order 20th than that by Hori. More systematic
study is needed to determine the best format of all the possible formats of
LCPT (some of them is listed in [11]) that leads to the widest non blow-up
region among them.

To investigate validity ranges of the LCPTs, we compare the action vari-
ables constructed by using the LCPTs with the true action inside the separa-
trix. Here, the true action is defined as

I =
1

2π

∫
{(q,p)|H(q,p)≤E,inside the separatrix}

dqdp, (37)

[75] while the actions constructed by LCPTs are denoted as I(20) = 1
2

((
p(20)

)2
+
(
q(20)

)2)
(Dragt and Finn), Ĩ(20) = 1

2

((
p̃(20)

)2
+
(
q̃(20)

)2)
(Hori), and Î(20) = 1

2

((
p̂(20)

)2
+
(
q̂(20)

)2)
(Deprit) with I

(20)
trunc = 1

2

((
p
(20)
trunc

)2
+
(
q
(20)
trunc

)2)
(Dragt and Finn, trun-

cated), respectively, where p
(20)
trunc and q

(20)
trunc are constructed as follows. First,

expand the canonical transformation Eqs. (23) and (24) with respect to q and
p, and then, truncated it at the order 21-st, which is the conventional prescrip-

tion used in [29]. These actions are close with each other within O
(
E

21
2

)
. It is

because the Hamiltonian (1) can be written as H (q, p) = Hint

(
I(20)

)
+O (21)

(this symbol O is the same as that defined in Eq. (2)) in terms of these actions,
and, thus, the following equation

I =
1

2π

∫
{(q,p)|Hint(I(20))≤E,inside the separatrix}

dqdp+O
(
E

20+1
2

)
, (38)

=
1

2π

∫
{(q,p)|Hint(I(20))≤E,inside the separatrix}

dI(20)dΘ(20) +O
(
E

21
2

)
,(39)

=

∫
{I′|Hint(I′)≤E}

dI(20) +O
(
E

21
2

)
, (40)

= I(20) +O
(
E

21
2

)
, (41)

holds. To derive the last equality, we use the fact that Hint (I
′) is monotoni-

cally increasing with respect to I ′. Therefore, the difference between the action

I(20) and the true action is O
(
E

21
2

)
. The same is true for the other actions.

Note that, at energies above that of the separatrix, contour lines of the Hamil-
tonian do not enclose finite regions and, thus, the true action is defined only
inside the separatrix. However, the actions constructed by using the LCPTs are
well-defined inside their non blow-up regions and we call them actions in what
follows. In Fig. 2 (a), (b), (c), and (d), we show that their relative errors from
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Fig. 2 (a-d) The relative error between the true action I and (a) I(20) (Dragt and Finn),

(b) Ĩ(20) (Hori), (c) Î(20) (Deprit), and (d) I
(20)
trunc (Dragt and Finn, truncated), plotted

inside the separatrix.

the true action I, defined as (a)
|I(20)−I|

I (Dragt and Finn), (b)
|Ĩ(20)−I|

I (Hori),

(c)
|Î(20)−I|

I (Deprit), and (d)

∣∣∣I(20)
trunc−I

∣∣∣
I (Dragt and Finn, truncated), respec-

tively. This comparison shows that the truncated one, I
(20)
trunc cannot describe

the true action properly at the region close to the separatrix (the relative error
exceeds 100.) whereas I(20), describes the action inside the separatrix within
one percent error. This tendency does not change even if the perturbation or-
der is increased further. In addition, Î(20) (Deprit) has larger errors than I(20)

(Dragt and Finn), whereas Ĩ(20) (Hori) has errors comparable to those I(20)

(Dragt and Finn) has inside of the non blow-up region Ũ20. More systematic
study is needed to be done but, in this specific example, the LCPT by Dragt
and Finn leads to the best result among all, regarding the width of the non
blow-up region and the accuracy inside of it. Therefore, we use the LCPT by
Dragt and Finn in what follows.

