

HOKKAIDO UNIVERSITY

Title	Isolation of a major genetic interaction associated with an extreme phenotype using assorted F2 populations in rice
Author(s)	Ota, Yuya; Ishiguro, Seiya; Aoyama, Eiko; Aiba, Ryosuke; Iwashiro, Reika; Tanabata, Takanari; Takamure, Itsuro; Fujino, Kaien; Kishima, Yuji
Citation	Molecular Breeding, 33(4), 997-1003 https://doi.org/10.1007/s11032-013-9998-6
Issue Date	2014-04
Doc URL	http://hdl.handle.net/2115/60043
Rights	The final publication is available at Springer via http://dx.doi.org/10.1007/s11032-013-9998-6
Туре	article (author version)
File Information	Ota et al Molucular Breeding MS.pdf

Instructions for use

1	
2	Short communication
3	
4	
5	Isolation of a major genetic interaction associated with an extreme
6	phenotype using assorted F2 populations in rice
$\overline{7}$	
8	Yuya Ota ¹ , Seiya Ishiguro ¹ , Eiko Aoyama ¹ , Ryosuke Aiba ¹ , Reika Iwashiro ¹ ,
9	Takanari Tanabata ² , Itsuro Takamure ¹ , Kaien Fujino ¹ , Yuji Kishima ¹
10	
11	1 Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
12	2 National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
13	
14	Present address of T Tanabata
15	RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 3050074, Japan
16	
17	Corresponding author: Yuji Kishima. E-mail address: kishima@abs.agr.hokudai.ac.jp
18	Tel: +81-11-706-2439

1

2 Abstract

3 Detection of quantitative trait loci (QTLs) is dependent on materials used in the analysis, as 4 different combinations of parental materials may lead to different outcomes in QTLs for the $\mathbf{5}$ same trait. On the other hand, an extreme phenotype associated with a given trait implies the 6 potential involvement of a particular allele in various allelic interactions. A genetic factor 7 associated with such an extreme phenotype may frequently be identified from various genetic 8 populations consisting of different parental combinations. In this study, we attempted to 9 uncover the genetic factor associated with extremely early heading date in rice using various F2 10 populations. Heading date in rice has been characterized by at least 19 QTLs, from which 12 11 genes have been identified. A58, a rice strain with an extremely early heading date, is adapted to 12Hokkaido, the northernmost limit of rice cultivation. Six F2 populations derived from crosses of 13A58 with six other strains displayed a range of heading dates. Genotyping using 19 QTL 14markers indicated that the A58 allele of the Ghd7 locus was present in most F2 individuals 15exhibiting extremely early heading dates. This analysis also demonstrated that when the 16wild-type Ehd1 allele was present, the Ghd7 allele from A58 accelerated floral induction. The 17results of this study demonstrate that assorted F2 populations are valuable materials for 18 comprehensive genotyping to explore major genetic factors for extreme phenotypes, and that 19 this methodology is broadly applicable to other unknown traits. 2021Keywords 22Assorted F2 populations, Extreme phenotype, Heading date, Ghd7, Ehd1, Rice

23

1 Text

 $\mathbf{2}$ Analyses for quantitative trait loci (QTLs) have broadly and profoundly contributed to the 3 discovery of a complex of genes with minor effects for a particular phenotypic trait (Borevitz 4 and Chory 2004). An enormous number of QTLs have been identified using second filial $\mathbf{5}$ generation (F2) populations, recombinant inbred lines (RILs), backcross inbred lines (BILs), 6 and chromosomal substitution lines in various crops (Yamamoto et al. 2009; Wurschum 2012). 7 As technical development has boosted the ability to produce high-resolution genomic markers 8 throughout the genome, QTL detection accuracy and frequency have greatly advanced (Ganal et 9 al. 2009; Varshney et al. 2009). In rice, QTL analyses have generally employed RILs and BILs 10 (Yamamoto et al. 2009). Unlike F2 populations, RILs and BILs are genetically stable after 11 establishment, allowing recurrent use under different conditions. Such populations, however, 12possess only the two parental alleles at each locus, limiting genetic variation to two entities. 13Consequently, a trait of interest examined using RILs or BILs is defined by their parental 14characteristics. 1516Ebana et al. (2011) successfully characterized known QTLs for rice heading date using multiple 17F2 populations derived from different cross combinations. The different allele combinations 18 resulted in different phenotypic variations for the corresponding trait in the F2 populations. 19 Their study caused us to consider whether common genetic factors can be extracted from 20individuals exhibiting phenotypes extremely different from the majority in various F2 21populations. Different F2 populations are expected to show a wide range of phenotypic 22variations. If particular F2 populations have distinct distributions of phenotypic variations, we

- 23 might be able to explore the loci associated with such distinct phenotype using F2 individuals
- and isolate major genetic factors.
- 25

26 To attempt isolation of major genetic factors from various F2 populations, we focused on rice

- 27 heading date, a well-characterized, important agricultural trait. Approximately two dozen QTLs
- 28 (Hd1-Hd17, Ehd1, Ehd2, Ehd3, Edh4, and Ghd7) associated with heading date have been
- reported over roughly the last decade (Yano et al. 1997; Yamamoto et al. 2000; Lin et al. 2003;
- 30 Takeuchi et al. 2003; Uga et al. 2007; Matsubara et al. 2008a; Matsubara et al. 2008b;
- 31 Matsubara et al. 2011; Shibaya et al. 2011; Gao et al. 2013), and genes have been identified and
- 32 characterized in 12 QTLs: *Hd1*, *Hd2*, *Hd3a*, *Hd5* (*Ghd8*), *Hd6*, *Hd16*, *Hd17* (*Hd3b*), *Ehd1*,
- 33 Ehd2, Ehd3, Ehd4, and Ghd7 (Yano et al. 2000; Takahashi et al. 2001; Kojima et al. 2002; Doi

1 et al. 2004; Matsubara et al. 2008b; Xue et al. 2008; Matsubara et al. 2011; Yan et al. 2011;

Matsubara et al. 2012; Hori et al. 2013; Koo et al. 2013). Comprehensive gene identifications in
a quantitative trait facilitate direct mapping of genes having unknown genetic contributions to

- 4 their associated phenotypes.
- $\mathbf{5}$

6 An old rice strain, A58, is characterized by extremely early heading date, which thought to be 7 required for adaptation to northernmost limits of cultivation such as Hokkaido (Baruah et al. 8 2011). In studies of F2 and BC1F1 populations between Hokkaido variety Hoshinoyume and 9 Nipponbare (Fujino and Sekiguchi 2005b), alleles of both Hd2 and Ghd7 (= Hd4) were found to 10 be prerequisite to conferral of extremely early heading date. Some other Hokkaido varieties 11 showing extremely early heading also possess these recessive alleles (Fujino and Sekiguchi 122005a; Nonoue et al. 2008). We did not know, however, whether Hokkaido strain A58 also 13contained the same functional alleles possessed by the other Hokkaido varieties. In this study, 14we produced F1 seeds derived from six combinations, in which A58 as the seed parent was 15crossed with three japonica, Nipponbare, Koshihikari, and Taichung 65 (T65), and three indica 16strains, #108, IR36, and Kasalath. The F1 plants were cultivated in a greenhouse equipped with 17a short-day chamber at Hokkaido University (Sapporo, Japan) in 2012. To evaluate F2 18 populations, about 200 seeds from each F1 population were sown in nursery beds in the 19 greenhouse, with 4-week-old seedlings, then transplanted into a paddy field at the university. 20Sowing and transplanting were performed on May 7 and June 4, 2012. Days to heading of the 21earliest heading panicle among individual panicles were recorded for each plant to represent the 22number of days required from sowing to heading.

23

Heading status was checked every 2 d, beginning in the middle of July, 2012. All six pollen

25 parents showed later heading dates (114–126 d in Sapporo, Hokkaido, Japan, 43°N latitude)

relative to A58 (81 d). The latest strain was IR36, which headed at 126 d. The six F2

27 populations derived from the cross of A58 with the six pollen parents showed different

28 segregation patterns in terms of heading date (Supplementary Fig. S1). Based on earliest

29 observed heading date compared with that of A58, F2 populations were classified into three

30 groups: 1) those contained individuals earlier than A58 (F2 populations of A58/Kasalath

31 [F2-A58/Kasalath] and F2-A58/#108); 2) the earliest individuals in those were comparable to

32 A58 (F2-A58/Nipponbare and F2-A58/Koshihikari); and 3) those were later than A58

33 (F2-A58/IR36 and F2-A58/T65) (Supplementary Fig. S1).