2.3.2 Non blow-up regions in a HCN molecule

The schematic figure of this molecule is shown in Fig. 3. This molecule consists
of three atoms H, C and N. Restricting to the zero total angular momentum,
the Hamiltonian can be described by the following three degrees of freedom
(dofs), r (distance between C and N atom), R (distance between H and the
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H

C

N
γ

r

R

Fig. 3 A schematical figure of HCN molecule

center of mass of C and N) and γ (angle between H and C as seen from
the center of mass of C and N) in the Jacobi coordinate. The corresponding
Hamiltonian is

H =
1

2µ
p2r +

1

2m
p2R +

1

2

(
1

µr2
+

1

mR2

)
p2γ + V (r,R, γ) (42)

where µ = (mCmN )/(mC +mN ) is the reduced mass of the CN diatom, m =
(mH (mC +mN ))/((mH +mC +mN )) the reduced mass of the full system,
and the potential V (r,R, γ) is taken from Murrell et al. [79]. This molecule
has two minima that have collinear configurations, one is called HCN and the
other is CNH. The potential energy of the saddle located in between the HCN
and CNH wells is −0.444 kcal/mol. The HCN and CNH well and the saddle
point that lies between the two wells correspond to γ ≈ 0, ≈ π and γ ≈
±1.168 rad., respectively. In Fig. 4, we show intersections between non blow-
up regions Um (m = 4, 8, 12, 16) and pr = pγ , pR = 0,H = −0.430 kcal/mol
projected on the coordinate space (r,R, γ) by using ParaView [80], version
4.10. In Fig. 4, the boundary of the energetically accessible region is plotted in
a transparent surface. This surface looks like a bottle and its neck corresponds
to the saddle region γ ≈ 1.168 (rad.). This figure indicates that non blow-up
regions disappear at the saddle region and, at the perturbation of order 16th,
U16 cannot cover the whole region inside HCN basin γ = −1.168 ∼ 1.168
(rad.).

3 A method of how to improve non blow-up regions

In this section, we propose a method to improve validity ranges of Lie canonical
perturbation theory. In this section and in what follows, we assume H2 (q,p)
can be written as 1

2

∑n
i=1 ωi

(
q2i + p2i

)
, which holds if the origin (q,p) = 0

is an elliptic fixed point, where ωi (ωi > 0) is a linear frequency of the ith
mode. However, it is straightforward to generalize this method to the other
types of fixed points. We propose generating functions of a form F̌k (q,p) =(
1− exp

(
− αk

Hl
2

))
Fk (q,p) where Fk (q,p) (k = 3, · · · ,m) are the generating
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Fig. 4 Non blow-up regions of LCPT by Dragt and Finn: intersections between Um and
pr = pγ , pR = 0, H = −0.430 kcal/mol projected on the coordinate space (r,R, γ), ((a)
m = 4, (b) m = 8, (c) m = 12, and (d) m = 16).

functions of LCPT by Dragt and Finn and l and αk (k = 3, · · · ,m) are positive
real numbers.

First, note that the new generating function F̌k (q,p) has the same Taylor

coefficients as Fk (q,p) and thus the resultant Hamiltonian Ȟ(m) = e−{F̌m,·} · · · e−{F̌3,·}H
has the same normal form as H(m) = e−{Fm,·} · · · e−{F3,·}H up to the order
m.

Second, due to the factor
(
1− exp

(
− αk

Hl
2

))
in front of the generating func-

tion, the canonical transformation generated by the new generating function is
free from blowing up. To show this, it is sufficient to show that all the solutions
of the following differential equations (3 ≤ k ≤ m),

dq

dϵ
=

∂F̌k (q,p)

∂p
, (43)

dp

dϵ
= −∂F̌k (q,p)

∂q
, (44)

do not blow up for ϵ ∈ [0, 1]. It is because the results of LCPT should be
finite if the solutions do not blow up for all k = 3, · · · ,m. To show this, it is
sufficient to show rω = ∥(q,p)∥ω is bounded within the unit time by the time
evolution of Eqs. (43) and (44) where ∥·∥ω is a norm induced by a weighted
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inner product

⟨(q′,p′) , (q,p)⟩ =
n∑

i=1

ωi (q
′
iqi + p′ipi) . (45)

It can be evaluated as∣∣∣∣d log rωdϵ

∣∣∣∣ ≤ Ckr
k−2
ω

(
1− exp

(
−2lαk

r2lω

))
, (46)

where we set
Ck = max

∥e∥ω=1
∥∇Fk (e)∥ω , (47)

which is a finite number. Under the condition l ≥ k−2
2 , the right hand side

of Eq. (46) is bounded and thus rω has a finite growth rate during the unit
time interval. The detailed derivation of Eq. (46) is shown in Sec. 7.2 in Ap-
pendix. The condition l ≥ k−2

2 is a sufficient condition for non blow-up be-

cause if l ≥ k−2
2 holds, the right hand side of Eq. (46) has a finite limit

limrω→∞ 2lαkCkr
k−2−2l
ω and, thus, it has a finite maximum value in [0,∞].