1

2	We randomly selected 93 individuals from each F2 population (comprising about 200
3	individuals each), and performed genotyping using SSR markers (McCouch et al. 2002; Fujino
4	and Sekiguchi 2005a; Matsubara et al. 2008a; Matsubara et al. 2008b) for 19 loci related to
5	heading date (Table 1). Polymorphisms at each locus between A58 and the other strains were
6	assessed by PCR. No polymorphisms were detected between A58 and japonica strains at 11 or 8
7	loci because of genetic similarities to A58. Between A58 and indica strains, polymorphisms
8	were detected at all 19 loci (Table 1). Average heading dates were calculated for all individuals
9	that were homozygous or heterozygous at each locus. The significance of correlations between
10	heading date and alleles at each locus was assessed by ANOVA. The Ghd7 locus was
11	significantly associated with heading date in four F2 populations (F2-A58/Nipponbare,
12	F2-A58/Kasalath, F2-A58/IR36, and F2-A58/#108) (Table 1), while a correlation with <i>Hd2</i> was
13	detected in three (F2-A58/Nipponbare, F2-A58/T65, and F2-A58/IR36) (Table 1). Other
14	significant correlations with heading date were found with Hd1 (F2-A58/Nipponbare); Hd6,
15	Hd16, and Ehd1 (F2-A58/Kasalath); Hd17 (F2-A58/IR36); and Hd3 and Hd5 (F2-A58/#108)
16	(Table 1). Two-way ANOVA detected a strong interaction ($p < 0.01$) between <i>Ghd7</i> and <i>Ehd1</i>
17	in F2-A58/Kasalath (Supplementary Table S1). We subsequently focused on 20 individuals
18	from the four F2 populations (4 plants from F2-A58/Nipponbare, 2 plants from
19	F2-A58/Koshihikari, 12 plants from F2-A58/Kasalath, and 2 plants from F2-A58/#108) that had
20	earlier or identical heading dates to A58. These extreme individuals were genotyped at the 19
21	loci, and the resulting data were statistically evaluated for non-Mendelian distributions. As
22	shown in Table 2, the distribution of <i>Ghd7</i> genotypes was clearly divergent from the expected
23	Mendelian segregation ratio (1:2:1 for two alleles). Eighteen individuals were homozygous at
24	Ghd7 for the allele from A58, implying its contribution to their extremely early heading dates.
25	In contrast, no contribution to early heading date was observed from the A58 allele at the <i>Ehd1</i>
26	locus (Table 2), implying that the homozygous <i>Ehd1</i> alleles from A58 tended to inhibit early
27	heading. In fact, a remarkable epistatic interaction ($P = 0.0044$) was detected between <i>Ghd7</i>
28	(A58 allele) and <i>Ehd1</i> (Kasalath allele) in F2-A58/Kasalath as suggested by two-way ANOVA
29	(Fig. 1). The trade-off interaction between both the wild-type alleles from <i>Ghd7</i> and <i>Ehd1</i> has
30	actually been observed with respect to their expressions under long-day conditions (Matsubara
31	et al. 2011). In the cited study, expression of <i>Ghd7</i> suppressed that of <i>Ehd1</i> , leading to delayed
32	floral induction under long-day conditions. Sequence analysis has determined that A58 contains
33	the same recessive Ghd7 allele found in Hoshinoyume (Lu et al. 2012) (Supplementary Fig. S2),

1 and Doi et al. (2004) have reported that Kasalath contains a functional *Ehd1*. It has thus been

2 suggested that the combination of the A58 allele of *Ghd7* and the Kasalath allele of *Ehd1*

3 accelerates floral induction following basic vegetative growth (Tsuji et al. 2011). In our study,

- 4 this allele combination promoted a significantly shorter heading date than did A58 alone.
- $\mathbf{5}$

6 It is curious that when A58 was crossed with indica strains, some loci in the corresponding F2

7 populations did not segregate in a Mendelian manner irrespective to heading date, i.e., marked

8 genetic distortion occurred in *Hd8* and *Hd13* in F2-A58/IR36 and *Hd1* and *Ghd7* in

9 F2-A58/#108 (Table 1). Such genetic distortion has often been observed in hybrid progenies of
10 distantly related strains. Because of this genetic distortion, a large number of F2 individuals are

11 required to satisfy statistical testing.