Note that the canonical transformation generated by F̌k is no longer ana-

lytic. This is due to the fact that the factor
(
1− exp

(
− αk

Hl
2

))
is not analytic at

the origin (q,p) = 0. In general, the normal form of the Hamiltonian is merely
a formal power series and, at best, it is an asymptotic power series with respect
to the normalized action-angle variables. This indicates non-existence of ana-
lytic canonical transformation that leads to the desired normal form because
its existence implies that the original Hamiltonian depends analytically on the
normalized action-angle variables. Contrastingly, due to the Borel-Ritt theo-
rem [11], for every formal power series, there exists a C∞ function (which is
not necessarily analytic) whose Taylor coefficients are the same as that of the
formal power series. Therefore, there may be a canonical transformation of C∞

that leads to the desired normal form. This is one of the reasons why we seek
for a non-analytic canonical transformation. A method of how to determine l
and αk (k = 3, · · · ,m) is shown in Sec. 7.3 in Appendix.

4 Demonstration of our method to improve the validity range

In this section, we demonstrate how our method works for the two systems.

4.1 Demonstration of our method in the Hamiltonian system (Eq. (1))

In Fig. 5 (a) and (b), we show that the two actions I(20) and Ǐ(20) along with
the true action I, where Ǐ(20) is defined as

Ǐ(20) =
1

2

((
p̌(20)

)2
+
(
q̌(20)

)2)
. (48)

This figure indicates that the action Ǐ(20) extends smoothly to the outside of
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Fig. 5 (a,b) The actions (a) I(20), (b) Ǐ(20) plotted with the true action I, (a’) a magnified
figure of (a) with spurious peaks indicated by the black circles.

the non blow-up region U20 whereas I(20) has some spurious peaks indicated
by the circles in Fig. 5 (a’). To investigate how the action Ǐ(20) describe the
dynamics for the outside region of the separatrix, we superpose the contour
surface of Ǐ(20) with the contour lines of the Hamiltonian in Fig. 6 (a). The sep-
aratrix is indicated by the pink dotted line in this figure. This figure indicates
that the two contour lines are roughly parallel with each other. To quantify it,

we plot

∣∣∣∣{Ǐ(20),H}
Ǐ(20)

∣∣∣∣ and ∣∣∣∣
{
I
(20)
trunc,H

}
I
(20)
trunc

∣∣∣∣ in Fig. 6 (b) and (c), respectively. If the

contour lines of the actions and the Hamiltonian are parallel with each other,

this quantity should be zero. This figure indicates that

∣∣∣∣{Ǐ(20),H}
Ǐ(20)

∣∣∣∣ is smaller

than

∣∣∣∣
{
I
(20)
trunc,H

}
I
(20)
trunc

∣∣∣∣ by more than 100 times for the outside of the separatrix

whereas

∣∣∣∣{Ǐ(20),H}
Ǐ(20)

∣∣∣∣ is less than 0.1 in the plotted region. Here, we use I
(20)
trunc

as a reference to compare because the non blow-up region U20 is almost the
same as the region inside the separatrix (see Fig. 1 (b)) and, thus, it cannot
be used to compare with Ǐ(20) outside of the separatrix. Again, note that the
true action defined as Eq. (37) does not exist outside of the separatrix but
the action Ǐ(20) is well defined even outside of the separatrix and serves as an
approximate integral of motion, i.e.,

∣∣{Ǐ(20),H}∣∣ ≤ 0.1× Ǐ(20).

4.2 Demonstration of our method in the HCN molecule

In this section, we apply our method to the HCN molecule to demonstrate how
our method improves the behavior of the action variables. To demonstrate it,

we calculate the actions I
(7)
i (i = 1, 2, 3), Ǐ

(7)
i (i = 1, 2, 3) and I

(7)
trunc,i (i = 1, 2, 3)

along a trajectory at energy −0.430 kcal/mol, which is beyond the potential
energy of the saddle located in between HCN and CNH. Roughly speaking, the
3rd mode (i = 3) corresponds to the γ direction that leads to structural transi-
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Fig. 6 (a) The contour surface of the action Ǐ(20) plotted with the contour lines of the
Hamiltonian in black lines (the separatrix is indicated by the pink dotted curve), (b, c) the

Poisson brackets (b)
∣∣{Ǐ(20), H}

/Ǐ(20)
∣∣ and (c)

∣∣∣{I(20)trunc, H
}
/I

(20)
trunc

∣∣∣ with the separatrix

indicated by the pink dotted curve.

tions between HCN and CNH and the other modes i = 1, 2 are the bath modes
that weakly couple to the 3rd mode. The perturbation order 7th is shown to
be sufficient to obtain converged actions [1,2] at this energy. In Fig. 7 (a) and
(b), we show a typical trajectory of (a) r, R and (b) γ, respectively. The phase
space region −1.168 ≤ γ ≤ 1.168 (mod 2π) corresponds to the HCN well and
this trajectory shows two structural transitions between HCN and CNH at the
time instances indicated by the arrows, i.e., t = 8.671 (fs) and t = 6.697× 101

(fs), in Fig. 7 (b). In the HCN well, we show how the actions evolve in time

along the trajectory in Fig. 7 (c) (I
(7)
i (i = 1, 2, 3), Ǐ

(7)
i (i = 1, 2, 3)) and (d)

(I
(7)
trunc,i (i = 1, 2, 3)). The actions I

(7)
trunc,i (i = 1, 2, 3) change abruptly in time

and it is very difficult to extract any insight from the actions but the ac-
tions shown in Fig. 7 (c) indicate the existence of the slowly varying actions.

However, the actions I
(7)
i (i = 1, 2, 3) have spurious peaks as indicated by the

circles in Fig. 7 (c). These peaks appear when the trajectory comes very close
to the edge of the HCN well (γ ≈ 1.168 or γ ≈ 2π − 1.168). Contrastingly,

the actions Ǐ
(7)
i (i = 1, 2, 3) are free from these spurious peaks. Further study

is needed to quantify the difference between the two but this demonstration
indicates potentiality for our method to suppress these spurious peaks on the
edge of non blow-up regions.
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Fig. 7 (a, b) Time series of (a) r and R and (b) γ along a trajectory for 2.000× 102 (fs)
with the arrows that indicate time instances when the trajectory exits from the HCN well

(t = 8.671 (fs)) and enters the well (t = 6.697 × 101 (fs)), (c) the actions I
(7)
i (i = 1, 2, 3)

and Ǐ
(7)
i (i = 1, 2, 3) with spurious peaks of I

(7)
3 indicated by the circles, (d) the actions

I
(7)
trunc,i (i = 1, 2, 3).

5 Conclusions and Discussions

Validity ranges of Lie Canonical Perturbation Theory (LCPT) have been in-
vestigated in terms of non blow-up regions. Non blow-up region of LCPT is a
subset of initial conditions in the phase space where the results of the perturba-
tion are finite. Non blow-up region limits the validity ranges of LCPT because
the results should be at least finite to validate them. We have investigated
how the validity ranges depend on the perturbation order in two systems, one
of which is a simple Hamiltonian system with one degree of freedom and the
other is a HCN molecule. Our analysis of the former system indicates that non
blow-up regions become reduced in size as the perturbation order increases.
In case of LCPT by Dragt and Finn and that by Deprit, the non blow-up
regions enclose the region inside the separatrix of the Hamiltonian but it may
not be the case for LCPT by Hori. We have also analyzed how well the actions
constructed by these LCPTs approximate the true action of the Hamiltonian
in the non blow-up regions and have found that the conventional truncated
LCPT does not work over the whole region inside the separatrix whereas Dragt
and Finn’s without truncation does. In addition, LCPT by Dragt and Finn
leads to smaller errors than those by Deprit. Regarding the width of the non
blow-up region and the accuracy inside it, LCPT by Dragt and Finn leads to
the best results among the three. Our analysis of the latter system indicates
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that non blow-up regions do not necessarily cover the whole region inside the
HCN well.