12

13The purpose of this pilot study was to demonstrate the use of assorted F2 populations, rather 14than RILs or BILs, for rapid extraction of major genetic factors and/or interactions associated 15with extreme phenotypes in complex QTLs. Heading date was a feasible trait with which to 16search for functionally important genes: there are at least 19 heading date-related genes or loci 17currently characterized, which allowed us to perform their genotyping directly. We successfully 18 detected one major genetic interaction associated with extremely early heading date from F2 19 populations derived from crosses between A58, a strain adapted to the northernmost rice 20cultivation limit, and assorted other strains. The F2 populations examined here exhibited 21different distributional patterns of heading date frequencies, implying that various combinations 22of genetic factors were present. As shown in this study, individuals with extreme phenotypes in 23assorted F2 populations are valuable materials for exploring the major genetic factor(s) involved 24in such phenotypes. This approach has both strengths and weaknesses; the strengths are to select 25the most effective one(s) among a broad range of the genetic interactions derived from multiple 26alleles, and to accomplish isolation of such interaction(s) in a short period as F2 generation, 27while the weakness is to required a number of F2 plants from the different cross combinations 28to obtain the conclusive results. Combined with deciphered genomic information, this 29methodology is broadly applicable to the investigation of various polygenic traits associated 30 with extreme phenotypes, such as biotic and abiotic stress tolerance and disease and insect 31resistance. 32

33

1 Acknowledgments

2	We are especially grateful to Ms. Takako Takeuchi (Research Faculty of Agriculture, Hokkaido
3	University) for technical assistance and Drs. Kaworu Ebana and Masahiro Yano (QTL Genomic
4	Research Center, National Institute of Agrobiological Sciences) for technical advice regarding
5	the field data recording system. This research was supported by funding from the Scientific
6	Technique Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry.
7	
8	
9	References
10	
11	Baruah AR, Onishi K, Oguma Y, Ishigo-Oka N, Uwatoko N, Sano Y (2011) Effects of
12	acclimation on chilling tolerance in Asian cultivated and wild rice. Euphytica
13	181:293-303.
14	Borevitz JO, Chory J (2004) Genomics tools for QTL analysis and gene discovery. Curr Opin
15	Plant Biol 7:132-136.
16	Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004)
17	Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and
18	controls FT-like gene expression independently of Hd11. Gene Dev 18:926-936.
19	Ebana K, Shibaya T, Wu JZ, Matsubara K, Kanamori H, Yamane H, Yamanouchi U,
20	Mizubayashi T, Kono I, Shomura A, Ito S, Ando T, Hori K, Matsumoto T, Yano M
21	(2011) Uncovering of major genetic factors generating naturally occurring variation in
22	heading date among Asian rice cultivars. Theor Appl Genet 122:1199-1210.
23	Fujino K, Sekiguchi H (2005a) Identification of QTLs conferring genetic variation for heading
24	date among rice varieties at the northern-limit of rice cultivation. Breeding Sci
25	55:141-146.
26	Fujino K, Sekiguchi H (2005b) Mapping of QTLs conferring extremely early heading in rice
27	(Oryza sativa L.). Theor Appl Genet 111:393-398.
28	Ganal MW, Altmann T, Roder MS (2009) SNP identification in crop plants. Curr Opin Plant
29	Biol 12:211-217.
30	Gao H, Zheng XM, Fei GL, Chen J, Jin MN, Ren YL, Wu WX, Zhou KN, Sheng PK, Zhou F,
31	Jiang L, Wang J, Zhang X, Guo XP, Wang JL, Cheng ZJ, Wu CY, Wang HY, Wan JM
32	(2013) Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic
33	flowering in rice. Plos Genet 9.

1	Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M (2013) Hd16, a gene
2	for casein kinase I, is involved in the control of rice flowering time by modulating the
3	day-length response. Plant J.
4	Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a
5	rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream
6	of Hd1 under short-day conditions. Plant Cell Physiol 43:1096-1105.
7	Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013)
8	Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation
9	at a wide range of latitudes. Mol Plant.
10	Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative
11	trait loci Hd4 and Hd5 controlling heading date in rice. Breeding Sci 53:51-59.
12	Lu L, Yan WH, Xue WY, Shao D, Xing YZ (2012) Evolution and association analysis of Ghd7
13	in rice. Plos One 7.
14	Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, Mizubayashi T, Yamamoto S,
15	Yamanouchi U, Shirasawa K, Nishio T, Yano M (2008a) Novel QTLs for photoperiodic
16	flowering revealed by using reciprocal backcross inbred lines from crosses between
17	japonica rice cultivars. Theor Appl Genet 117:935-945.
18	Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in
19	Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering.
20	Plant Cell Physiol 53:709-716.
21	Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M (2011)
22	Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of
23	rice flowering. Plant J 66:603-612.
24	Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008b) Ehd2, a rice
25	ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating
26	Ehd1. Plant Physiol 148:1425-1435.
27	McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li
28	ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D,
29	Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR
30	markers for rice (Oryza sativa L.). DNA Res 9:199-207.
31	Nonoue Y, Fujino K, Hirayama Y, Yamanouchi U, Lin SY, Yano M (2008) Detection of
32	quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet
33	116:715-722.

1	Shibaya T, Nonoue Y, Ono N, Yamanouchi U, Hori K, Yano M (2011) Genetic interactions
2	involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day
3	conditions. Theor Appl Genet 123:1133-1143.
4	Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved
5	in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl
6	Acad Sci USA 98:7922-7927.
7	Takeuchi Y, Lin SY, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of
8	closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl
9	Genet 107:1174-1180.
10	Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a
11	complex gene network, and natural variation. Curr Opin Plant Biol 14:45-52.
12	Uga Y, Nonoue Y, Liang ZW, Lin HX, Yamamoto S, Yamanouchi U, Yano M (2007)
13	Accumulation of additive effects generates a strong photoperiod sensitivity in the
14	extremely late-heading rice cultivar 'Nona Bokra'. Theor Appl Genet 114:1457-1466.
15	Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing
16	technologies and their implications for crop genetics and breeding. Trends Biotechnol
17	27:522-530.
18	Wurschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl
19	Genet 125:201-210.
20	Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH,
21	Zhang QF (2008) Natural variation in Ghd7 is an important regulator of heading date
22	and yield potential in rice. Nat Genet 40:761-767.
23	Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait
24	locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using
25	advanced backcross progeny. Genetics 154:885-891.
26	Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice:
27	substantially or superficially? DNA Res 16:141-154.
28	Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing
29	YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain
30	productivity, plant height, and heading date in rice. Mol Plant 4:319-330.
31	Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of
32	quantitative trait loci controlling heading date in rice using a high-density linkage map.
33	Theor Appl Genet 95:1025-1032.

1	Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K,
2	Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity
3	quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene
4	CONSTANS. Plant Cell 12:2473-2483.
5	
6	
7	Figure legends
8	Fig. 1
9	Effect of genetic interactions between Ghd7 and Ehd1 on heading date in an F2-A58/Kasalath
10	population. Combinations of the two loci, Ghd7 and Ehd1, from A58 and Kasalath were either
11	homozygous (A58 and Kasalath) or heterozygous (Hetero). Labels below bars refer to Ghd7
12	genotypes; bar colors refer to Ehd1 genotypes (white: A58 homozygous; gray: heterozygous;
13	black: Kasalath homozygous). Numbers above bars correspond to number of individuals
14	possessing the genotype combination. Error bars indicate standard errors.
15	
16	Supplementary Fig. S1
17	Frequency and distribution of days to heading in six F2 populations. (a) F2-A58/Nipponbare (n
18	= 209); (b) F2-A58/Koshihikari (n = 212); (c) F2-A58/T65 (n = 195); (d) F2-A58/Kasalath (n =
19	213); (e) F2-A58/IR36 (n = 194); (f) F2-A58/#108 (n = 238). Arrowheads indicate parental
20	mean heading dates.
21	
22	Supplementary Fig. S2
23	Amino acid variation in the Ghd7 protein deduced from nucleotide sequences in the seven
24	studied rice strains. Positions correspond to those of the 257 amino acids of the Nipponbare
25	Ghd7 polypeptide. All variable positions characterized by Lu et al. (2012) are noted. A
26	nonsense mutation is present in the Ghd7 allele of A58; mutations occurring in the other strains
27	most likely do not seriously impair proper function. The CCT (CONSTANS, CO-like, and
28	TOC1) domain is a highly conserved basic module of ~43 amino acids, and is characteristic of
29	the Ghd7 polypeptide.
30	