We have proposed a new perturbation method to improve non blow-up re-
gions and validity ranges inside them. Our method is free from blowing up and
retains the same normal form as the conventional LCPT. We demonstrated
our method in the two systems and showed that the actions constructed by our
method have larger validity ranges than those by the conventional ones and
our previous method proposed in [1,2]. Previously, Padé approximations have
also been used to improve validity ranges of LCPT [81–86]. Empirically, these
approximations work well and poles of the Padé approximation tend to clump
together in the regions where chaotic motion is observed, such as separatrices
or other chaotic regions [81,84]. However, even for an entire function that is
analytic in the whole complex plane, its Padé approximation can diverge ev-
erywhere [87], and thus, it may not be a reliable methd to investigate the phase
space geometry. In addition, Teramoto et al. [1,2] demonstrated that Padé ap-
proximation does not work for a highly-excited HCN molecule. Contrastingly,
our method is free from such a spurious diverging behavior and works even
for such highly-excited molecules. Some other possible methods to improve
validity ranges are using different styles of normalization [88] and using Kol-
mogorov normal form [89,90]. Both of the methods can be used combining
with our method.

Our method can be applied to various subjects in dynamical reaction the-
ory. For example, it would enable us to estimate the time evolution of action
variables more precisely than the existing methods, since the action variables
constructed by our method are free from blowing up. Thus, it provides us
with a new methodology to visualize the Arnold web leading to a better un-
derstanding of the dynamical mechanism of intramolecular vibrational-energy
redistribution (IVR) [91]. Moreover, the method can be used to investigate how
the region around the potential saddle and the well are connected dynamically,
since the actions thus constructed offer a better approximation of the real dy-
namics locally even beyond the separatrix. Therefore, we could evaluate how
the stable/unstable manifolds emanating from the normally hyperbolic invari-
ant manifold (NHIM) around the saddle look like in the well even when the
energy of the reactive mode is larger than that of the saddle. It would make
it possible to understand how the reactive mode obtains energy to go over the
saddle from the well and how it loses energy to end up in the well. Results of
these studies will be published in near future in separate papers.
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7 Appendix

7.1 A blow up method to solve Eqs. (27) and (28)

It is difficult to solve Eqs. (27) and (28) directly because their right hand sides
are of order k − 1 with respect to q and p and increase rapidly as q and p
increase. To solve the differential equation, we introduce the following blow
up coordinates [78], r and e such that (q,p) = re and e · e = 1. In addition
to them, we introduce a scaled virtual time s so that ϵ increases slower as the
solution approaches to the infinity such that dϵ = 1

r(k−2) ds. In terms of the
blow up coordinates and the scaled virtual time, Eqs. (27) and (28) can be
written as

d log r

ds
= Θk (e) , (49)

de

ds
=

(
∂Fk (q,p)

∂p

∣∣∣∣
(q,p)=e

, −∂Fk (q,p)

∂q

∣∣∣∣
(q,p)=e

)
−Θk (e) e, (50)

dϵ

ds
=

1

r(k−2)
, (51)

where Θk (e) is defined as

Θk (e) = e ·

(
∂Fk (q,p)

∂p

∣∣∣∣
(q,p)=e

, −∂Fk (q,p)

∂q

∣∣∣∣
(q,p)=e

)
. (52)

Eqs. (49), (50) and (51) can be solved stably because norms of their right
hand sides are bounded by a finite value, i.e., maxe·e=1 ∥∇Fk∥, where ∥·∥ is
Euclidean norm. In this paper, we integrate this differential equation by using
Stepper Dropper853 [92], which is 8th order Runge-Kutta method with step
size control under the constraint e · e = 1 until ϵ ≤ 1. We use the double
precision to integrate them and if the value of log r exceeds the logarithm of
the maximum value of double defined in the standard C++ library [93],

std::numeric_limits<double>::infty()
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that is 1.79769e+308 in our current environment, we regard the solution as
one that blows up.