F2 population	Target gen	е., ь		- Probability		
(n=93) ^a	or QTL	Marker	A (n)	B (n)	H (n)	- Flobability
A58/Nipponbare	Hd1	Hd1	97 (21)	109 (25)	101.3 (47)	0.0002*
	Hd2	RM1306	96 (22)	110 (23)	102 (48)	0.0000*
	Ghd7	RM21327	95 (29)	106 (19)	105 (45)	0.0000*
	Hd6	RM15956	97 (17)	103 (27)	104 (49)	0.0794
	Hd10	RM17071	104 (25)	100 (24)	102 (44)	0.3821
	Hd11	RM16278	101 (28)	104 (21)	102 (44)	0.5199
	Hd12	RM23471	103 (30)	102 (22)	102 (41)	0.9686
	Hd16	87C10-17	98 (22)	104 (23)	103 (48)	0.0636
A58/Koshihikari	Hd1	Hd1	105 (21)	105 (31)	103 (41)	0.7492
	Hd2	RM1306	103 (15)	105 (21)	104 (57)	0.8553
	Ghd7	RM21327	100 (24)	104 (16)	107 (53)	0.0668
	Hd6	RM15956	106 (22)	106 (29)	102 (42)	0.3170
	Hd10	RM17071	108 (22)	104 (24)	103 (47)	0.2634
	Hd11	RM16278	108 (27)	105 (24)	102 (42)	0.0917
	Hd12	RM23471	105 (24)	105 (20)	104 (49)	0.8544
	Hd13	RM27727	105 (21)	105 (24)	104 (48)	0.9315
	Hd16	RM1038	105 (23)	107 (24)	103 (46)	0.3046
	Hd17	P548D347	104 (26)	103 (19)	105 (48)	0.8179
A58/T65	Hd1	Hd1	105 (22)	100 (31)	101 (40)	0.0145
	Hd2	RM1306	98 (25)	107 (27)	101 (41)	0.0000*
	Ghd7	RM7110	104 (20)	100 (20)	102 (53)	0.1167
	Hd7	RM3857	103 (26)	102 (25)	102 (42)	0.6281
	Hd11	RM16278	101.4 (25)	102.3 (21)	102.1 (47)	0.8582
	Hd12	RM23471	101 (23)	101 (24)	103 (46)	0.1357
	Hd16	87C10-17	102 (18)	103 (22)	102 (53)	0.5486
	Ehd1	RM25539	99 (18)	104 (30)	102 (45)	0.0263
A58/Kasalath	Hd1	Hd1	104 (14)	98 (37)	100 (42)	0.1366
	Hd2	RM1306	99 (25)	104 (26)	97 (42)	0.0163
	Hd3	RM204	106 (16)	97 (37)	100 (40)	0.0099*
	Ghd7	RM5499	87 (23)	108 (26)	101 (44)	0.0000*
	Hd5	GBR8001	95 (23)	99 (23)	102 (47)	0.0253
	Hd6	RM15956	94 (25)	100 (17)	102 (51)	0.0061*
	Hd7	RM8030	99 (15)	100 (29)	100 (49)	0.9222
	Hd8	RM5442	94 (15)	101 (31)	100 (47)	0.0602
	Hd9	GBR3002	93 (18)	102 (31)	100 (44)	0.0190
	Hd10	RM17067	99 (31)	104 (19)	98 (43)	0.1464
	Hd11	RM16278	101 (17)	101 (19)	99 (57)	0.7347
	Hd12	RM23471	101 (30)	100 (27)	98 (36)	0.5581
	Hd13	RM27727	97 (28)	102 (17)	100 (48)	0.3564
	Hd16	RM1038	93 (25)	101 (20)	102 (48)	0.0012*
	Hd17	P548D347	104 (18)	96 (36)	100 (39)	0.0328
	Ehd1	RM25539	106 (24)	96 (29)	98 (40)	0.0006*
	Ehd2	SSR-1	104 (22)	96 (31)	99 (40)	0.0164
	Ehd3	RM1381	99 (17)	99 (31)	100 (45)	0.9710
	Ehd4	RM6349	94 (16)	102 (34)	99 (43)	0.0466

 Table 1
 Summary of genotyping analysis for heading date using 19 markers in the six F2 populations

A58/IR36	Hd1	Hd1	116 (19)	114 (25)	116 (47)	0.6730
	Hd2	RM1306	110 (23)	120 (21)	116 (47)	0.0008*
	Hd3	RM204	113 (28)	120 (21)	115 (42)	0.0115
	Ghd7	RM5499	110 (14)	119 (31)	115 (46)	0.0090*
	Hd5	GBR8001	117 (33)	112 (17)	116 (41)	0.1248
	Hd6	RM15956	117 (19)	117 (27)	114 (45)	0.4337
	Hd7	RM8030	114 (23)	117 (28)	116 (40)	0.3218
	Hd8	RM5442	107 (4)	114 (40)	118 (47)	0.0176
	Hd9	GBR3002	115 (18)	116 (21)	116 (52)	0.8517
	Hd10	RM17071	115 (19)	115 (27)	116 (45)	0.8487
	Hd11	RM16278	116 (17)	117 (32)	114 (42)	0.3102
	Hd12	RM23471	119 (25)	116 (21)	114 (45)	0.0559
	Hd13	RM27727	119 (7)	114 (37)	117 (47)	0.2296
	Hd16	RM1038	117 (17)	119 (23)	114 (51)	0.1019
	Hd17	0007o20	114 (33)	123 (19)	114 (39)	0.0006*
	Ehd1	RM25539	119 (16)	116 (26)	115 (49)	0.2862
	Ehd2	SSR-1	118 (18)	116 (25)	115 (48)	0.3162
	Ehd3	RM1381	115 (20)	117 (23)	115 (48)	0.7285
	Ehd4	RM6349	115 (24)	116 (17)	115 (50)	0.8740
A 50/11400	11-14	Hd1	07 (9)	100 (42)	104 (42)	0.0120
A58/#108	Hai	TIQ I	97 (0)	109 (43)	104 (42)	0.0130
A58/#108	Hd1 Hd2	RM1306	97 (8) 104 (28)	109 (43) 105 (23)	104 (42) 107 (42)	0.5110
A58/#108	Hd1 Hd2 Hd3	RM1306 RM204	97 (8) 104 (28) 101 (22)	109 (43) 105 (23) 111 (29)	104 (42) 107 (42) 104 (42)	0.5110 0.0044*
A58/#108	Hd1 Hd2 Hd3 Ghd7	RM1306 RM204 RM5499	97 (8) 104 (28) 101 (22) 87 (9)	105 (23) 111 (29) 112 (43)	107 (42) 107 (42) 104 (42) 103 (41)	0.0130 0.5110 0.0044* 0.0000*
A58/#108	Hd1 Hd2 Hd3 Ghd7 Hd5	RM1306 RM204 RM5499 GBR8001	97 (6) 104 (28) 101 (22) 87 (9) 110 (21)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25)	104 (42) 107 (42) 104 (42) 103 (41) 109 (47)	0.0130 0.5110 0.0044* 0.0000* 0.0000*
A58/#108	Hd1 Hd2 Hd3 Ghd7 Hd5 Hd6	RM1306 RM204 RM5499 GBR8001 RM15956	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26)	104 (42) 107 (42) 104 (42) 103 (41) 109 (47) 105 (37)	0.0130 0.5110 0.0044* 0.0000* 0.0000* 0.2099
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20)	104 (42) 107 (42) 104 (42) 103 (41) 109 (47) 105 (37) 105 (49)	0.0130 0.5110 0.0044* 0.0000* 0.0000* 0.2099 0.9150
A58/#108	Hd1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216
A58/#108	Hd1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 102 (19)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11 Hd12	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278 RM23471	97 (6) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 102 (19) 109 (18)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28) 107 (25)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46) 104 (50)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900 0.1949
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11 Hd12 Hd13	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278 RM23471 RM23471	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 102 (19) 109 (18) 106 (19)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28) 107 (25) 103 (26)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46) 104 (50) 106 (48)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900 0.1949 0.5218
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11 Hd12 Hd13 Hd16	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278 RM23471 RM27727 RM1373	97 (6) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 102 (19) 109 (18) 106 (19) 104 (27)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28) 107 (25) 103 (26) 108 (26)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46) 104 (50) 106 (48) 105 (40)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900 0.1949 0.5218 0.3680
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11 Hd12 Hd13 Hd16 Hd17	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278 RM23471 RM23471 RM27727 RM1373 P548D347	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 102 (19) 109 (18) 106 (19) 104 (27) 102 (24)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28) 107 (25) 103 (26) 108 (26) 110 (22)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46) 104 (50) 105 (40) 105 (47)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900 0.1949 0.5218 0.3680 0.0342
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11 Hd12 Hd13 Hd16 Hd17 Ehd1	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278 RM23471 RM27727 RM1373 P548D347 RM25539	97 (6) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 102 (19) 109 (18) 106 (19) 104 (27) 102 (24) 110 (24)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28) 107 (25) 103 (26) 108 (26) 110 (22) 106 (30)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46) 104 (50) 106 (48) 105 (40) 105 (47) 102 (39)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900 0.1949 0.5218 0.3680 0.0342 0.0206
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11 Hd12 Hd13 Hd16 Hd17 Ehd1 Ehd2	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278 RM23471 RM23471 RM27727 RM1373 P548D347 RM25539 SSR-1	97 (8) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 102 (19) 109 (18) 106 (19) 104 (27) 102 (24) 110 (24) 108 (23)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28) 107 (25) 103 (26) 108 (26) 110 (22) 106 (30) 109 (29)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46) 104 (50) 105 (40) 105 (40) 105 (47) 102 (39) 107 (41)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900 0.1949 0.5218 0.3680 0.0342 0.0206 0.1131
A58/#108	Ha1 Hd2 Hd3 Ghd7 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10 Hd11 Hd12 Hd13 Hd16 Hd17 Ehd1 Ehd1 Ehd2 Ehd3	RM1306 RM204 RM5499 GBR8001 RM15956 RM8030 RM5442 GBR3002 RM17071 RM16278 RM23471 RM27727 RM1373 P548D347 RM25539 SSR-1 RM1381	97 (6) 104 (28) 101 (22) 87 (9) 110 (21) 103 (30) 106 (24) 104 (10) 103 (17) 105 (31) 105 (31) 102 (19) 109 (18) 106 (19) 104 (27) 102 (24) 110 (24) 108 (23) 110 (22)	109 (43) 105 (23) 111 (29) 112 (43) 96 (25) 109 (26) 106 (20) 106 (51) 109 (39) 105 (26) 108 (28) 107 (25) 103 (26) 108 (26) 110 (22) 106 (30) 109 (29) 106 (31)	104 (42) 107 (42) 103 (41) 109 (47) 105 (37) 105 (49) 105 (32) 103 (37) 106 (36) 105 (46) 105 (46) 105 (46) 105 (40) 105 (47) 102 (39) 107 (41) 103 (40)	0.0130 0.5110 0.0044* 0.0000* 0.2099 0.9150 0.8096 0.0452 0.8216 0.2900 0.1949 0.5218 0.3680 0.0342 0.0206 0.1131 0.0836