This method can be also used to solve differential equations induced by gen-
erating functions in LCPTs by Hori (Eqs. (32) and (33)) and Deprit (Eqs. (35)
and (36)). However, those generating functions are not homogeneous polyno-
mials and thus this method needs to be adopted for them. To solve them
accurately, we decompose the phase space into two regions: one is a region
where the highest order terms in the generating function dominate and the
other is its complement. In the former region, by introducing the blow up coor-
dinate and the scaled virtual time, the differential equations can be written as
Eqs. (49), (50) and (51) plus some correction terms of order 1/r. They can be
integrated in the same manner as above. In the latter region, since the lower
order terms still dominate, we can directly integrate the differential equations.

7.2 A derivation of Eq. (46)

The ϵ-derivative of rω can be calculated as follows,

drω
dϵ

=
1

rω

n∑
i=1

ωi

(
qi
dqi
dϵ

+ pi
dpi
dϵ

)
, (53)

=
1

rω

n∑
i=1

ωi

(
qi
∂F̌k

∂pi
− pi

∂F̌k

∂qi

)
, (54)

=
1

rω

n∑
i=1

ωi

(
qi
∂Fk

∂pi
− pi

∂Fk

∂qi

)(
1− exp

(
−2lαk

r2lω

))
. (55)

Define e as (q,p) = rωe, then, ∥e∥ω = 1 holds. By using this, we get

drω
dϵ

=

n∑
i=1

ωi

(
ei
∂Fk

∂pi
− ei+n

∂Fk

∂qi

)(
1− exp

(
−2lαk

r2lω

))
,

= rk−1
ω

n∑
i=1

ωi

(
ei

∂Fk

∂pi

∣∣∣∣
(q,p)=e

− ei+n
∂Fk

∂qi

∣∣∣∣
(q,p)=e

)(
1− exp

(
−2lαk

r2lω

))
.

Finally, we get∣∣∣∣d log rωdϵ

∣∣∣∣ ≤ rk−2
ω

(
1− exp

(
−2lαk

r2lω

))
max

∥e∥ω=1
∥∇F (e)∥ω . (56)

by using the following inequality,

− max
∥e∥ω=1

∥∇F (e)∥ω

≤
n∑

i=1

ωi

(
ei

∂Fk

∂pi

∣∣∣∣
(q,p)=e

− ei+n
∂Fk

∂qi

∣∣∣∣
(q,p)=e

)
≤ max

∥e∥ω=1
∥∇F (e)∥ω . (57)
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7.3 A method to determine l and αk (k = 3, · · · ,m) in Sec. 3

As pointed out in Sec. 3, the condition l ≥ k−2
2 is a sufficient condition for the

right hand side of Eq. (46) is bounded. Here, we choose l = k−2 for simplicity
but this choice may not be the best choice. Further study is needed to find an
optimal power l. Under this choice, the maximum value of the right hand side

of Eq. (46) can be evaluated as 2
k−2
2 Ckα

1
2

k f
∗ and this maximum is attained

at rω =

√
2α

1
k−2

k r∗, where f∗ (≈ 6.38173× 10−1
)
and r∗

(
≈ 8.92135× 10−1

)
the maximum and the argument that attains the maximum of the function
f (r) = r

(
1− exp

(
1
r2

))
(r ≥ 0), respectively.

For the right hand side of Eq. (46) to be of order 1, i.e., 2
k−2
2 Ckα

1
2

k f
∗ ∼ 1,

αk should satisfy αk ∼ 1
2k−2

(
1

f∗Ck

)2
. This is how we determine αk (k = 3, · · · ,m).

If the αk is chosen as this, ∣∣∣∣∣r(k+1)
ω − r

(k)
ω

r
(k)
ω

∣∣∣∣∣ . 1 (58)

holds for k = 3, · · · ,m − 1. This should hold if (k + 1)th order perturbation
acts as a correction to the result up to the kth order perturbation.

Note that, if αk becomes smaller, the deviation between Fk and F̌k becomes
larger. Therefore, it is favorable if αk is chosen as large as possible. Since αk is
inversely proportional to C2

k , it may also be important to suppress the growth
of Fk without normalizing near-resonant terms in LCPT.
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