a: Patental strains (A/B=femal/male), 93 individuals randomly selected from each of the F2 populations were examined; b: SSR markers were referred from following references; Fujino and Sekiguchi (2005a) for Hd1, GBR3002, GBR8001, McCouch et al. (2002) for all the markers with RM numbers, Matsubara et al. (2008a) for P548D347, 0007o20, Matsubara et al. (2008b) for SSR-1; c: DTH (days to heading), A represents homozygote of A58 allele, B is homozygote of the pollen parental allele, and H is heterozygote; * indicates a significance level of 1% as determined by ANOVA.

					/ /			<u> </u>		<u> </u>	<u> </u>								
Genotype/locus	Hd1	Hd2	Hd3	Ghd7	Hd5	Hd6	Hd7	Hd8	Hd9	Hd10	Hd11	Hd12	Hd13	Hd16	Hd17	Ehd1	Ehd2	Ehd3	Ehd4
Homozygous for A58	2	8	2	18	7	7	3	4	6	5	4	2	6	7	3	0	2	3	6
Heterozygous	8	11	5	1	5	8	7	7	6	12	13	12	7	8	5	8	5	9	6
Homozygous for pollen parent	10	1	7	1	2	5	4	3	2	3	3	6	3	5	8	6	7	2	2
No. of examined plants	20	20	14	20	14	20	14	14	14	20	20	20	16	20	16	14	14	14	14
Fit to Mendelian segregation																			
ratio⁵	0.027	0.078	0.095	2E-10	0.095	0.55	0.93	0.93	0.28	0.55	0.39	0.3	0.5	0.55	0.068	0.066	0.095	0.53	0.28
a: The 20 individuals showing e	vtromolv	oarly he	adina c	omoriso	1 4 in E2.	A58/Nin	nonhare	2 in E2	A58/K	ochihika	ri 12 in	E2_A58/	Kacalath	and 2	in E2_A5	8/#108	h: P.vali	ine for th	10

Table 2 Number of individuals expressing the extremely early heading trait categorized by geneotype for 19 loci^a

a: The 20 individuals showing extremely early heading comprised 4 in F2-A58/Nipponbare, 2 in F2-A58/Koshihikari, 12 in F2-A58/Kasalath and 2 in F2-A58/#108. b: *P*-values for the probability to Mendelian segragation of genotypes for each loci were obtained by a Chi-square test (1:2:1 ratio).

Supplementary Table S1 Two-way ANOVA based on Table 1 to detect additive interaction between different alleles shown by P-value.

A58/Nipponbare	Hd1	Hd2	Ghd7
Hd1			
Hd2	0.807855		
Ghd7	0.038454	0.64416	

A58/Kasalath	Hd3	Ghd7	Hd6	Hd16	Ehd1
Hd3				/	
Ghd7	0.411932	/		/	
Hd6	0.111289	0.329899			
Hd16	0.054606	0.055915	0.789351a		
Ehd1	0.721323	0.009632	0.592643	0.20737	

A58/IR36	Hd2	Ghd7	Hd17
Hd2			/
Ghd7	0.701702a		/
Hd17	0.727955	0.563473a	

A58/#108	Hd3	Ghd7	Hd5
Hd3			
Ghd7	0.803396	/	
Hd5	0.031798	0.182031	

a: short of degree of freedom, yellow cell p < 5%, red cell p < 1%

